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Abstract—This paper describes and verifies a method of
implementing bit error rate (BER) calculation for FPGA-based
physical layer security techniques for Software Defined Radio
(SDR). Specifically, we describe an independent source signal
processing architecture for an efficient calculation of BER for
wireless communication modules across the transmitter and
receiver nodes. The source components at the transmitter and the
receiver both generate identical random bits independently from
each other, allowing for the received data to be compared to the
original bit stream to calculate BER completely on hardware. The
described method is implemented on a Xilinx Virtex-6 ML605
FPGA and reduces processing time by more than four orders of
magnitude less than hardware simulation techniques in regression
testing and validation over billions of bits, shortening design
turn around times and accelerating Physical layer based security
development for wireless communication research. The described
independent source approach utilizes a minimal amount of board
resources, allowing it to be integrated seamlessly into SDR hard-
ware designs. Experimental validation of the independent source
based BER calculation is performed for an Orthogonal Frequency
Division Multiplexing signal, and a comparison between different
stages of hardware design for the execution time required for
BER testing of a large number of bits is provided.

Index Terms—Software defined radio, Wireless communica-
tion, Communication Systems Security, Encryption, Field pro-
grammable gate arrays, Random number generation

I. INTRODUCTION

The research and development of baseband physical (PHY)

layer security techniques involve first creating specific sets

of baseband modules inherent to the wireless communication

standard being tested. Often such development starts off in

script implementations on general purpose processors and then

moves towards a FPGA or ASIC hardware implementation with

one or more intermediate steps distributed across software and

hardware designs. Software Defined Radio (SDR) allows for

rapid prototyping of communications system based research,

given the flexibility provided by software and the speed of

hardware, making it widely used in the development of wireless

testbeds.

While generating data to be transmitted during scripting

and its intermediate stages can be easily sourced off a host

PC, this process becomes much slower and complicated when

the target is a complete hardware implementation. Simulations

of hardware modules are very time consuming, depending

on the complexity of the design, and encouraged only for

shorter evaluation runs. Simulations of hardware involving

larger datasets weigh down the sourcing/simulating host PC for

a significant time while generating useful data. For such cases

Fig. 1: Independent Source Architecture Overview. Source Tx
component generates a random bit stream for transmitter

module, transmitter sends signal to receiver, receiver processes

signal and recovers transmitted bits, recovered bits are com-

pared to the bits generated by the Source Rx component to

calculate BER.

a hardware-based implementation [1] is much more practical

for faster experimentation, verification and post processing.

Scripting languages like MATLAB and Python are capable of

sending and capturing data directly from hardware for post

processing; however this requires knowledge of the interface

bandwidth constraints that become the bottleneck.

This paper develops an on-board data source that generates

data on both the transmit and receive side independently in a

packet based approach, not requiring a backbone connection

to the source generator as shown in Fig. 1. As our system

does not require a source generator to be directly attached to

multiple nodes, we reduce physical testing limitations related

to wired connections and testing environments. In addition, our

approach avoids applying large latencies to data transferred

from the source to the receiver, which reduces FPGA resource

utilization. Our system is capable of adjusting the total number

of bits generated on board at run-time, while other shared

seed approaches [2] are unable to change the number of

bits generated without rebuilding their FPGA design. The

implemented hardware design described in this paper makes an

excellent tool for physical layer security development within

wireless communication testbeds due to its ability to generate

data in a much shorter period of time in comparison to a

software-based SDR approach, which allows for a quicker

verification of system performance.

Hardware development for SDR physical layer security

research involves stages of script simulation, hardware simu-

lation, hardware co-simulation, and hardware implementation

as shown in Fig. 2. Development begins with a script imple-

mentation due to its high design flexibility and debugging

attributes. Verification of a principal concept is easily obtained
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Fig. 2: Hardware-based SDR Design Process. Stages are often implemented sequentially, and are shown with associated

advantages and disadvantages. Earlier stages focus on design, while the focal point of hardware implementation is performance.

in this stage; however, script simulation suffers from a lack

of speed and does not consider aspects of timing and data

type propagation (floating/fixed-point) that are inherent design

constraints for hardware. The next step involves implementing

the same design in a hardware development environment for

simulation, which is an essential task since it involves timing

and data type considerations while maintaining design flexibility

and debugging capabilities. Hardware co-simulation involves

exporting subsets of the design into hardware in phases prior

to the entire system being ported into hardware, allowing

for portions of the design to still be run on software. Co-

simulation allows for a hardware accelerated simulation to be

performed, with tradeoffs of lower flexibility in design and

debug capabilities than in pure simulation. In the stages of script

simulation, hardware simulation, and hardware co-simulation

previously described, the dependence on a software-based

source throttles the speed capabilities of the system. A purely

hardware-based approach achieves speeds that are magnitudes

higher than the other stages discussed previously, which will be

examined in detail in Section IV. A hardware implementation

does not allow for design changes or debugging; however,

since the design process is sequential, implementation would

not be completed until the prior three stages were thoroughly

performed and evaluated, therefore the features are not required

at this stage.

The independent source approach for bit error rate (BER)

calculation in this work is designed with the primary goal

of implementing an efficient method of testing physical layer

security techniques within wireless SDRs. The final hardware

implementation of the independent source architecture is an IP

core that is capable of being targeted to several FPGA-based

SDR platforms, and may also be used to test subsystems

of an SDR for validation. The Drexel Software Defined

Communication (SDC) testbed is a hardware based SDR with

a software driven interface, which allows for rapid prototyping

of wireless communication systems as described in [3]. The

independent source design is developed on the SDC platform

and shares the development flow shown in Fig. 2. Though pure

software-based research provides design-time and run-time

flexibility with the ease of debugging, experiments in the area

of wireless communications need to be validated over a wide

range of data that can be best achieved only with hardware

solutions not bottlenecked by software processing speeds.

This paper describes our considerations and challenges in

implementing such a signal independent source architecture

along with discussing its significance and relevance for PHY

layer security development. The key contributions are in

providing researchers working in hardware-based wireless

security with the ability to i) rapidly run and validate FPGA-

targeted security modules for large data sets, ii) save resources

on-board due to its low profile implementation, and iii)
generate data on-demand and eliminate the need for the original

uncorrupted bits to be connected directly from the transmitter

source to the receiver output for comparison.

II. RELATED WORK

A key aspect of the design in this paper is based on

random number generation, as bits are generated on both the

transmitter and receiver sides for BER calculation. Random

number generation for communications is primarily focused

on coding and cryptology techniques. A method of developing

codes for Direct Sequence Spread Spectrum signals on FPGA

was developed using LFSRs in [4]. A combined decimal

sequence pseudo random number generation approach was

implemented on hardware in [5] to develop spreading sequences

for Code Division Multiple Access. In both scenarios, the

contributions were focused on code generation, and were not

used as a source of data for the communication systems. A

true random number generation method was performed for

the purpose of cryptology in [6]; however, a true random

number generator is not desirable in this contribution, as it

is necessary for both sources to generate an identical pseudo-

random bit sequence. Bit generation has been done previously

in [7], which implements a Cyclic Redundancy Check to

determine error rates but was not explicitly used in SDR. An

implementation of bit generation was presented in [8], but was

only considered at the transmitter, and was not extended for

an efficient BER calculation to be used in testing SDRs. BER

calculation has been implemented for wireless applications

previously in [2]; however, in their design, the source bits are

wired directly to the receiver for comparison to the received

bits, which requires additional latency to be introduced to

the connected source bits for analysis. Adding latency to

data streams on hardware is a costly operation pertaining to
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TABLE I: Resource estimation targeted to a Xilinx Virtex-6

ML605 Board using 32 Fibonacci generators.

Resource Name Count % Utilization

LUT’s 4166 2.76

FF’s 5988 1.89

BRAM’s 0 0

Mult/DSP48 0 0

resource utilization [9]. The design also requires additional

infrastructure which may result in limited testing capabilities

with regards to the distance between the radios and experimental

setups. Another implementation of BER calculation on-board

an FPGA is described in [10], which also does identical data

generation both on the receiver and transmitter side based

on multiple pseudorandom binary sequences. However, [10]

does not provide any details on implementation complexity

and required hardware resources. The independent source

architecture developed in this paper follows a combination

of simple Xilinx IP based modules in implementing our Bit

Error Rate Tester (BERT) with minimal resource utilization.

This paper is focused on describing our step by step approach

designing our BERT system for SDR based physical layer

security applications. Our design keeps resource utilization

low which is vital to the SDC [1] [11] research testbed

enhanced through this design. SDC is used for rapid prototyping

within PHY layer modules in Orthogonal Frequency Division

Multiplexing (OFDM) based wireless standards.

III. INDEPENDENT SOURCE SYSTEM ARCHITECTURE

The independent source system described in this paper

follows the main design concept of the SDC testbed, by being

insensitive to latency changes in baseband modules across

the transmitter and receiver. SDC achieves this design goal

using modules built with intelligent controllers that avoid data

overflow or starvation during its operation. A key motivation of

the independent source design emerged from the requirement

of SDC to have adjustable data rates that are capable of

changing at run-time [11]. The transmitter source module,

Source Tx, implements this on-demand concept by being able

to generate and throttle data, while the receiver source module,

Source Rx, independently generates original data at the receiver

and calculates BER upon the arrival of propagated data. Next

we will describe specific implementation details of the source

components in our system.

Source Tx: The detailed architecture of the Source Tx
module described in this paper is shown in Fig. 3. The inputs

of the module consist of the number of bits per cycle, a reset
signal, and an enable signal, while it outputs the generated
bits. Individual Fibonacci generator blocks, which are LFSR

based series generators from the Xilinx IP library [12], were

uniquely seeded based on the number of bits per cycle. The

reset signal was then toggled low to initialize the system. Upon

the reception of an enable signal, that represents the ready

state of the block accepting the bits, each unique Fibonacci

generator output an unsigned 1-bit wide (UFix 1 0) fixed-point

data type. These data bits were then bit-bashed/concatenated

through a parallel to serial block. The serialized data were then

truncated using bit slicers that provided different input ports to

a multiplexer block that selected the appropriate slice to output

the generated bits based on the bits per cycle signal input.

Source Rx: The Source Rx module of the independent

source architecture has a very similar internal structure to

the Source Tx block. The inputs consist of the received bits, a

received bits valid signal, the number of bits per cycle, and

a reset signal, while it outputs the number of bits received and

the number of bit errors. Upon reception of a bit stream at the

receiver, the received bits valid signal showed logical HIGH

when the data were valid, which allowed for the valid bits to

be differentiated from the invalid bits. The received bits valid
signal was used to enable the uniquely seeded Fibonacci

generator blocks, and the number of bits per cycle was used

to select the appropriate bit sliced output. The generated bits at

the Source Rx were then compared to the received bits using

a comparator. The number of bits received was obtained by

accumulating the samples of the received bits valid signal,

while the number of bit errors was determined by adding

the comparator output. Both the outputs were also stored in

shared memory registers that were accessible to the on-board

microblaze processor on the Virtex 6 ML605 board to enable

querying the values from the host.

Resource Utilization: A summary of the number of esti-

mated resources required to implement the hardware design of

the independent source architecture for 32 Fibonacci Generators

is provided in Table I. The percentages shown are based on

the ML605 Virtex-6 evaluation board. A small number of

look-up tables and flip-flops are required for the design, as

only 2.76 and 1.89 percent of the total respective resources

of the board are used. Neither Block RAMs nor multipliers

are used in the design since each resource type is considered

scarce. As an example, the target FPGA used in this paper

has 1100 total Block RAMs and 768 total multipliers. Due

to the resource efficient independent source architecture that

was implemented, the system may be integrated into hardware

SDR designs without causing resource limitation issues that

would hinder SDR design capabilities. In addition, it may be

noted that the estimated resource utilization shown in Table I is

based on using 32 Fibonacci Generators, which may be scaled

down to further reduce the number of resources required.

A key benefit of the system developed in this paper is that the

generated bits from the transmitter are not required to be linked

directly to the receiver for a loop-back BER calculation, as is

the requirement of a single source approach for a full hardware

implementation. For example, the independent source system

enables testing the developed physical layer security techniques

on nodes without having the need to share predetermined data

for comparison, saving storage and time. Block RAMs are

required for storage, which are scarce resources as previously

described in this section. With regards to timing, complex

transmitter and receiver designs require a greater number of

clock cycles to complete the loop-back process, which results in
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Fig. 3: Detailed Source Tx Architecture. The Source Tx block consists of individually seeded Xilinx Fibonacci series blocks

that generate data on demand based on an enable signal and the number of bits required per cycle.

the generated bits being delayed substantially for synchronized

BER calculation. Large delays of data streams on hardware

result in a substantial increase in resource utilization in terms

of memory [9]. Each delay used requires a flip-flop and a

shift register consisting of a look-up table as listed in [12].

The independent source architecture implemented in this paper

reduces the number of FPGA resources utilized, allowing for

a greater number of resources to be dedicated to other aspects

of the physical layer design.

IV. EXPERIMENTAL PROCEDURE

The independent source architecture is capable of being used

with any communication module that takes serial or parallel

data, ranging from 0 to 32 bits, and gives data out in the

same format. For our experiment we selected to secure an

OFDM signal, implemented using the SDC testbed. OFDM

is widely researched in wireless communications due to its

benefits of spectral efficiency, robustness to severe channel

changes, and other advantages as described in [13]. The PHY

security technique being tested consists of a simple pseudo-

random sequence uniquely seeded based on a key, known

only to the transmitter and receiver, being used to convolute

the data line before the QPSK mapper on the transmitter and

after the QPSK decoder at the receiver. It was observed that

a mis-match in the key always resulted in a BER of around

50% which is close to random suggested the success of the

technique. This paper focuses more on the testbed data sourcing

that enables the validation of the PHY security techniques as

the one described above. A simplified version of an OFDM

signal chain consisting of a transmitter, receiver, and Additive

White Gaussian Noise (AWGN) channel is shown in Fig. 4.

The transmitter generates bits using the Source Tx architecture

described in Section III, maps the bits to Quadrature Phase

Shift Keying (QPSK) symbols, and performs multi-carrier

modulation using an Inverse Fast Fourier Transform (IFFT) to

obtain the time domain transmitted signal. QPSK was selected

instead of higher orders of QAM due to its lower theoretical

BER in AWGN channels. The ability to generate a large amount

of bits very rapidly allows for accurate evaluation of low

values of BER, which is a key advantage of our system. For

example, to compute a BER of 10−8, the theoretical minimum

of bits needed to be generated is 10× 106, while an accurate

approximation would require the number of bits considered to

be magnitudes greater than the minimum. The resulting signal

from the transmitter is passed through an AWGN channel with

a targeted level of energy per bit to noise power density ratio

(Eb/N0) to introduce distortion. At the receiver, a Fast Fourier

Transform (FFT) is performed on the resulting signal from the

channel to recover the frequency domain QPSK symbols, a

maximum likelihood decoder is used to obtain the received

bits, and the BER is calculated by comparing the received

bits to the bits generated by a Source Rx described in Section

III. As the first part of our experiment we validate the BER

measurements and motivate the independent source architecture

we have developed in this paper by showing the ease and

accuracy with which it produces a close to theoretical BER

curve over an Eb/N0 sweep of 10 billion bits through an AWGN

channel. A second experiment is performed to further motivate

the independent source architecture by showing the execution

timing results running the loop-back system described in Fig.

4 across its implementations on hardware simulation, hardware

co-simulation and hardware implementation by transmitting

and receiving 1× 106 up to 5× 106 bits. The number of bits

analyzed in the second experiment was substantially decreased

in comparison to the first experiment due to the large length of

time required for bits to be generated in hardware simulation

and hardware co-simulation approaches, demonstrating a benefit

of our full hardware implementation.

A. Experiment 1: BER Validation

Validation of the independent source design was performed

by comparing the BER calculated on hardware to the ideal

values for a QPSK signal over an AWGN channel with a

varying range of Eb/N0 values. The theoretical BER for QPSK

as a function of Eb/N0 is given in [13] as

BERQPSK = Q

(√
2Eb

N0

)
, (1)

where Q(.) is the Q-Function. In the experiment, 10× 109 bits

generated by the Source Tx were sent from the transmitter to
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Fig. 4: Experimental Layout. Design consists of a simplified OFDM signal.

the receiver for each level of Eb/N0 and the BER was calculated

by comparing the recovered bits to the bits generated on the

Source Rx at the receiver as

BER =
1

N

N−1∑
i=0

di ⊕ d̂i, (2)

where N is the number of bits transmitted, d are the generated

bits, d̂ are the recovered bits, and ⊕ is the exclusive OR

operation. A comparison of the hardware implementation

results to the ideal BER given by (1) is shown in Fig. 5.

The percent error of the hardware results from the theoretical

BER values over a range of Eb/N0 from 0 to 13 dB was

determined to be 7.03% relative to the theoretical value. An

increase in the number of bits considered in the range from

10 to 13 dB would further decrease the error as expected

from a probabilistic standpoint. The entire experiment took

17.33 minutes to perform on hardware, processing a total

of 260 Gbits over the sweep (inclusive of print and status

interrupts), demonstrating the efficiency of the test method.

Overall the purpose of this experiment was to affirm that the

BER testing system performed as expected prior to analyzing

benefits regarding execution time. A loopback design was

selected to provide a controlled testing environment with an

accurate AWGN channel for verification purposes. The source

blocks did not share data, and were independent of each other,

as the system is designed to work for wireless scenarios.

B. Experiment 2: Timing Analysis

To represent a valid workload we used SDC to build a

simplistic OFDM based physical layer consisting of QPSK

modulation and IFFT modules at the transmitter side along with

the corresponding blocks performing the QPSK de-modulation

and FFT at the receiver side. The source blocks are natively

built using Xilinx SysGen modules within the MATLAB

Simulink environment. For the pure software-based simulation

and co-simulation setup, this implementation enables ports from

the Source Rx module to output the ‘number of bits’ received

and the ‘error count’ directly to the MATLAB workspace,

from which they may be processed both quantitatively and

qualitatively across a given workload.

Hardware Simulation: In order to run a pure simulation

based timing analysis, a MATLAB script was used to sweep

the source module to generate datasets consisting of from 1

Mbits up to 5 Mbits at the transmitter and measure the time

taken to completely send and receive the generated dataset

across the workload described earlier in this section. This is

a software-based simulation setup useful for researchers who

Fig. 5: BER of hardware experiment over AWGN Channel.

Theoretical value of BER calculated by (1) shown by solid

line, hardware results displayed by circular markers. Hardware

BER at each level of Eb/N0 is determined using (2) on-board

using 10 Gbits. Comparison of hardware results to theoretical

values validates accurate BER calculation.

would like verify radio components in MATLAB across a large

number of bits using the independent source modules.

Co-Simulation: The co-simulation framework consists of

having either the entire or part of the model under test

implemented on hardware for accelerated performance. For

this timing comparison, we synthesized the independent source

blocks and the workload onto the Virtex6 ML605 FPGA, and

left the control to start the system as part of the MATLAB

software. In this setup MATLAB was used to control the

system’s execution for a set number of bits and provide the

execution time and BER upon its completion. MATLAB does

this operation by sending control signals over its Gigabit

Ethernet connection to the Virtex6 ML605 board to start the

processing and also grab the data from the Source Rx block

into its workspace.

Hardware Implementation: In this section the entire project

consisting of the source modules, the workload and the

control was synthesized on to the Virtex6 ML605 board unlike

the co-simulation framework where the control was from

software. Control of the system was done through the on-

board microblaze processor that handled starting and recording

the ‘number of bits’ received and the ‘error count’ on to shared
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Fig. 6: Execution time over three stages of hardware design.

The effect of the number of bits processed by the independent

source architecture on elapsed time is analyzed for 1 to 5

Mbits. Hardware co-simulation required less time than hardware

simulation, however both stages require greater than 4 orders

of magnitude of time than for hardware implementation.

register space that could be accessed through a register read

from the SDK workspace. Timing experiments consisted of

writing C scripts in the SDK environment to set the number

of bits to be sent and starting the transmitter side and reading

the processed data from the receiver side on hardware.

Timing Results: A comparison of execution time required to

process the bits through the independent source architecture is

shown in Fig. 6, where the dashed line represents the hardware

simulation results, the solid line is based on the hardware co-

simulation, and the circular marker represents the hardware

implementation. The execution time required was analyzed for

each stage of the hardware design process for the transfer of 1

Mbits up to 5 Mbits. Hardware simulation was determined to

take the longest amount of time as expected, while hardware

co-simulation was slightly quicker than simulation. Hardware

acceleration in co-simulation accounted for the decrease in

time required; however, the software-based control caused the

execution time to be much longer than for a pure hardware

implementation. Over the course of this experiment hardware

co-simulation required an average factor of over 33,000 times

the amount of time required for hardware implementation,

while hardware simulation required a factor of over 51,000. In

both cases the stages required time greater than four orders

of magnitude than the pure hardware implementation. The

large difference in execution time required in this experiment

highlights the benefit of the independent source architecture

presented in this paper.

V. CONCLUSIONS

A method for calculating BER independently across a

transmitter and receiver based on an independent source

architecture was introduced for the purpose of efficiently

developing and testing the PHY layer security techniques for

FPGA-based wireless testbeds. Identical pseudo-random bits

were generated by both the source blocks to be used in the

calculation of the BER on hardware, without directly linking

the source data of the transmitter to the input of the BER

component. Analysis of the resource utilization demonstrated

that the independent source architecture uses minimal board

resources, and is capable of being integrated into SDR testbeds.

Experimental results obtained on a Xilinx Virtex-6 ML605

FPGA board using an OFDM signal design over an AWGN

channel verified that the BER system performed as expected.

The hardware implementation was able to process bits faster

than hardware simulation and co-simulation by a factor of four

orders of magnitude. This paper thus provided and validated

an efficient hardware-based BER calculation architecture to be

used for FPGA-based PHY layer security technique research.
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