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A B S T R A C T   

Given instances (spatial points) of different spatial features (categories), significant spatial co-distribution pat
tern discovery aims to find subsets of spatial features whose spatial distributions are statistically significantly 
similar to each other. Discovering significant spatial co-distribution patterns is important for many application 
domains such as identifying spatial associations between diseases and risk factors in spatial epidemiology. 
Previous methods mostly associated spatial features whose instances are frequently located together; however, 
this does not necessarily indicate a similarity in the spatial distributions between different features. Thus, this 
paper defines the significant spatial co-distribution pattern discovery problem and subsequently develops a novel 
method to solve it effectively. First, we propose a new measure, dissimilarity index, to quantify the difference 
between spatial distributions of different features under the spatial neighbor relation and then employ it in a 
distribution clustering method to detect candidate spatial co-distribution patterns. To further remove spurious 
patterns that occur accidentally, the validity of each candidate spatial co-distribution pattern is verified through 
a significance test under the null hypothesis that spatial distributions of different features are independent of 
each other. To model the null hypothesis, a distribution shift-correction method is presented by randomizing the 
relationships between different features and maintaining spatial structure of each feature (e.g., spatial auto- 
correlation). Comparisons with baseline methods using synthetic datasets demonstrate the effectiveness of the 
proposed method. A case study identifying co-morbidities in central Colorado is also presented to illustrate the 
real-world applicability of the proposed method.   

1. Introduction 

Given instances (spatial points) of different spatial features (cate
gories), the discovery of significant spatial co-distribution patterns 
(SSCDPs) aims to find subsets of features whose instances show statis
tically significant similarity in terms of spatial distribution. SSCDP 
discovery can facilitate the understanding of spatial associations among 
different features, and further help domain scientists to predict the 
spatial distributions of features that are otherwise difficult to obtain. 
For example, in spatial epidemiology, the distribution of a disease is 
linked to the spatial distribution of its sources or risk factors that con
tribute to its transmission or development (Elliott & Wartenberg, 2004), 
thus enabling the formation of a SSCDP between a disease and its 
sources or factors, e.g., {Lyme Disease, Infected Host-Seeking Ixodes sca
pularis Nymphs} in the Eastern United States (Pepin et al., 2012). Such a 
spatial pattern can contribute to the generation of a reliable disease risk 

map, which can be used as a guide to geographically prioritize pre
vention efforts (Diuk-Wasser et al., 2006). SSCDP discovery is also 
important in diverse applications, such as ecology, e.g., identifying the 
parasitic relationship between emerald ash borers and ash trees (Xie, 
Bao, Shekhar, & Knight, 2018), and criminology, e.g., detecting the 
trigger events associated with risks of criminal activities (Cai et al., 
2019). 

Most previous work has focused on discovering spatial co-location 
patterns represented by subsets of features whose instances are fre
quently located together in space (Shekhar & Huang, 2001). However, 
although different features spatially occur together with high pre
valence, their spatial distributions may still vary significantly. Thus, 
this paper formally defines the SSCDP discovery problem to provide a 
novel perspective for analyzing the spatial association between fea
tures. Specifically, we want to know which spatial features often occur 
in close spatial proximity and also have similar spatial distributions. To 
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effectively solve this problem, we propose a distribution clustering 
method combined with the significance test. The proposed method can 
effectively discover SSCDPs without assumptions about the distribution 
models or characteristics of features. 

The rest of this paper is organized as follows. Section 2 reviews the 
related work and proposes a new strategy. Section 3 introduces the 
basic concepts and formulates the problem of SSCDP discovery. Section 
4 describes and analyzes the SSCDP discovery method in detail. In 
Section 5, we present the experimental evaluation and a case study on a 
public health dataset. Section 6 concludes the paper and outlines future 
work. 

2. Related work and a new strategy 

2.1. Spatial co-location pattern discovery 

Our work is closely related to the previous work on spatial co-lo
cation pattern discovery, which aims to find subsets of features whose 
instances are frequently co-located in close spatial proximity (Shekhar 
& Huang, 2001). Existing methods can be broadly categorized into 
three classes, namely, clustering-based, frequent-pattern-based, and 
statistics-based methods. 

Clustering-based methods can be further divided into layer-clus
tering and feature-clustering methods. Layer-clustering methods 
(Estivill-Castro & Lee, 2001; Estivill-Castrol & Murray, 1998) first detect 
the cluster regions of instances in the layer of each feature, and then 
find co-location patterns based on the overlapping areas of cluster re
gions from all the layers. This strategy can only work well if the in
stances of each spatial feature tend to cluster in space. A feature-clus
tering method (Huang & Zhang, 2006), by contrast, treats each spatial 
feature as a clustering object, and then clusters features to represent co- 
location patterns. However, the similarity measure, namely density 
ratio, can only capture the pairwise dependence between two features. 
Additionally, it is difficult to determine appropriate clustering para
meter(s), e.g., a meaningful stopping criterion for hierarchical clus
tering methods. 

Frequent-pattern-based methods extend the pruning strategies used 
in classic association rule mining methods, e.g., Apriori method 
(Agrawal & Srikant, 1994), to detect the subsets of spatial features that 
frequently occur together. However, these classic methods cannot be 
directly applied to spatial datasets because transactions do not naturally 
exist in continuous geographic space (Huang, Shekhar, & Xiong, 2004;  
Yoo & Shekhar, 2006). For this reason, an event-centric model (Shekhar 
& Huang, 2001) is commonly used to build neighbor graphs among 
instances of different features. Subsequently, a participation index 
evaluates the prevalence of different features occurring in neighbor
hoods. A co-location pattern is identified as prevalent if its participation 
index value is not smaller than a given threshold. In practice, such 
prevalent co-location patterns may happen by chance, which may result 
in false positives or negatives regarding the association between fea
tures. 

Statistics-based methods interpret a co-location pattern as a de
pendence among various types of spatial point processes, and determine 
the statistical significance through testing under the null hypothesis of 
independence. One of the key requirements of the test is maintaining 
the univariate spatial structure of each feature (Dixon, 2002). This can 
be done using either parametric or nonparametric methods. Parametric 
methods use the realizations of the fitted point-process model as a null 
model, such as the homogenous Poisson process used in the cross K- 
function (Ripley, 1976) and the Matérn cluster process used in Barua 
and Sander (2014). This strategy works well only if the underlying 
distribution is appropriately fit by the presumptive distribution model. 
An alternative solution is the nonparametric strategy used by Deng, He, 
Liu, Cai, and Tang (2017) and Cai et al. (2019), where stochastic per
mutations are generated by closely approximating several predefined 
statistical characteristics of the observed dataset. However, suitable 

distribution characteristics of features still need to be carefully selected 
in advance. In addition, due to the non-monotonic property of statistical 
significance, a brute-force test on all the candidate patterns is usually 
required, which will result in expensive computational costs. 

2.2. Critical analysis of existing methods 

Previous methods commonly measure the prevalence of co-location 
patterns by comparing local instance number (or density) of a feature 
co-located with others with its global number (or density) in the study 
area (see Table 1), and then associate different spatial features if their 
co-location prevalence is high enough. However, different features can 
frequently occur together even if their spatial distributions are sig
nificantly different, which may lead to misjudgments of the spatial 
association. Fig. 1 presents four motivating examples to illustrate the 
necessity of spatial distributions for understanding the association be
tween different features.  

Example 1. In Fig. 1(a), both the spatial locations and distributions of 
features A and B are clearly different from each other. 
Pattern {A, B} is neither a co-location pattern nor a co- 
distribution pattern.  

Example 2. In Fig. 1(b), all the instances of features A and B occur in 
neighboring spatial locations, and their spatial distribu
tions are quite consistent. Pattern {A, B} is both a co-lo
cation pattern and a co-distribution pattern.  

Example 3. In Fig. 1(c), although the instances of features A and B are 
always located together, they have distinctive local den
sities. Pattern {A, B} is a co-location pattern, but not a co- 
distribution pattern.  

Example 4. In Fig. 1(d), the locations of features A and B are in close 
spatial proximity; however, their spatial distributions are 
different in the central area. Pattern {A, B} is a co-location 
pattern, but not a co-distribution pattern. 

Existing co-location pattern discovery methods can perform well in 
Examples 1 and 2; however, they may wrongly associate features in 
Examples 3 and 4 if the spatial distributions are not considered. 

Some measures in mathematical statistics, such as the Kullback- 
Leibler (KL) divergence (Kullback & Leibler, 1951) and the Jensen- 
Shannon (JS) divergence (Lin, 1991), can be incorporated into the 
discovery model to reduce the effect of the above limitation. However, 
these measures require users to assume the form of distributions be
forehand or perform estimations based on independent and identically 
distributed samples. Such requirements are not ideal in geographic 
domains because of the spatial dependencies that exist among sample 
points. For example, to apply the KL divergence on the spatial features 
shown in Fig. 2(a), it is common to partition the study area into a set of 
grid cells (Sengstock, Gertz, & Van Canh, 2012) (see Fig. 2(b)). Sub
sequently, the distribution difference can be described by the difference 
between the probabilities of the two features, PA(ci) and PB(ci), in each 
grid cell ci. In this example, the KL divergence between A and B is 
computed as ∑i=1

24PA(ci) ∙ log (PA(ci)/PB(ci)) = 50,1 which indicates 
that the distributions of A and B are quite different. However, the in
stances of the two features are always located with similar distributions 
in close spatial proximity. This conflicting result is caused by the 
missing spatial relationships broken by the boundaries of space parti
tioning (Xie et al., 2017). In contrast, the proposed dissimilarity index 
can correctly capture the identity of these two distributions under the 
spatial relationship among instances (see Fig. 2(c)). A more detailed 
description of this index is presented in Section 3.1. 

1 Each P(ci) is smoothed by (P(ci)+ε)/(1+ε∙C) so that P(ci)  >  0 for any ci, 
where ε is a tiny value and C is the number of grid cells. 
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2.3. Novel strategy for discovering SSCDPs 

Motivated by the above observations, we formally define a novel 
problem of SSCDP discovery and propose a hybrid strategy which 
combines both clustering- and statistics-based strategies to solve this 
problem. To provide a more rigorous cognition for spatial association 
between features, a more interesting question is whether specific sub
sets of spatial features tend to have similar spatial distributions. More 
specifically, co-distributed features should not only occur in close 
spatial proximity with high prevalence but also with similar distribu
tions (probabilities). 

Based on this cognition, the proposed strategy can be described as 
follows:  

(1) Generation of candidate patterns: First, we define a new measure, 
namely a dissimilarity index, to measure the difference in the spa
tial distributions of different features. To achieve an informative 
and nonredundant representation of co-distributed features, the 
candidate SSCDPs are represented by clusters of features, and a 
distribution clustering method is proposed to generate candidate 
SSCDPs, where the dissimilarity index is used as the similarity 
measure between features.  

(2) Determination of significant patterns: To further remove spurious 
patterns that happen by chance, the evaluation of SSCDPs is mod
eled as a significance test problem under the null hypothesis that 
spatial distributions of different features are independent of each 
other. To construct the null hypothesis, we develop a distribution 
shift-correction method that can randomize the relationships 

Table 1 
Comparison of measures for co-location and co-distribution patterns.     

Pattern Measure Definition  

Co-location Cross K-function (Ripley, 1976) fi f j
fi

average instance number of co located with
instance number of in unit area

Participation index (Shekhar & Huang, 2001) 
min fi

fi

instance number of co located with others
total number of instances of in the study area

Density ratio (Huang & Zhang, 2006) fi f j
fi

average instance density of co located with
instance density of in the study area

Co-distribution Dissimilarity index (This work) Average difference in the probabilities of fi and other features occurring around baseline locations 

Fig. 1. Examples to distinguish co-location and co-distribution patterns: (a) example 1: not co-location and not co-distribution; (b) example 2: co-location and co- 
distribution; (c) example 3: co-location but not co-distribution and (d) example 4: co-location but not co-distribution. 

Fig. 2. Illustration of different strategies for measuring distribution similarity: (a) a spatial dataset with instances of two features; (b) space partitioning for applying 
KL divergence to spatial dataset and (c) neighbor graphs to handle the spatial relationship among instances. 
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between different features (spatial cross-correlation), while main
taining the spatial structure of each feature (spatial auto-correla
tion). 

Fig. 3 presents the framework of the proposed strategy. In the fol
lowing section, we initially introduce the key concepts, and then for
mally define the SSCDP discovery problem. 

3. Problem formulation 

3.1. Basic concepts 

A spatial feature refers to the conceptual abstraction of a set of 
spatial points of the same category. An instance of a spatial feature 
refers to a spatial point labeled with that feature category. The proxi
mity relationship among different features is modeled using a spatial 
neighbor relation (Shekhar & Huang, 2001) in which the distance in 
space is restricted by a distance threshold (see Fig. 4). An instance of a 
feature fi is considered to occur around a location lj if this instance is a 
spatial neighbor to lj. Here a location lj belongs to a set of baseline 
locations where the spatial features could occur. The baseline locations 
can be specified with some reference points (e.g., centers of artificial 
grids or census units). However, the user-specified baseline locations 
may break the spatial neighbor relation among instances of different 
features around adjacent baseline locations. Thus, in this study, the 
baseline locations of a feature correspond to the locations that host all 
instances of that feature, and the baseline locations of a candidate 
SSCDP are the collection of baseline locations of all the component 
features. A spatial co-distribution pattern (SCDP) is generally a subset 

of spatial features whose instances not only frequently occur around the 
same baseline locations, but also have similar distributions (prob
abilities) around these locations. 

It is essential to select an appropriate neighbor distance threshold to 
ensure meaningful SCDPs. In practice, without prior knowledge pro
vided by domain experts, the spatial auto-correlation of the input da
taset can serve as guidelines for the neighborhood determination (Yoo 
& Bow, 2012). It is suggested to set the neighbor distance threshold as 
one distance where spatial processes greatly promote clustering mea
sured by a modified L function dealing with multi-type points, that is, a 
distance that shows large positive deviation between observed L func
tion value and expected value under complete spatial randomness. Al
ternatively, the spatial neighbor relation can be defined using mutual k- 
nearest-neighbor graph, topological proximity criterion (Nilsson & 
Smirnov, 2017) and so on. The mutual k-nearest-neighbor graph con
nects two instances of different features if they are k-nearest neighbors 
of different categories to each other (see Fig. 5(a)). The topological 
proximity criterion considers an instance of feature fi to be located re
latively close to an instance of feature fj if that instance is located within 
the relative attraction areas of fj. The relative attraction areas are 
constructed by connecting all midpoints between each instance of fj and 
the vertexes of the Thiessen polygon around that instance (see  
Fig. 5(b)). This criterion is a good option in cases where there is a very 
uneven spatial distribution of points. 

3.2. Quantifying the difference in spatial distributions 

To compare the spatial distributions among included features in a 
SCDP, the spatial distribution of each spatial feature is modeled by the 

Fig. 3. Framework of the proposed strategy for discovering SSCDPs.  

Fig. 4. Illustrative spatial co-distribution pattern {A, B}.  
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rate it occurs in close spatial proximity to each baseline location of the 
SCDP. The dissimilarity among spatial distributions of different features 
in the SCDP is then measured by the difference in the occurrence rate of 
features around all baseline locations. These terms are formally defined 
as follows: 

Definition 1. The occurrence rate OR(fi, lj) of a feature fi around a 
baseline location lj is the probability of finding an instance of fi in close 
spatial proximity to lj under the spatial neighbor relation R. Formally, 
OR(fi, lj) can be written as 

=OR f l
I f l

I f( , )
( , )

( )i j
i j

i (1) 

where ∣I(fi, lj)∣ is the number of instances of fi occurring around lj, and ∣I 
(fi)∣ is the number of all instances of fi in the entire study area. 

Definition 2. For a baseline location lj, the local distribution difference 
LDD(SCDP, fi, lj) between a feature fi and all features in a 
SCDP = {f1, f2,⋯, fk} is defined as the difference between the 
occurrence rate of fi and the mean occurrence rate of all k features in 
the SCDP, represented as 

= =LDD f l OR f l
f

(SCDP, , ) ( , ) ,
SCDP

i j i j
OR f l
k

i

( , )i
k

i j1

(2) 

Definition 3. The distribution difference DD(SCDP, fi) between a 
feature fi and other features in a SCDP is defined as the quadratic 
mean of LDD(SCDP, fi, lj) over all the baseline locations of the SCDP, 
L = {l1, l2,⋯, ln}, computed as 

= =DD f

l L
(SCDP, ) ,i

LDD f l

n

j

{ (SCDP, , )}j
n

i j1
2

(3) 

Definition 4. The dissimilarity index DI(SCDP) of a 
SCDP = {f1, f2,⋯, fk} is defined as the mean distribution difference 
between one feature and all features in the SCDP, formally written as 

= =DI
DD f

k
f(SCDP) (SCDP, ) , SCDPi

k
i

i
1

(4)  

The dissimilarity index of a SCDP is always nonnegative, and a 
smaller dissimilarity index value indicates more similar spatial dis
tributions among different features. The value is zero only if all the 
features included in the SCDP have the same occurrence rates around 
all the baseline locations (see Fig. 2(c)). 

Consider the illustrative dataset in Fig. 4. There are two different 
spatial features, A and B, which have seven and six instances, respec
tively. Given a distance threshold, the spatial neighbor relation R over 
this dataset is represented by the lines connecting the instances of A and 
B. The baseline locations of pattern {A, B} are the locations of these 13 

instances. For the baseline location li, the occurrence rates of feature A, 
OR(A, li), and feature B, OR(B, li), are 2/7 and 1/6, respectively. The 
mean occurrence rate of the features in pattern {A, B} at li is (2/7 + 1/ 
6)/2 ≈ 0.23. Thus, the local distribution difference between features in 
{A, B} at li, i.e., LDD({A,B},A, li) and LDD({A,B},B, li), can be computed 
as 2/7−0.23 ≈ 0.06 and 1/6−0.23 ≈ −0.06, respectively. After tra
versing all the baseline locations of {A, B}, we obtain distribution dif
ferences LDD({A,B},A) and LDD({A,B},B), both of which are 0.066. 
Thus, the dissimilarity index of {A, B}, DI({A,B}) is (0.066, 0.066)/ 
2 = 0.066. 

3.3. Significance test preliminaries 

Although the dissimilarity index (DI) proposed in Section 3.2 can 
measure the degree of difference between multivariate spatial dis
tributions, it does not necessarily indicate positive or negative inter
actions among different features. In practice, SCDPs decided with a DI 
value threshold may associate absolutely independent features while 
ignoring strong dependencies. To remove such spurious patterns and 
enhance the statistical interpretability, the significance of a SCDP is 
validated through a statistical test under the null hypothesis of in
dependence, which is described as follows. 

Definition 5. To test the significance of a SCDP = {f1, f2,⋯, fk}, the null 
hypothesis of independence (H0) states that the univariate spatial 
distribution of each feature fi is independent of the other features in 
the SCDP. 

Furthermore, the test statistic for this test is the measure DI. 
However, it is analytically intractable to determine the theoretical 
distribution of DI under H0. Therefore, a more practical alternative is to 
estimate the empirical distribution of DI using Monte Carlo permuta
tions. What is of interest in this significance test is the relationship 
among different spatial features and not the univariate spatial structure 
of each feature (Wiegand & Moloney, 2013). Thus, the permutations of 
the observed dataset generated under H0 should satisfy the following 
two properties (Dixon, 2002): (1) the potential interactions among 
different features must be broken, and (2) the observed spatial structure 
of each feature (e.g., spatial auto-correlation) should be maintained. 
Once a sufficient number of such permutations are generated, a p-value 
is used to assess whether a SCDP deviates from H0, and a significant 
spatial co-distribution pattern can be formally defined. 

Definition 6. Given a large number N of permutations under H0, the p- 
value of a SCDP, p − value(SCDP), is defined as the probability of 
finding a DI value from permutations DInnull(SCDP) smaller than or 
equal to the observed DI value DIobs(SCDP), computed as 

=
=

+
+p

n N
value(SCDP) ,

1, 2, ,

DI DI
N

(SCDP) (SCDP) 1
1

n obsnull

(5) 

Fig. 5. Alternative definitions of the spatial neighbor relation: (a) mutual k-nearest-neighbor graph with k of 2 and (b) relative attraction areas.  
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Definition 7. Given a threshold α of a p-value (known as a significance 
level and conventionally specified as 0.05 or 0.01), the null hypothesis 
of independence is rejected and a SCDP is defined as a significant 
spatial co-distribution pattern (SSCDP) if its p-value is not greater than 
α. 

3.4. Formal problem statement 

Given a large number of spatial features, the number of reported 
SSCDPs is typically too large and unmanageable for humans to inter
pret, and the patterns usually contain many redundant descriptions of 
the correlations between features. Thus, in this study, the desired 
SSCDPs are represented by clusters of features to achieve an in
formative and nonredundant representation of the pattern collection as 
a whole. Based on this consideration, the SSCDP discovery problem is 
formally defined as follows: 

Given: (1) A collection of spatial features and their instances; (2) a 
distance threshold r for defining the spatial neighbor relation R; and (3) 
a significance level α; 

Find: SSCDPs represented by clusters of spatial features with p-va
lues ≤α; 

Objective: Effectively establish the statistical significance of 
SSCDPs with fewer assumptions; 

Constraints: The underlying spatial distribution of each feature is a 
priori unknown. 

Fig. 6 provides an illustration of SSCDP discovery. Given a dataset 
containing instances of five features, a neighbor relation defined based 
on a distance threshold and a significance level of 0.05, two clusters of 
features, {A, B} and {C, D, E}, are reported as SSCDPs because they 
have qualifying p-values of 0.01 and 0.03, respectively. 

4. SSCDP discovery method 

We now describe the three main components of the SSCDP dis
covery method: (1) generation of candidate SSCDPs, (2) construction of 
the null hypothesis of independence, and (3) statistical significance test. 

4.1. Distribution clustering method for generating candidate SSCDPs 

Given K types of spatial features, the number of all possible co- 
distribution patterns is exponentially related to K. If K is small, it may 
be computationally feasible to perform brute-force evaluation on all 
possible patterns; otherwise, it is more practical to prioritize the most 
promising candidates whose component features share the most similar 
spatial distributions. For example, in Fig. 6(a), compared with other 
features, the spatial distribution of feature A is more similar to that of 
feature B. Pattern {A, B} may then be a promising SSCDP candidate. 
Thus, we model the generation of candidate SSCDPs as a special clus
tering problem for hierarchically grouping spatial features, where the 

similarity measure is defined based on the similarity between spatial 
distributions of features. 

Specifically, the proposed distribution clustering method identifies 
clusters of spatial features in a divisive (i.e., top-down) manner. The 
reasons are twofold: First, the top-level clustering decisions made by 
divisive methods are based on more global properties, thus producing 
more accurate hierarchies than agglomerative (i.e., bottom-up) 
methods, which rely on local properties from the bottom level (Guha, 
Rastogi, & Shim, 2000; Steinbach, Karypis, & Kumar, 2000). Second, a 
top-down search allows us to stop the clustering process without 
searching for smaller-size patterns (i.e., clusters at lower levels), if the 
larger-size patterns (i.e., clusters at higher levels) are guaranteed to be 
significant. This is because larger-size patterns can provide a more in
formative description than smaller patterns regarding the co-distribu
tions of features. 

The distribution clustering method can be regarded as a recursive 
application of partitioning clustering at multiple levels. The method 
starts at the topmost level with all spatial features in one cluster. 
Subsequently, each feature cluster FC at the ith level is identified as a 
candidate SSCDP whose validity will be verified using the significance 
test presented in the following sections. If FC is insignificant, we im
plement a distribution bisection method to split the FC into two sub- 
clusters as follows:  

(1) Initial the first representative feature rf1 as the one which has the 
smallest sum of the dissimilarity index (DI) values to all other fea
tures in FC. Taking the dataset in Fig. 6 for example, feature C will 
be selected as the initial rf1. 

(2) Tentatively choose each unselected feature as the second re
presentative feature rf2. For any other non-representative feature 
nfi, assign it to its most similar representative feature rfj (j = 1 or 2) 
if DI({nfi, rfj}) is smaller than the DI value between nfi and another 
representative feature. Measure the quality of the clustering result 
with the total DI value (TDI) of two feature sub-clusters, FSC1 and 
FSC2, represented as: 

= +TDI DI FSC DI FSC( ) ( )1 2 (6) 

Then, determine the initial rf2 as the one that brings the smallest TDI 
value. As shown in Fig. 7, after testing all the unselected features (i.e., 
A, B, D and E), feature A or B will be selected as the initial rf2 because 
both of them can produce the best clustering quality. 

(3) Swap each non-representative feature, nfi, tentatively with the re
presentative feature rfj (j = 1 or 2) to which it is assigned and re
assign rfj and other non-representative features to their most similar 
new representative features. Record the TDI value after the re
assignment using each nfi.  

(4) Finally, check whether the clustering result can be improved, i.e., 
whether the current TDI value can be reduced. If so, carry out the 

Fig. 6. Illustration of the SSCDP discovery problem: (a) input: a simulated dataset and (b) output: two clusters of features: {A, B} and {C, D, E}.  
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reassignment using the feature nfi which reduces the current TDI 
value the most, and return to Step 3; otherwise, terminate the 
clustering process, and output the two sub-clusters FSC1 and FSC2. 

The distribution bisection method is repeatedly implemented on 
each insignificant feature cluster to find the most promising candidate 
SSCDPs at the next level unless only one or two spatial features are 
contained in that cluster. In this study, significant feature clusters will 
not be further split because we want to find the most informative and 
nonredundant set of patterns that can statistically explain the spatial 
correlations between features. If users are interested in more local in
formation, the distribution bisection method can also be implemented 
on significant feature clusters to identify lower-level clusters with fewer 
features. 

4.2. Distribution shift-correction method for modeling the null hypothesis of 
independence 

Modeling the null hypothesis of independence is the premise for the 
development of our significance test on candidate SSCDPs. The key here 
is to generate permutations of the observed dataset that satisfy the two 
properties described in Section 3.3 (i.e., the randomization of re
lationships between different features and the maintenance of the 
spatial structure of each feature). It is straightforward to fulfill the first 
property by repositioning the instances of each feature regardless of the 
others. To ensure the second property, predefined point-process models 
or statistical properties are usually required. A simple alternative is to 
entirely shift all the points by considering the study area as a torus 
(Lotwick & Silverman, 1982); however, this may produce some artifi
cial structures at the edges. To overcome these limitations, we propose 
a distribution shift-correction method. 

For each spatial feature fi, the distribution shift-correction method 
generates permutations in three major phases: (1) shifting, (2) reloca
tion and (3) correction, described as follows:  

(1) Shifting. In the shifting phase, all the instances I(fi) of fi are shifted as 
a whole across the study area S = [0,X] × [0,Y] by adding a fixed 
random vector (dx, dy) to each location of I(fi) (Fig. 8(b)).  

(2) Relocation. The relocation phase aims to relocate the instances of fi 
that are shifted outside the study area S by following the rules of 
toroidal geometry. This is achieved by subtracting a value of X from 
the x-coordinates of instances lying within the right area of S (see 
regions R2 and R4 in Fig. 8(b)), and subtracting a value of Y from 
the y- coordinates of instances lying within the upper area of S (see 

regions R3 and R4 in Fig. 8(b)).  
(3) Correction. This phase is to correct the univariate spatial structures 

of each feature under the null hypothesis because they are not of 
interest in the test of dependence among different features. In 
spatial statistics, univariate spatial structures are quantified with 
summary statistics (e.g., K-function (Ripley, 1976)) by summarizing 
the statistical properties of each feature. The spatial neighbor re
lation is the basis of these summary statistics. So, the real focus here 
is on the correction of artificial spatial neighbor relation produced 
by the first two phases, including missing neighbor relation or 
emerging neighbor relation.  
• Missing structures lie close to the edges of S and are artificially 

split apart in the shifted and relocated dataset (e.g., the neighbor 
relation represented by dotted lines in Fig. 8(b)). Such structures 
will cause underestimation of the local statistical properties of fi. 
Thus, the spatial structures near the edges need to be corrected 
based on the fixed neighborhoods (see yellow regions in  
Fig. 8(d)).  

• Emerging structures occur near the borders between shifted and 
relocated regions (e.g., the neighbor relation represented by the 
black line in Fig. 8(c)). Such structures will lead to over
estimation of the local statistical properties of fi. Thus, the 
neighbor relation in these emerging artifacts needs to be broken 
to refine the statistical properties of fi (see the green regions in  
Fig. 8(d)). 

It should be noted that the distribution shift-correction method does 
not directly generate permutations that have the same spatial structure 
as the observation; rather, it allows the structure to be recovered from 
the permutations through structure correction (see Appendix A for 
details). In the following section, we explain the role played by the 
recovered spatial structure of each feature in the estimation of dis
tribution similarity between different features under the null hypoth
esis. 

4.3. Statistical significance test for identifying SSCDPs 

To test the statistical significance of each candidate SSCDP, we need 
to determine the null distribution of the test statistic (i.e., the prob
ability distribution of the dissimilarity index (DI) when the null hy
pothesis is true). To provide a good estimator for the null distribution, a 
sufficient number of permuted datasets, each of which contains in
stances of different features, are generated using the distribution shift- 
correction method described above. The null distribution is then 

Fig. 7. Initialization of the second representative feature: (a) testing feature A; (b) testing feature B; (c) testing feature D and (d) testing feature E.  
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estimated by evaluating the DI values in these permuted datasets. 
However, the artificial structures of each feature in the permuted da
tasets will also cause significant bias in the estimator of permuted DI 
values. In light of this, we implement a distribution recovery method to 
recover the observed spatial structure of each feature in the estimator of 
permuted DI values. 

For a candidate pattern CP = {f1, f2,⋯, fk} in a permuted dataset 
that is embedded in the study area S = [0,X] × [0,Y], the distribution 
recovery method first corrects the permuted occurrence rates (OR) of 
each included feature fi around the baseline locations of CP (i.e., the 
locations of permuted instances of all features included in CP) in two 
cases:  

• For the permuted baseline locations Li of fi, the permuted OR(fi, lm) 
(lm ∈ Li) is directly replicated from that around the corresponding 
location in the observed dataset.  

• For the permuted baseline locations Lo of other features in CP, Lo are 
relocated to the context of the observed instances of fi, and the 
permuted OR(fi, ln) (ln ∈ Lo) is corrected by estimating the OR value 
of observed fi around the corresponding location in the relocated Lo. 
The relocation of Lo is a reverse process of the generation of per
muted instances of fi. This is achieved by adding a value of X to the 
x-coordinates of locations whose x-coordinates lie within [0, dx] 
(see locations in regions R2 and R4 in Fig. 9(b)), adding a value of Y 
to the y-coordinates of locations whose y-coordinates lie within [0, 
dy] (see locations within regions R3 and R4 in Fig. 9(b)), and then 
entirely shifting Lo according to the vector (−dx, −dy) (Fig. 9(c)), 
where (dx, dy) is the random vector used for generating permuta
tions of fi. 

Subsequently, the DI value of CP in the permuted dataset is refined 
using the corrected OR values of all included features. For example,  
Fig. 9(a) shows a permuted dataset containing shifted instances of 
features A and B and Fig. 9(d) presents the dataset containing recovered 
instances of A and B according to vector (dx, dy) for shifting observed 
instances of A. The permuted OR values of A are corrected with the OR 

values of A computed at the corresponding recovered locations in the 
dataset shown in Fig. 9(d). Similarly, the permuted OR values of B can 
be corrected by applying the distribution recovery method according to 
the vector (dx’, dy’) for shifting observed instances of B. The permuted 
DI value of {A, B} can be further refined by considering the observed 
spatial structures of A and B. 

After obtaining the permuted DI values of CP in a sufficient number 
of permuted datasets, the statistical significance of CP is determined 
according to the p-value in Eq. (5). In practice, to further accelerate the 
computation, some unnecessary evaluations of permuted DI values can 
be terminated early if the permuted DI(CP), which is not higher than 
the observed DI(CP), has already been found in so many permuted 
datasets that the significance level α cannot be met. 

4.4. Implementation and analysis of the SSCDP discovery method 

4.4.1. Algorithm description 
As shown in Algorithm 1, the proposed method identifies SSCDPs 

using the following steps: 

Step 1: Generate N permuted datasets that conform to the null hy
pothesis using the distribution shift-correction method in
troduced in Section 4.2 (line 1).  

Step 2: Identify the pattern formed by all spatial features {f1, f2, …, fK} 
as the candidate CP1 at the first level and test the statistical 
significance of that pattern as described in Section 4.3 (lines 
2–3).  

Step 3: If any insignificant pattern containing more than two features is 
identified from CPn at the nth level, generate the candidate CPn 

+1 at the next level using the distribution bisection method 
introduced in Section 4.1 (line 5); otherwise, terminate the al
gorithm and output all the significant patterns (line 14).  

Step 4: Test the statistical significance of candidates in CPn+1 (line 6). 
Assign n + 1 to n and return to Step 3 to check whether the 
algorithm needs to continue. 

Fig. 8. Generation of a permutation based on the distribution shift-correction method: (a) observed dataset; (b) shifted dataset; (c) relocated dataset and (d) 
permuted dataset with corrected neighbor relation. 

Fig. 9. Distribution recovery method for refining the permuted occurrence rates of feature A: (a) a permuted dataset containing shifted instances of A and B; (b) sub- 
regions for relocation; (c) relocated instances for shifting and (d) a dataset containing recovered instances. 
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Consider the dataset in Fig. 6 as an example. First, 99 Monte Carlo 
permutations are generated for each feature using the distribution shift 
method. The first candidate for significance test is the pattern that 
contains all the features, pattern {A, B, C, D, E}. That pattern is found to 
be insignificant (p-value = .96) and rejected. At the next level, two 
candidate patterns {A, B} and {C, D, E} are identified using the dis
tribution bisection method. Both {A, B} and {C, D, E} are further re
ported as SSCDPs at the significance level of 0.05 because p-value({A, 
B}) = 0.01 and p-value({C, D, E}) = 0.03. 

4.4.2. Computational complexity analysis 
The distribution shift in Step 1 does not need to iteratively modify 

the parameters of the point-process model or locations of points in the 
permutation. It generates each permutation at once. Thus, the cost for 
generating N permuted datasets of K spatial features can be simplified 
to O(N ∙ K). The cost of Step 2 is mainly due to the construction of 
neighbor relation R between instances of all the features in both the 
observed and permuted datasets for estimating the test statistic, which 
requires O(N ∙ M ∙ logM) time. Here, M is the total number of instances of 
all spatial features. Then, for each l-size insignificant pattern in CPn, 
Step 3 requires O(r ∙ l2) time to obtain two sub-patterns, where r is the 
number of iterations in the swapping phase to find two optimal 

representative features. In Step 4, the neighbor relation R does not need 
to be rebuilt. Thus, this step only requires O(N ∙ X) time, where X is the 
number of candidates in CPn+1. Assuming that the mean size of the 
candidates is L and the mean number of iterations for splitting a can
didate pattern is R , then the proposed method has a time complexity of 
approximately + +O N M logM O K R L O N K( ) ( ) ( )2 in the worst 
case, i.e., when all the identified candidates are evaluated using the 
significance test. 

5. Experimental evaluation and case study 

5.1. Experimental evaluation using synthetic datasets 

In the experimental evaluation, our aim was to answer the following 
four questions:  

Q1: How well does our method capture the similarity between spatial 
distributions of different features compared to the state-of-the art 
methods?  

Q2: Does our method outperform other methods in the effectiveness of 
modeling the null hypothesis of independence?  

Q3: How do different choices of input parameters affect the 
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performance of our method?  
Q4: How does the performance of our method vary with the size of the 

input dataset? 

To answer these questions, we compared our Co-Distribution dis
covery method using distribution Shift and Correction (denoted by 
CDSC) with the Co-Location pattern discovery method using Model 
Fitting (denoted by CLMF) (Barua & Sander, 2014) because of their 
similar purposes to identify statistically significant spatial associations 
among multiple features. In addition, to determine the independent 

improvements on the test statistic and null model, we also tested a 
variant of the CLMF method (denoted by CDMF) using our dissimilarity 
index as the test statistic to discover Co-Distribution patterns. For all 
the methods, the significance level was set to 0.05 following the 

Fig. 10. Generation of a predefined SSCDP.  

Table 2 
Parameters used to generate the synthetic SSCDPs.       

Parameter Definition Pattern1 Pattern2 Pattern3  

nparent The number of parents 4 3 2 
nchild The average number of children around each parent 50 65 100 
σchild

i The standard deviation to generate children around ith parent [5, 5, 5, 5] [6, 8, 10] [6, 10] 
ngrandchild The number of grandchildren around each child 3 3 3 
rgrandchild The radius to generate grandchildren around each child 2 2 2 
ninstance

j The number of instances of jth feature around each child [1,2,3] [1,2,3] [1, 2, 3] 
nnoise

j The number of noise instances added for jth feature [50, 50, 50] [50, 50, 50] [50, 50, 50] 

Table 3 
Description of different features in the synthetic dataset.     

Feature ID Description Instance number of each feature  

[1, 2, 3] Co-distributed with each other [250, 450, 650] 
[4, 5, 6] Co-distributed with each other [245, 440, 635] 
[7, 8, 9] Co-distributed with each other [250, 450, 650] 
[10,11,12] Randomly distributed [300,300,300] 

Fig. 11. Distributions of representative features in the synthetic dataset: (a) feature 1; (b) feature 4; (c) feature 7 and (d) feature 10.  

Fig. 12. Precision, recall and false positive rate of different methods on the 
synthetic dataset. 
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convention in statistics, and the number of Monte Carlo permutations 
was set to 5/α − 1 = 99 according to Besag and Diggle (1977). 

5.1.1. Experimental setup 
The SSCDPs in the synthetic dataset were predefined using the 

generator, as shown in Fig. 10. The first two steps set the main dis
tribution of features for each SSCDP. Here, the child sets in different 
clusters follow a bivariate normal distribution with different standard 
deviation σchild

i. Then, the instances of ngrandchild spatial features are 
designed to be co-distributed at a distance of 2rgrandchild. Finally, nnoise

j 

noise instances are also included for each feature. 
Using the generator, we obtained three predefined SSCDPs: {1,2,3}, 

{4, 5, 6} and {7, 8, 9}. Tables 2 and 3 summarize the generation 

parameters and statistical information of these patterns, respectively.  
Fig. 11 presents the spatial distributions of one representative feature 
included in each SSCDP. In addition, three randomly distributed fea
tures with 300 instances, i.e., features 10, 11 and 12, were also inserted 
into the synthetic dataset to interfere with the identification of mean
ingful patterns. 

The algorithm performance was evaluated based on the precision, 
recall and false positive rate (FPR) of results. These measures were 
computed as: 

=
+

precision TP
TP FP (7)  

Fig. 13. Examples of co-location and co-distribution patterns detected from the synthetic dataset: (a) co-location and co-distribution; (b) not co-location and not co- 
distribution and (c) co-location but not co-distribution. 

Fig. 14. Precision, recall and false positive rate of our method varied with different factors: (a) distance threshold; (b) number of features and (c) number of 
instances. 

Table 4 
Overview and explanation of the public health dataset in central Colorado.      

ID Feature type Definition Instance number  

1 Asthma Highest quintile of percent of adults who currently have asthma 136 
2 BingeDrink Highest quintile of percent of adults who are binge drinking 135 
3 DelayedMC Highest quintile of percent of adults who delayed medical care because of cost 130 
4 Diabetes Highest quintile of percent of adults ever diagnosed with diabetes 128 
5 HeartDisease Highest quintile of percent of adults ever diagnosed with heart disease 121 
6 HeavyDrink Highest quintile of percent of adults who are heavy drinking 129 
7 MentalDistress Highest quintile of percent of adults with frequent mental distress 136 
8 NoCheckUp Highest quintile of percent of adults with no routine medical checkup 137 
9 NoPhysAct Highest quintile of percent of adults that did not report doing physical activity 122 
10 Obese Highest quintile of percent of adults who are obese (BMI ≥ 30) 130 
11 Overweight Highest quintile of percent of adults who are overweight or obese (BMI ≥ 25) 134 
12 PhysDistress Highest quintile of percent of adults with frequent physical distress 124 
13 PoorHealth Highest quintile of percent of adults with fair or poor health status 125 
14 Smoking Highest quintile of percent of adults who currently smoke cigarettes 138 

BMI: Body Mass Index is a person's weight in kilograms divided by the square of height in meters.  
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Fig. 15. Distributions of public health dataset: (a) Asthma; (b) BingeDrink; (c) DelayedMC; (d) Diabetes; (e) HeartDisease; (f) HeavyDrink; (g) MentalDistress; (h) 
NoCheckUp; (i) NoPhysAct; (j) Obese; (k) Overweight; (l) PhysDistress; (m) PoorHealth and (n) Smoking. 
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=
+

recall TP
TP FN (8)  

=
+

FPR FP
FP TN (9) 

where, ∣TP∣, ∣FP∣, ∣FN∣ and ∣TN∣ are the number of true positives, false 
positives, false negatives and true negatives, respectively, compared 
with the ground truth. For the CLMF and CDMF methods, the ground 
truth was all subsets of patterns {1, 2, 3}, {4, 5, 6} and {7, 8, 9}. For our 
CDSC method, we wanted to know if all the clustering structures of 
features were correctly identified. Thus, the ground truth is the pairs of 
features in the same predefined clusters of features. TP and FP are pairs 
of features that are correctly and incorrectly assigned to the same 
cluster, respectively. FN and TN are pairs of features that are incorrectly 
and correctly assigned to different clusters, respectively. 

5.1.2. Comparative analysis 
5.1.2.1. Performance on capturing the distribution similarity (Q1). To see 
the performance of different methods on capturing the distribution 
similarity, we compared the results obtained by CLMF and our modified 
CDMF method, which use the participation index and dissimilarity 
index as the test statistic, respectively. As shown in Fig. 12, both 
methods identify all the predefined SSCDPs as co-location patterns or 
co-distribution patterns with recall of 1 (e.g., pattern {1,2} in  
Fig. 13(a)). Both methods also do a good job of ignoring the 
interference from random features (e.g., pattern {1,10} in Fig. 13(b)). 
However, CLMF outputs many other spurious co-distribution patterns 
as co-location patterns (e.g., pattern {1, 4} in Fig. 13(c)). This is due to 
the high overlaps of included features. In comparison, by using the 
dissimilarity index, our modified CDMF method can distinguish the 
spatial distributions of these features with much higher precision of 
85.7% and lower FPR of 0.05%. 

5.1.2.2. Performance on modeling the null hypothesis (Q2). To investigate 
the effect of different null models on the discovered patterns, we show 
the evaluation results of CDMF and our CDSC method, which model the 
null hypothesis using model fitting and distribution shift-correction 
method, respectively. As can be seen in Fig. 12, our CDSC method can 
correctly and completely discover all predefined SSCDPs. By contrast, 
the CDMF method still reports some incorrect patterns. This might be 
due to the effect of model fitting errors. In addition, the predefined 
Matérn cluster process model assumes that the points are randomly 

distributed in each cluster, which is not consistent with the distribution 
characteristics of the observed dataset. 

5.1.3. Sensitivity analysis 
We also evaluated the robustness and scalability of our CDSC 

method by assessing the impact of distance threshold r, number of 
features K, and number of instances M on the precision, recall and FPR. 
To illustrate the independent effect, each factor was tested by keeping 
the other two the same as the default settings used in the above section, 
where r = 4, K = 12, and M = 4920. 

5.1.3.1. Effect of the distance threshold (Q3). As shown in Fig. 14(a), our 
method performs worse in terms of precision, recall and FPR if a 
somewhat low or high distance threshold is used. This is because a 
lower or higher distance threshold cannot accurately capture the 
interactions between features that exist at a predefined scale 
(distance = 4). 

5.1.3.2. Effect of the number of features (Q4). As we can see from  
Fig. 14(b), both the precision and recall of our method remain 1, and 
the FPR remains 0 on the datasets consisting of different numbers of 
features. This is because the correct clustering structure of features can 
always be effectively identified, and further validated by the 
significance test. 

5.1.3.3. Effect of the number of instances (Q4). Similarly, as shown in  
Fig. 14(c), our method can always detect the complete and correct 
clusters of features with no false positives even with an increasing 
number of total instances in the dataset. This can be done because the 
co-distribution relations are also predefined among the instances added 
for each feature in a SSCDP. 

5.2. Case study on a public health dataset 

We validated the applicability of the proposed method using a case 
study aimed at identifying co-morbidities in central Colorado, USA. Co- 
morbidity, which is the presence of one or more additional disorders co- 
occurring with a primary condition, is widespread among patients and 
has important implications for treatment (Valderas, Starfield, Sibbald, 
Salisbury, & Roland, 2009). The discovery of co-morbidities can facil
itate the understanding of interactions between illnesses and risk fac
tors, which can, in turn, enhance the prevention of the occurrence of 
diseases and disorders. 

5.2.1. Data description 
The public health dataset was provided by the Colorado Department 

of Public Health and Environment. The original dataset contains sam
ples for the prevalence of 14 important health conditions and risk be
havior indicators in Colorado from 2013 to 2016. For each health in
dicator, all the samples in Colorado were divided into five groups based 
on the prevalence. Table 4 summarizes the 14 spatial features used in 

Table 5 
SSCDPs detected from the public health dataset.      

Pattern size SSCDPs DI p-value  

2 {BingeDrink, HeavyDrink} 7.7×10−3 0.01 
3 {DelayedMC, NoPhysAct, PoorHealth} 6.9×10−3 0.01 
6 {Diabetes, MentalDistress, Obese, Overweight, 

PhysDistress, Smoking} 
9.9×10−3 0.01 

Fig. 16. Null distributions of DI values of SSCDPs in the public health dataset: (a) {BingeDrink, HeavyDrink}; (b) {DelayedMC, NoPhysAct, PoorHealth} and (c) 
{Diabetes, MentalDistress, Obese, Overweight, PhysDistress, Smoking}. 
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this study, which were defined as the health indicators with prevalence 
in the highest quintile of the state. The study area was located in the 
central area of Colorado, where the sampling density is much higher 
than elsewhere. Fig. 15 presents the spatial distribution of each feature. 

5.2.2. Results analysis 
To define the neighbor relation in the public health dataset, we set 

the distance threshold to 3000 m, which is an appropriate scale ac
cording to the modified L function (Yoo & Bow, 2012). Table 5 sum
marizes the results detected by our method, including three SSCDPs 
formed by two, three, and six spatial features, respectively. Fig. 16 
shows the probability distributions of the DI values of these three 
SSCDPs under the null hypothesis. As can be seen, for each SSCDP, the 
DI values under the null hypothesis are generally larger than the ob
served value. Thus, the spatial distributions of features included in each 
reported pattern are significantly similar to each other. 

Next, we compared our results with those of an analysis by the 
Colorado Department of Public Health (Williford & White, 2017). The 
department analyzed the correlation between smoking and other health 
indicators in Colorado using the Spearman correlation coefficient 
(Spearman, 1904) and found that smoking is most correlated with 
mental distress, then with no physical activity during leisure time, and 
finally with obesity. This conclusion is similar to our detected pattern 
{Diabetes, MentalDistress, Obese, Overweight, PhysDistress, Smoking}), 
except for the indicators Diabetes and PhysDistress. The reasons for the 
differences are twofold: (1) Our study only focused on the central area 
of Colorado with dense samplings. Additional socioeconomic (e.g., 
household income) and environmental (e.g., water pollution) factors 
need to be included to explore the regional differences in co-morbid
ities; (2) the spatial relationships among instances of features were not 
considered in the Spearman correlation coefficient, which may have led 
to underestimation of correlations between different features. 

We also involved domain experts and scientific findings in public 
health to help verify and explain the results. Smoking is the leading 
preventable cause of death and disease. Studies have confirmed that 
adults with mental illness or substance use disorders are more likely to 
smoke cigarettes than adults without these disorders. The 2014 Surgeon 
General's Report has found that smoking is linked to abdominal obesity 
or belly fat, and is also related to increased risks of inflammation, 
oxidative stress and cortisol, which can, in turn, cause diabetes 
(USDHHS, 2014). The evidence has also shown that smokers with 
diabetes have higher risks of serious complications related to physical 
distress (e.g., peripheral neuropathy that can cause numbness, pain, 
weakness, and poor coordination) (CDC, 2018). Our detected spatial co- 
distribution pattern {Diabetes, MentalDistress, Obese, Overweight, Phys
Distress, Smoking} is consistent with these findings. 

The detected SSCDPs can provide useful insights into the multi
faceted health service needs of patients to treat and prevent co-mor
bidities; addressing one morbidity may help to address others. For ex
ample, the pattern {DelayedMC, NoPhysAct, PoorHealth} signifies that 
routine medical care and frequent physical exercise can help improve 
health status. The pattern {Diabetes, MentalDistress, Obese, Overweight, 
PhysDistress, Smoking} implies that better control of cigarette smoking 
can contribute to the management and prevention of its associated 
conditions, such as diabetes, obesity, as well as mental and physical 
distress. 

6. Conclusion and future work 

This paper formally defines a novel problem of discovering SSCDPs. 

This problem is different from the state-of-the-art research on spatial 
co-location pattern discovery, which associates features based on the 
prevalence of different features occurring together. In contrast, SSCDPs 
can provide a novel perspective for understanding spatial association by 
capturing the similarity of spatial distributions of different features 
under the spatial neighbor relation. SSCDP discovery is vital to many 
real-world applications, such as detecting comorbid diseases in medi
cine and identifying symbiotic species in ecology. 

To effectively solve the SSCDP discovery problem, we first propose a 
distribution clustering method to extract the candidates and then de
velop a distribution shift-correction method to establish the statistical 
significance of the results. The null hypothesis underlying the test can 
be modeled without any a priori assumptions about the distribution 
model or characteristics of the features. Experiments validate the 
greater effectiveness of the proposed method over baseline methods, 
and a case study using a public health dataset shows that it can detect 
patterns that are of interest to domain experts that other method miss. 

In future work, three issues will be considered. First, in this study, 
the distribution shift-correction method assumes that the observation 
window of a dataset is a rectangular region, so that the instances of 
features can be shifted on the periodic torus. Modified methods ap
plicable for irregularly shaped observation windows need to be further 
studied. Second, the distribution shift-correction method maintains the 
observed interpoint distances exactly, with no stochastic variability. 
Future work will be devoted to producing local stochastic replicates of 
instances conditioning on the same statistical properties of each feature. 
Third, the rapidly growing sources of data pose novel computational 
and analytical challenges for SSCDP discovery. Parallel formulations 
are required to explore the emerging realities of big data (Prasad et al., 
2017). 
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Appendix A. Spatial auto-correlation structure recovered from permuted datasets 

Consider K-function K(r), which is one of the most common second-order statistics for characterizing the spatial auto-correlation structure, as an 
example. Fig. A1 shows the K(r) curves of both observed dataset and 99 permuted datasets of feature A in Fig. 6. One can find that the permuted K(r) 
curves calculated based on corrected spatial neighbor relation can exactly fit the observed curve. 
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Fig. A1. K-function calculated for the observed dataset and 99 permuted datasets of feature A.  
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