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ABSTRACT 10 

This study derives a complete set of equatorially confined wave solutions from an 11 

anelastic equation set with the complete Coriolis terms, which include both the vertical and 12 

meridional planetary vorticity. The propagation mechanism can change with the effective static 13 

stability. When the effective static stability reduces to neutral, buoyancy ceases, but the role of 14 

buoyancy as an eastward-propagation mechanism is replaced by the compressional beta-effect, 15 

i.e., vertical density-weighted advection of the meridional planetary vorticity. For example, the 16 

Kelvin mode becomes a compressional Rossby mode. Compressional Rossby waves are 17 

meridional vorticity disturbances that propagate eastward owing to the compressional beta-18 

effect. The compressional Rossby wave solutions can serve as a benchmark to validate the 19 

implementation of the nontraditional Coriolis terms (NCTs); with an effectively neutral 20 

condition and initial large-scale disturbances given a half vertical wavelength spanning the 21 

troposphere on Earth, compressional Rossby waves are expected to propagate eastward at a 22 
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phase speed of 0.24 m s–1. The phase speed increases with the planetary rotation rate and the 23 

vertical wavelength and also changes with the density scale height. Besides, the compressional 24 

beta-effect and the meridional vorticity tendency are reconstructed using reanalysis data and 25 

regressed upon tropical precipitation filtered for the Madden–Julian oscillation (MJO). The 26 

results suggest that the compressional beta-effect contributes 10.8% of the meridional vorticity 27 

tendency associated with the MJO in terms of the ratio of the minimum values. 28 

1. Introduction 29 

Theories about equatorially confined waves substantially explain the observed tropical 30 

large-scale variability of cloudiness and precipitation (Kiladis et al. 2009). Matsuno (1966) 31 

derived a set of equatorially confined wave solutions from the shallow water equation set. Silva 32 

Dias et al. (1983) derived a vertical normal mode transform through which the hydrostatic 33 

primitive equation set projects completely onto the shallow water equation set given rigid upper 34 

and lower boundaries. Although a rigid upper boundary does not exist, equatorially confined 35 

wave solutions derived from the hydrostatic primitive equation set (Holton and Hakim 2013) are 36 

equivalent to Matsuno’s (1966) solutions assuming the rigid boundaries (Kiladis et al. 2009). 37 

The vertical normal mode transform (Silva Dias et al. 1983) established a theoretical foundation 38 

for applying Matsuno’s (1966) model to tropical tropospheric large-scale flow. Wheeler and 39 

Kiladis (1999) demonstrated that large parts of the space-time spectra of the cloudiness 40 

variability conform to the dispersion relations of Matsuno (1966). Kiladis et al. (2009) 41 

summarized these theories and emphasized the concept of effective static stability felt by the 42 

waves. The effects of static stability as a source of restoring force on waves can be reduced 43 

when, in terms of anomalies associated with waves, diabatic heating or cooling due to increased 44 

or decreased moisture condensation partially offsets adiabatic cooling or warming due to upward 45 
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or downward motion (Haertel and Kiladis 2004). Maher et al. (2019) suggested that Matsuno’s 47 

model and the weak temperature gradient (WTG) model (e.g., Bretherton and Sobel 2003; Sobel 48 

et al. 2001; Yano and Bonazzola 2009) are two of the useful model hierarchies for understanding 49 

tropical atmospheric processes. These two hierarchies simplify the thermodynamics using 50 

different assumptions. In terms of convective coupling, Matsuno’s model assumes that the 51 

vertical motion constrains the diabatic effects so that the static stability is effectively reduced, 52 

and the WTG model assumes that the diabatic effects force the vertical motion to the extent that 53 

the buoyancy ceases. Each of the hierarchies cannot be deduced to its complete form from each 54 

other. However, for Matsuno’s model, reducing the effective static stability to neutral yields no 55 

buoyancy, so the model reaches the WTG balance but does not necessarily conform to the WTG 56 

model. Such an apparent intersection of the hierarchies motivates us to explore the effectively 57 

neutral condition. 58 

The equatorially confined wave theory is based on an unforced framework. Though 59 

diabatic heating and cooling are involved, they are theoretically symmetric about the mean state 60 

and affect only the effective buoyancy frequency. In time scales of intraseasonal or longer, 61 

atmospheric flow is prone to dissipation, and a forced-dissipative framework is likely more 62 

analogous to most flows; for example, Gill’s (1980) model simulates large-scale flow forced by 63 

diabatic heating. In such time scales, though unforced frameworks like Matsuno’s (1966) cannot 64 

be excluded as a possible analog for the upper tropospheric flow (Roundy 2012; 2020), forced-65 

dissipative frameworks like Gill’s (1980) have been useful in understanding large-scale flow 66 

associated with the Madden–Julian oscillation (MJO, e.g., Adames and Kim 2016; Hayashi and 67 

Itoh 2012), the El Niño–Southern Oscillation (ENSO, e.g., Neelin et al. 1998), and the 68 

intertropical convergence zone (ITCZ, e.g., Ong and Roundy 2019; Vallis 2017). 69 
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Most of the forced-dissipative models assume the hydrostatic approximation following 70 

Gill (1980). The hydrostatic primitive equation set omits the nontraditional Coriolis terms 71 

(NCTs), which are terms involving the meridional planetary vorticity, 2𝛺 cos 𝜗 (𝛺 and 𝜗 denote 72 

planetary rotation rate and latitude). NCTs are negligible when the buoyancy frequency is far 73 

larger than the meridional planetary vorticity (e.g., Müller 1989), which would be valid on Earth 74 

if the atmosphere were dry. However, later studies suggested that the buoyancy frequency can be 75 

effectively reduced by moist convection (e.g., Haertel and Kiladis 2004), and the validity of the 76 

omission of NCTs was reassessed by Hayashi and Itoh (2012) and Ong and Roundy (2019). 77 

These studies switched NCTs on and off in a linearized forced-dissipative model to simulate 78 

large-scale flow forced by a prescribed eastward-moving intraseasonal-oscillating heat source 79 

along the equator (Hayashi and Itoh 2012) and a prescribed zonally symmetric steady heat source 80 

(Ong and Roundy 2019). The results suggested that NCTs contribute 10% or more of the forced 81 

vertical vorticity fields through tilting the meridional planetary vorticity to the vertical. 82 

Moreover, Ong and Roundy (2020) accounted for the vertical NCT to correct the hypsometric 83 

equation, and the correction contributes ~ 5% of the tropical large-scale geopotential height 84 

variability. The effective buoyancy frequency is more difficult to estimate than length and depth 85 

scales. Thus, using the ratio of the NCT to the traditional Coriolis term in the zonal momentum 86 

equation as a measure to validate the hydrostatic approximation for large-scale flow, Ong and 87 

Roundy (2019) proposed a nondimensional parameter, 𝑂( ≡ 𝑎𝐷 𝑌-𝐿-⁄ , where the characteristic 88 

scaling variables for a heat source or sink are defined as follows: 𝑎, distance from planet center; 89 

𝑌- , distance of the corresponding subtropical jet from equator; 𝐷, vertical depth; and 𝐿-, 90 

meridional length. The hydrostatic approximation is valid only if 𝑂( is small so that NCTs are 91 
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negligible. Yet how do NCTs affect unforced equatorial waves? Also, can 𝑂(  measure the 92 

significance of NCTs in unforced equatorial waves? 93 

Research about effects of NCTs on wave propagation began with a focus on the interior 94 

of stars and giant planets, and the following two important effects have been identified: 95 

topographic beta-effect (e.g., Busse 1994; Gerkema et al. 2008; Heimpel et al. 2005; Yano 1998) 96 

and compressional beta-effect (e.g., Gilman and Glatzmaier 1981; Glatzmaier et al. 2009; 97 

Verhoeven and Stellmach 2014). Considering vortex tubes parallel to the rotation axis spanning 98 

the interior confined by, typically, a spherical outer boundary, the topographic beta-effect refers 99 

to vortex stretching due to radial motion. Busse’s linear model (e.g., Busse 1994) is classical but 100 

oversimplifies the topographic beta-effect (Yano 1998), and later studies (e.g., Heimpel et al. 101 

2005) used numerical models to simulate this effect. On the other hand, considering local 102 

meridional vorticity, the compressional beta-effect refers to vertical density-weighted advection 103 

of the meridional planetary vorticity. To illustrate, consider a positive meridional vorticity 104 

disturbance. To the east of the positive disturbance, in terms of the meridional planetary vorticity 105 

divided by density, the downward motion yields positive advection. Multiplying density converts 106 

this advection to increasing meridional relative vorticity via compression. The opposite occurs to 107 

the west. Consequently, the compressional beta-effect transmits the meridional vorticity 108 

disturbance to the east. Focusing on the interior dynamics of giant planets, Glatzmaier et al. 109 

(2009) argued the importance of the compressional beta-effect, which was coupled to the 110 

topographic beta-effect using their numerical model. Using an unbounded linear model, 111 

Verhoeven and Stellmach (2014) untangled the compressional beta-effect from coupling with the 112 

topographic beta-effect. They referred to Rossby waves as driven by density-weighted advection 113 

of planetary vorticity in general. However, Rossby waves conventionally refer to waves driven 114 
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by meridional advection of vertical planetary vorticity (e.g., Holton and Hakim 2013; Vallis 115 

2017). Abiding by this convention, this paper refers to waves driven by the compressional beta-116 

effect as compressional Rossby waves. Verhoeven and Stellmach (2014) attempted to derive the 117 

dispersion relation of compressional Rossby waves. They found that the compressional beta-118 

effect transmits zonal vertical circulation to the east. However, their derivation is dynamically 119 

inconsistent (see Section 3) and is limited to a zonal vertical plane. 120 

Research about effects of NCTs on the complete set of equatorially confined wave 121 

solutions has been in progress (Fruman 2009; Roundy and Janiga 2012). Fruman (2009) used a 122 

Boussinesq equation set including NCTs but not vertical acceleration (quasi-hydrostatic), and 123 

Roundy and Janiga (2012) further included vertical acceleration (fully nonhydrostatic). These 124 

two cases are similar for low frequency and long zonal wavelength. Categories of equatorially 125 

confined wave solutions are depicted in Table 1. In the Boussinesq models, NCTs widen the 126 

meridional decay length scale of the equatorially confined waves. At a certain longitude, NCTs 127 

tilt the lines of constant phase upward and poleward, so the wave phases propagate either 128 

equatorward and upward or poleward and downward, while the meridional wave energy 129 

propagation is zero. However, NCTs do not affect the dispersion relations of any subset of the 130 

equatorially confined wave solutions in the Boussinesq models (Fruman 2009; Roundy and 131 

Janiga 2012). The reason may be that the meridional planetary vorticity divided by density is 132 

constant in the Boussinesq models, and a gradient of the meridional planetary vorticity divided 133 

by density is necessary for the compressional beta-effect (e.g., Gilman and Glatzmaier 1981; 134 

Glatzmaier et al. 2009; Verhoeven and Stellmach 2014) to change the dispersion relations. 135 

Previous studies about effects of NCTs on waves on an f-plane (Kasahara 2003; Kohma and Sato 136 

2013) are also useful for this study; especially, Kohma and Sato (2013) used an anelastic 137 
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equation set. The solutions on a beta-plane should reduce to the solutions on an f-plane when 138 

𝛽 → 0. 139 

Development of dynamical cores for atmospheric models usually benefits from research 140 

about deterministic initial value problems. For example, numerical benchmarks of baroclinic 141 

waves (e.g., Jablonowski and Williamson 2006; Ullrich et al. 2014) are widely used to test the 142 

model performance in the midlatitudes. On the other hand, in the tropics, simply testing the dry 143 

dynamics over-stratifies the atmosphere, but adding full moist processes overcomplicates the 144 

benchmarking test. This conundrum motivates Reed and Jablonowski (2012) to design simplified 145 

moist physical parameterization for testing the tropical performance. To further eliminate 146 

physical parameterization, this study tunes the dynamical parameters to make the dry dynamical 147 

core more relevant to the moist tropical atmosphere. Research about analytical wave solutions 148 

emerging from the compressional beta-effect can be applied to validate the implementation of 149 

NCTs into the dynamical cores of atmospheric models. Such research can be important because 150 

many model developers are restoring NCTs, including DWD’s ICOsahedral Non-hydrostatic 151 

model (ICON, Borchert et al. 2019), GFDL’s Finite Volume model version 3 (FV3, Hann-Ming 152 

Henry Juang, personal communication), and NCAR’s Model for Prediction Across Scales 153 

(MPAS, William C. Skamarock, personal communication). Borchert et al. (2019) applied a 154 

numerical benchmark of baroclinic waves (Ullrich et al. 2014) and an analytical benchmark of 155 

acoustic waves. This study attempts to propose a more useful benchmark featuring exact wave 156 

solutions that can only exist with NCTs and dynamical parameters that eliminate buoyancy. 157 

This paper is organized as follows. Section 2 discusses an anelastic equation set used in 158 

the following sections. Section 3 derives the compressional Rossby wave solution. Section 4 159 

derives the complete set of equatorially confined wave solutions. Section 5 applies the 160 



8 
 

compressional Rossby wave solution to design a benchmarking test and presents results using the 161 

MPAS. Section 6 demonstrates how to analyze the compressional beta-effect from data by 162 

exploring its contribution to meridional vorticity tendency associated with the MJO. Section 7 163 

presents summary and discussion. 164 

2. Anelastic Equation Set 165 

An anelastic equation set formulated in Lipps and Hemler (1982) is used because 166 

vorticity dynamics govern this dynamical system (Jung and Arakawa 2008). Linearize the 167 

equation set around a motionless stratified reference state with the complete Coriolis terms on 168 

the equatorial beta-plane, where 2𝛺 cos 𝜗 reduces to 2𝛺 while 2𝛺 sin 𝜗 reduces to 𝛽𝑦; 𝛽 =169 

2𝛺 𝑎⁄ ; 170 

78
79
+ 𝑁<=𝑤 = 0,      (1a) 171 

7?
79
− 𝛽𝑦𝑣 + 2𝛺𝑤 + 7B

7C
= 0,     (1b) 172 

7D
79
+ 𝛽𝑦𝑢 + 7B

7F
= 0,      (1c) 173 

𝜖 7H
79
− 2𝛺𝑢 + 7B

7I
− 𝑏 = 0,     (1d) 174 

7?
7C
+ 7D

7F
+ 7H

7I
− H

K
= 0.     (1e) 175 

The variables are defined as follows: 𝑢, zonal velocity; 𝑣, meridional velocity; 𝑤, vertical 176 

velocity; 𝑏, buoyancy; and 𝜑, potential-temperature-weighted perturbation Exner function (a 177 

pressure-like perturbation proposed by Lipps and Hemler 1982). The coordinates are geometric 178 

where 𝑧 denotes geopotential height. The parameters are defined as follows: 𝑁, buoyancy 179 

frequency; 1 𝐻⁄ ≡ −d ln 𝜌 d𝑧⁄ , inverse scale height of reference density, 𝜌. To validate the 180 

equatorial beta-plane approximation, 𝑎 (distance from planet center, used to define 𝛽, 𝑥, 𝑦, and 181 

𝑧) must be larger than the characteristic meridional width and vertical depth. There is neither 182 
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forcing nor dissipation in equations (1), but given 𝑁< ≡ √𝛼𝑁, there can be diabatic heating and 186 

cooling depending on 𝛼, which is a nondimensional effective buoyancy parameter. 𝛼 = 1 sets 187 

vertical motion dry-adiabatic, and 𝛼 ∈ [0,1) reduces the effect of vertical motion on buoyancy; 188 

𝛼 = 0 is the neutral limit. 𝑁< is defined as the effective buoyancy frequency. 𝜖 is a 189 

nondimensional vertical acceleration parameter. 𝜖 = 1 and 0 set the dynamical system fully 190 

nonhydrostatic and quasi-hydrostatic. 𝜖 serves as a dynamical tracer for the vertical acceleration 191 

term during the derivation. Terms with explicit 𝛺 and 𝛽 are the nontraditional and traditional 192 

Coriolis terms. 193 

The energy equation is derived because this study emphasizes energy constraints 194 

including energy conservation during wave propagation and energy confinement in the 195 

equatorial region. Apply equation (1e) to the sum of the following: (1a) × 𝜌𝑏 𝑁<=⁄  + (1b) × 𝜌𝑢 + 196 

(1c) × 𝜌𝑣 + (1d) × 𝜌𝑤, and average over a wave period (overbar); 197 

7
79 Z

[
= \

8]

<̂]
+ 𝑢= + 𝑣= + 𝜖𝑤=

_
------------------------------

` +
7
7C (𝜌𝜑𝑢------) +

7
7F (𝜌𝜑𝑣------) +

7
7I (𝜌𝜑𝑤------) = 0.  (2) 198 

Equation (2) states a form of local energy conservation; local tendency of total energy, 199 

[
= \

8]

<̂]
+ 𝑢= + 𝑣= + 𝜖𝑤=

_, equals to three-dimensional convergence of energy flux, 𝜌𝜑𝑢, 𝜌𝜑𝑣, 200 

and 𝜌𝜑𝑤 for zonal, meridional, and vertical. With periodic and radiation boundary conditions in 201 

zonal and vertical directions, to conserve energy during zonal vertical wave propagation, total 202 

energy and zonal vertical energy flux must be constant at a certain latitude for every single plane 203 

wave solution. Accordingly, the amplitude of 𝑢, 𝑣, 𝑤, 𝑏, and 𝜑 must increase exponentially with 204 

altitude to be inversely proportional to the square root of 𝜌 for every single plane wave solution. 205 

To confine energy in an unbounded equatorial region, for any combinations of wave solutions, 206 
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total energy must decay to zero as 𝑦 → ±∞, and meridional energy flux must be zero. 207 

Consequently, the phases of 𝜑 and 𝑣 must be in quadrature so that their inner product is zero. 208 

The meridional vorticity equation is also derived because it simplifies the derivation of 209 

compressional Rossby wave solutions. Apply equation (1e) to the following: 𝜕 (1b) / 𝜕𝑧 − 𝜕 (1d) 210 

/ 𝜕𝑥; 211 

7
79 \

7?
7I
− 𝜖 7H

7C_ + 2𝛺
H
K
− 2𝛺 7D

7F
− 𝛽𝑦 7D

7I
+ 78

7C
= 0.   (3) 212 

Equation (3) states that meridional relative vorticity, 7?
7I
− 𝜖 7H

7C
, changes in time in 213 

response to the following mechanisms; −2𝛺 H
K

, vertical density-weighted advection of 214 

meridional planetary vorticity, i.e., the compressional beta-effect; 2𝛺 7D
7F

, meridional stretching of 215 

meridional planetary vorticity; 𝛽𝑦 7D
7I

, tilting of planetary vorticity from vertical to meridional; 216 

−78
7C

, buoyancy generation. To gain more insight into the compressional beta-effect, rewrite the 217 

term; −2𝛺 H
K
= 2𝛺𝑤 e fg[

eI
= −𝜌𝑤 e

eI \
=h
[ _. In this form, the vertical advection operator, −𝑤 e

eI
, 218 

multiplies density, and the advected quantity is the meridional planetary vorticity divided by 219 

density. 220 

3. Compressional Rossby Waves 221 

To derive compressional Rossby waves, ignore terms involving 𝑣 and 𝑏 in equation (3). 222 

This step isolates the compressional beta-effect from the complex equation set, which is the 223 

subject of Section 4. Ignoring 𝜕𝑣 𝜕𝑦⁄  enables rewriting equation (3) in terms of zonal vertical 224 

mass stream function, 𝛹, where 𝜌𝑢 ≡ 𝜕𝛹 𝜕𝑧⁄  and 𝜌𝑤 ≡ −𝜕𝛹 𝜕𝑥⁄ ; 225 

7
79 \𝜖

7]j
7C]

+ 7]j
7I]

+ k
K
7j
7I_ −

=h
K
7j
7C
= 0,    (4) 226 
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where k
K
7j
7I

 can be interpreted as a compressional effect on the stream function because it 227 

emerges from the reference density variations. 228 

Assume zonal vertical plane wave solutions to equation (4); 𝛹 =229 

𝛹l exp(− 𝑧 2𝐻⁄ ) exp[𝑖(𝑘𝑥 + 𝑚𝑧 − 𝜔𝑡)]. The factor exp(− 𝑧 2𝐻⁄ ) ensures energy conservation 230 

during vertical propagation because 𝜌 and the amplitude of 𝑤 have factors of exp(− 𝑧 𝐻⁄ ) and 231 

exp(𝑧 2𝐻⁄ ). Plug the assumed solutions into equation (4), and rearrange; 232 

v
w
= =h

K \𝜖𝑘
= + 𝑚= + k

xK]_
yk

.     (5) 233 

Equation (5) states the dispersion relation of compressional Rossby waves. The phase 234 

speed (𝜔 𝑘⁄ ) is eastward and increases with the planetary rotation rate (𝛺), the vertical 235 

wavelength (2𝜋 𝑚⁄ ), and the zonal wavelength (2𝜋 𝑘⁄ ); 𝑘 is insignificant for large-scale flow. 236 

The zonal phase speed also changes with the density scale height (𝐻), yet not monotonically; for 237 

𝑚= > 1 4𝐻=⁄ , the zonal phase speed increases with decreasing 𝐻, and vice versa. For large-scale 238 

compressional Rossby waves on Earth with a half vertical wavelength spanning an effectively 239 

neutral troposphere, the zonal phase speed is 0.24 m s–1, given 𝛺 = 7.292 × 10y� s–1, 𝐻 = 9.1 240 

km, and 2𝜋 𝑚⁄ = 25 km. Superposing incident and reflected waves against a rigid lower 241 

boundary, the solution becomes: 242 

𝑤 = 𝑤�exp \
I
=K_ sin(𝑚𝑧) sin(𝑘𝑥 − 𝜔𝑡),      (6a) 243 

𝜑 = 𝜑�exp \
I
=K_ cos �𝑚𝑧 + arctan

�
]�y=hw

�v � cos(𝑘𝑥 − 𝜔𝑡),    (6b) 244 

𝑢 = 𝑢�exp \
I
=K_ cos �𝑚𝑧 + arctan

�
]�y=hw

�v
+ arctan =h�

�
�y�vw�

cos(𝑘𝑥 − 𝜔𝑡), (6c) 245 

𝑤� =
w

√xh]y�v]
𝜑�,         (6d) 246 
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𝑢� =
�
�]

�]
��v]w]y�]���� �xh]�]

xh]y�v]
𝜑�,       (6e) 247 

where 𝜑�, 𝑤�, and 𝑢� denote amplitudes of 𝜑, 𝑤, and 𝑢. Figure 1 shows snapshots of the 248 

analytical solution of the zonal vertical structures of such waves. In Figure 1a, the downward 249 

motion yields positive density-weighted advection of the meridional planetary vorticity, and vice 250 

versa. Hence, the meridional vorticity disturbances propagate eastward. The dispersion relation 251 

derived by Verhoeven and Stellmach (2014) resembles equation (5) but lacks the term 1 4𝐻=⁄  252 

because they ignored the compressional effect on the stream function while considering the 253 

compressional beta-effect; hence, their derivation is dynamically inconsistent. Verhoeven and 254 

Stellmach (2014) mentioned one of the restrictions on the validity of their solution; 𝑚= ≫ k
xK]

. 255 

Yet even if 𝑚= ≫ k
xK]

, their solution does not conserve energy when the waves propagate 256 

vertically by a distance of order 𝐻. If 𝑚= ≤ k
xK]

, their solution will have a remarkable fast bias in 257 

terms of the phase speed. 258 

In equations (6b) and (6c), the vertical phase of 𝑢 is shifted from the vertical phase of 𝜑 259 

by arctan =h�
�
�y�vw

. In Figure 1b, a low-𝜑 region is located above a low-𝑢 region and below a high-260 

𝑢 region, and vice versa. This relation is consistent with Ong and Roundy (2020), who 261 

introduced NCTs to the hypsometric equation and showed that easterly winds correspond to low 262 

pressure perturbations above or high below. The structure in Figure 1b is a signature of 263 

compressional Rossby waves, which is different from Kelvin waves, where 𝑢 and 𝜑 are in phase 264 

(Figure 1c). 265 
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4. Complete Set of Equatorially Confined Waves 266 

To derive the complete set of equatorially confined waves, assume zonal vertical plane 267 

wave solutions to equation (1) that vary meridionally; {𝑢, 𝑣, 𝑤, 𝑏, 𝜑} =268 

�𝑢�(𝑦), 𝑣�(𝑦), 𝑤�(𝑦), 𝑏((𝑦), 𝜑�(𝑦)� exp(𝑧 2𝐻⁄ ) exp[𝑖(𝑘𝑥 + 𝑚𝑧 − 𝜔𝑡)]. The amplitudes vary 269 

vertically and meridionally. Vertically, the factor exp(𝑧 2𝐻⁄ ) ensures energy conservation. 270 

Meridionally, the hatted factors are unknown and will be solved given the necessary conditions 271 

for energy confinement in the equatorial region. Plug the assumed solutions into equation (1); 272 

𝑖𝜔𝑏( = 𝑁<=𝑤� ,        (7a) 273 

𝑖𝜔𝑢� = −𝛽𝑦𝑣� + 2𝛺𝑤� + 𝑖𝑘𝜑� ,      (7b) 274 

−𝑖𝜔𝑣� + 𝛽𝑦𝑢� +
eB�
eF
= 0,      (7c) 275 

−𝑖𝜔𝜖𝑤� − 2𝛺𝑢� + \
k
=K
+ 𝑖𝑚_𝜑� − 𝑏( = 0,    (7d) 276 

𝑖𝑘𝑢� +
eD�
eF
+ \−

k
=K
+ 𝑖𝑚_𝑤� = 0.     (7e) 277 

Because the relation between 𝜑�  and 𝑣� is the pivot to determine the necessary conditions 278 

for the energy confinement, 𝑏(, 𝑢� , and 𝑤�  are eliminated through the following steps in order: 279 

multiply equations (7c-e) by 𝑖𝜔, plug equations (7a-b) in to eliminate 𝑏( and 𝑢� , multiply the new 280 

equations (7c) and (7e) by �𝜖𝜔
= − 𝑁<= − 4𝛺=�, and plug the new equation (7d) in to eliminate 𝑤� ; 281 

�𝜔
=
�𝜖𝜔

= − 𝑁<= − 4𝛺=� + 𝛽
=𝑦=�𝑁<

= − 𝜖𝜔=
��𝑣� + �2𝛺𝛽𝑦𝑚𝜔 + 𝑖𝑘𝛽𝑦 \𝜖𝜔

= − 𝑁<= − hv
Kw_  𝜑� +282 

𝑖𝜔�𝜖𝜔
= − 𝑁<= − 4𝛺=�

eB�
eF
= 0,    (8a) 283 

�−𝑘
=
�𝑁<

= − 𝜖𝜔=
� − 𝑘

=hv
K
+ 𝜔=

\𝑚
= + k

xK]_ 𝜑� = �2𝛺𝛽𝑦𝑚𝜔 − 𝑖𝑘𝛽𝑦 \𝜖𝜔
= − 𝑁<= − hv

Kw_  𝑣� +284 

𝑖𝜔�𝜖𝜔
= − 𝑁<= − 4𝛺=�

eD�
eF

.      (8b) 285 
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Given any 𝑦 that is real, according to equation (8a), 𝜑� = 0 yields trivial solutions 304 

because 𝑣� = 0 must be true. According to equation (8b), 𝜑� ≠ 0 yields two types of nontrivial 305 

solutions, zero-𝑣� and nonzero-𝑣�. Also, the zero-𝑣� and nonzero-𝑣� cases require zero-𝐾 and 306 

nonzero-𝐾, where 𝐾 ≡ −𝑘=�𝑁<
= − 𝜖𝜔=

� − 𝑘
=hv
K
+ 𝜔=

\𝑚
= + k

xK]_. Subsections 4a and 4b solve 307 

these two cases separately, and Subsection 4c discusses the solutions. 308 

a. Zero-𝑣$ Case 309 

Apply 𝑣� = 0 to equation (8); 310 

�2𝛺𝛽𝑦𝑚𝜔 + 𝑖𝑘𝛽𝑦 \𝜖𝜔
= − 𝑁<= − hv

Kw_  𝜑� + 𝑖𝜔�𝜖𝜔
= − 𝑁<= − 4𝛺=�

eB�
eF
= 0, (9a) 311 

�−𝑘
=
�𝑁<

= − 𝜖𝜔=
� − 𝑘

=hv
K
+ 𝜔=

\𝑚
= + k

xK]_  𝜑� = 0.    (9b) 312 

Integrating equation (9a) yields the zero-𝑣� solution for 𝜑� , and plugging this into the original 313 

assumed solution yields the following: 314 

𝜑 = 𝜑�exp �
I
=K
−

<̂]�����y�v
]

<̂]�xh]y�v]
£w
v

F]

= � exp �𝑖 \𝑘𝑥 − 𝜔𝑡 + 𝑚𝑧 +
y=h£�

<̂]�xh]y�v]
F]

= _ . (10) 315 

Equation (9b) yields the dispersion relation of the zero-𝑣� solution; 316 

−𝑘=�𝑁<
= − 𝜖𝜔=

� − 𝑘
=hv
K
+ 𝜔=

\𝑚
= + k

xK]_ = 0.   (11) 317 

Equations (10) and (11) are consistent with the Kelvin wave solutions in previous studies 318 

(Fruman 2009; Holton and Hakim 2013; Kohma and Sato 2013; Roundy and Janiga 2012) when 319 

certain limits are taken. At the hydrostatic limit, i.e., 𝜖 → 0 and 𝛺 → 0, equations (10) and (11) 320 

reduce to the solutions of Holton and Hakim (2013). At the Boussinesq limit, i.e., 𝐻 → ∞, 321 

equations (10) and (11) reduce to the solutions of Roundy and Janiga (2012), which further 322 

reduce to the solutions of Fruman (2009) at the quasi-hydrostatic limit, i.e., 𝜖 → 0. Furthermore, 323 

equation (11) is equivalent to equation (33) of Kohma and Sato (2013), who suggested that these 324 

Deleted: 𝛼325 
Deleted: 𝑁326 
Deleted: 𝛼327 
Deleted: 𝑁328 



15 
 

waves are not trapped by a zonal boundary at the equator using an f-plane. However, equations 329 

(10) and (11) suggest that these waves are trapped on the equatorial beta-plane only if 330 

propagating eastward; given equation (11), 
<̂]�����y�v

]

<̂]�xh]y�v]
£w
v
=

£�( <̂]y�v])\�
]� ¤

¥�]_�
�]

�]

<̂]�xh]y�v]
> 0 in 331 

equation (10) if and only if v
w
> 0 and �w]

�]� ¤
¥�]

< �1 +
<̂]K]

h] \𝜖𝑘
= + 𝑚= + k

xK]_. The second 332 

condition only limits a zonal wavelength that is shorter than the vertical wavelength. 333 

However, the zero-𝑣� waves are not Kelvin waves. To illustrate, at the neutral limit, i.e., 334 

𝑁< → 0, equation (11) reduces to equation (5), i.e., compressional Rossby waves. Moreover, 335 

taking this limit for equation (10) suggest that the compressional Rossby waves are equatorially 336 

confined. With the effective static stability increasing from neutral, equation (11) will approach 337 

Kelvin waves, with a continuum of hybrid forms in between. Kelvin wave dynamics dominate if 338 

the effective buoyancy frequency is larger than the meridional planetary vorticity. All zero-𝑣� 339 

waves with small aspect ratio, i.e., 𝜖𝑘= ≪ 𝑚= + k
xK]

, are nondispersive in the zonal direction. 340 

b. Nonzero-𝑣$ Case 341 

Derivations to be elaborated in this section show that the nonzero-𝑣� solutions of equation 342 

(8) can be decomposed as 𝑣� ≡ 𝑣�𝑉 \
F
©_ exp \

yF]

=©] _ exp \
ª«F]

= _, where the four factors denote 343 

amplitude of 𝑣, meridional stationary oscillator, meridional decay function, and meridional 344 

propagation oscillator. 𝛤 can be interpreted as a meridional propagation parameter; phases 345 

propagate poleward for positive 𝛤, and vice versa. 𝛤 can also be interpreted as a meridional 346 

tilting parameter; lines of constant phase tilt upward and poleward if the signs of 𝛤 and 𝑚 are 347 

opposite, and vice versa. To discuss energy constraints on 𝛤, plug the decomposition and 𝐾 ≡348 

−𝑘=�𝑁<
= − 𝜖𝜔=

� − 𝑘
=hv
K
+ 𝜔=

\𝑚
= + k

xK]_ into equation (8b); 349 
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𝐾𝜑� = [2𝛺𝛽𝑦𝑚𝜔 − 𝛤𝑦𝜔�𝜖𝜔
= − 𝑁<= − 4𝛺=� − 𝑖𝑘𝛽𝑦 \𝜖𝜔

= − 𝑁<= − hv
Kw_ − 𝑖

F
©]
𝜔�𝜖𝜔

= − 𝑁<= −351 

4𝛺=� + 𝑖
k
­
e­
eF
𝜔�𝜖𝜔

= − 𝑁<= − 4𝛺=�]𝑣�.   (12) 352 

To prevent any meridional energy flux, if 𝜑�  is real,	𝑣� must be imaginary. To satisfy 353 

equation (12), if 𝜑�  is real, the rhs of equation (12) must be real. Consequently, given 𝜑�  is real 354 

without loss of generality (assuming any complex 𝜑�  yields the same conclusion), on the rhs of 355 

equation (12), −𝛤𝑦𝜔�𝜖𝜔
= − 𝑁<= − 4𝛺=� must cancel 2𝛺𝛽𝑦𝑚𝜔, which constrains the meridional 356 

propagation (tilting) parameter; 357 

𝛤 = y=h£�
<̂]�xh]y�v]

.     (13) 358 

Accordingly, the meridional phase propagation is nonzero as in equation (13) if and only if the 359 

meridional energy propagation is zero. Equation (13) is equivalent to equation (18) of Roundy 360 

and Janiga (2012); thus, the meridional phase propagation is independent from the reference 361 

density variations. Moreover, because 𝑁<= + 4𝛺= − 𝜖𝜔= > 0 for all real solutions, 𝛤 and 𝑚 are 362 

opposite signed. Consequently, Fruman’s (2009) result of upward and poleward tilting of lines of 363 

constant phase also applies to the less-approximated case in the present study (Table 1). 364 

To solve for 𝑉 and 𝐿, multiply equation (8a) by 𝐾, plug equation (12) into it, and 365 

rearrange; 366 

�𝑁<
= + 4𝛺= − 𝜖𝜔=

�
e]

eF] �𝑉 exp \
yF]

=©] _  + �\𝑘
= + w£

v _ \𝜖𝜔
= − 𝑁<= − hv

Kw_ + 𝜔
=
\𝑚

= + k
xK]

−367 

hw
Kv_ − \𝑚

= + k
xK]

− xh]�]

<̂]�xh]y�v]_ 𝛽
=𝑦=  𝑉 exp \

yF]

=©] _ = 0.   (14) 368 

Then, to apply known solutions to equation (14), nondimensionalize it by plugging 𝑦 ≡ 𝐿𝑌 into 369 

it. This yields a form of Hermite’s equation, e
]­
e¯]

− 2𝑌 e­
e¯
+ 𝜆𝑉 = 0, where 370 

𝐿= = <̂]�xh]y�v]

£�( <̂]y�v])\�
]� ¤

¥�]_�
�]

�]

,    (15a) 371 
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𝜆 = ©]

<̂]�xh]y�v] �\𝑘
= + w£

v _ \𝜖𝜔
= − 𝑁<= − hv

Kw_ + 𝜔
=
\𝑚

= + k
xK]

− hw
Kv_  − 1. (15b) 388 

The solutions for 𝑉 are the physicists’ Hermite polynomials, H², where 𝑛 = 0,1,2, … (e.g., Vallis 389 

2017). Plugging this into the original assumed solution yields the following: 390 

𝑣 = 𝑣�H² \
F
©_ exp \

I
=K
− F]

=©]_ exp �𝑖 \𝑘𝑥 − 𝜔𝑡 + 𝑚𝑧 +
«F]

= _ .  (16) 391 

For each 𝑛, solutions exist if and only if 𝜆 = 2𝑛, which yields the dispersion relations; 392 

−\𝑘
= + w£

v _ \𝑁<
= + hv

Kw
− 𝜖𝜔=

_ + 𝜔
=
\𝑚

= + k
xK]

− hw
Kv_ = (2𝑛 + 1)

<̂]�xh]y�v]

©]
. (17) 393 

Equations (13) and (15) through (17) are consistent with the non-Kelvin wave solutions 394 

in previous studies (Fruman 2009; Holton and Hakim 2013; Roundy and Janiga 2012) when 395 

certain limits are taken. A subset of the dispersion relations where 𝐾 = 0 is discarded because 396 

the derivation of equation (14) requires 𝐾 ≠ 0. 𝐿= > 0 is true for all results discussed below. 397 

c. Discussion 398 

The zonal temporal dispersion relations of the zero-𝑣� and nonzero-𝑣� cases are depicted 399 

together in Figure 2, given 𝛺 = 7.292 × 10y� s–1, 𝐻 = 9.1 km, and 2𝜋 𝑚⁄ = 25 km. In the 400 

strongly stable case (Figure 2a), all the modes appear like Matsuno’s (1966) modes with an 401 

equivalent depth of 33 m, and the inclusion of NCTs does not make a noticeable difference in 402 

terms of the dispersion relations and the spatial structure. Such an equivalent depth lies within 403 

the canonical convectively coupled equatorial wave bands on Earth (e.g., Wheeler and Kiladis 404 

1999). In the neutral case (Figure 2b), the zero-𝑣� and nonzero-𝑣� modes appear like the Kelvin 405 

and Yanai (𝑛 = 0, mixed Rossby-gravity) modes in Figure 2a, but the compressional beta-effect 406 

replaces buoyancy as the eastward-propagation mechanism. Also, in Figure 2b, the westward 407 

inertio-gravity (high wavenumber and high frequency) modes in Figure 2a disappear because 408 

buoyancy is zero but is a fundamental restoring force of these waves. Moreover, in Figure 2b, the 409 
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Rossby (𝑛 > 0 and low frequency) modes in Figure 2a coincide 𝐾 = 0 so are discarded. For the 414 

zero-𝑣� mode (Figure 2c), with decreasing 𝑁<, the zonal phase speed decreases linearly without 415 

NCTs but nonlinearly with NCTs; in the latter case, the decreasing rate of phase speed decreases 416 

so that the phase speed approaches 0.24 m s–1 instead of zero. For all the modes transitioning 417 

from Figure 2a to 2b, see the animation in mp4 format in the supplemental material, where black 418 

and red curves denote dispersion relations with and without NCTs. Except the last frame of the 419 

animation (Figure 2b), sound of piano is played at a sound frequency proportional to the 420 

effective buoyancy frequency used to plot every frame. With decreasing 𝑁<, the zonal phase 421 

speed of all modes decreases, and the dispersion curves with and without NCTs separate farther. 422 

Overall, the contributions of NCTs become noticeable when the effective buoyancy frequency 423 

becomes comparable or smaller than the meridional planetary vorticity, which is consistent with 424 

Müller (1989). 425 

The results suggest that 𝑂(  number (Ong and Roundy 2019) can measure the significance 426 

of NCTs in unforced equatorial waves. To estimate 𝑂(  number, choose 𝐿 as the characteristic 𝑌- 427 

and 𝐿-, and 2𝐻 as the characteristic 𝐷. Then, plug these choices and equation (15a) into 𝑂( ≡428 

𝑎𝐷 𝑌-𝐿-⁄ , and assume low frequency where 𝜔= ≪ 4𝛺=. For the neutral case, 𝑂( = 1; in words, 429 

NCTs are on the leading order. For a strongly stable case where 2𝛺 𝑁<⁄ → 0, 𝑂(~2𝛺 𝑁<⁄ ; in 430 

words, NCTs are negligible, so Matsuno’s (1966) solutions, using the hydrostatic approximation, 431 

can become valid. 432 

5. Benchmarking Test 433 

To test the model performance with the implementation of NCTs under a neutral 434 

condition, we choose the compressional Rossby wave solutions in Section 3 as a benchmark 435 

because the model configuration is simpler than the solutions in Section 4. The spatial domain is 436 
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a zonal vertical rectangle. The lateral boundaries are periodic, and the upper and lower 437 

boundaries are rigid. The planetary vorticity has a northward component but no vertical 438 

component, i.e., using the generalized equatorial f-plane. We make the planetary rotation rate 439 

much faster to save process time; the wave period becomes as short as 86,400 s. The basic state 440 

is hydrostatic and motionless. The initial perturbations are set using equations (5) and (6). Table 441 

2 lists the parameters for the benchmarking test. 442 

For the thermodynamics, we aim to eliminate buoyancy. A possible way is to initiate the 443 

test with constant potential temperature, but this drastically enhances the vertical decrease of the 444 

density scale height. Instead, we use a barotropic ideal gas whose thermodynamic properties fit 445 

our goal; its heat capacity is infinity, so an isothermal atmosphere becomes isentropic because its 446 

Poisson constant is zero. 𝜑 for such a gas denotes perturbation of pressure divided by basic-state 447 

density. For a fully compressible model, its speed of sound is ¶𝑔𝐻, where 𝑔 denotes gravity 448 

acceleration, and equation (1e) becomes: 449 

k
¸K

7B
79
+ 7?

7C
+ 7H

7I
− H

K
= 0.    (18) 450 

While the structures in equation (6) still apply, the dispersion relation becomes: 451 

v
w
= =h

K \𝜖𝑘
= + 𝑚= + k

xK]
+ xh]

¸K
− 𝜖 v

]

¸K_
yk

.   (19) 452 

Compressional Rossby waves propagate slightly slower in the fully compressible case as 453 

equation (19) than the anelastic case as equation (5). In Table 2, different values of 𝑚 are given 454 

for the two cases so that the wave period remains 86,400 s. In practice, −𝜖 v
]

¸K
 in equation (19) is 455 

omitted. If the Earth rotation rate is used, the difference between equation (5) and (19) will be 456 

negligible, but the process time for the test will drastically increase. 457 
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The implementation of NCTs has been a compiler option in the MPAS atmospheric 458 

dynamical core (Skamarock et al. 2012), which is fully compressible. Testing this option with 459 

the compressional Rossby waves, this study identified a flaw in its source code (the vertical NCT 460 

had been mistakenly divided by the grid-cell area in m2) and corrected it. For the simulation, the 461 

grid mesh comprises regular hexagons of which a pair of opposite sides lies in the zonal 462 

direction. The zonal grid spacing is 5 km, so 400 grid cells cover the domain width. The domain 463 

depth is equally divided into 64 grid boxes, so the vertical grid spacing is 198.77 m. All physical 464 

parameterization schemes and Rayleigh damping are switched off. The results suggest that the 465 

numerical solutions reasonably conform to the analytical solutions in this study; the contours of 466 

the results almost overlap those on Figure 1. In terms of the Euclidean norm of the zonal velocity 467 

field, Figure 3 depicts the percentages of the difference between the numerical and the analytical 468 

solutions to the analytical solution. This normalized difference decreases with 𝑢�; at the end of 469 

one wave period (24 hours), 1.315% for 𝑢� = 0.09 m s–1, 0.811% for 𝑢� = 0.045 m s–1, and 470 

0.625% for 𝑢� = 0.0225 m s–1. For the zonal velocity field output every 3,600 s, see compilation 471 

of graphics in pdf format in the supplemental material, where the thick black and thin green 472 

contours denote analytical and numerical solutions. The difference is small and can be 473 

substantially explained by the zonal advection of zonal velocity. This conformation validates the 474 

recent correction of the implementation of NCTs in the MPAS atmospheric dynamical core. 475 

6. Compressional beta-effect in the MJO 476 

To demonstrate how to analyze the compressional beta-effect from reanalysis data, we 477 

take the MJO as an example, focusing on its zonal-vertical overturning circulation. The slow 478 

eastward phase speed of the compressional Rossby wave solutions motivates us to explore 479 

possible contributions of the compressional beta-effect to the eastward propagation of the MJO, 480 
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which is on the slowest end of the spectrum of Wheeler and Kiladis (1999) but 20 times on 483 

average faster than the compressional Rossby wave solutions. Accordingly, this study analyzes 484 

the MJO-filtered compressional beta-effect and local meridional vorticity tendency reconstructed 485 

from ERA-Interim (Dee et al. 2011) reanalysis data from 1979 to 2018. The compressional beta-486 

effect is approximated from −2𝛺 H
K

 as equation (3) to =h
¹
º¹
º9

, where 𝑝 denotes pressure, with the 487 

data in isobaric coordinates. The local meridional vorticity tendency is approximated with a 488 

central finite difference with a spacing of one day. An MJO index for every longitude is created 489 

by filtering tropical precipitation for an MJO band covering zonal wavenumber from 1 to 10 and 490 

time period from 30 days to 96 days. For the tropical precipitation, GPCP Version 1.3 One-491 

Degree Daily Precipitation Data Set (Mesoscale Atmospheric Processes Branch and Earth 492 

System Science Interdisciplinary Center 2018) is averaged from 15°S to 15°N. Then, the 493 

compressional beta-effect and the local meridional vorticity tendency are regressed upon the 494 

MJO index. The statistical significance is tested with two-tailed Student’s t-test at 95% 495 

confidence level, where the equivalent degrees of freedom take autocorrelation of one-day lag 496 

into account. 497 

Figure 4 depicts zonal vertical distributions at the equator of the results regressed upon 498 

the MJO-filtered precipitation at 90°E. The most prominent signal of the compressional beta-499 

effect is negative in the mid-upper troposphere in the MJO-active (convective) phase from 60°E 500 

to 135°E minimizing at 90°E. This negative compressional beta-effect can be explained by 501 

upward motion associated with the MJO-active phase. The most prominent negative signal of the 502 

meridional vorticity tendency is collocated with the negative signal of the compressional beta-503 

effect. In terms of the ratio of the minimum values, the compressional beta-effect contributes 504 

10.8% of the meridional vorticity tendency. In other words, the east-up-west circulation in the 505 
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west of the MJO-active phase is propagating toward the MJO-active phase partially owing to the 506 

compressional beta-effect. The compressional beta-effect is lacking in most of the current global 507 

atmospheric models because of the omission of NCTs, but the consequences of this lack may 508 

vary. For such models to yield an appropriate phase speed and amplitude of the MJO, they would 509 

need at least one of the other terms in equation (3) to overact, e.g., an overestimated west-east 510 

buoyancy gradient across the MJO-active phase. For the other terms to remain appropriate, the 511 

phase speed would be underestimated to maintain the amplitude, or the amplitude would 512 

decrease with time to maintain the phase speed. Another mechanism whereby NCTs can 513 

contribute to vorticity budgets is through tilting (Hayashi and Itoh 2012). We suspect that the 514 

tilting unlikely affects propagation for the following reasons. Adding only the tilting to 515 

Matsuno’s (1966) model does not change the dispersion relations of the equatorial waves 516 

(Fruman 2009; Roundy and Janiga 2012). Adding both the tilting and the compressional beta-517 

effect to it yields additional eastward propagation (Section 4). Removing the tilting from this 518 

result by removing the 𝑦-dimension does not change the eastward propagation (Section 3). 519 

7. Summary and Discussion 520 

This study corrects the derivation of the compressional Rossby wave solutions of 521 

Verhoeven and Stellmach (2014) by accounting for dynamical consistency and energy 522 

constraints. Compressional Rossby waves are meridional vorticity disturbances in the equatorial 523 

region that propagate eastward owing to the compressional beta-effect. This effect is due to 524 

vertical density-weighted advection of the meridional planetary vorticity; the advected quantity 525 

is the meridional planetary vorticity divided by density, and multiplying density converts such an 526 

advection to local meridional relative vorticity tendency via compression or expansion. A 527 

signature of compressional Rossby waves is a low-pressure anomaly between easterly winds 528 
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below and westerly winds above, and vice versa. The compressional Rossby wave solutions can 529 

serve as a benchmark to validate the implementation of the nontraditional Coriolis terms (NCTs). 530 

With effectively neutral static stability and initial large-scale disturbances given a half vertical 531 

wavelength spanning the troposphere on Earth, compressional Rossby waves are expected to 532 

propagate eastward at a phase speed of 0.24 m s–1. The phase speed increases with the planetary 533 

rotation rate and the vertical wavelength, and it also changes with the density scale height. This 534 

benchmark can be important because many model developers are restoring NCTs. We recently 535 

corrected the implementation of NCTs in the MPAS atmospheric dynamical core and validated 536 

the correction by simulating the compressional Rossby waves. This benchmarking test uses a 537 

generalized equatorial f-plane. Also, it uses fast planetary rotation rate to save process time. 538 

Nonetheless, it uses barotropic ideal gas to magnify the compressional beta-effect without adding 539 

moist processes. The numerical solutions reasonably conform to the analytical solutions. 540 

This study also derives a complete set of equatorially confined wave solutions from an 541 

anelastic equation set with the complete Coriolis terms, which include both the vertical and 542 

meridional planetary vorticity. The propagation mechanism can change with the effective static 543 

stability. In a strongly stable case in which the effective buoyancy frequency is larger than the 544 

meridional planetary vorticity, the dispersion relations appear like Matsuno’s (1966), which is 545 

true for the canonical convectively coupled equatorial wave bands on Earth (e.g., Wheeler and 546 

Kiladis 1999). In the neutral case, in which buoyancy ceases, the compressional beta-effect 547 

replaces buoyancy as the eastward-propagation mechanism, and westward-propagating modes 548 

that depend on buoyancy disappear. The complete set derived in this study remarkably differs 549 

from Matsuno’s (1966) only if the meridional planetary vorticity is comparable or larger than the 550 

effective buoyancy frequency, which is consistent with Müller (1989). 551 
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As a demonstration of data analysis, the compressional beta-effect and the meridional 554 

vorticity tendency are reconstructed using reanalysis data and regressed upon tropical 555 

precipitation data filtered for the MJO. In the mid-upper troposphere in the MJO-active phase, 556 

the compressional beta-effect is prominently negative owing to the upward motion. In the same 557 

region, the meridional vorticity is decreasing with time. The compressional beta-effect explains 558 

10.8% of the decrease of the meridional vorticity in the MJO-active phase in terms of the ratio of 559 

the minimum values. 560 

More consideration shall be given to theories about a dynamical continuum from the 561 

Kelvin waves to the MJO. Roundy (2020) showed that observed signals conforming to unforced 562 

Kelvin waves exist in the upper troposphere throughout the Kelvin-wave–MJO spectrum. 563 

Adames et al. (2019) included moisture variability into a zero-𝑣� wave framework, and the results 564 

suggest that the moisture dynamics becomes significant while the system is adjusted toward the 565 

MJO. The present study encourages a combination of both NCTs and moisture variability for 566 

future studies because NCTs are also potentially considerable for MJO propagation. Still, this 567 

combination may not combine the unforced wave framework and the forced-dissipative 568 

framework. Yet the MJO appears like unforced waves in the upper troposphere but like forced 569 

flow in the lower troposphere (Roundy 2012). This challenge is also left for future studies. 570 

Acknowledgments. This work was funded by National Science Foundation (grants 571 

AGS1757342, AGS1358214, and AGS1128779). This paper originated as a course project of 572 

Hing Ong in ATM 523, Large Scale Dynamics of the Tropics, instructed by Paul Roundy. It 573 

became a chapter of Hing Ong’s PhD dissertation, accepted by a committee composed of Paul 574 

Roundy, William Skamarock, Brian Rose, and Robert Fovell. We thank William Skamarock for 575 

discussion and technical support on the development of the benchmarking test. We thank Paul 576 



25 
 

Roundy’s (previously Hing Ong’s) department for funding this paper and thank the other 577 

students in the class for discussion. We thank Kai-Chih Tseng, Kevin Reed, and four anonymous 578 

reviewers for the useful comments. Hing Ong thanks especially an anonymous student reviewer 579 

in the class. We thank ECMWF for granting access to ERA-Interim data via NCAR Research 580 

Data Archive. 581 

Data Availability Statement. GPCP Version 1.3 and ERA-Interim data can be obtained 582 

via https://doi.org/10.5065/PV8B-HV76 and https://doi.org/10.5065/D6CR5RD9. The source 583 

code generating analytical solutions for the compressional Rossby waves are available from 584 

https://github.com/HingOng/CompressionalRossbyWave. The source code of the MPAS and the 585 

mesh file for the test case can be obtained via https://github.com/MPAS-Dev/MPAS-Model and 586 

https://www2.mmm.ucar.edu/projects/mpas/test_cases/v7.0/mountain_wave.tar.gz. 587 

REFERENCES 588 

Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture 589 

wave: Theory and observations. J. Atmos. Sci., 73, 913–941, https://doi.org/10.1175/JAS-590 

D-15-0170.1. 591 

Adames, Á. F., D. Kim, S. K. Clark, Y. Ming, and K. Inoue, 2019: Scale analysis of moist 592 

thermodynamics in a simple model and the relationship between moisture modes and 593 

gravity waves. J. Atmos. Sci., 76, 3863–3881, https://doi.org/10.1175/JAS-D-19-0121.1. 594 

Borchert, S., G. Zhou, M. Baldauf, H. Schmidt, G. Zängl, and D. Reinert, 2019: The upper-595 

atmosphere extension of the ICON general circulation model (version: ua-icon-1.0). 596 

Geosci. Model Dev., 12, 3541–3569, https://doi.org/10.5194/gmd-12-3541-2019. 597 



26 
 

Bretherton, C. S., and A. H. Sobel, 2003: The Gill model and the weak temperature gradient 598 

approximation. J. Atmos. Sci., 60, 451–460, https://doi.org/10.1175/1520-599 

0469(2003)060<0451:TGMATW>2.0.CO;2. 600 

Busse, F., 1994: Convection driven zonal flows and vortices in the major planets. Chaos, 4, 123–601 

134, https://doi.org/10.1063/1.165999. 602 

Dee, D. P., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance 603 

of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, 604 

https://doi.org/10.1002/qj.828. 605 

Fruman, M. D., 2009: Equatorially bounded zonally propagating linear waves on a generalized β 606 

plane. J. Atmos. Sci., 66, 2937–2945, https://doi.org/10.1175/2009JAS2932.1. 607 

Gerkema, T., J. Zimmerman, L. Maas, and H. Van Haren, 2008: Geophysical and astrophysical 608 

fluid dynamics beyond the traditional approximation. Rev. Geophys., 46, 1–33, 609 

https://doi.org/10.1029/2006RG000220. 610 

Gill, A. E., 1980: Some simple solutions for heat‐induced tropical circulation. Quart. J. Roy. 611 

Meteor. Soc., 106, 447–462, https://doi.org/10.1002/qj.49710644905. 612 

Gilman, P. A., and G. A. Glatzmaier, 1981: Compressible convection in a rotating spherical 613 

shell. III-Analytic model for compressible vorticity waves. Astrophys. J., Suppl. Ser., 45, 614 

335–388. 615 

Glatzmaier, G. A., M. Evonuk, and T. M. Rogers, 2009: Differential rotation in giant planets 616 

maintained by density-stratified turbulent convection. Geophys. Astrophys. Fluid Dyn., 617 

103, 31–51, https://doi.org/10.1080/03091920802221245. 618 

Haertel, P. T., and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61, 619 

2707–2721, https://doi.org/10.1175/JAS3352.1. 620 



27 
 

Hayashi, M., and H. Itoh, 2012: The importance of the nontraditional Coriolis terms in large-621 

scale motions in the tropics forced by prescribed cumulus heating. J. Atmos. Sci., 69, 622 

2699–2716, https://doi.org/10.1175/JAS-D-11-0334.1. 623 

Heimpel, M., J. Aurnou, and J. Wicht, 2005: Simulation of equatorial and high-latitude jets on 624 

Jupiter in a deep convection model. Nat., 438, 193, https://doi.org/10.1038/nature04208. 625 

Holton, J. R., and G. J. Hakim, 2013: An introduction to dynamic meteorology. Academic press, 626 

532 pp, https://doi.org/10.1016/B978-0-12-384866-6.00001-5. 627 

Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric 628 

model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 2943–2975, 629 

https://doi.org/10.1256/qj.06.12. 630 

Jung, J.-H., and A. Arakawa, 2008: A three-dimensional anelastic model based on the vorticity 631 

equation. Mon. Wea. Rev., 136, 276–294, https://doi.org/10.1175/2007MWR2095.1. 632 

Kasahara, A., 2003: On the nonhydrostatic atmospheric models with inclusion of the horizontal 633 

component of the Earth’s angular velocity. J. Meteor. Soc. Japan, 81, 935–950, 634 

https://doi.org/10.2151/jmsj.81.935. 635 

Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: 636 

Convectively coupled equatorial waves. Rev. Geophys, 47, 1–42, 637 

https://doi.org/10.1029/2008RG000266. 638 

Kohma, M., and K. Sato, 2013: Kelvin and Rossby Waves Trapped at Boundaries under the Full 639 

Coriolis Force. Sci. Online Lett. Atmos., 9, 9–14, https://doi.org/10.2151/sola.2013-003. 640 

Lipps, F. B., and R. S. Hemler, 1982: A scale analysis of deep moist convection and some related 641 

numerical calculations. J. Atmos. Sci., 39, 2192–2210, https://doi.org/10.1175/1520-642 

0469(1982)039<2192:ASAODM>2.0.CO;2. 643 



28 
 

Müller, R., 1989: A note on the relation between the “traditional approximation” and the metric 644 

of the primitive equations. Tellus A, 41, 175–178, https://doi.org/10.1111/j.1600-645 

0870.1989.tb00374.x. 646 

Maher, P., and Coauthors, 2019: Model hierarchies for understanding atmospheric circulation. 647 

Rev. Geophys, 57, 250–280, https://doi.org/10.1029/2018RG000607. 648 

Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 649 

25–43, https://doi.org/10.2151/jmsj1965.44.1_25. 650 

Mesoscale Atmospheric Processes Branch/Laboratory for Atmospheres/Earth Sciences 651 

Division/Science and Exploration Directorate/Goddard Space Flight Center/NASA, and 652 

Earth System Science Interdisciplinary Center/University of Maryland, 2018: GPCP 653 

Version 1.3 One-Degree Daily Precipitation Data Set. Research Data Archive at the 654 

National Center for Atmospheric Research, Computational and Information Systems 655 

Laboratory, accessed 10 August 2019, https://doi.org/10.5065/PV8B-HV76. 656 

Neelin, J. D., D. S. Battisti, A. C. Hirst, F. F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 657 

1998: ENSO theory. J. Geophys. Res.: Oceans, 103, 14261–14290, 658 

https://doi.org/10.1029/97JC03424. 659 

Ong, H., and P. E. Roundy, 2019: Linear effects of nontraditional Coriolis terms on intertropical 660 

convergence zone forced large-scale flow. Quart. J. Roy. Meteor. Soc., 145, 2445–2453, 661 

https://doi.org/10.1002/qj.3572. 662 

Ong, H., and P. E. Roundy, 2020: Nontraditional hypsometric equation. Quart. J. Roy. Meteor. 663 

Soc., 146, 700–706, https://doi.org/10.1002/qj.3703. 664 



29 
 

Reed, K. A., and C. Jablonowski, 2012: Idealized tropical cyclone simulations of intermediate 665 

complexity: A test case for AGCMs. J. Adv. Model. Earth Syst., 4, M04001, 666 

https://doi.org/10.1029/2011MS000099. 667 

Roundy, P. E., 2012: Observed structure of convectively coupled waves as a function of 668 

equivalent depth: Kelvin waves and the Madden–Julian oscillation. J. Atmos. Sci., 69, 669 

2097–2106, https://doi.org/10.1175/JAS-D-12-03.1. 670 

Roundy, P. E., 2020: Interpretation of the spectrum of eastward‐moving tropical convective 671 

anomalies. Quart. J. Roy. Meteor. Soc., 146, 795–806, https://doi.org/10.1002/qj.3709. 672 

Roundy, P. E., and M. A. Janiga, 2012: Analysis of vertically propagating convectively coupled 673 

equatorial waves using observations and a non‐hydrostatic Boussinesq model on the 674 

equatorial beta‐plane. Quart. J. Roy. Meteor. Soc., 138, 1004–1017, 675 

https://doi.org/10.1002/qj.983. 676 

Silva Dias, P. L., W. H. Schubert, and M. DeMaria, 1983: Large-scale response of the tropical 677 

atmosphere to transient convection. J. Atmos. Sci., 40, 2689–2707, 678 

https://doi.org/10.1175/1520-0469(1983)040<2689:LSROTT>2.0.CO;2. 679 

Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: 680 

A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and 681 

C-grid staggering. Mon. Wea. Rev., 140, 3090–3105, https://doi.org/10.1175/MWR-D-682 

11-00215.1. 683 

Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation 684 

and balanced tropical moisture waves. J. Atmos. Sci., 58, 3650–3665, 685 

https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2. 686 



30 
 

Ullrich, P. A., T. Melvin, C. Jablonowski, and A. Staniforth, 2014: A proposed baroclinic wave 687 

test case for deep‐and shallow‐atmosphere dynamical cores. Quart. J. Roy. Meteor. Soc., 688 

140, 1590–1602, https://doi.org/10.1002/qj.2241. 689 

Vallis, G. K., 2017: Atmospheric and oceanic fluid dynamics. Cambridge University Press, 946 690 

pp, https://doi.org/10.1017/9781107588417. 691 

Verhoeven, J., and S. Stellmach, 2014: The compressional beta effect: A source of zonal winds 692 

in planets? Icarus, 237, 143–158, https://doi.org/10.1016/j.icarus.2014.04.019. 693 

Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of 694 

clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374–695 

399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2. 696 

Yano, J.-I., 1998: Deep convection in the interior of major planets: a review. Aust. J. Phys., 51, 697 

875–889, https://doi.org/10.1071/P97079. 698 

Yano, J.-I., and M. Bonazzola, 2009: Scale analysis for large-scale tropical atmospheric 699 

dynamics. J. Atmos. Sci., 66, 159–172, https://doi.org/10.1175/2008JAS2687.1. 700 

  701 



31 
 

TABLE 702 

Table 1. Categories of equatorially confined wave solutions 703 

 Hydrostatic Quasi-hydrostatic Fully nonhydrostatic 

Shallow water Matsuno (1966)   

Boussinesq  Fruman (2009) Roundy and Janiga (2012) 

Anelastic Holton and Hakim (2013)  The present study 

Table 2. Parameters used in the benchmarking test 704 

𝛺 (planetary rotation rate) 6.973339 × 10–3 s–1 

𝑔 (gravity acceleration) 9.80616 m s–2 

𝑅 (gas constant for dry air) 287.0 J kg–1 K–1 

𝑇 (basic-state temperature) 311.0 K 

𝐻 (density scale height) 𝑅𝑇 𝑔⁄ ≅ 9.1 × 103 m 

𝜅 (Poisson constant)	 0 

𝑝À (basic-state pressure at the bottom) 1.0 × 105 Pa 

𝐿C (domain width) 2.0 × 106 m 

𝑘 (zonal wavenumber) 2𝜋 𝐿C⁄   

𝐿I (domain depth) 12,721 m (fully compressible) 

12,500 m (anelastic) 

𝑚 (vertical wavenumber) 𝜋 𝐿I⁄   

𝑢� (initial perturbation amplitude of zonal velocity) 0.09 m s–1 

  705 
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Figure 1. Snapshots of the zonal vertical structures of the analytical solution of (a-b) the 708 

compressional Rossby waves (𝑁< = 0) and (c) the Kelvin waves (𝑁< = 𝑁). In panel (a), the 709 

contours denote the mass stream function, and the arrows denote the mass flux direction. The 710 

shading denotes the meridional planetary vorticity divided by density normalized by the surface 711 

value. In panels (b-c), the contours denote 𝜑 (a pressure-like perturbation), and the shading 712 

denotes the zonal wind. The dashed contours denote negative values (negative stream function 713 

corresponds to positive meridional relative vorticity), and the zero contours are omitted. The 714 

length and depth scales are normalized by the wavelengths. 715 
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 719 

Figure 2. Zonal temporal dispersion relations of the equatorially confined wave solutions for (a) 720 

a strongly stable case and (b) the neutral case. Panel (c) depicts the transition of the zonal phase 721 

speed of the zero-𝑣� waves with and without NCTs from slightly stable to strongly stable. 722 
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 723 

Figure 3. Temporal evolutions of the normalized root-mean-square errors of the numerical 724 

solutions of the compressional Rossby waves using the MPAS. The numbers by the curves 725 

denote the initial perturbation amplitude of zonal velocity in m s–1. 726 
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 727 

Figure 4. Zonal vertical distributions at the equator of the meridional vorticity tendency 728 

(contours, s–2) and the compressional beta-effect (shading, s–2) regressed upon MJO-filtered 729 

tropical precipitation at 90°E. Significant at 95% confidence level, shown results are the 730 

prediction at one standard deviation of the filtered precipitation. The solid and dashed contours 731 

denote positive and negative values. The zero contour is omitted. 732 


