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A B S T R A C T   

Silicon-based anode materials enable the development of commercial lithium-ion batteries (LIBs) with higher 
gravimetric energy densities than are currently available. However, the inherently low electronic and ionic 
conductivity as well as large volume expansion upon lithiation of Si hinder their use in practical applications. 
Here we report a cation-disordered CuSi2P3 material, synthesized using high-energy ball milling, that shows 
improved stability, larger capacity, and higher ionic and electronic conductivity than pure Si. When used as an 
anode for LIBs, CuSi2P3 demonstrates a high reversible capacity of 2069 mA h g−1 with an initial Coulombic 
efficiency of 91% and a suitable working potential of 0.5 V (vs. Li+/Li). Further, after a two-step ball milling of 
CuSi2P3 with graphite, a yolk-shell structured carbon-coated CuSi2P3@graphene nanocomposite is formed that 
shows enhanced long-term cycling stability (1394 mA h g−1 after 1500 cycles at 2 A g−1; 1804 mA h g−1 after 
500 cycles at 200 mA g−1) and rate capability (530 mA h g−1 at 50 A g−1), surpassing those for other Cu-Si, Cu-P, 
and Si-P compounds or single-component Si- and P-based composites. When coupled with a LiNi0.5Co0.2Mn0.3O2 
(NCM) cathode in a full cell, the NCM//CuSi2P3 @graphene battery exhibits a high capacity of 140 mA h g−1 

after 200 cycles, demonstrating the potential of CuSi2P3 anodes for the next-generation high-performance LIBs.   

1. Introduction 

Lithium-ion batteries (LIBs) of high gravimetric and volumetric en
ergy and power densities are urgently needed for portable electronics 
and electric vehicles. In order to further expand into other markets, such 
as stationary energy storage of renewables and larger vehicles beyond 
cars, batteries must be made with higher gravimetric energy densities 
than are currently available. Silicon is one of the most promising anode 
materials to improve the gravimetric energy density of the next gener
ation of LIBs [1–5]. While Si is inexpensive and offers a theoretical ca
pacity of 4200 mA h g−1, the low electronic and ionic conductivity as 
well as large volumetric change upon lithation (>300%) significantly 
hampers the practical applications of silicon anodes. To address the 
volume change, many efforts have been devoted to designing various 
nanostructures [6]. Among them, the yolk-shell structured sili
con@carbon nanocomposite can effectively buffer the volume expan
sion while enhancing the electron transfer kinetics by offering a 
conductive pathway [7–12]. To obtain even higher electronic 

conductivity and stability, MXenes or graphene can be used to form Si 
binary or ternary nanocomposites [13]. Recently, Yin et al. synthesized a 
MXene-Si composite that showed higher rate capability than pure Si or 
MXene electrodes [14,15]. 

In addition to using nanocomposites, elemental doping and atomic 
substitution can be used to alter the inherent electronic and ionic con
ductivity and mechanical properties of Si anodes [16–19]. Typically, 
elements like B, Al, N, P, and S are used as dopants to enhance electronic 
or ionic conductivity [20–22]. However, only limited enhancement can 
be achieved with low doping level (<2%). Si1−xGex (0 < x < 1) solid 
solutions offer improved performance [23–26] but are limited by the 
high cost of Ge. 

To enhance the electronic and ionic conductivity and lower the 
volume change during lithiation, the current work combines Si with Cu 
and P to form the ternary compound CuSi2P3 using high-energy ball 
milling. The material has a cation-disordered cubic ZnS crystal structure, 
as determined from XRD refinement, and should have metallic behavior 
(no bandgap), according to DOS calculations. When used as an anode for 
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LIBs, the material delivers a high reversible capacity of 2069 mA h g−1 

with a suitable working potential of 0.5 V and an initial Coulombic ef
ficiency up to 91%. Ex-situ XRD and HRTEM along with SAED, Raman 
and XPS analyses confirm that CuSi2P3 experiences a reversible two- 
stage Li-storage mechanism with both intercalation and conversion re
actions. When combined with graphite in a two-step ball milling process, 
a yolk-shell structured carbon coated CuSi2P3@graphene nano
composite is formed that demonstrates a suitable cycling stability (1394 
mA h g−1 after 1500 cycles at 2 A g−1 and 1804 mA h g−1 after 500 cycles 
at 200 mA g−1); and rate capability (530 mA h g−1 at 50 A g−1), that 
surpasses the performances of most related binary and single- 
component anodes reported previously. A full cell consisting of 
LiNi0.5Co0.2Mn0.3O2 cathode and CuSi2P3@C anode maintain a revers
ible capacity of 140 mA h g−1 after 200 cycles, implying that the 
CuSi2P3@C is a promising anode for high-performance LIBs. 

2. Experimental section 

2.1. Material synthesis 

The raw materials of Cu, Si, and red P powders were used as received. 
To obtain a high impact energy, stainless steel grinding tanks with a 
volume of 500 mL and grinding balls with a diameter of 10 mm were 
used. The mixture of Cu, Si, and red P in a molar ratio of 1:2:3 was added 
into the tanks filled with argon. The mass ratio of raw materials to steel 
balls was 1:25. 3 g powder was ball milled for each run by the planetary 
mono mill (Fritsch Pulverisette-6) at a speed of 300 rpm for 7 h, with a 
duration time of 10 mins and a rest time of 5 mins. To obtain a better 
mechanical alloying, a reverse operation mode (regular reversal of the 
direction of rotation) was adopted. To prepare the yolk-shell structured 
CuSi2P3@graphene nanocomposite, graphite was added into the as- 
prepared CuSi2P3 with a weight ratio of 1:7 (graphite:CuSi2P3) and 
ball milled at 400 rpm for 20 h. Then the as-synthesized carbon-coated 
CuSi2P3 was further mixed with additional graphite in a weight ratio of 
1:8 and milled at 200 rpm for another 30 mins to produce yolk-shell 
structured carbon coated CuSi2P3@graphene nanocomposites. Other 
controlled experiments illustrated in the text were performed in a 
similar method. 

2.2. Material characterization 

The as-synthesized powder samples were characterized by X-ray 
diffraction (XRD, Bruker D8 ADVANCE) using CuKα radiation at a 
scanning speed of 1◦ min−1 and the Confocal Raman spectrometer 
(Raman, WTEC ALPHA300 with a 325 nm excitation laser). The 
morphology and microstructure of the samples were characterized using 
a field-emission scanning electron microscope (FESEM, Hitach SU8220) 
and field-emission transmission electron microscope (TEM, FEI, Thermo 
Talos F200S). The related samples were also characterized by X-ray 
photoelectron spectroscopy (XPS Thermo Fisher Escalab 250Xi using Al 
Kα radiation). 

2.3. Electrochemical characterization 

For the pure phase CuSi2P3, the electrode films were prepared by 
coating the slurry of 70 wt% CuSi2P3, 20 wt% carbon black and 10 wt% 
Li-PAA binder onto the copper foil and dried in vacuum oven at 100 ◦C 
for overnight. For the CuSi2P3@graphene nanocomposite, the electrode 
films were prepared by coating the slurry of 90 wt% CuSi2P3@ few 
layered graphene nanocomposite, and 10 wt% binder onto the copper 
foil without any extra conducting agents. The electrochemical charac
terizations were conducted by utilizing CR2032 coin cells assembled in 
an Ar-filled glovebox (H2O <0.02 ppm, O2 <0.02 ppm, Mbraun, Lab
master 130). Li foils were used as counter and reference electrodes, and 
1 M LiPF6 in ethylene carbonate/diethylene carbonate (EC/DEC, 1 : 1 
vol%) was used as the electrolyte. The loading of the active material on 

the Cu foil is controlled within the range of 1.5–2 mg cm−2. When 
assembling the LiNi0.5Co0.2Mn0.3O2//CuSi2P3@graphene nano
composite battery, anode capacity is about 1.2 times larger than cath
ode. Galvanostatic discharge/charge tests were conducted on a LAND 
battery tester (Wuhan Kingnuo Electronic Co., China) and a testing 
system (Hokuto Denko, HJ1001SD8). The gravimetric specific capacity 
was evaluated based on the mass of reactive materials. Cyclic voltam
metric (CVs) measurements were conducted on an electrochemical 
workstation (Autolab, Pgstat 302 N). The LiNi0.5Co0.2Mn0.3O2 applied in 
full cells is commercially available. 

2.4. Computational details 

The first-principles calculations were carried out by utilizing VASP 
(Vienna Ab-initio Simulation Package) [27,28]. We applied the ex
change correlation functional with generalized gradient approximation 
proposed by Perdew, Burke and Ernzerhof. The core-electrons were held 
frozen by virtue of projector augmented wavefunction, with valence 
electron configuration for Cu 3d104 s1, Si 3 s23p2, and P 3 s23p3. We 
applied the 4×4x4 Monkhorst-Pack reciprocal grid, together with 400 
eV energy cutoff as sufficient energy calculations. We also utilized 
Gaussian smearing with a smearing width of 0.05 eV to accelerate 
computation of the electronic energy near Fermi level. 

3. Results and discussion 

The SixGe1−x solid solutions (0 < x < 1) with a diamond-like crystal 
structure [23–26] have an enhanced Li-storage performance, compared 
with single-component Si or Ge electrodes. Actually, elements with a 
larger range of valences and various ratios can also be combined into the 
similar crystal structure, e.g., AIIBIVC2 

V and AIB2
IVC3

V. Here, we suc
cessfully prepared CuSi2P3 by virtue of a facile and scalable ball milling 
method at ambient temperature and pressure, thus avoiding the con
ventional high-temperature chemical vapor transportation technique 
[29–31]. To study the synthesis process, XRD patterns of the powders 
with increasing ball milling time were collected. Seen in Fig. S1, peaks 
associated with the precursor materials (Cu, Si, and amorphous red P) is 
still seen after 1 h. After 3 h of milling, binary Cu-P phases (e.g., Cu3P 
and CuP2) were formed and Si and amorphous P remained. The for
mation priority of Cu-P intermediate compounds instead of Si-P or Cu-Si 
compounds can be attributed to the superiority in thermodynamic sta
bility of Cu-P compounds. Beyond 7 h of milling, all peaks associated 
with the precursor powders disappeared and the new evolved ones seem 
to be of Si but all shifted to a higher angle, suggesting that a new ternary 
compound was formed with the composition of CuSi2P3. To characterize 
the crystal structure of the newly formed phase, we performed XRD 
refinement of the pattern (Fig. 1a). More crystallographic details are 
provided in Table S1-Table S2. The unit cell can be indexed to a cation- 
disordered cubic ZnS crystal structure, where Cu and Si atoms randomly 
occupy Zn sites in a 1:2 stoichiometric ratio and P replaces the S site. The 
crystal structure is depicted in Fig. 1b. To validate the proposed struc
ture model, selected area electron diffraction (SAED, Fig. 1c) and high- 
resolution TEM (HRTEM, Fig. 1d) were performed. The ring-like 
diffraction pattern is attributed to the cubic ZnS crystal structure. No 
additional rings related to a cation-ordered superstructure were present. 
The observed (220) and (220) crystal planes along the [001] zone axis 
further confirm the cation-disordered cubic ZnS structure. The lack of 
cation ordering is attributed to: 1) the high-temperature, high-pressure, 
and fast cooling rates associated with the high energy mechanical ball 
milling process; 2) the similar atomic radius and electronegativity of Cu 
and Si; 3) the formation of nanoparticles (Fig. 1a) [32,33]. To gain incite 
into local atomic structure, Raman spectroscopy was performed. As seen 
in Fig. 1e, the characteristic Raman spectra of the as-obtained CuSi2P3 is 
different from those of the Si and milled P counterparts. This means that 
the local bonding is different, further providing evidence for the 
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formation of the new phase. In summary, we successfully synthesized 
the cation-disordered Si-like ternary CuSi2P3. The cation-disordered 
structure has a higher symmetry, thus favoring Li+-storage due to the 
reduced bandgap and lower Li-ion diffusion energy barrier and better 
strain accommodation, compared with the cation-ordered one [34–36]. 

Inspired by the cation-disordered Si-like crystal structure and binary 
Li-reactive components of Si and P, we prognosticated that the as- 
obtained CuSi2P3 compound would demonstrate its unique electro
chemical Li-storage behavioral features, compared with the intermedi
ate mixtures obtained during the ball milling process. The milled 
precursors at 1 h and 3 h were used as a performance reference. The 
initial discharge/charge profiles of the materials cycled at a current 
density of 200 mA g−1 are shown in Fig. 2a. It can be seen that pure 
CuSi2P3 has a higher initial Coulombic efficiency (91%) and smaller 
polarization than the intermediate mixtures. The multi-stage plateaus 
associated with the Cu+ 2Si+ 3 P @ 3 h electrode can be attributed to 
the hybridized electrochemical Li-storage features of the mixed phases 
of CuSi2P3, CuP2, Cu3P, and residual raw materials of Si and P, as 
characterized by XRD shown in Fig. S1 [37]. As seen in Fig. 2b, the peaks 
in the cyclic voltammetry scans of the first three cycles of the CuSi2P3 
compound (inset) are consistent with the working potential plateaus 
showed in the initial three discharge/charge profiles (Fig. 2b). During 
the first discharge, there is a reduction peak at 0.22 V (vs. Li+/Li) that 
can be attributed to the initial reaction with Li and minor side reaction 
such as solid electrolyte interphase. During the first charge, three 

oxidation peaks located at 0.46 V, 0.72 V, and 1.15 V are present that 
correspond to the release of Li from Li-Si, Li-P, and LixCuSi2P3, respec
tively. The second cycle shows two reduction peaks at 0.76 V, and 
0.32 V that can be attributed to LixCuSi2P3 and Li-P as well as Li-Si re
actions, respectively. Compared with the initial cycle, the lower over
potential in the subsequent cycles can likely be attributed to defects 
formed during the first discharge/charge process [38,39]. As seen in 
Fig. 2c, CuSi2P3 maintains a capacity of 1950 mA h g−1 at 200 mA g−1 

after 30 cycles, which is higher than that of the ball-milled precursors. In 
the rate performance plot in Fig. 2d, it is seen that the material has a 
notable capacity of 220 mA h g−1 at a current rate of 20 A g−1, much 
better than the intermediate counterparts. The improved rate perfor
mance is likely due to the high electrical conductivity of the compound. 
When pure CuSi2P3 was used as an electrode without addition of any 
carbon additive, the cell still delivered a large capacity (over 
1500 mA h g−1 at 200 mA g−1), high initial Coulombic Efficiency 
(greater than 90%), and suitable working potential of 0.5 V (Fig. S2). 

Electron and Li-ion transport properties are of vital importance to 
electrochemical Li-storage performance for a new electrode material. To 
qualify the electronic conductivity of the cation-disordered CuSi2P3, 
electrochemical impedance spectroscopy (EIS) was performed (Fig. 3a). 
The observed charge transfer resistance (Rct, Fig. 3b) of the cell using 
CuSi2P3 is 84 Ω, which is smaller than that of the cells using ball-milled 
Si (729 Ω), suggesting that CuSi2P3 has much higher electrical conduc
tivity. To explain the origin of electronic conductivity of the as- 

Fig. 1. a) XRD refinement of the as-obtained CuSi2P3 powder; b) schematic cation-disordered crystal structure of CuSi2P3; c) selected area electron diffraction (SAED) 
of the as-obtained CuSi2P3 powder; d) high-resolution transmission electron microscopy (HRTEM) of the as-obtained CuSi2P3 powder; e) Raman spectroscopy of the 
as-obtained CuSi2P3 powder, milled P and Si powder. 
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synthesized CuSi2P3, we assorted to first-principle calculations to pre
dict the electronic structure of the material. The total density of state 
(DOS) of CuSi2P3 is shown in Fig. 3c. Clearly, the material has no 
bandgap (its total DOS crosses the Fermi level), offering evidence for its 
metallic conductivity. This is consistent with the experimental results. 
The metallic conductivity of CuSi2P3 is originated from the co- 
contribution of the p bands of P and Si elements and the d band of Cu 

element as compared in partial density of state of Cu, Si and P elements 
in the cation-disordered CuSi2P3 (Fig. 3c). As a comparison, we have also 
calculated the total DOS of pure Si. Its total DOS value is zero at Fermi 
level, suggesting its semiconductor feature (Fig. 3c, bottom). To qualify 
the Li+ diffusivity of the cation-disordered CuSi2P3, the galvanostatic 
intermittent titration technique (GITT) was used. Li+ diffusion coeffi
cient is obtained on the basis of the following equation[40,41]: 

Fig. 2. a) initial discharge/charge profiles of the as-obtained CuSi2P3 and the intermediate ball milled products; b) initial three discharge/charge profiles and cyclic 
voltammetry curves (the inset) of the as-obtained CuSi2P3; c) cycling stability of the as-obtained CuSi2P3 and the ball milled intermediate products; d) rate per
formance of the as-obtained CuSi2P3. 

Fig. 3. a) electrochemical impedance spectroscopy of the cell with CuSi2P3/Si electrodes; b) the charge transfer resistance (Rct) obtained from the a); c) calculated 
density of state (DOS) of the cation-disordered CuSi2P3 and Si. d,e) Li-ion diffusion coefficients of the cation-disordered CuSi2P3 and Si during discharge and charge; f) 
calculated Li-ion diffusion energy barrier of CuSi2P3 and Si. 
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D =
4
πτ

(
nmVm

A

)2(ΔEs

ΔEτ

)2  

where D denotes Li+ diffusion coefficient (cm2 s−1), τ means duration of 
the current pulse (s), nm stands for the number of moles of active ma
terial (mol), Vm represents molar volume of the electrode (cm3 mol−1), A 
is contact area between electrode and electrolyte (cm2, in this case the 
surface area is the real area of the current collector), ∆Es is the steady- 
state voltage change owing to the current pulse (V), and ∆Eτ corre
sponds to the voltage change during the constant current pulse 
neglecting the IR drop (V). As shown in Fig. 3d, e and Fig. S3, the ob
tained Li-ion diffusion coefficient of the CuSi2P3 at the working potential 
is three to four orders of magnitude larger than that of the ball milled Si. 
According to the DFT calculations, the Li-ion diffusion energy barriers of 
CuSi2P3 are less than 0.55 eV, much smaller than that (1.3 eV) of the ball 
miled Si electrode (Fig. 3f). The theoretical Li-ion diffusion paths used 
for calculations are provided in Fig. S4 and S5. Additionally, the faster 
Li-ion diffusivity can be attributed to the lower elastic modulus, which 
means the softer mechanical property compared with Si counterpart, as 
shown in Fig. S6. 

To investigate the Li-storage mechanism of CuSi2P3, we performed 
ex-situ XRD, XPS, Raman and HRTEM along with SAED measurements. 
Typical discharge and charge profiles of the Li-CuSi2P3 cell with marked 
working potentials for XRD measurements are shown in Fig. 4a. As the 
cell was discharged, the peak intensities significantly decrease, likely 
implying amorphization or reduced particle size. Specifically, the initial 
discharge stage (from Figure 4b1 to Figure 4b2, and Fig. S7) involves 
peaks shift towards lower two-theta, indicative of a lattice expansion 
after the Li-ion insertion into the voids of the CuSi2P3. A schematic of 
this Li-inserted lattice is shown in Fig. S8. To calculate the contribution 
to the overall capacity of this initial Li-insertion, we can assum Li fills all 
the tetrahedral interstitial sites (Fig. S8) of CuSi2P3. Since there are three 
such sites, CuSi2P3 can at most host three Li-ions, forming the compound 
Li3CuSi2P3 that results in an intercalation capacity of 379 mA h g−1. 
This value is almost consistent with the observed capacity as marked in 
Fig. 4a. As more lithium is inserted, the structure amorphized and the 
diffraction peaks disappear (Figure 4b3). The corresponding HRTEM 
images show no features during this stage (Fig. S9-iii), further con
firming the amorphization. As more Li is inserted into the amorphous 
phase, the saturated Li-contained amorphous electrode began to 

Fig. 4. The Li+-storage mechanisms characterizations of the as-prepared cation-mixed CuSi2P3 anodes: a) first discharge/charge curves for the ex-situ character
izations at 200 mA g−1; b) ex-situ XRD patterns corresponded to indicators marked in a). High-resolution XPS spectra of CuSi2P3 electrode after initial cycling, 
pristine CuSi2P3 powder and raw material of Si or P: c) P 2p; d) Si 2p. e) Raman spectra of CuSi2P3 electrode after initial cycling and pristine CuSi2P3 powder; f) 
schematic Li+-storage process. 
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separate into the binary lithium alloys of Li3P and Li3.75Si (Figure 4b4, 
4b5 and HRTEM along with FFTs in Fig. S9-vi, S10). During the charge 
process, the binary Li-M (M=Si, and P) phases disappear and the ma
terial becomes entirely amorphous once again as shown in Figure 4b7 
and Fig. S9-vii. When fully charged to 3.0 V, the diffraction pattern of 
the as-synthesized CuSi2P3 reappears, which suggests a reversible Li- 
storage process (Figure 4b9 and Fig. S9-ix). To validate this revers
ibility, we further performed ex-situ XPS and Raman measurements. 
Compared with the signals of the precursors and pristine CuSi2P3, the 
signature of the as-synthesized CuSi2P3 reappears after cycling, vali
dating the high reversibility of the CuSi2P3 anode (Fig. 4c, d and e). The 
Li+-storage mechanisms of the CuSi2P3 electrode is depicted schemati
cally in Fig. 4f and is expressed in the following equations: 

During discharge: 

CuSi2P3 + xLi+ + xe−→LixCuSi2P3 (x <3); (i)  

LixCuSi2P3 + (16.5 −x)Li+ + (16.5 −x)e−→Cu + 2 Li3.75Si + 3 Li3P; (ii) 

During charge: 

2 Li3.75Si + Cu + 3 Li3P −(16.5 −x)Li+ −(16.5 −x)e−→LixCuSi2P3;

(iii)  

LixCuSi2P3 −x Li+ −x e−→CuSi2P3; (iv)  

Overall reaction : CuSi2P3 + 16.5Li+ + 16.5e−↔ Cu + 2 Li3.75Si + 3 Li3P.
(v) 

Based on this proposed mechanism, the CuSi2P3 electrode can uptake 
16.5 Li-ions per formula unit, corresponding to a theoretical specific 
capacity of 2079 mA h g−1 in which the two Si atoms deliver a capacity 
of 945 mA h g−1, and three P atoms deliver a capacity of 
1134 mA h g−1. Unreacted Cu atoms can provide enhanced electronic 
conductivity and a physical barrier against agglomeration. The initial- 
cycle capacity was found to be 2069 mA h g−1, which is consistent 
with the calculated theoretical value based on Equation V, validating the 
rationality of the above reaction mechanism. 

To further enhance the cycling stability and rate performance of the 
CuSi2P3 anode, the material was carbon coated using a two-step ball 
milling method with graphite. The resulting material resembled a yolk- 
shell morphology, with amorphous-carbon-coated CuSi2P3 particles 
appearing to be covered in several layers of graphene. The synthesis 
process is schematically depicted in Fig. 5a. After the first high-energy 
ball milling step for 20 h, the carbon coating appeared to be amor
phous and the CuSi2P3 is also refined into less than 5 nm, as seen from 
the inset HRTEM in Fig. 5a. The formed amorphous carbon and ultrafine 
or amorphous CuSi2P3 aggregations can be attributed to the durable 
high-energy mechanical ball milling, which produced enough energy to 
grind the lab-synthesized CuSi2P3 and destroy the layered graphite into 

Fig. 5. a) Schematic two-stage ball milling processes. b) low-magnification TEM image of yolk-shell-structured CuSi2P3@graphene nanocomposite. c) line scan data 
as indicated in b). d-g) elemental mapping of the obtained carbon coating CuSi2P3@graphene nanocomposite. 
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amorphous carbon. The final nanocomposite was formed via a second 
short-time ball milling at 200 rpm for 0.5 h. The formation of a graphene 
shell from the second-added graphite can be attributed to mechanical 
exfoliation by shear forces during the mechanical milling process 
[42–44]. Fig. 5b, Fig. S11 and Fig. S12 show the low-magnitude TEM 
and FSEM images of the yolk-shell structured carbon-coated 
CuSi2P3@graphene nanocomposite. The carbon shell is shown clearly 

through an elemental line scan and mapping image (Fig. 5c-g, and 
Fig. S11a-e, S13). And the graphene can be confirmed by the HRTEM 
(Fig. S11-f) image on the carbon shell via the measured D-spacing of 
0.32–0.34 nm.[45,46] The graphene is about 3–9 layers. The ratio of 
CuSi2P3 to carbon in the final material was also determined to be close to 
7:2 by the thermal gravimetric analysis shown in Fig. S14, which is well 
consistent with the poured amount of CuSi2P3 and graphite. The 

Fig. 6. Electrochemical performance of the CuSi2P3@graphene nanocomposite: a) cycling stability at 0.2 A g−1; b) rate performance; c) cycling stability at 2 A g−1; 
and d) performance comparison of CuSi2P3@graphene nanocomposite with recently reported P-based and Si-based anodes in terms of initial Coulombic efficiency, 
and cycling stability. 

W. Li et al.                                                                                                                                                                                                                                       



Nano Energy 80 (2021) 105506

8

amorphous carbon along with few layered graphene can not only buffer 
the volume expansion but also promote the Li-ion and electron trans
portation of CuSi2P3. In addition, such a morphology is also favorable 
when applied to batteries. On one hand, the small primary nanoparticles 
can enhance the intimate contact between the active materials and the 
electrolyte, thus reducing the lithium-ion diffusion length and 
increasing the rate capability. On the other hand, the large (micro-sized) 
secondary particles can increase the electrode density and hence the 
volumetric energy density. 

Performance of the cation-disordered CuSi2P3 was significantly 
enhanced by the bilayer carbon coating. As seen in Fig. 6a, the yolk-shell 
structured carbon-coated CuSi2P3@graphene nanocomposite delivered 
a high capacity of 1804 mA h g−1 after 500 cycles at a current density of 
200 mA g−1 within the working potential varying from 3.0 V to 0.005 V, 
which is improved over the uncoated sample. The superior cycling sta
bility can be attributed to the effective carbon buffer matrix to accom
modate the volume change during Li-ion uptake/release process. The 
rate performance is shown in Fig. 6b. The nanocomposite delivered 
capacities of 2143, 2106, 2010, 1880, 1690, 1480, 1252, and 
922 mA h g−1, at a current rate of 0.1, 0.2, 0.5, 1, 2, 5, 10, and 20 A g−1, 
respectively. At a current density of 50 A g−1, the capacity can be 
maintained at 530 mA h g−1, above that of the pure sample. The 
excellent rate performance mainly benefits from the inherent metallic 
conductivity and fast Li-ion diffusion of CuSi2P3 as well as the further 
reduced particle size and the introduced few layered graphene. 
Regarding long-term stability, the nanocomposite can be cycled at 2 A 
g−1 with a reversible capacity of 1394 mA h g−1 for 1500 cycles, as seen 
in Fig. 6c. The performance of the nanocomposite in this work out
performs most reported binary Si-P, Cu-P and Cu-Si compounds as well 
as single-component Si-, and P-based composites in terms of cycling 
stability, and initial Coulombic efficiency, which are compared in 
Fig. 6d [47–63]. 

Considering the excellent Li-storage performance of the as-designed 
carbon-coated CuSi2P3@few layered graphene nanocomposite, we 

further evaluate the material in a realistic application. The CuSi2P3@
graphene nanocomposite was coupled with a LiNi0.5Co0.2Mn0.3O2 
cathode in full batteries[64–68]. In the first cycles, the full battery was 
activated at low current density. After the activation, its Coulombic ef
ficiency is approaching to 100%. As shown in Fig. 7a, the typical 
discharge/charge profile of the LiNi0.5Co0.2Mn0.3O2//CuSi2P3@
graphene nanocomposite full cell demonstrates a capacity of 
140 mA h g−1 with an average working potential of 3.3 V based on the 
mass of the LiNi0.5Co0.2Mn0.3O2 cathode. The high output potential and 
smooth discharge/charge profile of the full cell can be attributed to the 
suitable electrochemical properties of the CuSi2P3@graphene anode. 
The potential curves of both anode and cathode are seen Fig. 7b. More 
importantly, despite the capacity decay in the initial 50 cycles, a stable 
cycling of the full cell was observed over 200 cycles (Fig. 7c), making 
CuSi2P3@graphene a promising anode for high-performance LIBs. 

4. Conclusion 

In summary, we have designed and successfully synthesized a 
ternary phosphide CuSi2P3 by a low-cost and scalable ball milling pro
cess. The as-prepared CuSi2P3 has a cation-disordered cubic ZnS struc
ture with metallic behavior (no apparent bandgap), as predicted from 
theoretical calculations and confirmed by experimental measurements. 
When used as an anode for LIBs, CuSi2P3 delivered a reversible capacity 
of 2069 mA h g−1 with a working potential of ~0.5 V. The material 
exhbits a reversible Li+-storage mechanism, as validated using ex-situ 
XRD, HRTEM, XPS, and Raman spectroscopy. When the CuSi2P3 was 
ball-milled with graphite, a yolk-shell structured CuSi2P3@graphene 
nanocomposite was formed that demonstrated enahnced Li+-stroage 
performance in terms of cyclability and initial Coulombic efficiency. 
When combined with a LiNi0.5Co0.2Mn0.3O2 cathode in a full cell, a ca
pacity of 140 mA h g−1 was maintained over 200 cycles. The enhance
ment in performance and stability of the CuSi2P3@graphene 
nanocomposite is attributed to the high electronic conductivity and Li+

Fig. 7. a) typical discharge/charge profile of the LiNi0.5Co0.2Mn0.3O2//CuSi2P3@graphene nanocomposite full battery; b) typical discharge/charge profiles of the 
LiNi0.5Co0.2Mn0.3O2 cathode and the yolk-shell structured CuSi2P3@graphene anode; c) cycling stability of the assembled LiNi0.5Co0.2Mn0.3O2//CuSi2P3@graphene 
nanocomposite full battery at a current density of 100 mA g−1. 
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diffusivity of CuSi2P3 and the buffered volume expansion by the gra
phene coating. This research offers important insight into rational 
design of new teranry Si-based anode materials for high-performance Li- 
ion batteries. 
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