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ARTICLE INFO ABSTRACT

Given instances (spatial points) of different spatial features (categories), significant spatial co-distribution pat-
tern discovery aims to find subsets of spatial features whose spatial distributions are statistically significantly
similar to each other. Discovering significant spatial co-distribution patterns is important for many application
domains such as identifying spatial associations between diseases and risk factors in spatial epidemiology.
Previous methods mostly associated spatial features whose instances are frequently located together; however,
this does not necessarily indicate a similarity in the spatial distributions between different features. Thus, this
paper defines the significant spatial co-distribution pattern discovery problem and subsequently develops a novel
method to solve it effectively. First, we propose a new measure, dissimilarity index, to quantify the difference
between spatial distributions of different features under the spatial neighbor relation and then employ it in a
distribution clustering method to detect candidate spatial co-distribution patterns. To further remove spurious
patterns that occur accidentally, the validity of each candidate spatial co-distribution pattern is verified through
a significance test under the null hypothesis that spatial distributions of different features are independent of
each other. To model the null hypothesis, a distribution shift-correction method is presented by randomizing the
relationships between different features and maintaining spatial structure of each feature (e.g., spatial auto-
correlation). Comparisons with baseline methods using synthetic datasets demonstrate the effectiveness of the
proposed method. A case study identifying co-morbidities in central Colorado is also presented to illustrate the
real-world applicability of the proposed method.
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1. Introduction

Given instances (spatial points) of different spatial features (cate-
gories), the discovery of significant spatial co-distribution patterns
(SSCDPs) aims to find subsets of features whose instances show statis-
tically significant similarity in terms of spatial distribution. SSCDP
discovery can facilitate the understanding of spatial associations among
different features, and further help domain scientists to predict the
spatial distributions of features that are otherwise difficult to obtain.
For example, in spatial epidemiology, the distribution of a disease is
linked to the spatial distribution of its sources or risk factors that con-
tribute to its transmission or development (Elliott & Wartenberg, 2004),
thus enabling the formation of a SSCDP between a disease and its
sources or factors, e.g., {Lyme Disease, Infected Host-Seeking Ixodes sca-
pularis Nymphs} in the Eastern United States (Pepin et al., 2012). Such a
spatial pattern can contribute to the generation of a reliable disease risk
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map, which can be used as a guide to geographically prioritize pre-
vention efforts (Diuk-Wasser et al., 2006). SSCDP discovery is also
important in diverse applications, such as ecology, e.g., identifying the
parasitic relationship between emerald ash borers and ash trees (Xie,
Bao, Shekhar, & Knight, 2018), and criminology, e.g., detecting the
trigger events associated with risks of criminal activities (Cai et al.,
2019).

Most previous work has focused on discovering spatial co-location
patterns represented by subsets of features whose instances are fre-
quently located together in space (Shekhar & Huang, 2001). However,
although different features spatially occur together with high pre-
valence, their spatial distributions may still vary significantly. Thus,
this paper formally defines the SSCDP discovery problem to provide a
novel perspective for analyzing the spatial association between fea-
tures. Specifically, we want to know which spatial features often occur
in close spatial proximity and also have similar spatial distributions. To
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effectively solve this problem, we propose a distribution clustering
method combined with the significance test. The proposed method can
effectively discover SSCDPs without assumptions about the distribution
models or characteristics of features.

The rest of this paper is organized as follows. Section 2 reviews the
related work and proposes a new strategy. Section 3 introduces the
basic concepts and formulates the problem of SSCDP discovery. Section
4 describes and analyzes the SSCDP discovery method in detail. In
Section 5, we present the experimental evaluation and a case study on a
public health dataset. Section 6 concludes the paper and outlines future
work.

2. Related work and a new strategy
2.1. Spatial co-location pattern discovery

Our work is closely related to the previous work on spatial co-lo-
cation pattern discovery, which aims to find subsets of features whose
instances are frequently co-located in close spatial proximity (Shekhar
& Huang, 2001). Existing methods can be broadly categorized into
three classes, namely, clustering-based, frequent-pattern-based, and
statistics-based methods.

Clustering-based methods can be further divided into layer-clus-
tering and feature-clustering methods. Layer-clustering methods
(Estivill-Castro & Lee, 2001; Estivill-Castrol & Murray, 1998) first detect
the cluster regions of instances in the layer of each feature, and then
find co-location patterns based on the overlapping areas of cluster re-
gions from all the layers. This strategy can only work well if the in-
stances of each spatial feature tend to cluster in space. A feature-clus-
tering method (Huang & Zhang, 2006), by contrast, treats each spatial
feature as a clustering object, and then clusters features to represent co-
location patterns. However, the similarity measure, namely density
ratio, can only capture the pairwise dependence between two features.
Additionally, it is difficult to determine appropriate clustering para-
meter(s), e.g., a meaningful stopping criterion for hierarchical clus-
tering methods.

Frequent-pattern-based methods extend the pruning strategies used
in classic association rule mining methods, e.g., Apriori method
(Agrawal & Srikant, 1994), to detect the subsets of spatial features that
frequently occur together. However, these classic methods cannot be
directly applied to spatial datasets because transactions do not naturally
exist in continuous geographic space (Huang, Shekhar, & Xiong, 2004;
Yoo & Shekhar, 2006). For this reason, an event-centric model (Shekhar
& Huang, 2001) is commonly used to build neighbor graphs among
instances of different features. Subsequently, a participation index
evaluates the prevalence of different features occurring in neighbor-
hoods. A co-location pattern is identified as prevalent if its participation
index value is not smaller than a given threshold. In practice, such
prevalent co-location patterns may happen by chance, which may result
in false positives or negatives regarding the association between fea-
tures.

Statistics-based methods interpret a co-location pattern as a de-
pendence among various types of spatial point processes, and determine
the statistical significance through testing under the null hypothesis of
independence. One of the key requirements of the test is maintaining
the univariate spatial structure of each feature (Dixon, 2002). This can
be done using either parametric or nonparametric methods. Parametric
methods use the realizations of the fitted point-process model as a null
model, such as the homogenous Poisson process used in the cross K-
function (Ripley, 1976) and the Matérn cluster process used in Barua
and Sander (2014). This strategy works well only if the underlying
distribution is appropriately fit by the presumptive distribution model.
An alternative solution is the nonparametric strategy used by Deng, He,
Liu, Cai, and Tang (2017) and Cai et al. (2019), where stochastic per-
mutations are generated by closely approximating several predefined
statistical characteristics of the observed dataset. However, suitable
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distribution characteristics of features still need to be carefully selected
in advance. In addition, due to the non-monotonic property of statistical
significance, a brute-force test on all the candidate patterns is usually
required, which will result in expensive computational costs.

2.2. Critical analysis of existing methods

Previous methods commonly measure the prevalence of co-location
patterns by comparing local instance number (or density) of a feature
co-located with others with its global number (or density) in the study
area (see Table 1), and then associate different spatial features if their
co-location prevalence is high enough. However, different features can
frequently occur together even if their spatial distributions are sig-
nificantly different, which may lead to misjudgments of the spatial
association. Fig. 1 presents four motivating examples to illustrate the
necessity of spatial distributions for understanding the association be-
tween different features.

Example 1. In Fig. 1(a), both the spatial locations and distributions of
features A and B are clearly different from each other.
Pattern {A, B} is neither a co-location pattern nor a co-
distribution pattern.

Example 2. In Fig. 1(b), all the instances of features A and B occur in
neighboring spatial locations, and their spatial distribu-
tions are quite consistent. Pattern {A, B} is both a co-lo-
cation pattern and a co-distribution pattern.

Example 3. In Fig. 1(c), although the instances of features A and B are
always located together, they have distinctive local den-
sities. Pattern {A, B} is a co-location pattern, but not a co-
distribution pattern.

Example 4. In Fig. 1(d), the locations of features A and B are in close
spatial proximity; however, their spatial distributions are
different in the central area. Pattern {A, B} is a co-location
pattern, but not a co-distribution pattern.

Existing co-location pattern discovery methods can perform well in
Examples 1 and 2; however, they may wrongly associate features in
Examples 3 and 4 if the spatial distributions are not considered.

Some measures in mathematical statistics, such as the Kullback-
Leibler (KL) divergence (Kullback & Leibler, 1951) and the Jensen-
Shannon (JS) divergence (Lin, 1991), can be incorporated into the
discovery model to reduce the effect of the above limitation. However,
these measures require users to assume the form of distributions be-
forehand or perform estimations based on independent and identically
distributed samples. Such requirements are not ideal in geographic
domains because of the spatial dependencies that exist among sample
points. For example, to apply the KL divergence on the spatial features
shown in Fig. 2(a), it is common to partition the study area into a set of
grid cells (Sengstock, Gertz, & Van Canh, 2012) (see Fig. 2(b)). Sub-
sequently, the distribution difference can be described by the difference
between the probabilities of the two features, P4(c;) and Pz(c;), in each
grid cell ¢;. In this example, the KL divergence between A and B is
computed as %;—12*P(c;) -1og (Pa(c)/Ps(c)) = 50," which indicates
that the distributions of A and B are quite different. However, the in-
stances of the two features are always located with similar distributions
in close spatial proximity. This conflicting result is caused by the
missing spatial relationships broken by the boundaries of space parti-
tioning (Xie et al., 2017). In contrast, the proposed dissimilarity index
can correctly capture the identity of these two distributions under the
spatial relationship among instances (see Fig. 2(c)). A more detailed
description of this index is presented in Section 3.1.

L Each P(c) is smoothed by (P(c;) +¢)/(1+¢C) so that P(c)) > O for any c;
where ¢ is a tiny value and C is the number of grid cells.
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Table 1

Comparison of measures for co-location and co-distribution patterns.
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Pattern

Measure

Definition

Co-location

Co-distribution

Cross K-function (Ripley, 1976)
Participation index (Shekhar & Huang, 2001)
Density ratio (Huang & Zhang, 2006)

Dissimilarity index (This work)

average instance number of f; co — located withfj

instance number of f; in unit area

. instance number of f; co —located with others
total number of instances of f; in the study area

average instance density of f; co — located with f]

instance density of f; in the study area
Average difference in the probabilities of f; and other features occurring around baseline locations
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Fig. 1. Examples to distinguish co-location and co-distribution patterns: (a) example 1: not co-location and not co-distribution; (b) example 2: co-location and co-
distribution; (c) example 3: co-location but not co-distribution and (d) example 4: co-location but not co-distribution.
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Fig. 2. Illustration of different strategies for measuring distribution similarity: (a) a spatial dataset with instances of two features; (b) space partitioning for applying
KL divergence to spatial dataset and (c) neighbor graphs to handle the spatial relationship among instances.

2.3. Novel strategy for discovering SSCDPs

(1) Generation of candidate patterns: First, we define a new measure,
namely a dissimilarity index, to measure the difference in the spa-

Motivated by the above observations, we formally define a novel tial distributions of different features. To achieve an informative
problem of SSCDP discovery and propose a hybrid strategy which and nonredundant representation of co-distributed features, the
combines both clustering- and statistics-based strategies to solve this candidate SSCDPs are represented by clusters of features, and a
problem. To provide a more rigorous cognition for spatial association distribution clustering method is proposed to generate candidate
between features, a more interesting question is whether specific sub- SSCDPs, where the dissimilarity index is used as the similarity
sets of spatial features tend to have similar spatial distributions. More measure between features.
specifically, co-distributed features should not only occur in close (2) Determination of significant patterns: To further remove spurious
spatial proximity with high prevalence but also with similar distribu- patterns that happen by chance, the evaluation of SSCDPs is mod-

tions (probabilities).

eled as a significance test problem under the null hypothesis that

Based on this cognition, the proposed strategy can be described as spatial distributions of different features are independent of each

follows:

other. To construct the null hypothesis, we develop a distribution
shift-correction method that can randomize the relationships
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Fig. 3. Framework of the proposed strategy for discovering SSCDPs.

between different features (spatial cross-correlation), while main-
taining the spatial structure of each feature (spatial auto-correla-
tion).

Fig. 3 presents the framework of the proposed strategy. In the fol-
lowing section, we initially introduce the key concepts, and then for-
mally define the SSCDP discovery problem.

3. Problem formulation
3.1. Basic concepts

A spatial feature refers to the conceptual abstraction of a set of
spatial points of the same category. An instance of a spatial feature
refers to a spatial point labeled with that feature category. The proxi-
mity relationship among different features is modeled using a spatial
neighbor relation (Shekhar & Huang, 2001) in which the distance in
space is restricted by a distance threshold (see Fig. 4). An instance of a
feature f; is considered to occur around a location ; if this instance is a
spatial neighbor to I, Here a location I; belongs to a set of baseline
locations where the spatial features could occur. The baseline locations
can be specified with some reference points (e.g., centers of artificial
grids or census units). However, the user-specified baseline locations
may break the spatial neighbor relation among instances of different
features around adjacent baseline locations. Thus, in this study, the
baseline locations of a feature correspond to the locations that host all
instances of that feature, and the baseline locations of a candidate
SSCDP are the collection of baseline locations of all the component
features. A spatial co-distribution pattern (SCDP) is generally a subset

of spatial features whose instances not only frequently occur around the
same baseline locations, but also have similar distributions (prob-
abilities) around these locations.

It is essential to select an appropriate neighbor distance threshold to
ensure meaningful SCDPs. In practice, without prior knowledge pro-
vided by domain experts, the spatial auto-correlation of the input da-
taset can serve as guidelines for the neighborhood determination (Yoo
& Bow, 2012). It is suggested to set the neighbor distance threshold as
one distance where spatial processes greatly promote clustering mea-
sured by a modified L function dealing with multi-type points, that is, a
distance that shows large positive deviation between observed L func-
tion value and expected value under complete spatial randomness. Al-
ternatively, the spatial neighbor relation can be defined using mutual k-
nearest-neighbor graph, topological proximity criterion (Nilsson &
Smirnov, 2017) and so on. The mutual k-nearest-neighbor graph con-
nects two instances of different features if they are k-nearest neighbors
of different categories to each other (see Fig. 5(a)). The topological
proximity criterion considers an instance of feature f; to be located re-
latively close to an instance of feature f; if that instance is located within
the relative attraction areas of f;. The relative attraction areas are
constructed by connecting all midpoints between each instance of f; and
the vertexes of the Thiessen polygon around that instance (see
Fig. 5(b)). This criterion is a good option in cases where there is a very
uneven spatial distribution of points.

3.2. Quantifying the difference in spatial distributions

To compare the spatial distributions among included features in a
SCDP, the spatial distribution of each spatial feature is modeled by the

Fig. 4. Illustrative spatial co-distribution pattern {A, B}.
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Fig. 5. Alternative definitions of the spatial neighbor relation: (a) mutual k-nearest-neighbor graph with k of 2 and (b) relative attraction areas.

rate it occurs in close spatial proximity to each baseline location of the
SCDP. The dissimilarity among spatial distributions of different features
in the SCDP is then measured by the difference in the occurrence rate of
features around all baseline locations. These terms are formally defined
as follows:

Definition 1. The occurrence rate OR(f,l) of a feature f; around a
baseline location [; is the probability of finding an instance of f; in close
spatial proximity to [; under the spatial neighbor relation R. Formally,
OR(f;, 1)) can be written as

b))l
LGOI €Y}

where [I(f;, ;)| is the number of instances of f; occurring around [;, and |I
(f)| is the number of all instances of f; in the entire study area.

OR(f. 1)) =

Definition 2. For a baseline location [;, the local distribution difference
LDD(SCDP,f;,l)) between a feature f; and all features in a
SCDP = {f1,f5,--,fx} is defined as the difference between the
occurrence rate of f; and the mean occurrence rate of all k features in
the SCDP, represented as

k uE
LDD(SCDP, £, lj) = OR(f,, L) — Z=1 %000,
f,ESCDP 2)

Definition 3. The distribution difference DD(SCDP,f;) between a
feature f; and other features in a SCDP is defined as the quadratic
mean of LDD(SCDP,f; 1)) over all the baseline locations of the SCDP,
L = {l;,15,--+,1,}, computed as

[y )P
DD(SCDP,f) = V‘—ZJ’I{LDD(SCD” o

n

el 3)

Definition 4. The dissimilarity index DI(SCDP) of a
SCDP = {f1,fs,:-,fx} is defined as the mean distribution difference
between one feature and all features in the SCDP, formally written as

> DD(SCDP,f)

DI(SCDP) = -

, f; € SCDP )

The dissimilarity index of a SCDP is always nonnegative, and a
smaller dissimilarity index value indicates more similar spatial dis-
tributions among different features. The value is zero only if all the
features included in the SCDP have the same occurrence rates around
all the baseline locations (see Fig. 2(c)).

Consider the illustrative dataset in Fig. 4. There are two different
spatial features, A and B, which have seven and six instances, respec-
tively. Given a distance threshold, the spatial neighbor relation R over
this dataset is represented by the lines connecting the instances of A and
B. The baseline locations of pattern {A, B} are the locations of these 13

instances. For the baseline location [;, the occurrence rates of feature A,
OR(A,l), and feature B, OR(B,1l;), are 2/7 and 1/6, respectively. The
mean occurrence rate of the features in pattern {A, B} at ;is (2/7 + 1/
6)/2 = 0.23. Thus, the local distribution difference between features in
{A, B} atl;, i.e., LDD({A, B}, A, ;) and LDD({A, B}, B, l;), can be computed
as 2/7—-0.23 = 0.06 and 1/6—0.23 = —0.06, respectively. After tra-
versing all the baseline locations of {A, B}, we obtain distribution dif-
ferences LDD({A,B},A) and LDD({A,B},B), both of which are 0.066.
Thus, the dissimilarity index of {A, B}, DI({A,B}) is (0.066, 0.066)/
2 = 0.066.

3.3. Significance test preliminaries

Although the dissimilarity index (DI) proposed in Section 3.2 can
measure the degree of difference between multivariate spatial dis-
tributions, it does not necessarily indicate positive or negative inter-
actions among different features. In practice, SCDPs decided with a DI
value threshold may associate absolutely independent features while
ignoring strong dependencies. To remove such spurious patterns and
enhance the statistical interpretability, the significance of a SCDP is
validated through a statistical test under the null hypothesis of in-
dependence, which is described as follows.

Definition 5. To test the significance of a SCDP = {f,f5, -+, fx}, the null
hypothesis of independence (H,) states that the univariate spatial
distribution of each feature f; is independent of the other features in
the SCDP.

Furthermore, the test statistic for this test is the measure DI.
However, it is analytically intractable to determine the theoretical
distribution of DI under Hy. Therefore, a more practical alternative is to
estimate the empirical distribution of DI using Monte Carlo permuta-
tions. What is of interest in this significance test is the relationship
among different spatial features and not the univariate spatial structure
of each feature (Wiegand & Moloney, 2013). Thus, the permutations of
the observed dataset generated under Hy should satisfy the following
two properties (Dixon, 2002): (1) the potential interactions among
different features must be broken, and (2) the observed spatial structure
of each feature (e.g., spatial auto-correlation) should be maintained.
Once a sufficient number of such permutations are generated, a p-value
is used to assess whether a SCDP deviates from Hy, and a significant
spatial co-distribution pattern can be formally defined.

Definition 6. Given a large number N of permutations under H, the p-
value of a SCDP, p — value(SCDP), is defined as the probability of
finding a DI value from permutations DI,,"”H(SCDP) smaller than or
equal to the observed DI value DI°’(SCDP), computed as

| DI2U(SCDP) < DI°bS(SCDP) | +1
N+1 ’
n=1,2,---,N 5)

p — value(SCDP) =
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Definition 7. Given a threshold a of a p-value (known as a significance
level and conventionally specified as 0.05 or 0.01), the null hypothesis
of independence is rejected and a SCDP is defined as a significant
spatial co-distribution pattern (SSCDP) if its p-value is not greater than
a.

3.4. Formal problem statement

Given a large number of spatial features, the number of reported
SSCDPs is typically too large and unmanageable for humans to inter-
pret, and the patterns usually contain many redundant descriptions of
the correlations between features. Thus, in this study, the desired
SSCDPs are represented by clusters of features to achieve an in-
formative and nonredundant representation of the pattern collection as
a whole. Based on this consideration, the SSCDP discovery problem is
formally defined as follows:

Given: (1) A collection of spatial features and their instances; (2) a
distance threshold r for defining the spatial neighbor relation R; and (3)
a significance level a;

Find: SSCDPs represented by clusters of spatial features with p-va-
lues =aq;

Objective: Effectively establish the statistical significance of
SSCDPs with fewer assumptions;

Constraints: The underlying spatial distribution of each feature is a
priori unknown.

Fig. 6 provides an illustration of SSCDP discovery. Given a dataset
containing instances of five features, a neighbor relation defined based
on a distance threshold and a significance level of 0.05, two clusters of
features, {A, B} and {C, D, E}, are reported as SSCDPs because they
have qualifying p-values of 0.01 and 0.03, respectively.

4. SSCDP discovery method

We now describe the three main components of the SSCDP dis-
covery method: (1) generation of candidate SSCDPs, (2) construction of
the null hypothesis of independence, and (3) statistical significance test.

4.1. Distribution clustering method for generating candidate SSCDPs

Given K types of spatial features, the number of all possible co-
distribution patterns is exponentially related to K. If K is small, it may
be computationally feasible to perform brute-force evaluation on all
possible patterns; otherwise, it is more practical to prioritize the most
promising candidates whose component features share the most similar
spatial distributions. For example, in Fig. 6(a), compared with other
features, the spatial distribution of feature A is more similar to that of
feature B. Pattern {A, B} may then be a promising SSCDP candidate.
Thus, we model the generation of candidate SSCDPs as a special clus-
tering problem for hierarchically grouping spatial features, where the

® 4
A
A [ o/ W B
A C
o
TR ZO | N
« As ¢ E

(a)
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similarity measure is defined based on the similarity between spatial
distributions of features.

Specifically, the proposed distribution clustering method identifies
clusters of spatial features in a divisive (i.e., top-down) manner. The
reasons are twofold: First, the top-level clustering decisions made by
divisive methods are based on more global properties, thus producing
more accurate hierarchies than agglomerative (i.e., bottom-up)
methods, which rely on local properties from the bottom level (Guha,
Rastogi, & Shim, 2000; Steinbach, Karypis, & Kumar, 2000). Second, a
top-down search allows us to stop the clustering process without
searching for smaller-size patterns (i.e., clusters at lower levels), if the
larger-size patterns (i.e., clusters at higher levels) are guaranteed to be
significant. This is because larger-size patterns can provide a more in-
formative description than smaller patterns regarding the co-distribu-
tions of features.

The distribution clustering method can be regarded as a recursive
application of partitioning clustering at multiple levels. The method
starts at the topmost level with all spatial features in one cluster.
Subsequently, each feature cluster FC at the ith level is identified as a
candidate SSCDP whose validity will be verified using the significance
test presented in the following sections. If FC is insignificant, we im-
plement a distribution bisection method to split the FC into two sub-
clusters as follows:

(1) Initial the first representative feature rf; as the one which has the
smallest sum of the dissimilarity index (DI) values to all other fea-
tures in FC. Taking the dataset in Fig. 6 for example, feature C will
be selected as the initial rf;.

(2) Tentatively choose each unselected feature as the second re-
presentative feature rf,. For any other non-representative feature
nf;, assign it to its most similar representative feature rf; (j = 1 or 2)
if DI({nf;, rf;}) is smaller than the DI value between nf; and another
representative feature. Measure the quality of the clustering result
with the total DI value (TDI) of two feature sub-clusters, FSC; and
FSC,, represented as:

TDI = DI (FSC,) + DI(FSC,) 6)

Then, determine the initial rf, as the one that brings the smallest TDI
value. As shown in Fig. 7, after testing all the unselected features (i.e.,
A, B, D and E), feature A or B will be selected as the initial rf, because
both of them can produce the best clustering quality.

(3) Swap each non-representative feature, nf;, tentatively with the re-
presentative feature rf; (j = 1 or 2) to which it is assigned and re-
assign rf; and other non-representative features to their most similar
new representative features. Record the TDI value after the re-
assignment using each nf;.

(4) Finally, check whether the clustering result can be improved, i.e.,
whether the current TDI value can be reduced. If so, carry out the

. 4, B}
L 2
we "] DI o0.066
® .- L4
w® p-value| 0.01
g {C, D, E}
A
DI 0.068
” A *a
¥ <X p-value| 0.03

(b)

Fig. 6. Illustration of the SSCDP discovery problem: (a) input: a simulated dataset and (b) output: two clusters of features: {A, B} and {C, D, E}.
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Fig. 7. Initialization of the second representative feature: (a) testing feature A; (b) testing feature B; (c) testing feature D and (d) testing feature E.

reassignment using the feature nf; which reduces the current TDI
value the most, and return to Step 3; otherwise, terminate the
clustering process, and output the two sub-clusters FSC; and FSC,.

The distribution bisection method is repeatedly implemented on
each insignificant feature cluster to find the most promising candidate
SSCDPs at the next level unless only one or two spatial features are
contained in that cluster. In this study, significant feature clusters will
not be further split because we want to find the most informative and
nonredundant set of patterns that can statistically explain the spatial
correlations between features. If users are interested in more local in-
formation, the distribution bisection method can also be implemented
on significant feature clusters to identify lower-level clusters with fewer
features.

4.2. Distribution shift-correction method for modeling the null hypothesis of
independence

Modeling the null hypothesis of independence is the premise for the
development of our significance test on candidate SSCDPs. The key here
is to generate permutations of the observed dataset that satisfy the two
properties described in Section 3.3 (i.e., the randomization of re-
lationships between different features and the maintenance of the
spatial structure of each feature). It is straightforward to fulfill the first
property by repositioning the instances of each feature regardless of the
others. To ensure the second property, predefined point-process models
or statistical properties are usually required. A simple alternative is to
entirely shift all the points by considering the study area as a torus
(Lotwick & Silverman, 1982); however, this may produce some artifi-
cial structures at the edges. To overcome these limitations, we propose
a distribution shift-correction method.

For each spatial feature f;, the distribution shift-correction method
generates permutations in three major phases: (1) shifting, (2) reloca-
tion and (3) correction, described as follows:

(1) Shifting. In the shifting phase, all the instances I(f;) of f; are shifted as
a whole across the study area S = [0,X] x [0, Y] by adding a fixed
random vector (dx, dy) to each location of I(f;) (Fig. 8(b)).

(2) Relocation. The relocation phase aims to relocate the instances of f;
that are shifted outside the study area S by following the rules of
toroidal geometry. This is achieved by subtracting a value of X from
the x-coordinates of instances lying within the right area of S (see
regions R, and R, in Fig. 8(b)), and subtracting a value of Y from
the y- coordinates of instances lying within the upper area of S (see

regions R3 and R, in Fig. 8(b)).

(3) Correction. This phase is to correct the univariate spatial structures
of each feature under the null hypothesis because they are not of
interest in the test of dependence among different features. In
spatial statistics, univariate spatial structures are quantified with
summary statistics (e.g., K-function (Ripley, 1976)) by summarizing
the statistical properties of each feature. The spatial neighbor re-
lation is the basis of these summary statistics. So, the real focus here
is on the correction of artificial spatial neighbor relation produced
by the first two phases, including missing neighbor relation or
emerging neighbor relation.

e Missing structures lie close to the edges of S and are artificially
split apart in the shifted and relocated dataset (e.g., the neighbor
relation represented by dotted lines in Fig. 8(b)). Such structures
will cause underestimation of the local statistical properties of f;.
Thus, the spatial structures near the edges need to be corrected
based on the fixed neighborhoods (see yellow regions in
Fig. 8(d)).

e Emerging structures occur near the borders between shifted and
relocated regions (e.g., the neighbor relation represented by the
black line in Fig. 8(c)). Such structures will lead to over-
estimation of the local statistical properties of f. Thus, the
neighbor relation in these emerging artifacts needs to be broken
to refine the statistical properties of f; (see the green regions in
Fig. 8(d)).

It should be noted that the distribution shift-correction method does
not directly generate permutations that have the same spatial structure
as the observation; rather, it allows the structure to be recovered from
the permutations through structure correction (see Appendix A for
details). In the following section, we explain the role played by the
recovered spatial structure of each feature in the estimation of dis-
tribution similarity between different features under the null hypoth-
esis.

4.3. Statistical significance test for identifying SSCDPs

To test the statistical significance of each candidate SSCDP, we need
to determine the null distribution of the test statistic (i.e., the prob-
ability distribution of the dissimilarity index (DI) when the null hy-
pothesis is true). To provide a good estimator for the null distribution, a
sufficient number of permuted datasets, each of which contains in-
stances of different features, are generated using the distribution shift-
correction method described above. The null distribution is then
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Fig. 8. Generation of a permutation based on the distribution shift-correction method: (a) observed dataset; (b) shifted dataset; (c) relocated dataset and (d)

permuted dataset with corrected neighbor relation.

estimated by evaluating the DI values in these permuted datasets.
However, the artificial structures of each feature in the permuted da-
tasets will also cause significant bias in the estimator of permuted DI
values. In light of this, we implement a distribution recovery method to
recover the observed spatial structure of each feature in the estimator of
permuted DI values.

For a candidate pattern CP = {fy,fs,-,fi} in a permuted dataset
that is embedded in the study area S = [0,X] X [0, Y], the distribution
recovery method first corrects the permuted occurrence rates (OR) of
each included feature f; around the baseline locations of CP (i.e., the
locations of permuted instances of all features included in CP) in two
cases:

e For the permuted baseline locations L’ of f;, the permuted OR(f, )
(I, €L is directly replicated from that around the corresponding
location in the observed dataset.

o For the permuted baseline locations L° of other features in CP, L° are
relocated to the context of the observed instances of f;, and the
permuted OR(f;,1,) (I, €L°) is corrected by estimating the OR value
of observed f; around the corresponding location in the relocated L°.
The relocation of L° is a reverse process of the generation of per-
muted instances of f;. This is achieved by adding a value of X to the
x-coordinates of locations whose x-coordinates lie within [0, dx]
(see locations in regions R, and Ry in Fig. 9(b)), adding a value of Y
to the y-coordinates of locations whose y-coordinates lie within [0,
dy] (see locations within regions R3 and R4 in Fig. 9(b)), and then
entirely shifting L° according to the vector (—dx, —dy) (Fig. 9(c)),
where (dx, dy) is the random vector used for generating permuta-
tions of f;.

Subsequently, the DI value of CP in the permuted dataset is refined
using the corrected OR values of all included features. For example,
Fig. 9(a) shows a permuted dataset containing shifted instances of
features A and B and Fig. 9(d) presents the dataset containing recovered
instances of A and B according to vector (dx, dy) for shifting observed
instances of A. The permuted OR values of A are corrected with the OR

values of A computed at the corresponding recovered locations in the
dataset shown in Fig. 9(d). Similarly, the permuted OR values of B can
be corrected by applying the distribution recovery method according to
the vector (dx’, dy’) for shifting observed instances of B. The permuted
DI value of {A, B} can be further refined by considering the observed
spatial structures of A and B.

After obtaining the permuted DI values of CP in a sufficient number
of permuted datasets, the statistical significance of CP is determined
according to the p-value in Eq. (5). In practice, to further accelerate the
computation, some unnecessary evaluations of permuted DI values can
be terminated early if the permuted DI(CP), which is not higher than
the observed DI(CP), has already been found in so many permuted
datasets that the significance level a cannot be met.

4.4. Implementation and analysis of the SSCDP discovery method

4.4.1. Algorithm description
As shown in Algorithm 1, the proposed method identifies SSCDPs
using the following steps:

Step 1: Generate N permuted datasets that conform to the null hy-
pothesis using the distribution shift-correction method in-
troduced in Section 4.2 (line 1).

Step 2: Identify the pattern formed by all spatial features {f, fa, ..., fx}
as the candidate CP; at the first level and test the statistical
significance of that pattern as described in Section 4.3 (lines
2-3).

Step 3: If any insignificant pattern containing more than two features is
identified from CP,, at the nth level, generate the candidate CP,,
+1 at the next level using the distribution bisection method
introduced in Section 4.1 (line 5); otherwise, terminate the al-
gorithm and output all the significant patterns (line 14).

Step 4: Test the statistical significance of candidates in CP, 4 (line 6).
Assign n + 1 to n and return to Step 3 to check whether the
algorithm needs to continue.

" Ry R,
« ° =" ¢ o o =" ¢ o " *le  ° ) .
RZ ° Rl . ¢ [ hd
o W ° s . L] R1 R2 R .
u ¢ u o ¢ = ¢ u u ° o o 4
g dv{ R, | ™ m R, (-dx, -dy) ¢ - E |ms
=
dx

(a) (b)

(c) (d)

Fig. 9. Distribution recovery method for refining the permuted occurrence rates of feature A: (a) a permuted dataset containing shifted instances of A and B; (b) sub-
regions for relocation; (c) relocated instances for shifting and (d) a dataset containing recovered instances.
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Algorithm 1. SSCDP discovery

Input:

(a) An observed dataset OD containing instances of K spatial features f1, £, ..., fx;

(b) A distance threshold » for defining the spatial neighbor relation R;

(c) Asignificance level a.
Output:

SSCDPs represented by clusters of features with p-values < a

Variables:
n: the level of clustering;

PDy: permuted datasets, each of which contains permutations of K features;

CP,: set of candidate patterns at the nth level of clustering;

SP,: set of significant patterns at the nth level of clustering.

IP,: set of insignificant patterns at the nth level of clustering

Method:

1. Generate PD; using the distribution shift-correction method,;

while (isempty(/P,) = FALSE) do

for each pattern ¢ in /P,+1 do
if size(c) < 2 then

9. Delete ¢ from IP,+1;

10. end if

11.  end for

12. n=n+1;

13. end while

14. Return union(SP1, ..

el A o o

., SP,).

n=1; CP1=({fi, f2, ..., fx}); // Initialization
Identify SP; and IP; using the significance test;

Generate CP,+ from /P, using the distribution bisection method;
Identify SP,+i and IP,+ using the significance test;

Consider the dataset in Fig. 6 as an example. First, 99 Monte Carlo
permutations are generated for each feature using the distribution shift
method. The first candidate for significance test is the pattern that
contains all the features, pattern {A, B, C, D, E}. That pattern is found to
be insignificant (p-value = .96) and rejected. At the next level, two
candidate patterns {A, B} and {C, D, E} are identified using the dis-
tribution bisection method. Both {A, B} and {C, D, E} are further re-
ported as SSCDPs at the significance level of 0.05 because p-value({A,
B}) = 0.01 and p-value({C, D, E}) = 0.03.

4.4.2. Computational complexity analysis

The distribution shift in Step 1 does not need to iteratively modify
the parameters of the point-process model or locations of points in the
permutation. It generates each permutation at once. Thus, the cost for
generating N permuted datasets of K spatial features can be simplified
to O(N-K). The cost of Step 2 is mainly due to the construction of
neighbor relation R between instances of all the features in both the
observed and permuted datasets for estimating the test statistic, which
requires O(N - M - logM) time. Here, M is the total number of instances of
all spatial features. Then, for each Il-size insignificant pattern in CP,,
Step 3 requires O(r- [?) time to obtain two sub-patterns, where r is the
number of iterations in the swapping phase to find two optimal

representative features. In Step 4, the neighbor relation R does not need
to be rebuilt. Thus, this step only requires O(N - X) time, where X is the
number of candidates in CP, ;. Assuming that the mean size of the
candidates is L and the mean number of iterations for splitting a can-
didate pattern is R, then the proposed method has a time complexity of
approximately O(NeM+logM) + O(K+R+L?) + O(N+K) in the worst
case, i.e., when all the identified candidates are evaluated using the
significance test.

5. Experimental evaluation and case study
5.1. Experimental evaluation using synthetic datasets

In the experimental evaluation, our aim was to answer the following
four questions:

Q1: How well does our method capture the similarity between spatial
distributions of different features compared to the state-of-the art
methods?

Q2: Does our method outperform other methods in the effectiveness of
modeling the null hypothesis of independence?

Q3: How do different choices of input parameters affect the
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Fig. 10. Generation of a predefined SSCDP.

Table 2
Parameters used to generate the synthetic SSCDPs.
Parameter Definition Patternl Pattern2 Pattern3
Tparent The number of parents 4 3 2
Achild The average number of children around each parent 50 65 100
Ochild The standard deviation to generate children around ith parent [5, 5, 5, 5] [6, 8, 10] [6, 10]
TNgrandchitd The number of grandchildren around each child 3 3 3
Tgrandchild The radius to generate grandchildren around each child 2 2 2
Ninstancd The number of instances of jth feature around each child [1,2,3] [1,2,3] [1, 2, 3]
Tpoisé The number of noise instances added for jth feature [50, 50, 50] [50, 50, 50] [50, 50, 50]
Table 3 _ 100 115
Description of different features in the synthetic dataset. = \’?
-’ 3
= 80 =
Feature ID Description Instance number of each feature = &
13} 11 =
D
[1,2,3] Co-distributed with each other [250, 450, 650] & 60 f
[4, 5, 6] Co-distributed with each other [245, 440, 635] 'g >
[7, 8, 9] Co-distributed with each other [250, 450, 650] < 40+ E
[10,11,12] Randomly distributed [300,300,300] g 105 £
= .
o= 2
§ 20 =
performance of our method? = 0 — " =
Q4: How does the performance of our method vary with the size of the Precision Recall FPR

input dataset?

To answer these questions, we compared our Co-Distribution dis-
covery method using distribution Shift and Correction (denoted by
CDSC) with the Co-Location pattern discovery method using Model
Fitting (denoted by CLMF) (Barua & Sander, 2014) because of their
similar purposes to identify statistically significant spatial associations
among multiple features. In addition, to determine the independent
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Fig. 12. Precision, recall and false positive rate of different methods on the
synthetic dataset.

improvements on the test statistic and null model, we also tested a
variant of the CLMF method (denoted by CDMF) using our dissimilarity
index as the test statistic to discover Co-Distribution patterns. For all
the methods, the significance level was set to 0.05 following the
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>~ 50| <. = 50
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0 s 0
0 25 50 75 100
X

(d)

Fig. 11. Distributions of representative features in the synthetic dataset: (a) feature 1; (b) feature 4; (c) feature 7 and (d) feature 10.
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Fig. 13. Examples of co-location and co-distribution patterns detected from the synthetic dataset: (a) co-location and co-distribution; (b) not co-location and not co-

distribution and (c) co-location but not co-distribution.

(©

?100 _ QIOOA—A—‘—A—A6A ?100 a 2 & 6’.\
= 90+ & = 90 2 = 9 8
b s 8 143 8 43
& - 5 .
T 80 z T 80 z T 80 =z
s g & g S g
g £ £ 28 £ 2 £
=z 70/ . =z 70; A z 70 & |—=—Precision
§ E § E é E —A Recall
= 60 ~ Ge——e—eo—o——0 40 o o . o I >FPR
1 4 7 10 13 10 12 14 16 18 4920 6360 7800 9240 10680
Distance Threshold Total Number of Features Total Number of Instances

(a) (b)

(c)

Fig. 14. Precision, recall and false positive rate of our method varied with different factors: (a) distance threshold; (b) number of features and (c) number of

instances.

Table 4
Overview and explanation of the public health dataset in central Colorado.

D Feature type Definition Instance number
1 Asthma Highest quintile of percent of adults who currently have asthma 136
2 BingeDrink Highest quintile of percent of adults who are binge drinking 135
3 DelayedMC Highest quintile of percent of adults who delayed medical care because of cost 130
4 Diabetes Highest quintile of percent of adults ever diagnosed with diabetes 128
5 HeartDisease Highest quintile of percent of adults ever diagnosed with heart disease 121
6 HeavyDrink Highest quintile of percent of adults who are heavy drinking 129
7 MentalDistress Highest quintile of percent of adults with frequent mental distress 136
8 NoCheckUp Highest quintile of percent of adults with no routine medical checkup 137
9 NoPhysAct Highest quintile of percent of adults that did not report doing physical activity 122
10 Obese Highest quintile of percent of adults who are obese (BMI = 30) 130
11 Overweight Highest quintile of percent of adults who are overweight or obese (BMI = 25) 134
12 PhysDistress Highest quintile of percent of adults with frequent physical distress 124
13 PoorHealth Highest quintile of percent of adults with fair or poor health status 125
14 Smoking Highest quintile of percent of adults who currently smoke cigarettes 138

BMI: Body Mass Index is a person's weight in kilograms divided by the square of height in meters.

convention in statistics, and the number of Monte Carlo permutations
was set to 5/a — 1 = 99 according to Besag and Diggle (1977).

5.1.1. Experimental setup

The SSCDPs in the synthetic dataset were predefined using the
generator, as shown in Fig. 10. The first two steps set the main dis-
tribution of features for each SSCDP. Here, the child sets in different
clusters follow a bivariate normal distribution with different standard
deviation o4 Then, the instances of TNgrandchila Spatial features are
designed to be co-distributed at a distance of 2rg4nachaa. Finally, Mnoisé
noise instances are also included for each feature.

Using the generator, we obtained three predefined SSCDPs: {1,2,3},
{4, 5, 6} and {7, 8, 9}. Tables 2 and 3 summarize the generation

11

parameters and statistical information of these patterns, respectively.
Fig. 11 presents the spatial distributions of one representative feature
included in each SSCDP. In addition, three randomly distributed fea-
tures with 300 instances, i.e., features 10, 11 and 12, were also inserted
into the synthetic dataset to interfere with the identification of mean-
ingful patterns.

The algorithm performance was evaluated based on the precision,
recall and false positive rate (FPR) of results. These measures were
computed as:

|TP|

precision = —————
|TP] + |FP|

@)
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Fig. 15. Distributions of public health dataset: (a) Asthma; (b) BingeDrink; (c) DelayedMC; (d) Diabetes; (e) HeartDisease; (f) HeavyDrink; (g) MentalDistress; (h)
NoCheckUp; (i) NoPhysAct; (j) Obese; (k) Overweight; (1) PhysDistress; (m) PoorHealth and (n) Smoking.
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Table 5
SSCDPs detected from the public health dataset.
Pattern size  SSCDPs DI p-value
2 {BingeDrink, HeavyDrink} 7.7x107%  0.01
3 {DelayedMC, NoPhysAct, PoorHealth} 6.9x107%  0.01
6 {Diabetes, MentalDistress, Obese, Overweight, 9.9x107% 0.01
PhysDistress, Smoking}
TP
recall = I
|TP| + |EN| (€)]
_ |FP|
|FP| + |TN| (C)]

where, |TP|, |FP|, |FN| and |TN| are the number of true positives, false
positives, false negatives and true negatives, respectively, compared
with the ground truth. For the CLMF and CDMF methods, the ground
truth was all subsets of patterns {1, 2, 3}, {4, 5, 6} and {7, 8, 9}. For our
CDSC method, we wanted to know if all the clustering structures of
features were correctly identified. Thus, the ground truth is the pairs of
features in the same predefined clusters of features. TP and FP are pairs
of features that are correctly and incorrectly assigned to the same
cluster, respectively. FN and TN are pairs of features that are incorrectly
and correctly assigned to different clusters, respectively.

5.1.2. Comparative analysis

5.1.2.1. Performance on capturing the distribution similarity (Q1). To see
the performance of different methods on capturing the distribution
similarity, we compared the results obtained by CLMF and our modified
CDMF method, which use the participation index and dissimilarity
index as the test statistic, respectively. As shown in Fig. 12, both
methods identify all the predefined SSCDPs as co-location patterns or
co-distribution patterns with recall of 1 (e.g., pattern {1,2} in
Fig. 13(a)). Both methods also do a good job of ignoring the
interference from random features (e.g., pattern {1,10} in Fig. 13(b)).
However, CLMF outputs many other spurious co-distribution patterns
as co-location patterns (e.g., pattern {1, 4} in Fig. 13(c)). This is due to
the high overlaps of included features. In comparison, by using the
dissimilarity index, our modified CDMF method can distinguish the
spatial distributions of these features with much higher precision of
85.7% and lower FPR of 0.05%.

5.1.2.2. Performance on modeling the null hypothesis (Q2). To investigate
the effect of different null models on the discovered patterns, we show
the evaluation results of CDMF and our CDSC method, which model the
null hypothesis using model fitting and distribution shift-correction
method, respectively. As can be seen in Fig. 12, our CDSC method can
correctly and completely discover all predefined SSCDPs. By contrast,
the CDMF method still reports some incorrect patterns. This might be
due to the effect of model fitting errors. In addition, the predefined
Matérn cluster process model assumes that the points are randomly
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distributed in each cluster, which is not consistent with the distribution
characteristics of the observed dataset.

5.1.3. Sensitivity analysis

We also evaluated the robustness and scalability of our CDSC
method by assessing the impact of distance threshold r, number of
features K, and number of instances M on the precision, recall and FPR.
To illustrate the independent effect, each factor was tested by keeping
the other two the same as the default settings used in the above section,
where r = 4, K = 12, and M = 4920.

5.1.3.1. Effect of the distance threshold (Q3). As shown in Fig. 14(a), our
method performs worse in terms of precision, recall and FPR if a
somewhat low or high distance threshold is used. This is because a
lower or higher distance threshold cannot accurately capture the
interactions between features that exist at a predefined scale
(distance = 4).

5.1.3.2. Effect of the number of features (Q4). As we can see from
Fig. 14(b), both the precision and recall of our method remain 1, and
the FPR remains O on the datasets consisting of different numbers of
features. This is because the correct clustering structure of features can
always be effectively identified, and further validated by the
significance test.

5.1.3.3. Effect of the number of instances (Q4). Similarly, as shown in
Fig. 14(c), our method can always detect the complete and correct
clusters of features with no false positives even with an increasing
number of total instances in the dataset. This can be done because the
co-distribution relations are also predefined among the instances added
for each feature in a SSCDP.

5.2. Case study on a public health dataset

We validated the applicability of the proposed method using a case
study aimed at identifying co-morbidities in central Colorado, USA. Co-
morbidity, which is the presence of one or more additional disorders co-
occurring with a primary condition, is widespread among patients and
has important implications for treatment (Valderas, Starfield, Sibbald,
Salisbury, & Roland, 2009). The discovery of co-morbidities can facil-
itate the understanding of interactions between illnesses and risk fac-
tors, which can, in turn, enhance the prevention of the occurrence of
diseases and disorders.

5.2.1. Data description

The public health dataset was provided by the Colorado Department
of Public Health and Environment. The original dataset contains sam-
ples for the prevalence of 14 important health conditions and risk be-
havior indicators in Colorado from 2013 to 2016. For each health in-
dicator, all the samples in Colorado were divided into five groups based
on the prevalence. Table 4 summarizes the 14 spatial features used in
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Fig. 16. Null distributions of DI values of SSCDPs in the public health dataset: (a) {BingeDrink, HeavyDrink}; (b) {DelayedMC, NoPhysAct, PoorHealth} and (c)

{Diabetes, MentalDistress, Obese, Overweight, PhysDistress, Smoking}.
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this study, which were defined as the health indicators with prevalence
in the highest quintile of the state. The study area was located in the
central area of Colorado, where the sampling density is much higher
than elsewhere. Fig. 15 presents the spatial distribution of each feature.

5.2.2. Results analysis

To define the neighbor relation in the public health dataset, we set
the distance threshold to 3000 m, which is an appropriate scale ac-
cording to the modified L function (Yoo & Bow, 2012). Table 5 sum-
marizes the results detected by our method, including three SSCDPs
formed by two, three, and six spatial features, respectively. Fig. 16
shows the probability distributions of the DI values of these three
SSCDPs under the null hypothesis. As can be seen, for each SSCDP, the
DI values under the null hypothesis are generally larger than the ob-
served value. Thus, the spatial distributions of features included in each
reported pattern are significantly similar to each other.

Next, we compared our results with those of an analysis by the
Colorado Department of Public Health (Williford & White, 2017). The
department analyzed the correlation between smoking and other health
indicators in Colorado using the Spearman correlation coefficient
(Spearman, 1904) and found that smoking is most correlated with
mental distress, then with no physical activity during leisure time, and
finally with obesity. This conclusion is similar to our detected pattern
{Diabetes, MentalDistress, Obese, Overweight, PhysDistress, Smoking}),
except for the indicators Diabetes and PhysDistress. The reasons for the
differences are twofold: (1) Our study only focused on the central area
of Colorado with dense samplings. Additional socioeconomic (e.g.,
household income) and environmental (e.g., water pollution) factors
need to be included to explore the regional differences in co-morbid-
ities; (2) the spatial relationships among instances of features were not
considered in the Spearman correlation coefficient, which may have led
to underestimation of correlations between different features.

We also involved domain experts and scientific findings in public
health to help verify and explain the results. Smoking is the leading
preventable cause of death and disease. Studies have confirmed that
adults with mental illness or substance use disorders are more likely to
smoke cigarettes than adults without these disorders. The 2014 Surgeon
General's Report has found that smoking is linked to abdominal obesity
or belly fat, and is also related to increased risks of inflammation,
oxidative stress and cortisol, which can, in turn, cause diabetes
(USDHHS, 2014). The evidence has also shown that smokers with
diabetes have higher risks of serious complications related to physical
distress (e.g., peripheral neuropathy that can cause numbness, pain,
weakness, and poor coordination) (CDC, 2018). Our detected spatial co-
distribution pattern {Diabetes, MentalDistress, Obese, Overweight, Phys-
Distress, Smoking} is consistent with these findings.

The detected SSCDPs can provide useful insights into the multi-
faceted health service needs of patients to treat and prevent co-mor-
bidities; addressing one morbidity may help to address others. For ex-
ample, the pattern {DelayedMC, NoPhysAct, PoorHealth} signifies that
routine medical care and frequent physical exercise can help improve
health status. The pattern {Diabetes, MentalDistress, Obese, Overweight,
PhysDistress, Smoking} implies that better control of cigarette smoking
can contribute to the management and prevention of its associated
conditions, such as diabetes, obesity, as well as mental and physical
distress.

6. Conclusion and future work

This paper formally defines a novel problem of discovering SSCDPs.
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This problem is different from the state-of-the-art research on spatial
co-location pattern discovery, which associates features based on the
prevalence of different features occurring together. In contrast, SSCDPs
can provide a novel perspective for understanding spatial association by
capturing the similarity of spatial distributions of different features
under the spatial neighbor relation. SSCDP discovery is vital to many
real-world applications, such as detecting comorbid diseases in medi-
cine and identifying symbiotic species in ecology.

To effectively solve the SSCDP discovery problem, we first propose a
distribution clustering method to extract the candidates and then de-
velop a distribution shift-correction method to establish the statistical
significance of the results. The null hypothesis underlying the test can
be modeled without any a priori assumptions about the distribution
model or characteristics of the features. Experiments validate the
greater effectiveness of the proposed method over baseline methods,
and a case study using a public health dataset shows that it can detect
patterns that are of interest to domain experts that other method miss.

In future work, three issues will be considered. First, in this study,
the distribution shift-correction method assumes that the observation
window of a dataset is a rectangular region, so that the instances of
features can be shifted on the periodic torus. Modified methods ap-
plicable for irregularly shaped observation windows need to be further
studied. Second, the distribution shift-correction method maintains the
observed interpoint distances exactly, with no stochastic variability.
Future work will be devoted to producing local stochastic replicates of
instances conditioning on the same statistical properties of each feature.
Third, the rapidly growing sources of data pose novel computational
and analytical challenges for SSCDP discovery. Parallel formulations
are required to explore the emerging realities of big data (Prasad et al.,
2017).
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Appendix A. Spatial auto-correlation structure recovered from permuted datasets

Consider K-function K(r), which is one of the most common second-order statistics for characterizing the spatial auto-correlation structure, as an
example. Fig. A1 shows the K(r) curves of both observed dataset and 99 permuted datasets of feature A in Fig. 6. One can find that the permuted K(r)
curves calculated based on corrected spatial neighbor relation can exactly fit the observed curve.
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Fig. Al. K-function calculated for the observed dataset and 99 permuted datasets of feature A.
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