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Factorization problems in complex
reflection groups

Joel Brewster Lewis and Alejandro H. Morales

Dedicated to David M. Jackson in recognition of his 75th birthday

Abstract. 'We enumerate factorizations of a Coxeter element in a well-generated complex reflection
group into arbitrary factors, keeping track of the fixed space dimension of each factor. In the infinite
families of generalized permutations, our approach is fully combinatorial. It gives results analogous
to those of Jackson in the symmetric group and can be refined to encode a notion of cycle type.
As one application of our results, we give a previously overlooked characterization of the poset of
W-noncrossing partitions.

Introduction

The motivation for this paper is the following formula of Chapuy and Stump for the
generating function for the number of factorizations of a fixed Coxeter element by
reflections in a complex reflection group.

Theorem 1.1 (Chapuy-Stump [CS14, Thm. 1.1]). Let W be an irreducible well-
generated complex reflection group of rank n. Let ¢ be a Coxeter element in W, let R
and R* be the set of all reflections and all reflecting hyperplanes in W, and for £ > 1
let No(W) == #{(11,...,7¢) e R 11y = c} be the number of factorizations of c as a
product of £ reflections in R. Then

t£ 1 . n
NAWYE = = (pfIRn _ p=tIR /)"
; (Mg =7 (e e )

Near t = 0, the generating function recovers the fact [Besl5, Prop. 7.6] that the num-
ber of minimum-length reflection factorizations of a Coxeter element is n!h"/|W|,
where h is the Coxeter number of W. When W is the symmetric group &,,, Theorem
1.1 reduces to a result of Jackson [Jac88] counting factorizations of the n-cycle (12:--n)
into transpositions. Chapuy and Stump prove their result by an algebraic approach
with irreducible characters that dates back to Frobenius.
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2 J. B. Lewis and A.H. Morales

A natural question is whether there are extensions to complex reflection groups
of other factorization results in the symmetric group. In the same paper [Jac88],
Jackson gave formulas for the generating polynomial of factorizations of an n-cycle
as a product of a fixed number of factors, keeping track of the number of cycles of
each factor. We state the result for two and k factors, as reformulated by Schaeffer—
Vassilieva.

Theorem 1.2 (Jackson [Jac88], Schaeffer—Vassilieva [SV08]). Let ¢ be a fixed n-cycle
in 8,, and for integers 1y, ..., 1y let a,,,.. . be the number of factorizations of ¢ as a
product of k permutations in &, such that m; has r; cycles fori =1,..., k. Then

(L1) % Z a, X"y = Z n-1 )(x)P (»)q

risol p,qgl(P—l;q—lm—P—qH poq

where (x), denotes the falling factorial (x), = x(x —1)--(x — p +1). More generally,

(xl)Pl ('xk)Pk

1
12) —- Z Ap, o XXk = ML
1 Ls YT ’348 ! k -1,..., -1
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where the coefficient My,

In this paper we give analogues of these results for two infinite families of complex
reflection groups: the group G(d,1,n) of n x n monomial matrices whose nonzero
entries are all dth roots of unity (i.e., the wreath product (Z/dZ) & ,; at d = 2, the
Coxeter group of type B,) and its subgroup G(d, d, n) of matrices whose nonzero
entries multiply to 1 (at d = 2, the Coxeter group of type D,,). The analogue of an n-
cycle in a complex reflection group is a Coxeter element. The analogue of number of
cycles of a group element is the fixed space dimension. Our results for G(d, 1, n) are in
terms of the polynomials

13) (x-1) = (x-1)(x-1-d)(x ~1-2d)-(x -1 (k-1)d) = ﬁ(x —eh).

Here the roots e; are the coexponents of this group, one of the fundamental sets of
invariants associated to every complex reflection group. (All these terms are defined
in Section 2.2.)

.....

tions of a fixed Coxeter element c in G as a product of k elements of G with fixed space
dimensions 11, . .., ri, respectively. Then

d d
14 1 () ros _ n (x-1p" (y-1
(1.4) YoaPdxy = — s
|G| 7,520 P,4>0 pgn—-p—q d p: d q:

and more generally

(d) (d)
1 (xl—l) (xk—l)

_ - . (d) Tk = n o Pk
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..... >0 P15 Pk 20

i 1S defined in (2.1).
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In Section 3, we give a combinatorial proof of the result for k factors by reduc-
ing it to the case of the symmetric group for k factors. The latter case has a
combinatorial proof [BM13, BM16]. Our proof works directly with the group elements
and permutations. However, the proof could also be written in terms of maps (e.g., see
[LZ04, Sch15]) through a coloring argument as done in [Berl12, SV08, CFF13] for the
case of factorizations with two factors and in [BM13] for the case of factorizations with
k factors.

Our main results for the subgroup G(d, d, n) of G(d, 1, n) count transitive factor-
izations (for the natural action on a set of size dn) of a Coxeter element. They are
written in terms of the polynomials

P (x) = (x - (k-1)(d -1)) - (x - D) = ﬁ( —ef),

where again the e} are the coexponents of the group.

Theorem 1.4 Ford >1,let G = G(d,d, n) and let bﬁld,,)“,,k be the number of transitive

factorizations of a Coxeter element ¢(4,4,,) in G as a product of k elements of G with

fixed space dimensions ry, . . ., ri, respectively. Then
(d) (d)

L P L

o (=DGL S p\P=Lq-Ln-—p-gq/ dript dilgl’
and more generally

(L7)
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where My, . is defined in (2.1).

In Section 4, we give a combinatorial proof of these results. The proof relies on an
enumeration of transitive factorizations of an (n —1)-cycle in &, into k factors that
appears to be new - its proof may be found in Section 2.4.

In the remainder of the paper, we consider a variety of extensions and applications
of these results. In Section 5, we explore the same question in the exceptional complex
reflection groups, using an algebraic approach. This produces results that are strikingly
similar to the results from the infinite families in many cases, but ultimately no
uniform formula along the lines of Theorem 1.1. The question of whether a uniform
theorem exists is raised in Section 8.

In Section 6, we show how to derive the Chapuy-Stump result from our main
results, giving a fully combinatorial proof in the case of G(d,1, n). We also consider
the special case of genus-0 factorizations, which are extremal with respect to a natural
subadditivity of fixed space dimension. As a consequence, we derive a characterization
of the poset of W-noncrossing partitions that has (surprisingly) been overlooked before
now.
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In Section 7, we refine the result for G(d,1,n) by the group orbit of the fixed
space, or equivalently by an appropriate notion of cycle type. The proof is again fully
combinatorial. In the genus-0 case, this result gives an analogue of the Goulden-
Jackson cactus formula [G]92, Thm. 3.2] and specializes to a result of Krattenthaler-
Miiller in type B [KM10, Thm. 7(i)]. Finally, in Section 8, we end with a number of
remarks and open questions, including constructions of maps associated to factoriza-
tions in G(d, 1, n).

An extended abstract of this work appeared in [LM19a].

2 Background
2.1 Known factorization results in G,

We begin by discussing in more detail the background behind Theorem 1.2. Let ¢
be a fixed n-cycle in &, and for integers r1,...,rg let a,, ,, be the number of k-
tuples (7, ...,y ) of elements in &, such that 7; has r; cycles for i =1,...,k and
w7y = . Theorem 1.2 is a corollary of a result obtained by Jackson [Jac88, Thm. 4.3];
our formulation follows Schaeffer and Vassilieva [SV08, Thm. 1.3]. The coeflicients
on the right-hand side of (1.2) are defined as follows. Given a positive integer k and

nonnegative integers n and py, ..., px, let
21)

..... mlip)( ()ﬂ(;__i) [xPe f"]((1+x1)---(1+xk)—xl---xk)n,

where the square brackets in the third expression represent coefficient extraction. This
number counts n-tuples (Sy,...,S,) of proper subsets of [k] := {1,..., k} such that
exactly p; of the sets contain j. It is easy to see that the My satisfy the following
recurrence.

Proposition 2.1 One has My = " Ml',‘:is = > Mp “re, Where eg denotes the
Sg[k] @+Tc[k]
indicator vector for the set S and 1 := e[y is the all-ones vector.

Also, from the enumerative interpretation of M} one has that M ,, is given by

the multinomial coefficient ( ), and that M} = 0 whenever p; +---+ px >

n
pip2sn—p1—p2
n(k —1). For k > 3, the My are not given by a multinomial coefficient or other product
formula, except for the following extremal case.

Proposition 2.2 If py +---+ px = n(k—1) then My, ., = (n—plsin_l,k).

Proof Suppose that p; + -+ py = n(k —1) and that (Sy,...,S,) is an n-tuple of
proper subsets of [k] counted by My . . Letc;:=|S;| fori=1,...,n. Since ¢; <
k-land ¢;+ - +c,=p1+-+pr=n(k—-1), it must be the case that ¢; =k -1
for i=1,...,n. Thus S; = [k]\{a;} for some a; € [k]. Then the correspondence
(S1,--+>8n) <= (au, ..., a,) isabijection between the n-tuples of sets counted by M
and n-tuples of elements of [k] such that j appears n — p; times for j =1,..., k. The
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latter set is obviously counted by the desired multinomial coefficient, and the result
follows. ]

Jackson’s proof of Theorem 1.2 uses an algebraic approach based on work of
Frobenius from the late 19th century; these methods are described in Section 2.3 below,
after which we apply them to give a similar result for the (n — 1)-cycle in &,,. Bijective
proofs of the case k = 2 were given by Schaeffer—Vassilieva [SV08], Chapuy-Féray-
Fusy [CFF13], and Bernardi [Ber12]. Bernardi and Morales [BM13, BM16] extended
Bernardi’s approach to give a combinatorial proof of Jackson’s formula for all k in
terms of maps. These combinatorial proofs use an interpretation of the change of basis
in (1.2) that we describe now.

Let G;’? p. be the set of factorizations in &, of the fixed n-cycle ¢ as a product
w1y such that for each i, the cycles of m; are colored with p; colors with each
of the colors being used at least once to color a cycle of ;. (In particular, once the

factorization is fixed, this means that the colorings of the cycles in the different factors

(n)

are completely independent of each other.) Let C;,, ", =[Cp "

such colored factorizations.

Remark 2.3 Note that the number Cé,?> p, Of colored factorizations does not depend
on the set of p; colors used to color the cycles of #;. In an abuse of notation, depending

on context, we will use the same symbols Gﬁ,:’,)m,pk and C;;?}...,pk to denote the set
and the number of colored factorizations where for each 7; we use color set [p;], or

{0,1,...,p; -1}, or a p;-subset of a larger set.

..........

1 r X Xk
(22) Z ar,..., kalr"'xkk: Z C,f;ll,).-upk( 1)( )

[T | P1r-er P21 Pk

Proof Let each x; be a nonnegative integer. The left-hand side of (2.2) counts
factorizations of the cycle ¢ = (12---n) as a product ¢ = -7, where for i = 1,..., k,
each cycle of 7; is colored with a color in [x;]. These colored factorizations are also
counted by the right-hand side of (2.2): for py,...,pxr € Nand i =1,..., k, choose p;
colors from x; colors available and a colored factorization in Gﬁ,’f}m . Where exactly
those p; colors are used in the factor ;. Finally, since (2.2) is valid for all nonnegative

integer values of the x;, it is valid as a polynomial identity. O

The following corollary is an immediate consequence of Theorem 1.2 and Proposi-
tion 2.4.

Corollary 2.5 The number of colored factorizations of an n-cycle in &, is C;”:’)---)Pk =

(n!)k‘lM";l:ll
Complex reflection groups

In this section, we give an account of the complex reflection groups, paying particular
attention to the “combinatorial” groups G(d,1, n) and G(d, d, n). For more thorough
background, see [LT09].
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Figure I 'The matrix representation of the generalized permutations [(1234);(0,0,0,1)] in
G(d,1,4) (left) and ¢(4,4,4) == [(123)(4);(0,0,1,-1)] in G(d, d, 4) c G(d,1,4) (right). Here
d >1and z = exp(27i/d) is a primitive complex dth root of unity. In ¢(4,4,4), the cycle (123)
has weight 1 and the cycle (4) has weight —1.

2.2.1 Basic definitions

Given a complex vector space V of dimension #, a linear transformation r on V is
called a reflection if the dimension of the fixed space of 7 (i.e., the set of vectors v such
that r(v) = v) is n — 1, that is, if r fixes a hyperplane. A complex reflection group is a
finite subgroup of GL(V') generated by its subset of reflections. A complex reflection
group is irreducible if it does not stabilize any nontrivial subspace of V, and every
complex reflection group decomposes uniquely as a direct product of irreducibles. A
complex reflection group is well-generated if it acts irreducibly on a space of dimension
m and has a generating set consisting of m reflections.

2.2.2 Key examples

The most common examples of complex reflection groups are the finite Coxeter
groups, including the dihedral groups, the symmetric group &, (type A,_1), and the
hyperoctahedral group of signed permutations (type B,) and its index-2 subgroup
of “even-signed permutations” (type D,), whose elements have an even number of
negative entries. All real reflection groups are well-generated. (For G,,, the space on
which it acts irreducibly has dimension m = n —1; for the signed and even-signed
permutations, m = n.)

There are two infinite families of well-generated irreducible complex reflection
groups. The groups in the first family are the wreath products G(d,1,n) = (Z/dZ)
S, of the symmetric group by a cyclic group of order d. Concretely, the elements of
this group may be realized as generalized permutation matrices with one nonzero entry
in each row and column, each of which is a complex dth root of unity - see Figure 1.
Thus G(2,1, n) is the hyperoctahedral group of signed permutations. More compactly,
elements of G(d, 1, n) may be identified with pairs [71; a] where 7 is a permutation in
S,and a = (ay,...,a,) is a tuple of elements of Z/dZ. We say that a; is the weight
of i in [71; a] and that 7 is the underlying permutation. In this notation, the product of
two group elements is given by

[ma]-[o;b] = [mo;0(a) +b]

where 0(a) := (ay(1), - - - > Gg(n))- The underlying permutation 7 is the image of [ 7; a]
under the natural projection map G(d,1,n) > S,. A cyce in [ma] € G(d,1,n)
means a cycle in 7. The weight of a cycle is the sum in Z/dZ of the weights of the
elements in the cycle.
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a b1

Figure 2: A diagonal reflection and a transposition-like reflection in G(d,1,4). Here a
represents a dth root of 1 other than 1 itself, and b represents an arbitrary dth root of 1.

When d > 1, there are two “flavors” of reflections in G(d,1,n): the diagonal
reflections, which have the identity as underlying permutation and a single diagonal
entry of nonzero weight, and the transposition-like reflections, whose underlying
permutation is a transposition and whose cycles all have weight 0 — see Figure 2.
The second infinite family of well-generated complex reflection groups contains, for
each d >1and n > 2, the subgroup of G(d,1, n) generated by the transposition-like
reflections; it is denoted G(d, d, n). Equivalently, G(d, d, n) contains those elements
of G(d,1, n) of weight 0 (i.e., generalized permutation matrices in which the product
of the nonzero entries is 1). In the case d = 2, it is exactly the Coxeter group of type
Dy, and in the case n = 2, it is the dihedral group of order 2d. The group G(d, d, n) is
always well-generated, and it is irreducible except when d = n = 2.

In addition to the infinite families of irreducible complex reflection groups, there
are 34 exceptional groups. Of these, 26 are well-generated, including the six excep-
tional Coxeter groups (of types Hj, F4, Hy, Es, E7, and Eg). These are not the main
focus of this paper, but they are discussed further in Section 5.

2.2.3 Fixed space dimension

It is easy to see that conjugacy classes in G(d, 1, n) are uniquely determined by the
cycle type of the underlying permutation together with the multiset of weights of the
cycles of each length. Equivalently, for each weight j = 0, ..., d — 1, we have a partition
(possibly empty) recording the lengths of the cycles of weight j. Thus, conjugacy classes
in G(d,1,n) are unambiguously indexed by tuples (1(?), ..., 14D of partitions of
total size n. The following proposition is straightforward.

Proposition 2.6 'The fixed space dimension of an element w in G(d,1,n) whose
conjugacy class is indexed by (A9, ..., \(4™V is equal to £(A(?)), the number of cycles
of weight 0 in w.

Since G(d, d,n) c G(d, 1, n), the same combinatorial formula gives the fixed space
dimension for elements of the smaller group. For the symmetric group &, acting on
C", the fixed space dimension of w is exactly the number of cycles of w.

2.2.4 Coxeter elements

An element w in a complex reflection group G is regular if it has an eigenvector that
does not lie on the fixed plane of any reflection in the group. Since w is of finite order,
the associated eigenvalue is a root of unity; if it is a primitive root of order k, then
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we say that the integer k is regular as well. The Coxeter number h of G is the largest
regular integer, and a Coxeter element of G is a regular element of order h (but see
Remark 2.7 below). In the case of the symmetric group &, the regular elements are
the n-cycles, the (n —1)-cycles, and their powers, the Coxeter number is h = n, and
the Coxeter elements are exactly the n-cycles. For d > 1, one can make the following
concrete choice of Coxeter elements in the infinite families, illustrated in Figure 1: in
G(d,1,n), take

c:=[(12-n);(0,0,...,0,1)],
while in G(d, d, n), take

Cdmy = [(2++(n = 1)) (n); (0,...,0,1,-1)].

Remark 2.7 At least two nonequivalent definitions of Coxeter elements have
appeared in the literature (compare, e.g., the definitions in [BRII, §1] and [Doul8,
§2.3]): under the more restrictive definition, every Coxeter element in G(d,1,n)
(respectively, G(d, d, n)) is conjugate to the element ¢ (respectively, c(4,4,)) selected
above. Since conjugacy descends to a bijection between factorizations that preserves
the fixed space dimension of each factor, it follows that all Coxeter elements (under
the restrictive definition) have the same enumerations, and it is enough to consider
just one.

Under the more general definition, one should also allow in G(d, 1, n) the possi-
bility of replacing the weight 1 in ¢ with any cyclic generator of Z/dZ (and then taking
conjugates), and similarly for G(d, d, n). The resulting elements are not all conjugate
in the group G(d, 1, n), so it is not a priori clear that different Coxeter elements yield
the same enumeration. This difficulty may be resolved in two different ways. One
resolution is to examine the actual proofs presented in Sections 3 and 4 below. Because
of the combinatorial nature of these proofs, it is not difficult to see that they work
equally well if the weights 1 and -1 are replaced by a and —a for any nonzero element
ain Z/dZ, so all Coxeter elements in the more general sense (and even some elements
that are not Coxeter elements under any definition) have the same enumeration.

An alternative, and more conceptual, resolution is based on the work of Reiner-
Ripoll-Stump [RRS17] that we describe now. Given a complex reflection group G of
rank 7, understood to be represented by a concrete choice of matrices in GL, (C),
define the field of definition Kg to be the subfield of C generated by the traces of
elements of G. One can show that G can be represented over GL,(Kg), i.e., that
the representing matrices can be taken to have entries in Kg. The Galois group
I = Gal(Kg/Q) acts on GL,(Kg) entrywise, and so each member y of I gives an
isomorphism between G and some, possibly different, representation of G over Kg.
By [RRS17, Cor. 2.3], the group y(G) is conjugate in GL, (C) to G, i.e., there is some
g €GL,(C) such that G = g- y(G) - g*. Both y and conjugation by g preserve fixed-
space dimension, so the combined automorphism w + g-y(w)-g™! does as well.
It is part of the main result of [RRS17] that these reflection automorphisms (called
Galois automorphisms in [MM10]) act transitively on the Coxeter elements of G under
the more general definition. These automorphisms descend to bijections between
factorizations that preserve fixed space dimension. Consequently, the answers to the
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questions we consider are the same for all Coxeter elements, and it suffices to compute
with a single, fixed Coxeter element.

2.2.5 Degrees and coexponents

To each complex reflection group there are associated fundamental invariants of
several kinds, two of which will appear below (particularly in Section 5). We define
them now.

Much interest in complex reflection groups relates to their role in invariant theory:
the complex reflection groups of rank »n are exactly the groups G whose invariant
ring C[xy,...,x,]° is again a polynomial ring C[f,, ..., f,], generated by n alge-
braically independent homogeneous polynomials. (For example, the invariant ring
Clx1,...,%,]5 of the symmetric group is the ring of symmetric polynomials in #
variables, generated over C by the elementary symmetric polynomials {ej, ..., e, }.)
The basic invariants fi, ..., f, are not uniquely determined, but their degrees d; <
d, <---<d, are, and we call these the degrees of G. For a well-generated group, it
is always the case that d, is equal to the Coxeter number 4 mentioned above. For
G(d,1,n), the degrees are given by d; = d - i, while for G(d, d, n) they are given by
{d1,....dn} ={d,2d,...,(n=1)d} u {n}. For any complex reflection group G, one
has d;---d, = |G| and, more generally [ST54, 5.3],

n
Z xdimfix(w) _ H(x —1+ dz)
weG i=1

A second sequence of invariants, the coexponents of G, will also appear below. These
may be equivalently defined in several ways: in terms of invariant theory, they are
degrees of generators appearing in the covariant space (C[V] ® V)¢; for a definition
in terms of the hyperplane arrangement associated to G, see Remark 5.4. Perhaps the
simplest definition is that the coexponents e; < ej < ... < e} are the positive integers
that satisfy the identity [OS80, (3.10)]

n

> det(w) -y dim fix(w) [T(x-¢f).

weG i=1
One consequence of this formula is that the sum Y!, e is equal to the num-
ber |R*| of reflecting hyperplanes of reflections in G. For G(d,1,n), the coex-
ponents are given by e =1+d-(i—1), while for G(d,d,n) they are given
by {ef,...,ex}={L,d+1,....,(n-2)d+1}u{(n-1)(d-1)}.

Counting factorizations with representation theory

The character-theory approach to counting factorizations is based on the following
lemma, expositions of which appear in numerous sources, e.g., [Sta99, Ex. 7.67(b)].

Lemma 2.8 (Frobenius [Fro68]) Let G be a finite group, g an element of G, and
Ay,..., Ag subsets of G that are closed under conjugacy by G. Then the number of
factorizations of g as a product g = uy---uy such that for each i the factor u; is required
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to lie in the set A; is equal to

1 . o )
G > dim(A) (g )i G Gr)s
Aelrr(G)

where Irr(G) is the set of irreducible complex representations of G, dim(A) is the
dimension of the representation A, y, is the character associated to A extended linearly
from the group to the group algebra, ) = #b) is the normalized character associated

to A, andfori=1,...,k, 3; is the formal sum in the group algebra of elements in A;.

Thus, counting factorizations with no transitivity conditions can be reduced to a
problem of being able to compute enough of the character table of the group under
consideration. This is precisely the approach followed by Jackson and by Chapuy-
Stump, using respectively the character theory of the symmetric group and of complex
reflection groups. We also consider factorizations with a transitivity condition. Their
counts can be written as a difference of two numbers of factorizations without
transitivity conditions, where the character approach can be used. We make use of
this character approach in the next subsection, as well as in the case of the exceptional
complex reflection groups (Section 5).

Factoring an (n —1)-cycle in &,

If one factors an (# — 1)-cycle ¢(,_1,1) in &, as a product of other permutations, there
are two possibilities: either every factor shares a fixed point with ¢(,,_y 1), or not. The
factorizations in the former case are in natural bijection with factorizations of an
(n—1)-cycle in &,_;. The factorizations in the latter case have a more elegant
description: they are exactly the factorizations in which the factors act transitively
on the set [n]. The study of transitive factorizations is present already in the work
of Hurwitz [Hur91] from the late 19th century and plays an important role in the
study of permutation factorizations; see [GJ16] for a recent survey. Our first result
is to enumerate transitive factorizations of the (n — 1)-cycle.

Theorem 2.9 Let G(,_y1,1) be a fixed (n—1)-cycle in &,,. For integers ri,..., 1y, let
by,....r. be the number of k-tuples (m, ..., my) of elements in &,, such that n; has r;

.....

cyclesfori=1,...,k, m 7 = G(n-1,1), and the tuple is a transitive factorization. Then

1 k-1
I =R e

Tlreens P21 n Pireeopi>1 Pro-eoP (pl - 1)! (Pk - 1)! ’

where M, ., is defined in (2.1).

Remark 2.10 'We were surprised not to find this statement in the literature. We give
an algebraic proof. In Section 8.3, we give a combinatorial proof in the case of k = 2
factors; it would be of interest to find a combinatorial proof for all k.

Remark 2.11 Theorem 2.9 can be interpreted as a statement about colored factor-

izations: the left-hand side counts transitive factorizations of ¢(,_y,;) in which the

cycles of factor i are colored with any of x; colors, and the coefficient C},:"___l_”lgk =
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(n!)k’lp‘;#M;l ))))) o Of (;i)(;:) on the right-hand side is the number of these

factorizations in which a prescribed set of p; colors is used in the ith factor.

In the proof of Theorem 2.9, we assume a familiarity with symmetric functions
as in [Sta99, Ch. 7]. Let py, sy and m, denote the power sum, Schur and monomial
symmetric functions in the variables x = {x1, x2, . ..}. We will use the stable principal
specializations x — 1* of these functions, setting x of the variables {x; } equal to 1 and
all others equal to 0. One has

P =50, 0= [T T2 and m(l"):( ) )—g(l)!

(i,j)er h(i,j) (0)) Aut())’
(2.4)

where h(i, j) := A; — i+ A} — j+1is the hook length of the cell (i, j) in the Young
diagram of A and Aut(A) := n;ln,!-- for A = (1™,2", .. .). The middle specialization
is the hook-content formula.

Proof of Theorem 2.9  Let ¢(,_1,;) be the fixed (n —1)-cycle (12...(n ~1))(n) and
let d,, .., be the number of k-tuples (7, ..., mx) of elements in &, such that 77; has
ri cycles for i =1,...,k and 7 ... 7k = G(»-1,1). As mentioned above, the difference
,,,,, r, is the number of k-tuples (7, . .., ;) of elements in &,
such that 7; has r; cycles, my-+7x = G(,—1,1)> and n is a fixed point of each 7;. Thus
Cryyoovre = Ory-1,..,re—1 18 the number of factorizations of an (# —1)-cycle G(n-1) as @
product of k permutations in &,_; such that the ith factor has r; — 1 cycles.

Since the set of permutations with prescribed number of cycles is closed under

..... Tk

1 . - . .
Arjpecri = — Z dlm(A)X)L(C(rll—u))Xl(?)rl)"‘)()t(??rk)’
n! Aelrr(S,)

1 . _ . .
Criperi = Z dlm(A)Xl(C(rll—l))Xl(ﬁrl—l)"'Xl(ﬁrk—l)>
(H - 1)! Aelrr (& ,-1)

where 3, is the formal sum in the group algebra of the symmetric group (of size n or
size n — 1 depending on the context) of all elements with r cycles. Thus the generating

functions G(x) =%, . dr,..nX"xt and G'(X) =X, . Cpr X, are
given by

1 X _
(25) GO =2 Y dm) (e ()

h: Aelrr(S,)

(2.6) G'(x) = ():_T’)" AEI”(Z(; ] )dim(A)x;L(c(,ll,l))ga(xl)"'g/\(xk),

where

a(x) = ki)h(zk)x"-
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12 J. B. Lewis and A.H. Morales

By the Murnaghan-Nakayama rule [Sta99, Thm. 717.1], one has X/\(C(_rll—l,n) =0
unless A equals (n), (1"), or one of the near hooks (n—m—1,2,1""'). These

(n—2—-m)m

representations have dimensions dim(1) =1,1, and W("ﬂ;z) and character

values XA(CZ:;—1,1)) =1,(-1)",and (-1)™, respectively. Similarly, XA(cZ}l_l)) = O unless
A equals a hook (n—1-m,1™). These representations have dimension dim(1) =
(” 2) and character values X/\(C(n 1)) (-1)™. Thus (2.5) and (2.6) become

G(X)=%(g y (1) gy (k) + (=1)" gamy (1) amy (k)

(2.7)
"DBm-2-mm( n m
(e g<n-m-1,z,w1><x1>---g<n-m-1,z,lml><xk>),
o -2
(2.8) G’ (x) = 1), Z( n" ( )g(n—m—l,lm)(xl)"'g(n—m—l,lm)(xk)-

The next lemma evaluates the g; (x) when A is a hook or near hook.

Lemma 2.12 We have that
(2.9)

Sormary ()= (= m) (- m D mme - =m 3 (171

k=m+1

(2.10) g(n—m—l,z,lmfl)(x) =X g(n—l—m,lm)(x)-

) ()

Proof By the stable principal specialization (2.4) of p,, the expansion of a Schur
function into power sum symmetric functions, and the hook length formula for
dim(1), we have that g, (x) equals a stable principal specialization of a Schur function

scaled by the product H) of the hook lengths of A. That is,

e 90 = 22 ) pul1) = Hy- 51 (),
u Zu

The first equality of (2.9) then follows by applying the stable principal specialization
(2.4) of Schur functions for A = (n — m,1™). The second equality of (2.9) is obtained
by using the Chu-Vandermonde identity." Next we consider (2.10). By (2.11) we
have that g(,_,_1,2,1m-1)(x) is the stable principal specialization of H,__1,2,1m-1) -
$(n-m-1,2,1m-1)- By the hook-content formula and the first equality of (2.9) we obtain

g(nfm—l,z,lm’l)(x) = H(nfm—l,Z,l"‘*l) ' S(n—m—l,Z,l"‘")(lx)

=x-(x-m)(x-m+1)(x—-m+n-2)

=X g(n-1-m1m) (x)

O

! Alternatively, one is expanding H (n—m,1m) * $(n—m,1m) into the monomial basis and doing a stable

principle specialization.
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We continue with the proof of Theorem 2.9. Let G(x) := ¥, . br _px/' x5,
Since G(x) is the difference of G(x) and G’(x), using (2.7), (2.8) with (2.10) gives

G(x) = G(x) - G'(x) = nl( ) (x1)-g(my (k) + (=1)"guny (1) am) (%)

n-2 n
— Xy Xk mZ::O (m .\ 1)(_1)mg(nml,l"‘)(xl)"'g(nml,l"‘)(xk))

We rewrite the expression in terms of the basis (x1),,---(xk)p,. In the case p; = --- =
Pk = n, we see directly from the definition of by, that b, ,,, ..., = 0, and so

[Q (), ]

o

G(x) =

For any other tuple py,. .., px > 1 we use (2.9) and obtain

" fk‘ n (n—-1)*
( |)k l(pl_l) (pk—l) o —p1r Pk Z( 1)m+1

R AR
m+1/\p1—-1-m pr—1-m)

The first term on the right-hand side corresponds to the term m = -1 in the sum. We
absorb this term to the sum and reindex it using t = m + 1 to obtain

[@%] G(x):(”_,l)! prpi S (- 1)( )( t) (n_t)

pi! pi! n! = p1—t pr—t
_(n-pr¥

nl prepeMy, Pr’

where My . is defined in (2.1). This yields the desired result. O

.....

Factorization results for the group G(d,1,n)

We recall the statement of our main enumerative theorem for G(d, 1, ).

Theorem 3.1 Ford>1,let G=G(d,1,n), let c be a fixed Coxeter element in G, and
let a r, be the number of factorizations of ¢ as a product of k elements of G with fixed

.....

space dzmenszons ... Tk respectively. Then

d d
Z a(d) xr'~~-xrk _ |G|k—1 . Z Mn (xl - 1)( ) ) (xk - 1);1()
oo 1R sl PP dnp Py

i 15 defined in (2.1).

.....
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14 J. B. Lewis and A.H. Morales

The case of two factors (in Theorem 1.3) follows immediately as a corollary, taking
A : n — n
k =2 in Theorem 3.1 and using the fact that M, ,, = (pl;pz;n—prpz .
The main step in the proof of Theorem 3.1 is a lemma involving certain cycle-
colored factorizations of the element ¢, which we now describe. (The remainder of

the proof, which is in the spirit of Proposition 2.4, follows the proof of the lemma.)

Definition 3.2 Given a nonnegative integer x and an element u in G(d, 1, n), let
x denote the color set y ={0,1,2,...,xd}. Within the color set y, a d-strip is any
of the following collections of d consecutive colors: {1,...,d}, {d+1,...,2d}, ...,
{(x=1)d +1,...,xd}. Thus, there are exactly x disjoint d-strips in ¥, and the color 0
does not belong to any d-strip.

A cycle-coloring of u is an assignment of a color in y to each cycle of u so that cycles
of nonzero weight receive color 0. Given nonnegative integers x1, ..., Xk, a colored
factorization of an element g of G(d, 1, n) is a factorization g = u;---uy, together with
a cycle-coloring of u; by color set y; = {0,1,...,x;d} fori=1,...,k.

Given nonnegative integers ps, ..., px, let (i’;i’,l,’:'gk be the set of colored factoriza-
tions of the Coxeter element ¢ in G(d, 1, n) with color sets y; = {0,..., p;d} so that

at least one color from each d-strip in y; is actually used to color a cycle in u;. Let
C(d,l,rl) _ |e(d,l,n)|
P =1%p .

Remark 3.3 Observe that for factorizations in Gf,d’l’"), the coloring of cycles of
different factors is completely independent: the requirement in the definition that each
strip be used is factor-by-factor, so whether a color from the strip {1,2,...,d} (for
example) is used to color a cycle in u; has no bearing on the requirement that a color
from that strip be used to color a cycle in u, (if p, > 1).

\L,n)

The first part of the proof of Theorem 3.1 is a formula for Cl(,d in terms of

the counts C (‘f ! of colored factorizations of the n-cycle in &, introduced just before
Proposition 2.4.

Lemma 3.4 Foranyp = (py,...,px) in N¥, we have

Cl()d,l,n):d(k—l)n Z Cl(:r)es
(k]

[ZENS

where eg is the indicator vector for S.

Proof Given a colored factorization ¢ = u;---u; of the Coxeter element ¢ for
G(d,1,n), we associate to it a colored factorization ¢ = 7;-+-7y of the n-cycle ¢in &,,,
as follows: 7; is the projection of u; in &,; if a cycle of u; is colored with a color in
the d-strip {(a —1)d +1,..., ad}, then the corresponding cycle of 7; is colored with
color a; if a cycle of u; is colored with color 0, then the corresponding cycle of 7; is
colored with color 0. Thus, in the resulting colored factorization of ¢, the ith factor is
colored in either p; or p; + 1 colors, with every color appearing. Let S ¢ [k] denote the
set of indices i such that 7; is colored in p; + 1 colors (rather than p;); equivalently, it
is the set of indices i such that some cycle of u; is colored with 0.
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Factorization problems in complex reflection groups 15

First, we observe that S # @: the product ¢ = u;---u; has nonzero total weight, so at
least one of the factors u; has nonzero weight, and this factor must have a cycle with
nonzero weight. Such a cycle is colored with the special color 0, and so at least for

this value of i we have i € S, as claimed. Thus the image of the set Gl(,d’l’") of colored
factorizations of the Coxeter element ¢ under projection is contained in the disjoint
union of pieces |_|g G’fffr)es for nonempty sets S < [k], where each piece (?E,’i)es consists
of colored factorizations of the n-cycle ¢ with the appropriate set of colors used in each
factor (see Remark 2.3).

Second, we consider how many preimages each factorization in Cf,@e s has under
this map. To choose a preimage, we must assign weights (a; 1, ..., a;,,) to the entries
of each factor 71; in such a way that the product of the resulting factors u; really is the
Coxeter element ¢, and so that in each u;, any cycle of nonzero weight was originally
colored by the color 0; and we must choose one of d colors from a d-strip for each of
the cycles in u; that corresponds to a cycle in 7; of nonzero color.

In order to do this, we consider a too-large set of colored factorizations in
G(d,1, n), initially disregarding the requirement that the factored element be c. Given

a colored factorization ¢ = -7y in Gé,’i)e , with S nonempty, choose a total order on
theset {(i,m):i € [k], m € [n]} of indices of weights to be assigned, in such a way that
the last index in the total order belongs to a cycle of color 0 in some factor. (Such cycles
must exist, since S # @.) Then we assign values to the weights one by one according to
the chosen order, choosing the weights arbitrarily except in two cases: if an element
belongs to a cycle of nonzero color and is the last element (in the given total order)
in its cycle, we assign it the unique weight so that the total weight of its cycle is 0; and
we choose the weight of the specially selected final element so that the total weight
of all elements is 1. (These two exceptions never conflict because the special element
was chosen in a cycle of color 0.) The number of ways to perform these choices is
dnk—#(colored cycles)—1 Finally, for each cycle of 7; that is colored some nonzero color,
there are d choices for the color in the associated d-strip of the corresponding cycle of
the lift u; of 7;; this contributes a factor of d*(colored cycles) g1 5 total of d™ ! lifts of
the fixed &, -factorization.

Each lift is a colored factorization u;---u in G(d, 1, n) of some element c* of weight
1 whose underlying permutation is the n-cycle ¢, and every colored factorization of
such a ¢* with the correct collection of colors is produced by such a lift. The number
of such c* is d"7'; they are exactly the elements conjugate to c by some diagonal matrix
ain G(d, 1, n). Moreover, since a is a diagonal matrix, conjugating any w € G(d, 1, n)
by a preserves the weight of every cycle of w. Consequently, conjugation by a extends
to a bijection between factorizations of ¢ and factorizations of ¢* that respects the
underlying permutation of each factor and the weight of each cycle of each factor.
Thus, it gives in particular a bijection between the lifts of m;-- -7y that factor c and those
that factor c¢*. Hence, of the total d"* lifts, exactly —L; - d"F~! = d"(k=1) of them are

dn—l
factorizations of ¢. Since this holds for every nonempty S ¢ [ k] and every factorization

in Gf,’fr)es, the lemma is proved. O
Proof of Theorem 3.1 For any nonnegative integer p, we have ((xd +1) - 1)1(,d) =
dafp!. (;) Therefore, the desired statement is equivalent to the equality
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16 J. B. Lewis and A.H. Morales

Gy > a® , (ad+1)"(xd +1)

PG > M pk(xl).__(xk)_

P1>-->Pk p1 Pk

T1ree0sTk

Consider the case that each x; is a nonnegative integer. In this case, the left-hand side
of (3.1) exactly counts the colored factorizations ¢ = u;---uy of the Coxeter element ¢
in which the cycles of factor u; are colored with color set y; = {0,1,...,x;d} so that
cycles of nonzero weight receive color 0. Now, we count those factorizations by the

number of d-strips that are actually used: for nonnegative integers ps, ..., pi, there

are ( pl) (;’; ) ways to choose p; d-strips to use in the ith factor, and Cl(,'i’,lv’:‘;k colored

factorizations using exactly these strips. Thus

T ) ) = 3 ()
1

Pr>e-5Pk Pk

By Lemma 3.4,

Cl()d,l,n):d(k—l)n z Cf;’jr)es-

@+Sc[k]
By Corollary 2.5, we can rewrite this as
d1,
Cl() n) _ d(k 1)n(n' Z Mp e
@+Sc(k]

where 1 is the all-ones vector. Then the desired equality follows by Proposition 2.1.
Finally, since this identity is valid for all nonnegative integer values of the x;, it is valid
as a polynomial identity, as well. This completes the proof. ]

4 Factorization results for the subgroup G(d,d, n)

As in the case of the (n—1)-cycle in &, factorizations of a Coxeter element in
G(d, d, n) can be separated into two classes based on a transitivity property that we
describe now. The wreath product G(d,1,n) carries a natural permutation action:
it acts on d copies of [n] indexed by dth roots of unity, or equivalently, on the
set {z'e;;0<i<d,1<j<n} where z is a primitive dth root of unity and e; are
the standard basis vectors for C". The Coxeter elements for G(d,1,n) act tran-
sitively on this set, and consequently every factorization of a Coxeter element in
G(d, 1, n) is a transitive factorization. However, the same is not true for the subgroup
G(d,d, n), where the underlying permutations of the Coxeter elements are (n —1)-
cycles. The action of the Coxeter element ¢y 4,,,) divides {z'e;:0<i<d,1<j<n}
into two orbits, {z'e;:0 < i <d,1< j< n}and {z'e,:0 < i < d}. Thus, a factorization
of ¢(4,4,») will be transitive if and only if some factor sends an element of the second
orbit to an element of the first, or equivalently if the underlying factorization in &,,
is transitive. In enumerating factorizations of c(4, 4,,), we handle the transitive and
nontransitive factorizations separately.
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Transitive factorizations

As mentioned in the introduction, our generating function in this case is in terms of
the polynomials P,Ed)(x) defined by Péd) (x) =1, Pl(d)(x) = x, and for k > 1

(4.1)
P (x) = ﬁ<x—e:> = (x= (k=1)(d=1))- (x =D = (x )P + k(x - 1D){H

where the e are the coexponents of the group G(d, d, k). Next, we recall the statement
to be proved.

Theorem 4.1 Ford > 1, let G = G(d,d,n) and let bﬁf.)..,,k be the number of transitive
factorizations of a Coxeter element c(4.4,,) in G as a product of k elements of G with
fixed space dimensions 11, . . ., i, respectively. Then

- (d) (d)
Z pld) Tk o |G|k ' Z M" Py, (x1) Ppe (i)
T1ees 20 et , nk P1>eePr21 Proobi ot (Pl - 1)! dp! (Pk - 1)!
where My . is as defined in (2.1).

The case of two factors (in Theorem 1.4) follows immediately as a corol-

. _ . . n _ n _

lary, taking k =2 in Theorem 4.1 and using the fact that My = (p;q;n_p_q) =
n(n-1) ( n-2 )
pa  \p-Lg-Lin-p-q/°

As in Section 3, we split the proof into two parts. The first concerns colored

factorizations of the kind defined in Definition 3.2. Fix the standard (n —1)-cycle

G(n-11) in &, and Coxeter element ¢(4,4,) = [G(n-1,1)5 (05 ...,0,1,-1)] in G(d, d, n).

Given nonnegative integers py, . .., px, let C},i’f.i"’;)k be the number of colored transitive

factorizations c(4,4,4) = 1k in G(d,d,n) with color sets x; = {0,1,..., pid} so
that at least one color from each d-strip in y; is actually used to color a cycle in u;.

Lemma 4.2 We have

d.d, - L
42) Chitin = T dvmncliy,
Sc[k]

where eg is the indicator vector for S and Cf,"ihl) = (n!)k_lpl'n‘# - My is the coefficient
of(;i)(;l’i) in the right-hand side of (2.3).

Proof As in the proof of Lemma 3.4, we use the natural projection from col-
ored factorizations of this sort to colored factorizations of the (1 —1)-cycle ¢(,_1,1)
in &,, where under projection a cycle that is colored by a color in the d-strip
{(a=1)d +1,...,ad} gets sent to a cycle colored a, while a cycle colored by color
0 gets sent to a cycle of color 0. If the original factorization is colored with colors p,
the projected factorization is colored with colors p + eg for some subset S ¢ [k].
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Figure 3: A transitive factorization of the 5-cycle ¢(s,;) = (12345)(6) in &e. The thread
involving the fixed point 6 is highlighted.

Fix a subset S ¢ [k] and fix a colored transitive factorization 77, = ¢(4_1,1)
using p + eg colors. We count preimages of this factorization under the projection. As
before, we consider a too-large set of colored factorizations, initially disregarding the
requirement that the factored element be c(4,4,,). We start by describing a total order
on the nk-element set {(i,m):i € [k], m € [n]} of indices of weights to be chosen; we
will then see that the elements may be assigned weights in Z/dZ in this order in such
a way that the number of valid choices of weights for each entry does not depend on
earlier selections.

First, consider the k indices T = {(k,n), (k - 1, mx(n)), (k - 2, i1 (n)), - . .,
(1, -7 (n)) }. These are the coordinates on the “thread” connecting n to # in the
braid diagram of the factorization - see Figure 3. Say that the pair (i, 74175 (1))
is problematic if the number 7;,;---7mx(n) is a fixed point of 7;; extend the adjective
“problematic” to the 1-cycle (m;41---mx(n)) of m;. Since we started with a transitive
factorization of ¢(,,_y 1), not all values in T can be problematic. The k values in T will
form the first k values in our linear order; moreover, we choose a nonproblematic value
to be the last among these k.

For any i and any nonproblematic cycle of 7;, there is an index (i, m) correspond-
ing to an entry of this cycle that is not among those already selected: at most one entry
was selected from each cycle, and the only 1-cycles from which an entry was selected
are the problematic ones, by definition. Therefore, for each i, we may select from
every nonproblematic cycle of 7z; an index pair (i, m) that was not already selected in
the previous step. These values form the last values in our linear order. Moreover, for
each i such that the color 0 is used in a nonproblematic cycle in 7;, we arrange our
order so that the index from one such cycle is last among the indices coming from
that factor ;.

All the remaining indices go in the middle, in any order.

Now we assign weights one by one, according to the selected total order. We choose
these arbitrarily, with the following exceptions:

 among the first k — 1 indices, a problematic index is assigned weight 0 if its cycle
has nonzero color, or if its cycle has color 0 and this is the only cycle of color 0 in
its factor;

o the kth entry is assigned the unique value so that the sum of the first k weights
assigned (those that appear in the special thread connecting # to n) is —1;

o an index that is the last (in the total order) in its cycle, and this cycle has nonzero
color, is assigned the unique weight so that its cycle has weight 0; and

Downloaded from https://www.cambridge.org/core. 07 May 2021 at 14:51:49, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

Factorization problems in complex reflection groups 19

o an index (i, m) that is the last (in the total order) in its factor 7;, and 7; has a
nonproblematic cycle of color 0, is assigned the unique weight so that the weights
assigned to 7; sum to 0.

One can check that such an assignment of weights is always well defined (i.e., the
different cases are disjoint); that the resulting product u;---uy is equal to an element
€(a,4,n) that is conjugate to ¢(q,q,,) by a diagonal matrix; and moreover that every
transitive factorization of every such element c(; ; ., arises from this construction.

Now we turn this into a counting argument. By splitting the first bullet above into
two cases, we see that each of the nk indices has exactly d choices of weight, with the
following exceptions:

(1) the (unique) values in problematic cycles with nonzero color;

(2) the (unique) values in problematic cycles with color 0 for which there are no other
cycles of color 0 in the permutation;

(3) the kth value;

(4) the last value in each nonproblematic cycle of nonzero color; and

(5) the last value in each permutation that has a nonproblematic cycle of color 0.

Observe that the number of values in (1) and (4) together is exactly the number of
cycles with nonzero color, while the number of values in (2) and (5) together is exactly
the number of factors that have cycles of color 0. Therefore, the total contribution from
the weighting is

dnk—#(nonzero colored cycles)—#(factors with cycle colored 0)-1

In addition, each colored cycle gets assigned one of d colors from its strip, hence
we must multiply by g#nonzero colored cycles gjnce the number of factors with a cycle
colored 0 is exactly |S|, we have by Remark 2.1 that the total number of factorizations
produced in this way is

Z dnk—\s|—1 Cl()f_:;;,l) )
Sc[k]

Finally, we must account for the fact that we have counted not merely factorizations of
the Coxeter element c(4,4,,), but also factorizations of all of its conjugates by diagonal
matrices. The number of these is precisely d"~2, and as in the case of G(d,1,n),
conjugation by a diagonal matrix is a bijection from factorizations to factorizations
that preserves weights of all cycles, so they all have the same numbers of colored
factorizations. Consequently

Clgd,d,n): Z dn(k—l)—\SHlCl()r:;l,l))
Sc[k]

as claimed. m|

Proof of Theorem 4.1 First consider the right-hand side of the equation to be proved.
Make the substitution x; — x;d + 1 for each i. From (4.1) we have that

P (xd +1) :d(x)+( x )
dr-1r! r r—1
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Therefore, we have

- (d) (d)
|G|k1 Z M” kP (xid +1) _ (e Z ctn1) 1_[Pp (xid +1)
nk Plse-orPk b ’Pk dp’fl( i—1)! Pire-sPk Probk o dbiTipg!
_ -1)(k-1 (n—-1,1)
- d(” ) (k-1) Z CPl,-n,Pk
P15 Pk

" ﬁ(d(;) v (pixi 1))

:d(n—l)(k—l) z: ( Z dk |S|Cpijr 11))
€s
Pk

Piseees Sck]

()G

where in the first step we use Remark 2.11 and in the last step eg is the indicator vector
for the set S, as usual. Collecting the power of d and applying Lemma 4.2, this becomes

k-1 P( ) x;d+1
(4.3) ‘G|k Z pl, ~ H " _1( ) _ Z Cl(;lzd;,))k(m)(xk)
n Pk (pi - 1)' DlrerorDk p Pk
Now consider the left-hand side of the equation to be proved. Again make the
substitution x; — x;d + 1, and think of x; as representing a nonnegative integer. Then
the left-hand side is the number of colored transitive factorizations of ¢(4,4,,). The
number of ways to choose p; d-strips that are actually used in the ith factor is (;),

i

and the number of colored factorizations in this case is exactly C, (d 4 ”) . Thus

.....

n Tk _ d,n) [X X
P

Tlreens 720 Plre-osPk

exactly the expression (4.3) we found for the right-hand side. Since the two sides are
equal for nonnegative integers x;, their equality is valid as a polynomial identity, as
well. This completes the proof. ]

4.2 Nontransitive factorizations

In the case of nontransitive factorizations of the Coxeter element ¢4 4, in G(d, d, n),
we are again able to give a combinatorial formula for the number of colored factoriza-
tions, and thereby produce a generating function for factorization counts. However,
the lemma is more complicated than those in the preceding cases, and does not seem
to yield a “nice” formula in a single basis, as in Theorems 3.1 and 4.1.

We consider cycle-colored factorizations of the kind defined in Definition 3.2.

Given nonnegative integers py, ..., p, let Bl(,d,.‘.in';,) be the number of nontransitive
factorizations c(4,4,,) = w1+t in G(d, d, n) such that, for i =1,..., k, the weight-0
cycles of u; are colored with colors from color set y; = {0,1,..., p,-d } so that at least

one color from each d-strip in y; is actually used to color a cycle.
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(d,d,n)

Lemma 4.3  For integers n,d > 2, with B’/

defined above, we have

(d,d,n) _ k-1)+1 —|SuT] (n-1)
Bpl,__,,pk _ dn( )+ Z d [SUT| . le . Cpr-:—eT—eU’
S, T, U<[k]: i¢S
SNT+z
SNU=@

where es is the indicator vector for S and Cf,"fl) = ((n=1)1)*"- Mz} is the count of
colored factorizations of the (n — 1)-cycle in & ,_; introduced just before Proposition 2.4.

Proof We use the same projection as in the previous two cases. Consider a colored
nontransitive factorization u;---u of the Coxeter element c(4,4,,) in G(d,d, n), in
which factor u; uses a color set of size dp; + 1 and every d-strip is used at least once.
Since the factorization is nontransitive, # is a fixed point in each 7;, i.e., (n) is a cycle.
Let S be the subset of [ k] recording factors in which the cycle () has color 0, and let T
be the subset of [ k] recording factors in which there is a cycle of color 0 that is not the
cycle (n). Then the image under projection is a colored nontransitive factorization of
G(n-1,1) in &, using p + esyr colors.

We have two calculations to make: computing the number of preimages of each
of these &,,-factorizations under projection, and counting the total number of &,,-
factorizations in the image. We begin with some basic observations about the possi-
bilities for S and T.

First, S must be nonempty: the standard basis vector e, is an eigenvector for all of
Uy, ..., ux and c(q,4,n), and its eigenvalue for (4, 4,4 is not 1; therefore its eigenvalue
cannot be 1 for all of the u;. Thus there must be at least one i for which the singleton
cycle (n) has nonzero weight in u;, and consequently has color 0. Thus for this i we
have i € S. In fact, we can say more: since u; € G(d, d, n), the remaining cycles of
u; have weights that sum to something nonzero, so at least one of them must have
nonzero weight and hence color 0, as well, and thus i e SN T..

Now suppose that S, T are subsets of [ k| with nonempty intersection and ;-7 is
a colored factorization of the form just described. That is, it is a colored nontransitive
factorization of the (n —1)-cycle ¢(,_y,;) in which the cycles of factor 7; are colored
with color set {1,...,p;} ifi ¢ SU T or with color set {0,1,...,p;} ifi € SU T, every
color being used at least once, and moreover in the latter case the cycle (n) is colored
with color 0 if and only if i € S, and some other cycle is colored with color 0 if and
onlyifieT.

We proceed as in the previous arguments, aiming first to give a factorization of any
element c* that is a conjugate of c¢(4,4,,) by a diagonal matrix. Choose a fixed index
iin § n T. Order the nk weights to be assigned as follows: first the weights for every
u;j with j ¢ S U T; then the weights for every u; with j € (S u T)\{i}; then the weights
for u;, arranged so that the last weight is in a cycle of color 0 that is not the fixed point.
(Such a choice is possible by the definition of S and T.) In this order, every weight can
be chosen freely in Z/dZ (giving d choices), with the following exceptions:

(1) if j ¢ Su T, every cycle is colored with a nonzero color, so has weight 0; so the last
element (in the total order) in each cycle is chosen with the unique weight that
works;
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(2) if je (SuT)\{i} and the weight being chosen is the last element (in the total
order) in a cycle of nonzero color, it is assigned the unique value that gives its
cycle weight 0;

(3) if je (SuT)\{i} and the weight being chosen is the last element (in the total
order) among those that appear in cycles of color 0, it is assigned the unique value
so that the weight of u; is 0;

(4) if j = i and the weight being chosen is the weight of the fixed point, it is assigned
the unique value so that the weight of the fixed point in the product u;---uy is —1;

(5) if j = i and the weight being chosen is the last element (in the total order) in a
cycle of nonzero color, it is assigned the unique value that gives its cycle weight 0;
and

(6) if j = i and the weight being chosen is the very last element in the total order, it is
assigned the unique value that gives u; weight 0.

The number of values in (1), (2), and (5) together is exactly the number of
cycles with nonzero color, while the number of values in (3), (4), and (6)
together is exactly |Su T|+ 1. Therefore, the total contribution from the weight-
ing is d"k-#nonzero colored cycles=|SUT|-1 1y addition, each cycle with nonzero color
gets assigned one of d colors from its strip, and hence we must multiply by
g#nonzero colored cycles Einally, the number of conjugates of C(d,d,n) by diagonal matri-
ces is d"~2. Thus, the number of preimages of a factorization with the given pair (S, T)
is exactly

nk—#nonzero colored cycles—|SUT|-1 #nonzero colored cycles 2-n _ gn(k-1)—|SUT|+1
d i d yeles _ ga=n _ g

Now we must compute the actual size of the image, that is, how many &,-
factorizations are in the projection of G(d, d, n)-factorizations (with the sets S, T
fixed). To do this, we further project factorizations of ¢(,_y,;) in &, to factorizations
of the (n —1)-cycle ¢, in &,,_;, by removing the fixed point. In this projection, there
will be some subset U ¢ [k]\S of indices in which the (necessarily nonzero) color used
to color the fixed point (#) is the unique appearance of that color; thus, the image
of this projection belongs to Géﬁ;?_eu. Moreover, the number of preimages of each
factorization is easily seen to be [T;cx]\s pi> since we must choose which of the original
nonzero colors was attached to the fixed point (whether that involves choosing an
existing color or adding a new color and possibly relabeling).

Combining these two projections, we have that for fixed S, T, the number of
nontransitive colored factorizations in G(d, d, n) is

dn(k—l)Jrl Z d—\SUT| . le . Cé?—;?—eu’
S,T,Uc[k]: i¢S
SNT+
SNnU=g

as claimed. |

Remark 4.4 As in Section 3, we have that Lemma 4.3 gives the coeflicient for

the polynomial counting nontransitive factorizations of the Coxeter element when
( (d)

x-1
. . »
expressed in the basis !

(involving a triple sum over subsets) than those of earlier sections. In principle, it is

. Obviously, though, these coeflicients are much messier
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possible to express this polynomial in other bases; however, all expressions we have
produced in a single basis seem inherently complicated. Using the algebraic approach
(with Lemma 2.8, building on the arguments in [CS14, §5]), we have been able to
produce the expression

|G|k -1
nk—l Z M ----- Pr-1

(d) (d )
xiPp, 7 (xi x;—1
5 (@4 (i 2 )y D
Sclk] ieS dp ipi! icS dbi (pl - 1)!
for the generating function for all nontransitive factorizations. This expression can be
rewritten in many ways, for instance as

|G|k—1

Kk k
(4.4) s > My e (H Qpi(xi) - T Q;i(xi)) ,
i=1 i=1

d
(x—l);)l

where  Qp(x):=(x* - (d-1)(p-1)x+p(d-1)) —z and  Q(x):=

@
(x*=(d-1)(p-1)x-p) dpl;, *. FPrustratingly, however, we have not been

able to derive this formula directly from Lemma 4.3.

Exceptional complex reflection groups

In this section, we record some tantalizing data that suggests that Theorems 3.1 and
4.1 could be particular cases of a more general, uniform statement, along the lines of
the Chapuy-Stump result (Theorem 1.1).

In all sections below, we use the following fixed notations: G represents an irre-
ducible well-generated complex reflection group; k represents a positive integer; r =
(r,...,rx)andp = (p1,..., px) represent tuples in {0, 1, ..., n}*, where n is the rank
of G; a, represents the number of factorizations of a fixed Coxeter element ¢ in G as a
product u;---uy = ¢ where dim fixu; = r;; and

Fo(x1,...,xk) = Zar-xlr‘
r

Rank two

There are two infinite families of irreducible rank-2 well-generated complex reflection
groups, the wreath products (Z/dZ) : &, (of type G(d, 1,2)) and the dihedral groups
(of type G(d, d,2)), as well as twelve exceptional groups (Shephard-Todd classes G4,
G5, G6, Gg, G9, G](), G14, G16, G17, Glg, Gzo, and Gz]). For each such group, define the
polynomials

- e)(x-e5) _x-1 o
Pi()= SIEEEL R =T R L

In this basis, we have the following result, which should be compared with
Theorem 3.1.
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Theorem 5.1 Let G be an irreducible well-generated complex reflection group of rank
2, and let ay, Fg, and P; be defined as above. Then one has

Fo(x1,...oxx) = |G 30 My - Py, (31)+-Pp, (k).
Y

In the case k = 2, this may be written in the form

Fo(x,y) = (x-1)(x—e) + N(x - (y -1+ (y - 1)(y - ¢3)
+2h(x-1)+2h(y-1) +|G|

where h = d, is the Coxeter number of G and N = = is the number of reflections that
can appear in a shortest reflection factorization of c

Proof We handle the two infinite families and the exceptional cases separately:

The infinite family G(d,1,2). For this group this is exactly the statement of
Theorem 3.1.

The infinite family G(d,d,2).For G(d,d,2), the basis {P,(x), Pi(x), Py(x)} here
is related to the basis {Pz(d) (x), Pl(d) (x), Péd)(x)} of Theorem 4.1 by the equations

P (x) () ()
2 = 2 Pa(x), PP (x) =2Pi(x) + Py(x), and Py"’(x) = Py(x). So from Theo-

rem 4.1, the contribution to Fg of the transitive factorizations is

|G|k 1

Z M2 H 2P2(x l—I (2P1(xi)+P0(x,-)).

p:pizl ipi= ipi=1

If r is a permutation of the multiset {29,1°,0¢}, then the coefficient of []; P,, (x;) in
k—
this polynomial is o | .24.2b .1epp2 - \G\ le

24, 1b+e 24, 1b+c*
For the contrlbutlon to Fg from the nontransmve factorizations, we use the

expression in (4.4). The only contribution we get is for the tuple p = 1, where M{ = 1.

We obtain
|G|k 1 k
k-1 (H Q1 ) - E Q{(-xi)) >
where Q;(x) = "2+dd L =2P,(x) +2P;(x) +1and Q](x) = =2Py(x) + 2P, (x).If

r is a permutation of the multiset {2“ 1,0}, then the coefﬁc1ent of [1; Py, (x;) in this

polynomial is d¥~120+ = 2. [¢— | if ¢ > 0 and 0 otherwise.

Finally, we sum these two contrlbutlons. when ¢ = 0, the transitive case contributes
exactly the desired |G|*"'M? while the nontransitive case contributes 0. From the
explicit formula (2.1) for M, we can see that when ¢ > 0, Mza e = =bre_p = 2°M? -

e

2, so in this case the transitive case contributes |G|k 1M 2 while the nontran-

|G|k 1

sitive case contributes the missing 2 -

Exceptional rank 2 cases. In each of the exceptional cases, we use the algebraic
technique outlined in Section 2.3 together with character tables for the exceptional
groups available in Sage [Sagl9] via its interface with the GAP [GAP19] package
Chevie, as follows: for each group G and each irreducible character y for G such that
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dim(y) | x(c™) | fy(x)

1 1 x? +14x + 33 = 48P, + 96P, + 48
1 -4 x% - 10x +9 = 48P,

1 1+

1 -1

1 (3

1 -1-0s

2 (12 x% +2x —3 = 48P, + 48P,
2 :

2 |G,

2 4

2 i x% —4x + 3 = 48P, + 24P,
2 —i

Table I: Character polynomials for Gg: (ey,e3) = (1,9), (d1, d2) = (4,12). Here
(x = exp(2mi/k) is a primitive kth root of 1.

x(c™) # 0, we compute the character polynomial

ful) = 3 i(g) x4,

geG

where § = x/x(1) is the normalized character. (Tables of these polynomials are col-
lected in the appendix of the arXiv version of this paper [LM19b].) Then by Lemma
2.8 we have that

k
FG(xla--->xk):Z|_é|/\ > dim(l)m(c_l)u(xir" > )ZA(g))

Irr(G) g:dim fix(g)=r;

) k
(.1) =— > dim)u(c™) [T fr ().
|G| Aelrr(G) i=1

Next we express each character polynomial in the P;s and extract the coefficient.

For example, in the group G, with coexponents 1,9, degrees 4,12, and order |Gg| =
4-12 = 48, there are 12 characters y for which y(c™) # 0 (see Table 1), but only four
different character polynomials:

x%+14x +33 (associated only to the trivial representation),

x2-10x+9 (associated to two 1-dimensional representations),
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xt—4x+3 (associated to two 2-dimensional representations), and
x2+2x-3 (associated to three 1-dimensional and four

2-dimensional representations).
In terms of the basis P, (x) = %, Py(x) = %1, Py(x) =1, these can be rewritten
respectively as

48(P, + 2P+ Py), 48P,  24(2P,+P), and  48(P,+P,).

The respective character values y(c™') that appear with these polynomials are
{1}; {exp(27i/6),exp(57i/3)}; {+i}; and {-1,exp(27i/3),exp(27i-2/3)} (for
the 1-dimensional representations) and {exp(2mi/12),exp(27i-5/12), exp(2mi -
7/12),exp(2mi -11/12) } (for the 2-dimensional representations). Plugging these into
(5.1) yields

1 k k
Fo,(x15. .., xk) = Gl (1-1-H48(P2(x,~) +2P(x;) + Po(x;)) +1-1- [ 48P5(x;)
i=1 i=1

N z-o-ﬁz4(zp2(x,-) + P (x;)) + (1- (=2) +2-0).

i=1

k
1148(P2(xi) +P1(x,-)))

52) _Gol! (ﬁ(Pz(xo F2B(x) + Po(x2))

i=1

k k
) Ijl(Pz(xi) +P(x;)) + sz(xi)) _

Finally, the coefficient of [T*_, P,,(x;) in the expansion of this expression is (up to the
power of |Gg|) the same as the coefficient of [T5, x/* in the polynomial

2

k k k k k
[1Cx7 +2x;i +1) 2] J(xF +xi) + [[ 7 = (H(x,-+1)—nxi) ,
i=1 i=1 i=1 i=1 %=1

and comparing the last expression with the definition of M} in (2.1) gives the result.
The calculations in the other eleven cases are analogous. ]

5.2 Rank three

There are two infinite families of well-generated irreducible complex reflection groups
of rank 3 (the wreath product (Z/dZ): &5 of type G(d,1,3) and its weight-zero
subgroup G(d, d,3)) and five exceptional groups (Shephard-Todd classes G; (also
the Coxeter group of type H3), Ga4, Gas, Gag, and Go7). Our next result covers all
of these groups except G,s. The choice of polynomial basis assigned to each group is
discussed further in Remark 5.4.
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Definition 5.2 For G of type G(d,1,3) or Gy3 or Gy, define for i =0,1,2,3 the
polynomials

i X —

PP (x) = H

J

For G of type G(d, d,3), define

Pg(d,d,a)(X) =1, PlG(d’d’3)(x) = (d+1)(x-1) (: d+l X ! ford > 3) R

3d d d
PZG(d’d’3)(x) = (r=Dx=d) ll(dx —d) , and
pE@d) () (x-1)(x - ds_di)(x -2d+2) ﬁl x ;ief_
For G of type G,4, define
PO (x)=1, PO (x) = xT_l - g : xd_ll,
PO (x) = (x - llix 7) _(x _;)1‘(;: 7),
and PO (x) - (x - 1)(x3;69)(x -1) ﬁ x ;lie;‘.
For G of type Gy7, define
R e
PO (x) = (x- 1)7(2x -15) _ (x - gl(dxz— 15)’
1 -2 > x—ef
i (- CTDEDm2) e

Proposition 5.3 If G is of type G(d, 1,3), G(d, d,3), Ga3, Gaa , Ga6 01 Gy, then

Fg(x1,...,xx) = |G| Y My - P§ (x1)-Py ().
p

Proof We again proceed case by case.
The infinite family G(d,1,3). For this group this is exactly the statement of
Theorem 3.1.
The infinite family G(d,d,3). Write P; for the polynomial PiG(d’d’3) of Definition
5.2. We begin with the contribution from the transitive factorizations. The formu-
d
las 00 = 3Py (x), BOG 2 3p,(x) + 2-Py(x), and PO (x) = 2L Py(x) + Py(x)

242
express the basis of Theorem 4.1 in terms of this basis. Thus, for a sequence r
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that is a rearrangement of {3%,2%,1°,0°} with a+ b + ¢ + e = k, the coefficient of

Hipri(xi) in

G e P(a) P ()
3 e PoPRdnl(p 1)1 dPt(py —1)!
is
G : 3\ 3\
T(r) = 3k 3 3 ng[c] M(]C)3“,2”,le)+es (d+l) (d+1)
~ |G|k—1 3a+b+c s es|
(5.3) ECEE SCZ[:C Mie 3020 10)vesd -

Next, we simplify using the formula

3b+e ife>0
o ) 3b+c _3.9b ife=0,c>0
31500 TN 3b 396 43 ifc=e=0,b>0
0 ifb=c=e=0

for Mf; derived from the explicit definition (2.1) to obtain

3bte 3l b (4:2)° ife>0
bre _3.9b . (d+2)°, 3 ife =

(5.4 I(e) = |G- 307 -3-2" (1) + @y ife=0,c>0
3b-3.2b 43 ifc=e=0,b>0
0 ifb=c=e=0.

Now we calculate the nontransitive contribution using the expression in (4.4).
From this expression we get a contribution for the tuples p € {1,2}* other than 2 =
(2,...,2), and for each such tuple we have Mll,_1 = 1. Thus we obtain the generating
function

|G|k—1

(55) e

5 (ﬁ pr(xz->—ﬁo;,i(xi>).

p#* 2,pie{1,2} \i=1

We have the change of basis formulas

Qi(x) = 3P5(x) + 3P (x) + 1, Ql(x) = xzd_ L 3p,(x) +30(),
Qa(x) = (x* —dx+x+2d -2)(x-1)/(2d*) Q5(x) = (x*~dx + x-2)(x-1)/(2d*)
=3P;(x) +3Py(x) + d+1P1(x), =3P;(x) + 3Py (x).

For a sequence r that is a rearrangement of {3%,2°,1°,0¢} with a + b + ¢ + e = k, let
N(r) denote the coefficient of []; P,,(x;) in (5.5). Using the change of basis formulas
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above, after some calculations we obtain the following formula for N(r):

b al- d+2\°¢ :
203 ﬁ(ﬁ) ife>0,
N(r) = |G- 4327 (45) -3-2" + hye  ife=0,c>0,
0 otherwise.

Combining this with (5.4), it is easy to see that T(r) + N(r) equals |G|*"!M? in each
of the cases.

Exceptional rank 3 cases. In the four exceptional cases, we use exactly the same
approach as in the proof of Theorem 5.1. In place of (5.2), one ends up in all four cases
with the expression

|G|k’1(H(P3(x,~) +3Py(x;) + 3P (x;1) + 1) = 3[ [(Ps(x:) + 2P2 (i) + Pi(x:))

+3H(P3(Xi) +Py(x;)) - HP3(xi))’

from which the result follows. m|

Remark 5.4 'The choice of basis polynomials P;, especially for G,4 and G,7, appears
somewhat mysterious, and indeed they were initially discovered experimentally. How-
ever, the roots that appear are not arbitrary. Given a complex reflection group G acting
on a space V, consider the intersection lattice L of the reflecting hyperplanes of G,
ordered by reverse-inclusion. Let y(L, x) = ¥ xe; t(V, X)x3™ X be the characteristic
polynomial of L (where y is the poset-theoretic Mébius function). In [0S82, OS83],
Orlik and Solomon show that y(L,x) factors as [;(x — e ). But, in fact, they show
more: if X € L is any particular intersection of reflecting hyperplanes, then the upper
interval L* := [X,{0}] in L (which is isomorphic to the lattice of the arrangement
of intersections of the reflecting hyperplanes with X) satisfies y(L¥, x) = [J2m ¥ (x -
b¥) for some positive integers bX. (Tables of these Orlik-Solomon coexponents are
collected in [OT92, App. C].) For the group G(d,1,n), when X is a subspace of
dimension m, Orlik and Solomon show that (b%)i<icm = (L1+d,...,1+ (m —1)d)
depends only on the dimension of X. Similarly, in the other irreducible groups of rank
2 and 3 (both exceptional and G(d, d, n)), the tuple of integers (b¥) depends only
on dim X. In fact, in all of these groups except G(d, d, 3), G,4, and G,7, these Orlik-
Solomon coexponents are a prefix of the sequence (eF) of coexponents. In G4, the
coexponents are (1,9,11) and the Orlik-Solomon coexponents in dimension 2 are
(1,7); in Gy, the coexponents are (1,19, 25) and the Orlik-Solomon coexponents in
dimension 2 are (1,15); and in G(d, d, n), the coexponents are (1,d +1,2d —2) and
the Orlik-Solomon coexponents in dimension 2 are (1, d). One immediately notes the
relationship to the polynomials in Definition 5.2. (We do not have an explanation (or

even an “explanation”) for the factors % and % that appear there.)

Remark 5.5 For the group G;s, one can show that there are no polynomials P; of
degree i for i = 0,1, 2, 3 such that

Fopy (%155 %) = |GIF1 S M3 - Py, (31)-++Py, (1)
P
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Nevertheless, one can use the character tables to compute a formula for Fg,_: the group
has coexponents (e;, e5,e3) = (1,4,7) and degrees (dy, ds,d3) = (6,9,12). Taking
Pi(x) = ]'[;»:1 i, one has

k

B o 3k) T (py() + 3a(xs) +3P1(x0) + 1)

|G25|k—1

k k k

-3 H(P3(xi) +2Py(x;) + Pi(x;)) = 3- H(Pfa(xi) +Py(x;)) - HP3(xi)
k k

-3 Ijl(Pg(xi) +Py(x;) + Pi(x;)/3) + 9-11(P3(xi) +Py(x;) + Pi(x:)/9),

and so the coefficients that appear in this expansion in place of the Mf, are the same
as the coefficients in the expansion of the polynomial

k

k k k
[TCei+1)° =3-T]xi(xi + 1) =3- T xf (xi +1) - []
i-1 -1 i=1

i=1

k k
=3T3 + 22 +xi/3) +9- T (3 + 2% + x:/9).
i=1 i=1

5.3 Higher ranks

There are ten exceptional complex reflection groups of rank 4 or larger, of which all
but one (the rank- 4 group G;) are well-generated. Of these, only G3; has the property
that the sequence of Orlik-Solomon coexponents (b ); is a function of the dimension
of X alone [OT92, App. C]. For this group, the terms that one would predict (based
on Theorems 3.1 and 5.1 and Proposition 5.3) survive, but that other terms are present
as well (as for G,s above). Moreover, for the eight other relevant groups, one sees in
each case that there is not enough cancellation to give a result in the form of those just
mentioned. Section 8.1 offers some open questions in this direction.

6 Applications

In this section, we discuss a number of corollaries of our results. First, we show how
to derive the result of Chapuy and Stump (Theorem 1.1) for the groups G(d,1,n)
and G(d, d, n) from Theorems 3.1 and 4.1. In the case of G(d,1, n), this makes the
proof fully elementary (that is, with no use of representation theory); in the case of
G(d, d, n), it reduces this question to an elementary proof of a result in the symmetric
group: Theorem 2.9 (see Question 8.4).

Second, we use our results to extract highest-degree coefficients. These count the
so-called genus-0 factorizations, or equivalently they count chains in the lattice of G-
noncrossing partitions. For the group G(d, d, n), this includes a new result, extending
work of Athanasiadis—Reiner and Bessis—Corran [AR04, BC06]. As a corollary, we
give a variant characterization of the G-noncrossing partition lattice that seems not to
have appeared in the literature.
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6.1 Rederiving the Chapuy-Stump formula

Suppose that, for a well-generated complex reflection group G, one has computed (in
some form) the generating functions Fg (x1, ..., %¢) = X ar - x;"---x,* for the number
of factorizations of a Coxeter element in G by fixed space dimension r; for each of
the factors. From this series, it is straightforward to extract the number of length-
¢ reflection factorizations of a Coxeter element in G: it is exactly the coefficient
[x~'+-x! 1] Fg. In particular, suppose that the expression for Fg is in terms of a basis
Py, ..., P, of polynomials with deg(P;) = i, so that

Fg(x1,...,x0) = Ap - Py, (x1)-Pp, (x¢),
p

and suppose that the degree- (n — 1) coefficients of P, and P,_; are a and b, respec-
tively. From general considerations (either the algebraic formula, or, that the Hurwitz
action of the braid group provides explicit bijections), one has that the coefficient A,
depends only on the multiset of values of the p;, not on their order. Therefore, the
number Ny of length- ¢ reflection factorizations of ¢ is

4

Ne= [T = 1

L

l—k 1k
)An—l n-1,n,..., na b*.
k=0

i) At

N
kK 0-k

From this general framework, we now derive the main theorem of Chapuy and Stump

in many cases.

Remark 6.1 Suppose that G is G(d, 1, n) or is one of the irreducible well-generated
groups of rank 2 or 3, other than Gys; then by Theorem 3.1, Theorem 5.1, and
Proposition 5.3 we have that

_ 1 |R*| 1 h
= |G[* M7, a=- e; =— , and b= ——M = —.
“ CR2ANT Zd TG
Moreover, from (2.1) we have M, =0and M}, ., = Z;’ (- 1)1( )(n -

j)*, and so for these groups

co f lnl (n

oo M L
SN = i SOV () S 6 2 (o e

lnl

“ G 50 (] )5 4 (R - )

13 * *
|G| S /() Cexp (= =R D) ~exp (1R°10)
= ﬁ (exp((nh - [R*[)t/n) - exp(~|R*|t/n))".
Finally, using the general fact that |[R*| + |R| = nh, we recover Theorem 1.1 for these

groups. In particular, in the case of G(d,1, n), this gives a fully elementary proof of
the theorem.
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Remark 6.2 In the case of G(d,d,n) for n > 3, the calculation in the preceding
remark does not apply. Nevertheless, since every reflection factorization of a Coxeter
elementin G(d, d, n) is transitive, it is possible to recover the Chapuy-Stump formula
for this group from Theorem 4.1. Following the notation above, we have for this

; Nl Y 1 + _ _nR*| S
polync:imlal that Ap = =M, a= B e =— Gl and b = an2(n-2)! _
”(rl’éll )d %, and so the calculation goes through in the same way after the cancella-

tion of the ns. The resulting argument is elementary except for the proof of Theorem
2.9 (see Question 8.4).

Genus-0 factorizations: chains in the poset of noncrossing partitions

For any two linear transformations U, T on a finite-dimensional vector space V, one
has codim fix(UT) < codim fix(U) + codim fix(T). If G is a well-generated complex
reflection group of rank # and c is a Coxeter element in G, it follows that in order
for there to be a factorization ¢ = uy---uy of ¢ where u; has fixed space dimension
k> one must have (n—r) +...+ (n—rg) 2 n, or equivalently r; + ...+, < n(k -
1). Consequently, the polynomial Fg(xi,...,xx) counting factorizations of ¢ is of
degree n(k — 1), with top-degree coeflicients counting factorizations u;--uy = ¢ such
that codim fix(u;) + ... + codim fix(uy ) = codim fix(c) (= n). Such factorizations are
often said to have genus 0 — see Section 8.2 for a discussion of this topological
terminology. They also arise in the context of the G-noncrossing partition lattice, which
is the subject of the rest of this section.

A subadditive function on a group G such as® codim fix(-) gives rise to a par-
tial order < on G, as follows: one defines x < y if codim fix(x) + codim fix(x™'y) =
codim fix(y). With this definition, one has that for each fixed g € G, genus-0 fac-
torizations u;---uy of g are in bijection with (multi)chains 1< g1 <...<gr =g in
the interval [1, g]< via the map g; := uy---u;. Thus, the top-degree coefficient a,,,._,,
in Fg(x1,...,xg) also counts multichains in the interval [1, c]< whose successive
rank-jumps are n — r1, ..., n — ry. We now compute these numbers for G(d, 1, n) and
G(d,d,n), as well as the zeta polynomial Z([1, c]<, k) that counts all multichains in
[1, c]<k of length k. The result for G(d, 1, n) is known.

Corollary 6.3 ([Rei97, Prop. 7 and remark on p. 199]) Ford > 1, let G = G(d,1,n),

and let ¢ be a Coxeter element in G. Given nonnegative integers sy, . . ., S with sum n,
the number of chains in [1, c|< having rank-jumps sy, . .., sg is

aﬁlli)sl ..... n-sg — (n)"'(n))
S1 Sk

Z([L, ] k) = (”nk).

with zeta polynomial

2In particular, one needs that the function takes nonnegative values and that f(x) = 0 if and only if
x is the identity.
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Proof Set rj:=n-s; for i=1,...,k Since My , =0if py+...+px>n(k-

@

.....

1) and the change of basis in Theorem 3.1 is triangular, the equation a

1@
[ x* [ Fg = [x]x(] (|G|k—1 ¥ MJTI; %) simplifies to
k
1
ar®) =[G/ My T

i-1 drir;! ’
By Proposition 2.2, we have in this case that M]' = WM, and consequently

alt) = (r"l)(:;) = (:)(;), as claimed. Summing al? over all nonnegative integer

solutions to s; + ... + sx = n gives the zeta polynomial. O
The second result, for G(d, d, n), is new when d > 2 (but see Remark 6.5); when
d =2 (type D,,), it is [AR04, Thm. 1.2(ii)].

Corollary 6.4 Ford >1,let G = G(d,d,n), and let c(4,4,) be a Coxeter element in G.
Given nonnegative integers sy, . . ., g with sum n, the number of chains in [1, ¢(4,4,n)]<
having rank-jumps s, . .., si is

(O (5 5)

(n- l)k) . k((n -1k —1) _n+ d(n-1)(k-1) ((n —l)k)'

n n-—2 n n-1

with zeta polynomial

20 cqaam]er ) = d
Proof Letr;=n-s; Since My ., =0if p;+---+ pg>n(k-1)and the change
of basis is triangular, when we extract the coefficient of x;'---x;* from Theorem 4.1 and
Proposition 2.2 we get

p G L1
Tlrenes Tk le Tlreees Tk drl—l(rl _ 1)! drk—l(rk _ 1)!
d(m=D (k=1 (1) k=1 n! 1
- nk (=)l (n—rg)! drEDE L (r — 1)l (g — 1)!

(o)

The analysis of the nontransitive case is slightly more delicate: by Lemma 4.3, we
have that the desired coefficient is

- 1
grk-1+1 Z 4718uTl H ri Cﬁfe”_e o
S,T,Uc[k]: i#S r=eu drlrl!...drkrk!
SNT+g
SNU=g
d —-|SuT k-1 2
T ! Z % l'HT’,~~((n—1)!) 'M:f+er—eu—1.
rilerg! S.T,Uc[k]: 4
SNT+g
SNU=g
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The coefficient M} 2 _. _; is equal to 0 whenever the sum of the lower indices is larger
than (n - 2)(k —1). This sum is
(> r)+IT|-|U|-k=n(k-1) +|T|-|U| -k >n(k-1) +1- (n-1) -k
=(n-2)(k-1),
with equality ifand only if S = T = {i} and U = [k ]\{ i} for some i (e [l;;' (In th)i‘s case,

HeT ey-1 "~ (n—ry)l-(n—r)t-(n-r;=2)1°
and so the number of nontransitive genus-0 factorizations is

by Proposition 2.2 we have that the coefficient is M},

T ((n _1) (n=2)-(n-r)!

i (n—rl)!-«-(n—rk)!-(n—r,-—2)!

((n-1H* Z(h—l)' (n-2)!-(n-ri)!
(rl—l)' (ri =D (n=r)l(n-r)g (n=D!-rl-(n—r;=2)!

iy o1y ()
G b2

Substituting r; = n — s; gives the first result, and summing over all (s;) of sum n gives
the zeta polynomial. o

Remark 6.5 Inthe literature on the poset of noncrossing partitions, they are typically
introduced in the following way (e.g., see [Arm09, §2.4] or [BRIl, §2.3]): in place
of the function codim fix(—), one defines the reflection length {r(-) by £r(g) =
min{k:3(t1,...,tx) € R¥, t;--t; = g}. Reflection length is clearly subadditive, and
one defines a partial order <z on G by x <g y if g(x) + fr(x'y) = £r(y). Then
the lattice NC(G, ¢) of G-noncrossing partitions is defined to be the interval [1, c]<,.
(All such intervals are isomorphic, for the same sort of reasons as discussed in
Remark 2.7.)

For any element g of any subgroup G of GL(V') generated by reflections (not
necessarily finite; over an arbitrary field), it is easy to see that codim fix(g) < ¢r(g).
If G is a finite real reflection group, Carter proved [Car72, Lem. 2] that in fact
codim fix(g) = ¢r(g), and consequently the two orders < and <y coincide in this
case. The same is true in the wreath product G(d,1,n) [Shi07, Rem. 2.3], and in a
variety of other settings [BW02, HLRI17]. However, equality does not hold in any other
irreducible complex reflection group [FG14].

In several places in the literature (e.g., in [BC06, Lem. 4.1(ii)]), one finds versions
of the following deduction: from the inequality ¢z (g) > codim fix(g) for all g € G,
the equality ¢g(c) = codim fix(c), and the subadditivity of codim fix(-), it follows
thatif g € NC(G, ¢) then £x(g) = codim fix(g) and so g € [1, c]<, with the same rank.
However, we were unable to find the following question addressed in the literature:
is there a complex reflection group G and an element g of G such that g € [1, ¢]< but
g¢NC(G,c)?

In [BC06, Thm. 8.1], Bessis and Corran prove that the zeta polynomial for
the lattice NC(G(d,d,n),c(4,4,,)) is equal to ntd(n- 1)(k DR § e G i)(k b -
n+d(n nl)(k 1) ((nn ll)k)

; that is, it agrees with the zeta polynomlal for the interval
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[1, ¢(d,d,n)]< from Corollary 6.4. In particular, taking k = 2, the two intervals have
the same size, and so in fact they must have the same set of elements.

This coincidence holds in a strong form for all well-generated complex reflection
groups.

Corollary 6.6 If G is an irreducible well-generated complex reflection group and c is a
Coxeter element, then the interval [1, c]< in the codim fix(—)-order < is identical to the
G-noncrossing partition lattice NC(G, c).

Proof The situation in the case that G is real or is in the infinite families G(d, 1, n),
G(d,d,n)ford > lis described in Remark 6.5. For G of rank 2, the conditions1 < g < ¢
and 1 <g g <g c are both equivalent to the statement that g and g™'c are reflections.
For the remaining exceptional groups (Ga4, Gas, G2, Ga7, G29, G32, G33, G34), We
checked by a brute-force calculation in Sage [Sagl9] that the number of elements
in [1, c]< is the same as the G-Catalan number® [INC(G, ¢)| = [1; h;—:j". (In the very
large group Gi4, our computation makes use of the fact that the interval [1, c]< has
symmetric rank sizes: the map g + g~'c is easily seen to be a rank-reversing bijection
from [1, c]< to itself.) Thus the underlying sets of the two intervals are equal. Since
lr(w) = codim fix(w) and £ (w™'¢) = codim fix(w™c) for every w e NC(W, c), the
two intervals are equal as posets. O

There does not seem to be an obvious reason for the inclusion [1, c]< € NC(G, ¢) to
hold. Nevertheless, we are very surprised not to find it remarked upon in the literature!
For open questions along these lines, see Section 8.6.

7 More refined counting: cycle type for G(d,1,n)

In [dHRI18], the Chapuy-Stump result (Theorem 1.1) was refined as follows: rather
than lumping all reflections together, they were divided into classes according to the
orbit of their fixed space under the action of the group. For example, in G(d, 1, n),
this separates the reflections into two classes: the transposition-like reflections (which
form a conjugacy class) and the diagonal reflections (which are not all conjugate if
d > 2, but whose fixed spaces { (x1, ..., x,): x; = 0} form one orbit under the action of
the group). This refinement makes perfect sense in our setting: one could ask to count
arbitrary factorizations of a Coxeter element, tracking the orbit of the fixed space of
each factor. In this section, we consider this question for the group G(d, 1, n), refining
our main theorem (Theorem 3.1) in this case.

In the case of the symmetric group, fixed-space orbits correspond exactly to
cycle types (i.e., conjugacy classes). Beginning with the work [G]J92] of Goulden-
Jackson for the genus-0 case, numerous authors have tackled this problem, using a
mix of algebraic and combinatorial techniques, counting the factorizations directly

3The precise attribution of this equality is complicated. Already in the real case, it was first handled
independently in several cases - see [Cha05, §3] for a summary. The proofs for G(d,1,n) and G(d, d, n)
may be found in [Rei97] and [BCO06], and the proof for exceptional groups follows from [Bes15, Thm. 2.2
and Cor. 13.2].
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[GS98, PS02, CFF13] or counting colored factorizations [MV13, Berl2] (as in our
approach). These works culminated in the following theorem of Bernardi-Morales,
where the generating polynomial is written in terms of the power sum p, and
monomial symmetric functions m,, in k distinct sets of variables y; = ( yl(’) , ygl) yeee)e
Theorem 7.1 ([BM13, Cor. 1.4])  For A1, ..., A partitions of n, let ayay ) be the

number of k-tuples (my,...,my) of elements in &, such that m; has cycle type A1) for
i=1,...,k and m---m; = ¢. We have

> @, amPro (1) paw (yk) = ()<

.....

(71) > rea—— i M (Y1) (y6),
IONINIC) (é(y(")—l)m(@(ﬂ(")—l)

where both sums are over partitions of n.

In G = G(d,1,n) for d > 1, two elements u and w have fixed spaces in the same G-
orbit if and only if they have the same number of k-cycles of weight 0 for each k. Thus,
orbits of fixed spaces are indexed by the partition A of Proposition 2.6. In this section,
we refine Theorem 3.1 by keeping track of this partition A, for each of the factors in a
factorization of a Coxeter element.

Theorem 7.2 For d > 1, let G = G(d,1,n), let ¢ be a fixed Coxeter element in G, and

(d)
let a;

,,,,,

k
d : . . .
Y a0, am 2o @n oAy i)
i=1

.....

.....

d d
n-1

M _
(72) -lgkt ¥ ﬁ};’?i‘)lmw ()0 (y),
u® i=1 \g,

ql_l

.....

where the sum on the right-hand side is over partitions u") of size at most n such that
o(u) if|u| =n

not all are of size n, and q; := {2(#(].)) o1 otherwise

The rest of this section is devoted to the proof of this result.

Definition 7.3 Given compositions a1, ..., a(¥) of n, let (3“;1)) a be the set of
at o, o

factorizations in &, of the fixed n-cycle ¢ as a product 7;---7; such that for each i, the
cycles of 7; are colored with £(a()) colors and for j=1,...,¢(«?) the sum of the
(i)
He
have type a, ..., a(F) Let ctm = |(?<"> (0| be the number of colored

a,..alk) " a®

.....

lengths of the cycles colored with the jth color is «; ’. We say that such factorizations

.....

factorizations of type a®, . alk),
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By relabelling colors, one has c! (1)) (6 = ¢! (1>) u® where u(?) is the underlying
partition of a(?) for i =1,...,k. Furthermore, one has Cl(,’:> e = 2al® CLO)) e

where the sum is over compositions a(") of n with p; parts fori = 1,..., k (see Remark
2.3 about the independence of choice of sets of colors). As in Proposition 2.4, a change
of basis in the generating polynomial for @,y ) may be interpreted in terms of the
enumeration of colored factorizations.

Proposition 7.4 ([Mor12,(2.2.15)]) Witha,q
one has

A0 and CL’ZI)) (b @5 defined above,

,,,,,

Y @, aw P (Y1) paw (Vi)

A A0

(73) = > Cfﬁl)%_.,,l(k)my(l) (y)-mw0 (yx),

.....

where the sums on both sides are over partitions of n.

The following corollary is an immediate consequence of Theorem 7.1 and Proposi-
tion 7.4.

Corollary 7.5 Given compositions aM,...,a®) of n, with p; = 0(aD) for i=
., k, the number of colored factorizations of type a, ..., a'¥) of an n-cycle in
S, is
M" 1
o _( |)k 1 P1—L...;px—1

(pl 1) "(;k:lr) ‘

In order to prove Theorem 7.2, we follow the same approach involving projections

of cycle-colorings as in Theorem 3.1. Given compositions a!), ..., a(¥) of size at most
e(d,l,n)

(n)
C(x(1>

n with p; := £(a(D), let C(‘Zl)l ") (0 D€ the set of colored factorizations in

such thatfori=1,...,kand j = 1, s D ) is the sum of the lengths of the cycles

colored with colors in the strip {(j —1)d + 1, ..., jd}. Let Ci‘fl)l f?a(k) = |(E’¢(;(ll)1 ")a(k)|

By permuting the colors we have that

(d,L,n) _ ~(d1n)
(7.4) Cao) ! Lao Cy(l) " IO

where (") is the underlying partition of the composition a(") fori =1,..., k.
The ﬁrst part of the proof of the theorem is a formula for C, (11) in terms of the
counts C ! of colored factorizations of the n- cycle in &, reviewed above.

Lemma 7.6  Fix compositions aV, ..., a'®) of size at most n. If || = n for all i =

., k then C(‘(il)1 ") 0 = 0. Otherwise, we have

(d,1,n)
Ca(l) .......... p(k)?
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ald) if || = n

(i ) _, and @ denotes concatenation.
(n-|aD])®al)  otherwise

where y(1) := {

Proof Since ¢ has nonzero weight, in any colored factorization ¢ = u;---uy there is
some factor u; of nonzero weight, and this factor has a cycle of nonzero weight.
Consequently, the composition a(?) associated to this factor has size strictly less

than n. Therefore, given compositions a(V), ..., a®) with [a()| = n for all i, the set
Gfx‘fl’)l ")a( x, is empty. This completes the first part of the lemma.

Now suppose |a(")| < n for some i. Given a colored factorization ¢ = u;---u in
(?gf(il’)l:_rf.)’“(k) of the Coxeter element ¢ for G(d,1,n), we associate to it a colored
factorization ¢ = my---7y of the n-cycle ¢ in &, with the same projection as in the
proof of Lemma 3.4. Thus, in the resulting colored factorization of ¢, the ith factor
m; is colored in either £(a()) or £(a()) +1 colors depending on whether or not 7;

has a cycle colored 0, with every color appearing. Moreover, for t =1,...,/¢ (a(D), the

sum of the lengths of the cycles colored  is (xfi), and the sum of the lengths of the

cycles colored 0 is 7 — |a(?)|. Therefore, the resulting colored factorization ¢ = 7;--7y

is in @;’ZR) e where y() is as defined in the statement of the lemma.

.....

.....

has under this projection map. By the same argument as in Lemma 3.4 the number of
preimages is d" (K7D, ]

Proof of Theorem 7.2 Let u be an element of G(d, 1, n) and consider a cycle of u of
size m. The symmetric function

Pm(L)’l)--->)/1,)/2,--.,)/2)---) :d‘Pm(J’h}’z)-n) +1

—_———— — —

d d

is the generating function for coloring such a cycle with color set Zs,, where the
exponent of the variable y; records how many elements of [#] belong to a cycle that
is colored from the jth d-strip {(j —1)d +1,..., jd}. Thus the left-hand side of (7.2) is
the generating function of colored factorizations ¢ = u;---uy of the Coxeter element ¢
in which the cycles of factor u; are colored with the color set Z,, where the elements
colored in the d-strip {(j—1)d +1,..., jd} are encoded with the variable y?’). To
count these factorizations by the total number of elements in the cycles colored in

each d-strip, we change basis to monomials (y(") )"‘(i) , yielding

(@) : OO G RN G
ST IO) HP/\(i)(l,)/l sees Y1 Yo s Yy ,)
i=1

.....

A A
d d

al, Dya® )y al®

= ) Ci(l),,r.l_),u(k) (yO)e ™ (y Ry
(x(l),,_,,(x(k)

where the sum on the right is over weak compositions a(!) of numbers no larger than

n. By Lemma 7.6 and Corollary 7.5 we have that
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n-1
C(d>1¢”) _d(k—l)n( |)k—1M‘11*1 ))))) qx-1
MONIORN n kK (n-1y °

Hi:l (q,-—l)

((a®) if [« = n

(@) +1  otherwise fori =1,..., k. Finally, by (74) we can combine

where g; = {
monomials (y(i))"‘(i) with the same underlying partition (") to rewrite the right-
hand side in the basis m (> s desired. a

Remark 7.7 Theorem 3.1 can be recovered from Theorem 7.2 as follows. We do a
stable principal specializationy; = 1% fori =1,..., k (see (2.4)) in (7.2). One has

DALY s Y V25 s V2 ks ) = (xd+1)'M,

—_— — — ik
d d y=l

This gives
(d) d n... d Tk
Z Z YOO (ad + 1) (xd +1)
L8t Tk

..... AD:0(AD)=r;

o9 e S () My

Propi VD1 Pk)am:e(am):p,. (q"l__ll)"'(;k__ll)’

where the sum on the right-hand side is over compositions a(?) of size at most n
with p; parts, with not all compositions of size n. Grouping tuples of compositions
according to the subset of indices i with |a{)| < n, one counts the compositions in
each case to cancel the binomials, applies Proposition 2.1, and does a substitution
(x;d +1) = x; to finish.

The genus-0 case

The leading terms in the left-hand side of the equation in Theorem 7.1, of degree
i (A1) = n(k 1) +1, count genus-0 factorizations for &, by the cycle type of
the factors. Goulden and Jackson [G]92, Thm. 3.2] used Lagrange inversion to give
a formula for such factorizations, called the cactus formula:

k @y 1)1
e (L) - 1)
K R O

Krattenthaler and Miiller [KM10] gave formulas counting genus-0 factorizations by
cycle type for signed permutations (type B, ) and even-signed permutations (type D),
also using Lagrange inversion. As an application of Theorem 7.2, we obtain a formula
for the genus-0 factorizations for G = G(d, 1, n) by their weight-0 cycle type that is

independent of d and coincides with the type B, formulas in [KM10, Thm. 7(i)]. Since

(d)

£(Ao(w)) = dimfix(w), the genus-0 factorizations are those counted by a; )

such that 3; /(A)) = n(k - 1).

A (k)

.....
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Corollary 7.8 Ford > 1, let G = G(d, 1, n), and let ¢ be a Coxeter element in G. Given
partitions A, ..., 1) of size at most n with ¥¥ £(A)) = n(k - 1), we have that

agd) is nonzero if and only if there is a unique j such that |)\)| < n, and in this case

2D k-1 (e ))__ D!
B,.am =1 AP ﬂ Aut(A(D)

Proof Let F denote the generating function in (7.2) and let (-,-) denote the usual
Hall inner product of symmetric functions, for which (py, p,) = 81,21 Fix a tuple of

partitions (1()) with ¥¥  £(A()) = n(k —1). On one hand, thinking about the left-
hand side formula for F in (7.2), we have

P,{(!)(yl
A(l) ..... ON (H A0z o’ F)’

since the top-degree term of py (1, y1,.. ., V1, Y2+ - o> ¥2...) is d*P p(y:). On the
other hand, thinking about the right-hand side formula for F in (7.2), we have that

n-1

M _
<HP)W) (Yi),F> = |G|k_1 ()Z “ qu’—(m’qk)l H(P/\(t) (vi), mw)(yz))
i u®, ., ulk i=1

In order for (py, M, ) not to be zero, we must have that 11 is a refinement of A("),

and so in particular £(u(")) > £(A()) for each i. It follows that, in order for a term to
contribute, it must be the case that

22(gi=1) = 3 l(u?) ~ #{is]ut| = n}
> 30 D) = # (i = n}

=n(k-1) - #{i:|uD| = n}
>(n-1)(k-1),

where in the penultimate step we use the fact that no terms appear on the right-hand

side with all ys of size n. On the other hand, in order for M,’,T_ll """" g¢—1 to be nonzero,

it must be the case that ¥(g; —1) < (n —1)(k —1). Thus, the (u()) term on the right
contributes if and only if u(") = A() for all i and also exactly k — 1 of the A(") have size
n. That is, if there is any nonzero contribution at all, it comes from the single term
when () = 1) for all 4, and in this case we have

M : N k
(HPM") (Yi),F> = |G =2 T prays maco)
i ITio (q ) i

k
Glk! Zm'
-la jgbl (q 1) gAut(M'))
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and therefore

-1
@ 6l (o ql,” neai) I ’”H (4 - 1)!
)0, am = 4T (M) H (n._l) i lAut(l( )) Aut(l()

and the result follows immediately. O

Remarks and open problems
A uniform formula?

In light of the beautiful Chapuy-Stump formula (Theorem 1.1), the main question
raised by our work is the following one.

Question 8.1 Is there a uniform answer that incorporates the various formulas that
appear in Theorems 3.1 and 5.1 and Proposition 5.3?

As mentioned in Remark 5.4 and Section 5.3, one obstruction is that for the cases
not covered by these theorems (and in particular, for G(d, d, n) when n > 3), there is
more than one set of Orlik-Solomon coexponents, and so there is no obvious choice
of basis in which to write the factorization polynomial.

Our work on G(d, d, n) suggests another approach towards a uniform statement,
namely studying factorizations with a transitivity condition. This leads to the next
question.

Question 8.2 Can one give a definition of transitive factorization, valid for all well-
generated complex reflection groups, generalizing the definition for G(d,d,n) of
Section 4?

One would hope that such a definition would yield a uniform generalization of
Theorem 4.1 and the aforementioned results.

Another approach might start with the work of Douvropoulos [Doul8]. He uses a
natural grouping on the irreducible characters of an arbitrary well-generated complex
reflection group to give an elegant, uniform proof of the Chapuy-Stump formula, as
well as a weighted generalization. The grouping exhibits cancellation similar to what
we observe in the proof of Theorem 5.1.

Maps and constellations

In the symmetric group, combinatorial proofs of the formulas counting factorizations
of the long cycle into two or more factors are phrased in terms of maps or constella-
tions, that is, certain graphs embedded in surfaces (e.g., see [LZ04, JV00, Schl5]). We
briefly discuss two possible variants of maps for encoding factorizations of a Coxeter
element into two factors of the complex reflection group G(d, 1, n).

The first version of maps is to encode the underlying factorization in the symmetric
group with the usual rooted unicellular bipartite map [LZ04, §1.3.3,1.5.1] [JV00, §3.1.2]
[SV08, Ex. 2.1] and add the cyclic group weights on the edges, as follows. Given a
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o

¢_
e

(a)

Figure 4: (a) The genus-1 map of the factorization ¢ = [(1532)(4);(1,2,2,0,1)]- [(134)(25);
(1,2,0,2,2)] in Example 8.3. (b) An “unfolding” of the map on the left, using the (blue) v-
weights to determine which copies of the vertices to connect with each edge.

factorization u - v of the Coxeter element cin G(d, 1, n), we assign to this factorization
a map, with the following conventions (see Figure 4):

o the map has n edges labelled 1,2, ..., n;

« each cycle of u corresponds to a black vertex and each cycle of v corresponds to a
white vertex;

« thelabels of the edges incident to a black vertex are the entries in the corresponding
cycle of u, and appear in clockwise order around the vertex; and similarly for white
vertices and v; and

o the edge labelled i has additional labels corresponding to the weight of the ith
column of u and ith row of v.

The fact that u - v = ¢ means that if we start at the rooted black vertex and traverse the
map, recording the labels on the edges when we go from a black to a white vertex, then
we see the edges in the order 1,2, ..., n given by the long cycle ¢.

Example 8.3 Let u =[(1532)(4);(1,2,2,0,1)] and v = [(134)(25); (1,2,0,2,2)] be
the following elements in G(3,1,5):
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(2) ) d=2
Q0 Q0 Q0 Q@0 Q@ @0

(©) d=3
© ©, © ) ©, O,
O ) (1) SN0 SO SO € O Y
© 3 & ¢ @ ¢ @ ¢ @ ) & 3
©) ©) ©) ©) @) ©)
Figure 5: (a) The C; = 2 set partitions on n = 2 points are both noncrossing. (b, c) The (252) 6
dd =

noncrossing set partitions on 2d points with d-fold rotational symmetry, for d = 2 an 3.

The corresponding weighted map is shown in Figure 4.

In the case of genus-0 factorizations with two factors, there are known combina-
torial objects that correspond to the factors: in &, the number of elements that can
appear in a genus-0 factorization of the long cycle ¢ is the Catalan number C,, and they
are in natural correspondence with noncrossing partitions on # points. In G(d, 1, n)
for d > 1, there are (2:) (the type B Catalan number) elements that can appear in a
genus-0 factorization of the Coxeter element c, and they are in natural correspondence
with noncrossing partitions on dn points having d-fold rotational symmetry [Rei97]
— see Figure 5. Thus, one might hope that the map objects corresponding to factor-
izations in G(d, 1, n) should also have a d-fold symmetry. This gives rise to a second
version of maps on surfaces, in which one “unfolds” a weighted map into an object with
d copies of each vertex and edge, where an edge of weight m that connected vertices
A and B unfolds to edges connecting copies A; and Bj.,, (with indices in Z/dZ) - see
Figure 4.

Unfortunately, neither map correspondence seems completely satisfactory: the
topological genus of the map is controlled by the total number of cycles in the factors,
rather than the number of weight-0 cycles. (For example, in the first variant, the genus
of the map is exactly the genus of the underlying factorization in G,,.) Is there a better
correspondence between factorizations in G(d, 1, n) and some kind of maps?

Better combinatorial proofs in the symmetric group?

Our work suggests (at least) two natural questions purely in the context of the
symmetric group. The first concerns the (n —1)-cycle.

Question 8.4 Can one give a combinatorial proof of Theorem 2.9, counting transitive
factorizations of an (n — 1)-cycle in &, into k factors?

For example, one might try to explain why n*~!(n - 1)"C(p”71’1> = p1-Pr C<P"+>1. We

are able to give a combinatorial proof for the case of k = 2 factors. However, it does
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Figure 6: The transitive factorization (1234)(5) = (135)(2)(4) - (12)(345) of a 4-cycle in G5
is one of four that correspond to the factorization (1234) = (13)(2)(4) - (12)(34) of a 4-cycle
in 64.

not seem to extend easily to general k. We state this proof in terms of permutations
but it could equivalently be phrased in terms of maps using a contraction of a digon.

Proof of Theorem 2.9 for k = 2 factors We give an (n —1)-tod map from transitive
factorizations of a fixed (n —1)-cycle in &, to factorizations of a fixed (n —1)-cycle in
Gn—l-

Without loss of generality, let 6,1y = (1--<(#1 — 1)) (n). Thus for any factorization
UV = G(y-1,1) in &, wehave v(n) = u~'(n) =: t. This factorization is transitive if and
only if the common value ¢ belongs to [# — 1], and equivalently the value n belongs to
a cycle of length longer than 1in both u and v. Then v’ :=u - (¢t n) and v/ := (¢t n) - v
are the permutations that result from deleting # from its cycle in u and v, respectively;
we view them as permutations in &,,_; (rather than as permutations in &,, that fix n).
Moreover, 1’ and v’ have the same number of cycles as u and v, respectively.

On the other hand, for any factorization 4’ -v' = (1--«(n - 1)) in &,,_; and any ¢ €
[n - 1], we may think of u’ and v’ as elements of &, that fix n; then u :=u’- (¢t n)
and v := (t n) - v' are two permutations in &, such that u - v = ¢,y 1) is a transitive
factorization, and u and v have the same number of cycles as u’ and v/, respectively.

It follows that the number b, ; of transitive factorizations of ¢(,_,1) using factors

with 7 and s cycles is equal to n — 1 times the number a(" Y of factorizations of an
(n—1)-cycle in &,,_; using factors with r and s cycles. By Theorem 1.2, one has

Zb,sxy =(n-1)- Za(" Dx'ys

D (D n-2 )p (Mg
(n=1)-(n-1): Pz,;l(p—l-q—rn—p—q) P q
n! n (x)p (J’)q
0! PN [

=( p,q,n’i pfq), and so this completes the proof. o

Psq

When k = 2, M;’q

The correspondence used in the proof also behaves well with colored factorizations
with k = 2 factors.

The existing combinatorial proofs of Theorem 1.2 in the case of k factors use
involved arguments with maps or constellations (as in Section 8.2), the BEST theorem,
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the matrix-tree theorem, and sign-reversing involutions; see [BM13, BM16]. The
second question concerns the possibility of “nicer” combinatorial proofs for the n-
cycle.

Question 8.5 Proposition 2.1 and Corollary 2.5 imply the recurrence relation
() _ k-1 (n-1)
Cotvepe =1 2 Cpleg
S¢(k]

for counts of colored factorizations of long cycles. Is there a direct combinatorial proof
of this relation, perhaps in terms of Bernardi’s tree-rooted maps (see [Ber12, BM13])?

More refined counting: tracking cycles by weights

While tracking the number of cycles of weight 0 is natural from the geometric
perspective, from the combinatorial point of view it makes just as much sense to ask for
the full distribution of cycle weights. Building on the work of Chapuy-Stump [CS14,
§5.3], we were able to prove the following result using the character-theory approach.
In contrast to the rest of the paper, the statement of this result does depends on the
weight of the Coxeter element chosen.

Theorem 8.6 Ford >1,let G = G(d, 1, n) and let c be a Coxeter element in G of weight
L Fori=1,...,k letr; =(rio,...,7i,q-1) be a tuple of nonnegative integers, and let
aﬁf{?,.,rk be the number of factorizations ¢ = uy---uy of c as a product of k factors such that
u; has exactly r; ; cycles of weight j for each j=0,...,d — 1. Let X; denote the variable

set {xi,0,...>Xig-1}. Then

(d) 91 Tk
Do A, X] X
S PRREEe '3

. . LY d_l .
ot g R (e )

p1-1,. .
td=1 P pi

By setting x; o = x; and x; j =1for j=1,...,d -1, one immediately recovers on
the left-hand side the polynomial of Theorem 3.1; to make the right-hand side match
requires a computation using Proposition 2.1.

Remark 8.7 'The right-hand side in Theorem 8.6 is, up to the power of d, the
result of substituting x; ~ (x;0 + tx;, +---+ t%x; 4_1)/d into the right-hand side
of (1.2), then extracting powers of t modulo ¢ — 1. This raises the question of whether
the same substitution has combinatorial meaning when factoring other elements.
Unfortunately, the answer seems to be negative: the factorization polynomial for the
identity into two factors in &, is x*y* + xy, and substituting x = (xo + tx;)/2 and
¥ = (yo + ty1)/2 and summing over ¢ = +1 yields

2.2 2.2 2.2 2.2
Xo Yo+ X{ Yo + Xgyi X1 Y] +4xox1yoy1 +4xo Yo +4x1 )1
8

>
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with fractional coefficients. For comparison, the polynomials counting two-factor
factorizations of diagonal matrices in the signed permutation group G(2,1,2) are

x% y(z) + 2X0X1Y0 Y1 + xl2 yf +2x0y0 + 2x1 1 (the identity),
x(z)yoyl + xoxlyé + xoxlyf + xlzyoyl +2x0y1 + 2x1)0 (the two reflections), and
XEYT + 2X0X1Yo V1 + XiYe + 2%0 Vo + 2X1 )1 (the negative of the identity).

Question 8.8 Isthere a better expression for the polynomial that appears in Theorem
8.6, for example, in terms of a natural basis of polynomials? Does it have a combina-
torial proof?

Refinement by fixed space orbit

As discussed in Section 7, the cycle type result there makes sense for any complex
reflection group G, where one refines by the G-orbit of fixed space of the factors.

Question 8.9 Does Theorem 7.2 generalize? What about its genus-0 special case?

A natural test-case would be transitive factorizations of a Coxeter element in
G(d,d, n), refining Theorem 4.1. The first obvious obstruction to be overcome is the
choice of a “good” basis of polynomials in which to express the generating function.

Intervals in two posets

It would be desirable to have a uniform proof of Corollary 6.6, that the G-noncrossing
partition lattice may be equivalently defined as an interval when G is ordered by the
reflection-length order <y or the codim-fix order <, even though the larger posets are
not the same.

In light of Corollary 6.6, it is natural to ask under what conditions the interval
[1,w]< in the codim-fix order is equal to the interval [1, w]., in the reflection-length
order; for example, does equality always hold when codim fix(w) = £z (w)? The next
example shows that the answer to this question is negative.

Example 8.10 In G(7,7,6), consider the elements w = [123456; (1,2,3,4,5,6)], u =
[123456;(1,2,0,4,0,0)] and v = [123456;(0,0,3,0,5,6)]. It is easy to check that
w=u-v, {g(w) = codim fix(w) = 6, codimfix(u) = codimfix(v) = 3, and lr(u) =
Lr(v) = 4. Thus u, v belong to the interval [1, w]< but not to the interval [1, w]<,.

Question 8.11 Can one characterize the elements w for which [1,w]< = [1, w],? In
particular, does equality hold for all regular elements w?

Generating function by reflection length?

One possibility, suggested by Remark 6.5, is that instead of writing a generating
function for factorizations using fixed space dimension, one should write a generating
function that records the reflection length ¢ (g) of the factors. However, there is again
an obstruction in terms of choosing a basis: typically in these groups there are elements
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of reflection length > n, so basis polynomials of degree > n would be required, and it
is not clear what would be a good choice of such polynomials.
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