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Abstract—This paper describes and verifies a method of
implementing bit error rate (BER) calculation for FPGA-based
physical layer security techniques for Software Defined Radio
(SDR). Specifically, we describe an independent source signal
processing architecture for an efficient calculation of BER for
wireless communication modules across the transmitter and
receiver nodes. The source components at the transmitter and the
receiver both generate identical random bits independently from
each other, allowing for the received data to be compared to the
original bit stream to calculate BER completely on hardware. The
described method is implemented on a Xilinx Virtex-6 ML605
FPGA and reduces processing time by more than four orders of
magnitude less than hardware simulation techniques in regression
testing and validation over billions of bits, shortening design
turn around times and accelerating Physical layer based security
development for wireless communication research. The described
independent source approach utilizes a minimal amount of board
resources, allowing it to be integrated seamlessly into SDR hard-
ware designs. Experimental validation of the independent source
based BER calculation is performed for an Orthogonal Frequency
Division Multiplexing signal, and a comparison between different
stages of hardware design for the execution time required for
BER testing of a large number of bits is provided.

Index Terms—Software defined radio, Wireless communica-
tion, Communication Systems Security, Encryption, Field pro-
grammable gate arrays, Random number generation

I. INTRODUCTION

The research and development of baseband physical (PHY)
layer security techniques involve first creating specific sets
of baseband modules inherent to the wireless communication
standard being tested. Often such development starts off in
script implementations on general purpose processors and then
moves towards a FPGA or ASIC hardware implementation with
one or more intermediate steps distributed across software and
hardware designs. Software Defined Radio (SDR) allows for
rapid prototyping of communications system based research,
given the flexibility provided by software and the speed of
hardware, making it widely used in the development of wireless
testbeds.

While generating data to be transmitted during scripting
and its intermediate stages can be easily sourced off a host
PC, this process becomes much slower and complicated when
the target is a complete hardware implementation. Simulations
of hardware modules are very time consuming, depending
on the complexity of the design, and encouraged only for
shorter evaluation runs. Simulations of hardware involving
larger datasets weigh down the sourcing/simulating host PC for
a significant time while generating useful data. For such cases
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Fig. 1: Independent Source Architecture Overview. Source_Tx
component generates a random bit stream for transmitter
module, transmitter sends signal to receiver, receiver processes
signal and recovers transmitted bits, recovered bits are com-
pared to the bits generated by the Source_Rx component to
calculate BER.

Receiver

a hardware-based implementation [1] is much more practical
for faster experimentation, verification and post processing.
Scripting languages like MATLAB and Python are capable of
sending and capturing data directly from hardware for post
processing; however this requires knowledge of the interface
bandwidth constraints that become the bottleneck.

This paper develops an on-board data source that generates
data on both the transmit and receive side independently in a
packet based approach, not requiring a backbone connection
to the source generator as shown in Fig. 1. As our system
does not require a source generator to be directly attached to
multiple nodes, we reduce physical testing limitations related
to wired connections and testing environments. In addition, our
approach avoids applying large latencies to data transferred
from the source to the receiver, which reduces FPGA resource
utilization. Our system is capable of adjusting the total number
of bits generated on board at run-time, while other shared
seed approaches [2] are unable to change the number of
bits generated without rebuilding their FPGA design. The
implemented hardware design described in this paper makes an
excellent tool for physical layer security development within
wireless communication testbeds due to its ability to generate
data in a much shorter period of time in comparison to a
software-based SDR approach, which allows for a quicker
verification of system performance.

Hardware development for SDR physical layer security
research involves stages of script simulation, hardware simu-
lation, hardware co-simulation, and hardware implementation
as shown in Fig. 2. Development begins with a script imple-
mentation due to its high design flexibility and debugging
attributes. Verification of a principal concept is easily obtained
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Fig. 2: Hardware-based SDR Design Process. Stages are often implemented sequentially, and are shown with associated
advantages and disadvantages. Earlier stages focus on design, while the focal point of hardware implementation is performance.

in this stage; however, script simulation suffers from a lack
of speed and does not consider aspects of timing and data
type propagation (floating/fixed-point) that are inherent design
constraints for hardware. The next step involves implementing
the same design in a hardware development environment for
simulation, which is an essential task since it involves timing
and data type considerations while maintaining design flexibility
and debugging capabilities. Hardware co-simulation involves
exporting subsets of the design into hardware in phases prior
to the entire system being ported into hardware, allowing
for portions of the design to still be run on software. Co-
simulation allows for a hardware accelerated simulation to be
performed, with tradeoffs of lower flexibility in design and
debug capabilities than in pure simulation. In the stages of script
simulation, hardware simulation, and hardware co-simulation
previously described, the dependence on a software-based
source throttles the speed capabilities of the system. A purely
hardware-based approach achieves speeds that are magnitudes
higher than the other stages discussed previously, which will be
examined in detail in Section IV. A hardware implementation
does not allow for design changes or debugging; however,
since the design process is sequential, implementation would
not be completed until the prior three stages were thoroughly
performed and evaluated, therefore the features are not required
at this stage.

The independent source approach for bit error rate (BER)
calculation in this work is designed with the primary goal
of implementing an efficient method of testing physical layer
security techniques within wireless SDRs. The final hardware
implementation of the independent source architecture is an IP
core that is capable of being targeted to several FPGA-based
SDR platforms, and may also be used to test subsystems
of an SDR for validation. The Drexel Software Defined
Communication (SDC) testbed is a hardware based SDR with
a software driven interface, which allows for rapid prototyping
of wireless communication systems as described in [3]. The
independent source design is developed on the SDC platform
and shares the development flow shown in Fig. 2. Though pure
software-based research provides design-time and run-time
flexibility with the ease of debugging, experiments in the area
of wireless communications need to be validated over a wide
range of data that can be best achieved only with hardware

solutions not bottlenecked by software processing speeds.

This paper describes our considerations and challenges in
implementing such a signal independent source architecture
along with discussing its significance and relevance for PHY
layer security development. The key contributions are in
providing researchers working in hardware-based wireless
security with the ability to ¢) rapidly run and validate FPGA-
targeted security modules for large data sets, i7) save resources
on-board due to its low profile implementation, and 4ii)
generate data on-demand and eliminate the need for the original
uncorrupted bits to be connected directly from the transmitter
source to the receiver output for comparison.

II. RELATED WORK

A key aspect of the design in this paper is based on
random number generation, as bits are generated on both the
transmitter and receiver sides for BER calculation. Random
number generation for communications is primarily focused
on coding and cryptology techniques. A method of developing
codes for Direct Sequence Spread Spectrum signals on FPGA
was developed using LFSRs in [4]. A combined decimal
sequence pseudo random number generation approach was
implemented on hardware in [5] to develop spreading sequences
for Code Division Multiple Access. In both scenarios, the
contributions were focused on code generation, and were not
used as a source of data for the communication systems. A
true random number generation method was performed for
the purpose of cryptology in [6]; however, a true random
number generator is not desirable in this contribution, as it
is necessary for both sources to generate an identical pseudo-
random bit sequence. Bit generation has been done previously
in [7], which implements a Cyclic Redundancy Check to
determine error rates but was not explicitly used in SDR. An
implementation of bit generation was presented in [8], but was
only considered at the transmitter, and was not extended for
an efficient BER calculation to be used in testing SDRs. BER
calculation has been implemented for wireless applications
previously in [2]; however, in their design, the source bits are
wired directly to the receiver for comparison to the received
bits, which requires additional latency to be introduced to
the connected source bits for analysis. Adding latency to
data streams on hardware is a costly operation pertaining to
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TABLE I: Resource estimation targeted to a Xilinx Virtex-6
ML605 Board using 32 Fibonacci generators.

Resource Name | Count % Utilization
LUT’s 4166 2.76
FF’s 5988 1.89
BRAM'’s 0 0
Mult/DSP48 0 0

resource utilization [9]. The design also requires additional
infrastructure which may result in limited testing capabilities
with regards to the distance between the radios and experimental
setups. Another implementation of BER calculation on-board
an FPGA is described in [10], which also does identical data
generation both on the receiver and transmitter side based
on multiple pseudorandom binary sequences. However, [10]
does not provide any details on implementation complexity
and required hardware resources. The independent source
architecture developed in this paper follows a combination
of simple Xilinx IP based modules in implementing our Bit
Error Rate Tester (BERT) with minimal resource utilization.
This paper is focused on describing our step by step approach
designing our BERT system for SDR based physical layer
security applications. Our design keeps resource utilization
low which is vital to the SDC [1] [11] research testbed
enhanced through this design. SDC is used for rapid prototyping
within PHY layer modules in Orthogonal Frequency Division
Multiplexing (OFDM) based wireless standards.

III. INDEPENDENT SOURCE SYSTEM ARCHITECTURE

The independent source system described in this paper
follows the main design concept of the SDC testbed, by being
insensitive to latency changes in baseband modules across
the transmitter and receiver. SDC achieves this design goal
using modules built with intelligent controllers that avoid data
overflow or starvation during its operation. A key motivation of
the independent source design emerged from the requirement
of SDC to have adjustable data rates that are capable of
changing at run-time [11]. The transmitter source module,
Source_Tx, implements this on-demand concept by being able
to generate and throttle data, while the receiver source module,
Source_Rx, independently generates original data at the receiver
and calculates BER upon the arrival of propagated data. Next
we will describe specific implementation details of the source
components in our system.

Source_Tx: The detailed architecture of the Source Tx
module described in this paper is shown in Fig. 3. The inputs
of the module consist of the number of bits_per_cycle, a reset
signal, and an enable signal, while it outputs the generated
bits. Individual Fibonacci generator blocks, which are LFSR
based series generators from the Xilinx IP library [12], were
uniquely seeded based on the number of bits_per_cycle. The
reset signal was then toggled low to initialize the system. Upon
the reception of an enable signal, that represents the ready
state of the block accepting the bits, each unique Fibonacci

generator output an unsigned 1-bit wide (UFix_1_0) fixed-point
data type. These data bits were then bit-bashed/concatenated
through a parallel to serial block. The serialized data were then
truncated using bit slicers that provided different input ports to
a multiplexer block that selected the appropriate slice to output
the generated bits based on the bits_per_cycle signal input.

Source_Rx: The Source_Rx module of the independent
source architecture has a very similar internal structure to
the Source_Tx block. The inputs consist of the received_bits, a
received_bits_valid signal, the number of bits_per_cycle, and
a reset signal, while it outputs the number of bits received and
the number of bit errors. Upon reception of a bit stream at the
receiver, the received_bits_valid signal showed logical HIGH
when the data were valid, which allowed for the valid bits to
be differentiated from the invalid bits. The received_bits_valid
signal was used to enable the uniquely seeded Fibonacci
generator blocks, and the number of bits_per_cycle was used
to select the appropriate bit sliced output. The generated bits at
the Source_Rx were then compared to the received_bits using
a comparator. The number of bits received was obtained by
accumulating the samples of the received_bits_valid signal,
while the number of bit errors was determined by adding
the comparator output. Both the outputs were also stored in
shared memory registers that were accessible to the on-board
microblaze processor on the Virtex 6 ML605 board to enable
querying the values from the host.

Resource Utilization: A summary of the number of esti-
mated resources required to implement the hardware design of
the independent source architecture for 32 Fibonacci Generators
is provided in Table 1. The percentages shown are based on
the ML605 Virtex-6 evaluation board. A small number of
look-up tables and flip-flops are required for the design, as
only 2.76 and 1.89 percent of the total respective resources
of the board are used. Neither Block RAMs nor multipliers
are used in the design since each resource type is considered
scarce. As an example, the target FPGA used in this paper
has 1100 total Block RAMs and 768 total multipliers. Due
to the resource efficient independent source architecture that
was implemented, the system may be integrated into hardware
SDR designs without causing resource limitation issues that
would hinder SDR design capabilities. In addition, it may be
noted that the estimated resource utilization shown in Table I is
based on using 32 Fibonacci Generators, which may be scaled
down to further reduce the number of resources required.

A key benefit of the system developed in this paper is that the
generated bits from the transmitter are not required to be linked
directly to the receiver for a loop-back BER calculation, as is
the requirement of a single source approach for a full hardware
implementation. For example, the independent source system
enables testing the developed physical layer security techniques
on nodes without having the need to share predetermined data
for comparison, saving storage and time. Block RAMs are
required for storage, which are scarce resources as previously
described in this section. With regards to timing, complex
transmitter and receiver designs require a greater number of
clock cycles to complete the loop-back process, which results in
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Fig. 3: Detailed Source_Tx Architecture. The Source_Tx block consists of individually seeded Xilinx Fibonacci series blocks
that generate data on demand based on an enable signal and the number of bits required per cycle.

the generated bits being delayed substantially for synchronized
BER calculation. Large delays of data streams on hardware
result in a substantial increase in resource utilization in terms
of memory [9]. Each delay used requires a flip-flop and a
shift register consisting of a look-up table as listed in [12].
The independent source architecture implemented in this paper
reduces the number of FPGA resources utilized, allowing for
a greater number of resources to be dedicated to other aspects
of the physical layer design.

IV. EXPERIMENTAL PROCEDURE

The independent source architecture is capable of being used
with any communication module that takes serial or parallel
data, ranging from 0 to 32 bits, and gives data out in the
same format. For our experiment we selected to secure an
OFDM signal, implemented using the SDC testbed. OFDM
is widely researched in wireless communications due to its
benefits of spectral efficiency, robustness to severe channel
changes, and other advantages as described in [13]. The PHY
security technique being tested consists of a simple pseudo-
random sequence uniquely seeded based on a key, known
only to the transmitter and receiver, being used to convolute
the data line before the QPSK mapper on the transmitter and
after the QPSK decoder at the receiver. It was observed that
a mis-match in the key always resulted in a BER of around
50% which is close to random suggested the success of the
technique. This paper focuses more on the testbed data sourcing
that enables the validation of the PHY security techniques as
the one described above. A simplified version of an OFDM
signal chain consisting of a transmitter, receiver, and Additive
White Gaussian Noise (AWGN) channel is shown in Fig. 4.
The transmitter generates bits using the Source_Tx architecture
described in Section III, maps the bits to Quadrature Phase
Shift Keying (QPSK) symbols, and performs multi-carrier
modulation using an Inverse Fast Fourier Transform (IFFT) to
obtain the time domain transmitted signal. QPSK was selected
instead of higher orders of QAM due to its lower theoretical
BER in AWGN channels. The ability to generate a large amount
of bits very rapidly allows for accurate evaluation of low
values of BER, which is a key advantage of our system. For

example, to compute a BER of 1078, the theoretical minimum
of bits needed to be generated is 10 X 106, while an accurate
approximation would require the number of bits considered to
be magnitudes greater than the minimum. The resulting signal
from the transmitter is passed through an AWGN channel with
a targeted level of energy per bit to noise power density ratio
(Ep/Np) to introduce distortion. At the receiver, a Fast Fourier
Transform (FFT) is performed on the resulting signal from the
channel to recover the frequency domain QPSK symbols, a
maximum likelihood decoder is used to obtain the received
bits, and the BER is calculated by comparing the received
bits to the bits generated by a Source_Rx described in Section
III. As the first part of our experiment we validate the BER
measurements and motivate the independent source architecture
we have developed in this paper by showing the ease and
accuracy with which it produces a close to theoretical BER
curve over an Ep/Nj sweep of 10 billion bits through an AWGN
channel. A second experiment is performed to further motivate
the independent source architecture by showing the execution
timing results running the loop-back system described in Fig.
4 across its implementations on hardware simulation, hardware
co-simulation and hardware implementation by transmitting
and receiving 1 x 10% up to 5 x 108 bits. The number of bits
analyzed in the second experiment was substantially decreased
in comparison to the first experiment due to the large length of
time required for bits to be generated in hardware simulation
and hardware co-simulation approaches, demonstrating a benefit
of our full hardware implementation.

A. Experiment 1: BER Validation

Validation of the independent source design was performed
by comparing the BER calculated on hardware to the ideal
values for a QPSK signal over an AWGN channel with a
varying range of E,/Ny values. The theoretical BER for QPSK
as a function of E/Nj is given in [13] as

5%
BERgpsk = Q (\/ N{:’) :

where Q(.) is the Q-Function. In the experiment, 10 x 10? bits
generated by the Source_Tx were sent from the transmitter to

(D
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Fig. 4: Experimental Layout. Design consists of a simplified OFDM signal.

the receiver for each level of E,/Nj and the BER was calculated
by comparing the recovered bits to the bits generated on the
Source_Rx at the receiver as

1 N—-1 )
BER = + ZO d; & d;, 2)

where N is the number of bits transmitted, d are the generated
bits, d are the recovered bits, and @ is the exclusive OR
operation. A comparison of the hardware implementation

results to the ideal BER given by (1) is shown in Fig. 5.

The percent error of the hardware results from the theoretical
BER values over a range of Ey/Ny from 0 to 13 dB was
determined to be 7.03% relative to the theoretical value. An
increase in the number of bits considered in the range from
10 to 13 dB would further decrease the error as expected
from a probabilistic standpoint. The entire experiment took
17.33 minutes to perform on hardware, processing a total
of 260 Gbits over the sweep (inclusive of print and status

interrupts), demonstrating the efficiency of the test method.

Overall the purpose of this experiment was to affirm that the
BER testing system performed as expected prior to analyzing
benefits regarding execution time. A loopback design was
selected to provide a controlled testing environment with an
accurate AWGN channel for verification purposes. The source
blocks did not share data, and were independent of each other,
as the system is designed to work for wireless scenarios.

B. Experiment 2: Timing Analysis

To represent a valid workload we used SDC to build a
simplistic OFDM based physical layer consisting of QPSK
modulation and IFFT modules at the transmitter side along with
the corresponding blocks performing the QPSK de-modulation
and FFT at the receiver side. The source blocks are natively
built using Xilinx SysGen modules within the MATLAB
Simulink environment. For the pure software-based simulation
and co-simulation setup, this implementation enables ports from
the Source_Rx module to output the ‘number of bits’ received
and the ‘error count’ directly to the MATLAB workspace,
from which they may be processed both quantitatively and
qualitatively across a given workload.

Hardware Simulation: In order to run a pure simulation
based timing analysis, a MATLAB script was used to sweep
the source module to generate datasets consisting of from 1
Mbits up to 5 Mbits at the transmitter and measure the time
taken to completely send and receive the generated dataset
across the workload described earlier in this section. This is
a software-based simulation setup useful for researchers who

BER vs E /N, (dB) for QPSK over 10 Gbits
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Fig. 5: BER of hardware experiment over AWGN Channel.
Theoretical value of BER calculated by (1) shown by solid
line, hardware results displayed by circular markers. Hardware
BER at each level of E,/Nj is determined using (2) on-board
using 10 Gbits. Comparison of hardware results to theoretical
values validates accurate BER calculation.

would like verify radio components in MATLAB across a large
number of bits using the independent source modules.

Co-Simulation: The co-simulation framework consists of
having either the entire or part of the model under test
implemented on hardware for accelerated performance. For
this timing comparison, we synthesized the independent source
blocks and the workload onto the Virtex6 ML605 FPGA, and
left the control to start the system as part of the MATLAB
software. In this setup MATLAB was used to control the
system’s execution for a set number of bits and provide the
execution time and BER upon its completion. MATLAB does
this operation by sending control signals over its Gigabit
Ethernet connection to the Virtex6 ML605 board to start the
processing and also grab the data from the Source_Rx block
into its workspace.

Hardware Implementation: In this section the entire project
consisting of the source modules, the workload and the
control was synthesized on to the Virtex6 ML605 board unlike
the co-simulation framework where the control was from
software. Control of the system was done through the on-
board microblaze processor that handled starting and recording
the ‘number of bits’ received and the ‘error count’ on to shared
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Fig. 6: Execution time over three stages of hardware design.
The effect of the number of bits processed by the independent
source architecture on elapsed time is analyzed for 1 to 5
Mbits. Hardware co-simulation required less time than hardware
simulation, however both stages require greater than 4 orders
of magnitude of time than for hardware implementation.

register space that could be accessed through a register read
from the SDK workspace. Timing experiments consisted of
writing C scripts in the SDK environment to set the number
of bits to be sent and starting the transmitter side and reading
the processed data from the receiver side on hardware.

Timing Results: A comparison of execution time required to
process the bits through the independent source architecture is
shown in Fig. 6, where the dashed line represents the hardware
simulation results, the solid line is based on the hardware co-
simulation, and the circular marker represents the hardware
implementation. The execution time required was analyzed for
each stage of the hardware design process for the transfer of 1
Mbits up to 5 Mbits. Hardware simulation was determined to
take the longest amount of time as expected, while hardware
co-simulation was slightly quicker than simulation. Hardware
acceleration in co-simulation accounted for the decrease in
time required; however, the software-based control caused the
execution time to be much longer than for a pure hardware
implementation. Over the course of this experiment hardware
co-simulation required an average factor of over 33,000 times
the amount of time required for hardware implementation,
while hardware simulation required a factor of over 51,000. In
both cases the stages required time greater than four orders
of magnitude than the pure hardware implementation. The
large difference in execution time required in this experiment
highlights the benefit of the independent source architecture
presented in this paper.

V. CONCLUSIONS

A method for calculating BER independently across a
transmitter and receiver based on an independent source
architecture was introduced for the purpose of efficiently

developing and testing the PHY layer security techniques for
FPGA-based wireless testbeds. Identical pseudo-random bits
were generated by both the source blocks to be used in the
calculation of the BER on hardware, without directly linking
the source data of the transmitter to the input of the BER
component. Analysis of the resource utilization demonstrated
that the independent source architecture uses minimal board
resources, and is capable of being integrated into SDR testbeds.
Experimental results obtained on a Xilinx Virtex-6 ML605
FPGA board using an OFDM signal design over an AWGN
channel verified that the BER system performed as expected.
The hardware implementation was able to process bits faster
than hardware simulation and co-simulation by a factor of four
orders of magnitude. This paper thus provided and validated
an efficient hardware-based BER calculation architecture to be
used for FPGA-based PHY layer security technique research.
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