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ABSTRACT

This study derives a complete set of equatorially confined wave solutions from an
anelastic equation set with the complete Coriolis terms, which include both the vertical and
meridional planetary vorticity. The propagation mechanism can change with the effective static
stability. When the effective static stability reduces to neutral, buoyancy ceases, but the role of
buoyancy as an eastward-propagation mechanism is replaced by the compressional beta-effect,
i.e., vertical density-weighted advection of the meridional planetary vorticity. For example, the
Kelvin mode becomes a compressional Rossby mode. Compressional Rossby waves are
meridional vorticity disturbances that propagate eastward owing to the compressional beta-
effect. The compressional Rossby wave solutions can serve as a benchmark to validate the
implementation of the nontraditional Coriolis terms (NCTs); with an effectively neutral
condition and initial large-scale disturbances given a half vertical wavelength spanning the

troposphere on Earth, compressional Rossby waves are expected to propagate eastward at a
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phase speed of 0.24 m s7!. The phase speed increases with the planetary rotation rate and the
vertical wavelength and also changes with the density scale height. Besides, the compressional
beta-effect and the meridional vorticity tendency are reconstructed using reanalysis data and
regressed upon tropical precipitation filtered for the Madden—Julian oscillation (MJO). The

results suggest that the compressional beta-effect contributes 10.8% of the meridional vorticity

tendency associated with the MJO in terms of the ratio of the minimum values. \(Deleted: budget

1. Introduction

Theories about equatorially confined waves substantially explain the observed tropical
large-scale variability of cloudiness and precipitation (Kiladis et al. 2009). Matsuno (1966)
derived a set of equatorially confined wave solutions from the shallow water equation set. Silva
Dias et al. (1983) derived a vertical normal mode transform through which the hydrostatic
primitive equation set projects completely onto the shallow water equation set given rigid upper
and lower boundaries. Although a rigid upper boundary does not exist, equatorially confined
wave solutions derived from the hydrostatic primitive equation set (Holton and Hakim 2013) are
equivalent to Matsuno’s (1966) solutions assuming the rigid boundaries (Kiladis et al. 2009).
The vertical normal mode transform (Silva Dias et al. 1983) established a theoretical foundation
for applying Matsuno’s (1966) model to tropical tropospheric large-scale flow. Wheeler and
Kiladis (1999) demonstrated that large parts of the space-time spectra of the cloudiness
variability conform to the dispersion relations of Matsuno (1966). Kiladis et al. (2009)
summarized these theories and emphasized the concept of effective static stability felt by the
waves. The effects of static stability as a source of restoring force on waves can be reduced
when, in terms of anomalies associated with waves, diabatic heating or cooling due to increased

or decreased moisture condensation partially offsets adiabatic cooling or warming due to upward
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or downward motion (Haertel and Kiladis 2004). Maher et al. (2019) suggested that Matsuno’s
model and the weak temperature gradient (WTG) model (e.g., Bretherton and Sobel 2003; Sobel
et al. 2001; Yano and Bonazzola 2009) are two of the useful model hierarchies for understanding
tropical atmospheric processes. These two hierarchies simplify the thermodynamics using
different assumptions. In terms of convective coupling, Matsuno’s model assumes that the
vertical motion constrains the diabatic effects so that the static stability is effectively reduced,
and the WTG model assumes that the diabatic effects force the vertical motion to the extent that
the buoyancy ceases. Each of the hierarchies cannot be deduced to its complete form from each
other. However, for Matsuno’s model, reducing the effective static stability to neutral yields no
buoyancy, so the model reaches the WTG balance but does not necessarily conform to the WTG
model. Such an apparent intersection of the hierarchies motivates us to explore the effectively
neutral condition.

The equatorially confined wave theory is based on an unforced framework. Though
diabatic heating and cooling are involved, they are theoretically symmetric about the mean state
and affect only the effective buoyancy frequency. In time scales of intraseasonal or longer,
atmospheric flow is prone to dissipation, and a forced-dissipative framework is likely more
analogous to most flows; for example, Gill’s (1980) model simulates large-scale flow forced by
diabatic heating. In such time scales, though unforced frameworks like Matsuno’s (1966) cannot
be excluded as a possible analog for the upper tropospheric flow (Roundy 2012; 2020), forced-
dissipative frameworks like Gill’s (1980) have been useful in understanding large-scale flow
associated with the Madden—Julian oscillation (MJO, e.g., Adames and Kim 2016; Hayashi and
Itoh 2012), the El Niflo—Southern Oscillation (ENSO, e.g., Neelin et al. 1998), and the

intertropical convergence zone (ITCZ, e.g., Ong and Roundy 2019; Vallis 2017).
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Most of the forced-dissipative models assume the hydrostatic approximation following
Gill (1980). The hydrostatic primitive equation set omits the nontraditional Coriolis terms
(NCTs), which are terms involving the meridional planetary vorticity, 202 cos 9 ({2 and 9 denote
planetary rotation rate and latitude). NCTs are negligible when the buoyancy frequency is far
larger than the meridional planetary vorticity (e.g., Miiller 1989), which would be valid on Earth
if the atmosphere were dry. However, later studies suggested that the buoyancy frequency can be
effectively reduced by moist convection (e.g., Haertel and Kiladis 2004), and the validity of the
omission of NCTs was reassessed by Hayashi and Itoh (2012) and Ong and Roundy (2019).
These studies switched NCTs on and off in a linearized forced-dissipative model to simulate
large-scale flow forced by a prescribed eastward-moving intraseasonal-oscillating heat source
along the equator (Hayashi and Itoh 2012) and a prescribed zonally symmetric steady heat source
(Ong and Roundy 2019). The results suggested that NCTs contribute 10% or more of the forced
vertical vorticity fields through tilting the meridional planetary vorticity to the vertical.
Moreover, Ong and Roundy (2020) accounted for the vertical NCT to correct the hypsometric
equation, and the correction contributes ~ 5% of the tropical large-scale geopotential height
variability. The effective buoyancy frequency is more difficult to estimate than length and depth
scales. Thus, using the ratio of the NCT to the traditional Coriolis term in the zonal momentum
equation as a measure to validate the hydrostatic approximation for large-scale flow, Ong and
Roundy (2019) proposed a nondimensional parameter, 0 = aD /YL, where the characteristic
scaling variables for a heat source or sink are defined as follows: a, distance from planet center;
Y, distance of the corresponding subtropical jet from equator; D, vertical depth; and L,

meridional length. The hydrostatic approximation is valid only if O is small so that NCTs are
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negligible. Yet how do NCTs affect unforced equatorial waves? Also, can O measure the
significance of NCTs in unforced equatorial waves?

Research about effects of NCTs on wave propagation began with a focus on the interior
of stars and giant planets, and the following two important effects have been identified:
topographic beta-effect (e.g., Busse 1994; Gerkema et al. 2008; Heimpel et al. 2005; Yano 1998)
and compressional beta-effect (e.g., Gilman and Glatzmaier 1981; Glatzmaier et al. 2009;
Verhoeven and Stellmach 2014). Considering vortex tubes parallel to the rotation axis spanning
the interior confined by, typically, a spherical outer boundary, the topographic beta-effect refers
to vortex stretching due to radial motion. Busse’s linear model (e.g., Busse 1994) is classical but
oversimplifies the topographic beta-effect (Yano 1998), and later studies (e.g., Heimpel et al.
2005) used numerical models to simulate this effect. On the other hand, considering local
meridional vorticity, the compressional beta-effect refers to vertical density-weighted advection
of the meridional planetary vorticity. To illustrate, consider a positive meridional vorticity
disturbance. To the east of the positive disturbance, in terms of the meridional planetary vorticity
divided by density, the downward motion yields positive advection. Multiplying density converts
this advection to increasing meridional relative vorticity via compression. The opposite occurs to
the west. Consequently, the compressional beta-effect transmits the meridional vorticity
disturbance to the east. Focusing on the interior dynamics of giant planets, Glatzmaier et al.
(2009) argued the importance of the compressional beta-effect, which was coupled to the
topographic beta-effect using their numerical model. Using an unbounded linear model,
Verhoeven and Stellmach (2014) untangled the compressional beta-effect from coupling with the
topographic beta-effect. They referred to Rossby waves as driven by density-weighted advection

of planetary vorticity in general. However, Rossby waves conventionally refer to waves driven



115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

by meridional advection of vertical planetary vorticity (e.g., Holton and Hakim 2013; Vallis
2017). Abiding by this convention, this paper refers to waves driven by the compressional beta-
effect as compressional Rossby waves. Verhoeven and Stellmach (2014) attempted to derive the
dispersion relation of compressional Rossby waves. They found that the compressional beta-
effect transmits zonal vertical circulation to the east. However, their derivation is dynamically
inconsistent (see Section 3) and is limited to a zonal vertical plane.

Research about effects of NCTs on the complete set of equatorially confined wave
solutions has been in progress (Fruman 2009; Roundy and Janiga 2012). Fruman (2009) used a
Boussinesq equation set including NCTs but not vertical acceleration (quasi-hydrostatic), and
Roundy and Janiga (2012) further included vertical acceleration (fully nonhydrostatic). These
two cases are similar for low frequency and long zonal wavelength. Categories of equatorially
confined wave solutions are depicted in Table 1. In the Boussinesq models, NCTs widen the
meridional decay length scale of the equatorially confined waves. At a certain longitude, NCTs
tilt the lines of constant phase upward and poleward, so the wave phases propagate either
equatorward and upward or poleward and downward, while the meridional wave energy
propagation is zero. However, NCTs do not affect the dispersion relations of any subset of the
equatorially confined wave solutions in the Boussinesq models (Fruman 2009; Roundy and
Janiga 2012). The reason may be that the meridional planetary vorticity divided by density is
constant in the Boussinesq models, and a gradient of the meridional planetary vorticity divided
by density is necessary for the compressional beta-effect (e.g., Gilman and Glatzmaier 1981;
Glatzmaier et al. 2009; Verhoeven and Stellmach 2014) to change the dispersion relations.
Previous studies about effects of NCTs on waves on an f-plane (Kasahara 2003; Kohma and Sato

2013) are also useful for this study; especially, Kohma and Sato (2013) used an anelastic
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equation set. The solutions on a beta-plane should reduce to the solutions on an f-plane when
B - 0.

Development of dynamical cores for atmospheric models usually benefits from research
about deterministic initial value problems. For example, numerical benchmarks of baroclinic
waves (e.g., Jablonowski and Williamson 2006; Ullrich et al. 2014) are widely used to test the
model performance in the midlatitudes. On the other hand, in the tropics, simply testing the dry
dynamics over-stratifies the atmosphere, but adding full moist processes overcomplicates the
benchmarking test. This conundrum motivates Reed and Jablonowski (2012) to design simplified
moist physical parameterization for testing the tropical performance. To further eliminate
physical parameterization, this study tunes the dynamical parameters to make the dry dynamical
core more relevant to the moist tropical atmosphere. Research about analytical wave solutions
emerging from the compressional beta-effect can be applied to validate the implementation of
NCTs into the dynamical cores of atmospheric models. Such research can be important because
many model developers are restoring NCTs, including DWD’s ICOsahedral Non-hydrostatic
model (ICON, Borchert et al. 2019), GFDL’s Finite Volume model version 3 (FV3, Hann-Ming
Henry Juang, personal communication), and NCAR’s Model for Prediction Across Scales
(MPAS, William C. Skamarock, personal communication). Borchert et al. (2019) applied a
numerical benchmark of baroclinic waves (Ullrich et al. 2014) and an analytical benchmark of
acoustic waves. This study attempts to propose a more useful benchmark featuring exact wave
solutions that can only exist with NCTs and dynamical parameters that eliminate buoyancy.

This paper is organized as follows. Section 2 discusses an anelastic equation set used in
the following sections. Section 3 derives the compressional Rossby wave solution. Section 4

derives the complete set of equatorially confined wave solutions. Section 5 applies the
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compressional Rossby wave solution to design a benchmarking test and presents results using the

MPAS. Section 6 demonstrates how to analyze the compressional beta-effect from data by

exploring its contribution to meridional vorticity fendency associated with the MJO. Section 7 (Deleted: budget

—/

presents summary and discussion.
2. Anelastic Equation Set

An anelastic equation set formulated in Lipps and Hemler (1982) is used because
vorticity dynamics govern this dynamical system (Jung and Arakawa 2008). Linearize the
equation set around a motionless stratified reference state with the complete Coriolis terms on

the equatorial beta-plane, where 202 cos ¥ reduces to 202 while 2/2 sin ¥ reduces to fy; f =

2.(2/a;
Z_z: +'N'2w ~ 0. (1a) (Deleted: o
W\Deleted: V4
2 pyv+20w+2E =0, (1b)
3—:+ﬂyu+z—(§=0, (Ic)
€2 —20u+32—b =0, (1d)

=0. (le)

The variables are defined as follows: u, zonal velocity; v, meridional velocity; w, vertical
velocity; b, buoyancy; and ¢, potential-temperature-weighted perturbation Exner function (a
pressure-like perturbation proposed by Lipps and Hemler 1982). The coordinates are geometric
where z denotes geopotential height. The parameters are defined as follows: N, buoyancy
frequency; 1/H = —dInp /dz, inverse scale height of reference density, p. To validate the
equatorial beta-plane approximation, a (distance from planet center, used to define £3, x, y, and

z) must be larger than the characteristic meridional width and vertical depth. There is neither
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forcing nor dissipation in equations (1), but given N = \/azvl there can be diabatic heating and
cooling depending on a, which is a nondimensional effective buoyancy parameter. @ = 1 sets
vertical motion dry-adiabatic, and a € [0,1) reduces the effect of vertical motion on buoyancy;
a = 0 is the neutral limit. V is defined as the effective buoyancy frequency. € is a
nondimensional vertical acceleration parameter. € = 1 and 0 set the dynamical system fully
nonhydrostatic and quasi-hydrostatic. € serves as a dynamical tracer for the vertical acceleration
term during the derivation. Terms with explicit £2 and 8 are the nontraditional and traditional
Coriolis terms.

The energy equation is derived because this study emphasizes energy constraints
including energy conservation during wave propagation and energy confinement in the
equatorial region. Apply equation (1e) to the sum of the following: (1a) x pb /N 2+ (1b) x pu+

(1c) x pv + (1d) x pw, and average over a wave period (overbar);

%[g(%ﬂ—uz+v2+ew2)]+%(p¢u)+%(p¢v)+;—z(p¢vv)=0. @)

Equation (2) states a form of local energy conservation; local tendency of total energy,
2
g (% +u?+v?+ sz), equals to three-dimensional convergence of energy flux, pou, pov,

and pew for zonal, meridional, and vertical. With periodic and radiation boundary conditions in
zonal and vertical directions, to conserve energy during zonal vertical wave propagation, total

energy and zonal vertical energy flux must be constant at a certain latitude for every single plane
wave solution. Accordingly, the amplitude of u, v, w, b, and ¢ must increase exponentially with
altitude to be inversely proportional to the square root of p for every single plane wave solution.

To confine energy in an unbounded equatorial region, for any combinations of wave solutions,
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total energy must decay to zero as y — too, and meridional energy flux must be zero.

Consequently, the phases of ¢ and v must be in quadrature so that their inner product is zero.
The meridional vorticity equation is also derived because it simplifies the derivation of

compressional Rossby wave solutions. Apply equation (1e) to the following: d (1b) / dz — @ (1d)

/ 0x;

K

du ow w ov dv | db
at(——e;)+2!2;—2f25—ﬁy£+a—0. (3)

0z

Equation (3) states that meridional relative vorticity, g—: —€ 2—:, changes in time in
response to the following mechanisms; —2.2 %, vertical density-weighted advection of
meridional planetary vorticity, i.e., the compressional beta-effect; 2.2 Z—;, meridional stretching of
meridional planetary vorticity; Sy Z—Z, tilting of planetary vorticity from vertical to meridional;

ab . . S . .
— v buoyancy generation. To gain more insight into the compressional beta-effect, rewrite the

dl d 20 . . . d
LTS —pw — (—) In this form, the vertical advection operator, —w —,
dz dz | p dz

term; —2.2 % = 20w
multiplies density, and the advected quantity is the meridional planetary vorticity divided by
density.

3. Compressional Rossby Waves

To derive compressional Rossby waves, ignore terms involving v and b in equation (3).
This step isolates the compressional beta-effect from the complex equation set, which is the
subject of Section 4. Ignoring dv /9y enables rewriting equation (3) in terms of zonal vertical

mass stream function, ¥, where pu = 6‘1’/62 and pw = — 6'%’/6x;

a %y | 9%y | 19Y¥ 20 0%
—(€e—+—+-—"T"\——""—=0, 4)
at dx? 9z2 H 9z H ox
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19% . . . .
where 73, can be interpreted as a compressional effect on the stream function because it
zZ

emerges from the reference density variations.

Assume zonal vertical plane wave solutions to equation (4); ¥ =
¥ exp(—z/2H) exp[i(kx + mz — wt)]. The factor exp(—z /2H ensures energy conservation
during vertical propagation because p and the amplitude of w have factors of exp(—z/H and

exp(z/2H). Plug the assumed solutions into equation (4), and rearrange;

%:%(ekz +m? +#)_1. )
Equation (5) states the dispersion relation of compressional Rossby waves. The phase

speed (w /k) is eastward and increases with the planetary rotation rate ({2), the vertical
wavelength (27 ym), and the zonal wavelength (27 /k); k is insignificant for large-scale flow.
The zonal phase speed also changes with the density scale height (H), yet not monotonically; for
m?>1 /4H 2, the zonal phase speed increases with decreasing H, and vice versa. For large-scale
compressional Rossby waves on Earth with a half vertical wavelength spanning an effectively
neutral troposphere, the zonal phase speed is 0.24 m s, given 2 = 7.292 x 1075 s”!, H = 9.1

km, and 2 y/m = 25 km. Superposing incident and reflected waves against a rigid lower

boundary, the solution becomes:

w = wyexp (i) sin(mz) sin(kx — wt), (6a)

2 _20k
® = Qoexp (i) cos (mz + arctan 21— ) cos(kx — wt), (6b)

[2)
ﬁ—Z.(lk

z 20m
u = ugexp (E) cos <mz + arctan + arctang
o —EwW
H

k) COS(kx — wt), (6¢)

Wy = —— (6d)

- VA0nZ-cw? Po-
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2
[%hf(uzkz—eywuﬂmz
Up =¥ 107 —cw? Po, (6e)

where ¢,, Wy, and u, denote amplitudes of ¢, w, and u. Figure 1 shows snapshots of the
analytical solution of the zonal vertical structures of such waves. In Figure 1a, the downward
motion yields positive density-weighted advection of the meridional planetary vorticity, and vice
versa. Hence, the meridional vorticity disturbances propagate eastward. The dispersion relation
derived by Verhoeven and Stellmach (2014) resembles equation (5) but lacks the term 1 /4H 2
because they ignored the compressional effect on the stream function while considering the

compressional beta-effect; hence, their derivation is dynamically inconsistent. Verhoeven and

1

Stellmach (2014) mentioned one of the restrictions on the validity of their solution; m? > TR

Yet even if m? >» 4%2, their solution does not conserve energy when the waves propagate

vertically by a distance of order H. If m? < 41%2, their solution will have a remarkable fast bias in

terms of the phase speed.

In equations (6b) and (6¢), the vertical phase of u is shifted from the vertical phase of ¢

by arctan 20 1n Figure 1b, a low-¢ region is located above a low-u region and below a high-

2 ewk
u region, and vice versa. This relation is consistent with Ong and Roundy (2020), who
introduced NCTs to the hypsometric equation and showed that easterly winds correspond to low
pressure perturbations above or high below. The structure in Figure 1b is a signature of
compressional Rossby waves, which is different from Kelvin waves, where u and ¢ are in phase

(Figure 1c).
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4. Complete Set of Equatorially Confined Waves

To derive the complete set of equatorially confined waves, assume zonal vertical plane
wave solutions to equation (1) that vary meridionally; {u, v, w, b, Py =
{u(y), YY), W), b‘(y), (p(y)} exp(z/2H) exp[i(kx + mz — wt)]. The amplitudes vary
vertically and meridionally. Vertically, the factor exp(z /2H) ensures energy conservation.
Meridionally, the hatted factors are unknown and will be solved given the necessary conditions

for energy confinement in the equatorial region. Plug the assumed solutions into equation (1);

NN

iwb = N?w, (7a) (Deleted: a
(Deleted: V4

iwn = —Lyv + 20w + ikp, (7b)

—iwv + fyun + 3—: =0, (7¢)

, 1,
—iwew — 20u + (; + Lm) ¢o—b=0, (7d)
, dv 1 . _
lku+a+(—ﬁ+lm)w—0. (7e)
Because the relation between ¢ and v is the pivot to determine the necessary conditions

for the energy confinement, B, u, and w are eliminated through the following steps in order: %De"“e“: “
Deleted: &/
multiply equations (7c-¢) by iw, plug equations (7a-b) in to eliminate b and w, multiply the new [Deleted: @
(Deleted: V4
equations (7c) and (7e) by (E(uz — V2 — 40?y, and plug the new equation (7d) in to eliminate w; (Deleted: «
(Deleted: V4
[wz(ewz —'N'Z - 4.(22) + ﬁzyz('sz - ewz)]v + [208ymw + ikBy (ew2 —le'Z - Z—zﬂ ®+  (Deleted: «
- N 4 (Deleted: V4
i(u(E(uz —'N' _ 4,_(22) Z_: =0, (83_) gDeleted: a
Deleted: /
—Kk2(N? — ew?) — k222 4 w2 (m? + — = [20B8ymw — ik ew? — N2 —2%\1p + (Deleted:”
[ @ ) H ( 41-12)] ¢ [ By ,By( v.x Hk.)] o [Deleted: v
. 2 m2 2, dv (Deleted: a
lw(ew 'IV' 40 ) o (8b) « [Deleted: 0
(Deleted: a
(Deleted: V4
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Given any Yy that is real, according to equation (8a), ¢ = 0 yields trivial solutions
because v = 0 must be true. According to equation (8b), ¢ # 0 yields two types of nontrivial

solutions, zero-v and nonzero-v. Also, the zero-v and nonzero-v cases require zero-K and
20w 1 .
nonzero-K, where K = —kz(lV/'2 - ea)z) —k=—+ w? (mz + m). Subsections 4a and 4b solve

these two cases separately, and Subsection 4¢ discusses the solutions.
a. Zero-v Case
Apply v = 0 to equation (8);

[Z.Qﬁyma) + ikBy (ewz - N2- f{—‘m ¢ +iw(ew? ~ N2 — 4:22)‘;_;’ =0, (%)

20w

H 4H2

[—kz(zvz —ew?) — k5" + w? (m2 + L)] ¢ =0. (9b)
Integrating equation (9a) yields the zero-v solution for ¢, and plugging this into the original

assumed solution yields the following:

Nw
N2+ﬁ—ew2 Bk y? —20pm  y?

(p=<p0exp<i ——— —>exp[i(kx—wt+mz+m7)]. (10)

T N2H40?2—ew? @ 2
Equation (9b) yields the dispersion relation of the zero-v solution;

—k?(N? — ew?) — k5% + 0? (m2+4HLZ) =0. (11)
Equations (10) and (11) are consistent with the Kelvin wave solutions in previous studies
(Fruman 2009; Holton and Hakim 2013; Kohma and Sato 2013; Roundy and Janiga 2012) when
certain limits are taken. At the hydrostatic limit, i.e., € = 0 and 2 — 0, equations (10) and (11)
reduce to the solutions of Holton and Hakim (2013). At the Boussinesq limit, i.e., H = o,
equations (10) and (11) reduce to the solutions of Roundy and Janiga (2012), which further

reduce to the solutions of Fruman (2009) at the quasi-hydrostatic limit, i.e., € = 0. Furthermore,

equation (11) is equivalent to equation (33) of Kohma and Sato (2013), who suggested that these
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waves are not trapped by a zonal boundary at the equator using an f-plane. However, equations

(10) and (11) suggest that these waves are trapped on the equatorial beta-plane only if

Qw 2 2 2, 1 02
24292 Bk B [(N —-€w )(m + H2)+H2
ropagating eastward; given equation (11 Lk — =N 2 > 0in
propag g o8 ! (1, N2+402-€w? w N2+402-€w?

. . LW €k? N2H2 1
equation (10) if and only 1f; >0 andm < Jl + e vl

4H2

(ek2 +m? + ) The second

condition only limits a zonal wavelength that is shorter than the vertical wavelength.

However, the zero-v waves are not Kelvin waves. To illustrate, at the neutral limit, i.e.,

. . o . e
N - 0, equation (11) reduces to equation (5), i.e., compressional Rossby waves. Moreover, ( Deleted:

taking this limit for equation (10) suggest that the compressional Rossby waves are equatorially
confined. With the effective static stability increasing from neutral, equation (11) will approach
Kelvin waves, with a continuum of hybrid forms in between. Kelvin wave dynamics dominate if

the effective buoyancy frequency is larger than the meridional planetary vorticity. All zero-v

waves with small aspect ratio, i.e., €k? < m? + o are nondispersive in the zonal direction.

b. Nonzero-v Case

Derivations to be elaborated in this section show that the nonzero-v solutions of equation

iry?
2

(8) can be decomposed as v = v,V (%) exp (;—i’;) exp ( ), where the four factors denote
amplitude of v, meridional stationary oscillator, meridional decay function, and meridional
propagation oscillator. I" can be interpreted as a meridional propagation parameter; phases

propagate poleward for positive I', and vice versa. I' can also be interpreted as a meridional

tilting parameter; lines of constant phase tilt upward and poleward if the signs of I and m are

opposite, and vice versa. To discuss energy constraints on I, plug the decomposition and K =

20 1. .
—kZ(N'2 - sz) - kTw + w? (m2 + 41{—2) into equation (8b);
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40+ 1 B et = 12— @ \ G
To prevent any meridional energy flux, if ¢ is real, v must be imaginary. To satisfy (DeIEtEd: =
(Deleted:
equation (12), if ¢ is real, the rhs of equation (12) must be real. Consequently, given ¢ is real EDe:ete:: i
Deleted: /
without loss of generality (assuming any complex ¢ yields the same conclusion), on the rhs of
equation (12), —I'yw (sz - N2 — 4.(22) must cancel 2028ymw, which constrains the meridional (Deleted: «
propagation (tilting) parameter; (Deleted: 8
= ﬁf_ﬁwz' (13)
Accordingly, the meridional phase propagation is nonzero as in equation (13) if and only if the
meridional energy propagation is zero. Equation (13) is equivalent to equation (18) of Roundy
and Janiga (2012); thus, the meridional phase propagation is independent from the reference
density variations. Moreover, because V2 + 402 — ew? > 0 for all real solutions, I and m are (Deleted: a
opposite signed. Consequently, Fruman’s (2009) result of upward and poleward tilting of lines of (DEME(’: =
constant phase also applies to the less-approximated case in the present study (Table 1).
To solve for V and L, multiply equation (8a) by K, plug equation (12) into it, and
rearrange;
(V2 + 407 — ewz)% [V exp (;—ff)] + [(kz + % (ew® = N2 = f]—:) +w? (m? + T | %E:::::;
) = (0 + e~ Tt Y|V s (25 = O 09 (o

Then, to apply known solutions to equation (14), nondimensionalize it by plugging y = LY into

@

it. This yields a form of Hermite’s equation, 7

r ¥ + AV = 0, where
dy

N2+40%—ew?

L2_

- 1, 07
B‘/(Nz—ewz)(m2+—4yz)+ﬁ

(15a)

N N N N
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(15b)

S () (0P = V) 0 (4 i ] L

The solutions for V are the physicists” Hermite polynomials, H,,, where n = 0,1,2, ... (e.g., Vallis

2017). Plugging this into the original assumed solution yields the following:

v = voH, ( )exp(——m)exp[ (kx—a)t+mz+FTyz)].

For each n, solutions exist if and only if A = 2n, which yields the dispersion relations;

(kz )(N2+Hk ew2)+w (m +——”—")—(2n+1)

4H?2

NZ%+40?

(16)

-7

Equations (13) and (15) through (17) are consistent with the non-Kelvin wave solutions

in previous studies (Fruman 2009; Holton and Hakim 2013; Roundy and Janiga 2012) when

certain limits are taken. A subset of the dispersion relations where K = 0 is discarded because

the derivation of equation (14) requires K # 0. L? > 0 is true for all results discussed below.

c. Discussion

The zonal temporal dispersion relations of the zero-v and nonzero-v cases are depicted

together in Figure 2, given 2 = 7.292 X 107> 5!, H = 9.1 km, and 2m/m = 25 km. In the

strongly stable case (Figure 2a), all the modes appear like Matsuno’s (1966) modes with an

equivalent depth of 33 m, and the inclusion of NCTs does not make a noticeable difference in

terms of the dispersion relations and the spatial structure. Such an equivalent depth lies within

the canonical convectively coupled equatorial wave bands on Earth (e.g., Wheeler and Kiladis

1999). In the neutral case (Figure 2b), the zero-v and nonzero-v modes appear like the Kelvin

and Yanai (n = 0, mixed Rossby-gravity) modes in Figure 2a, but the compressional beta-effect

replaces buoyancy as the eastward-propagation mechanism. Also, in Figure 2b, the westward

inertio-gravity (high wavenumber and high frequency) modes in Figure 2a disappear because

buoyancy is zero but is a fundamental restoring force of these waves. Moreover, in Figure 2b, the
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Rossby (n > 0 and low frequency) modes in Figure 2a coincide K = 0 so are discarded. For the
zero-v mode (Figure 2c¢), with decreasing IV, the zonal phase speed decreases linearly without
NCTs but nonlinearly with NCTs; in the latter case, the decreasing rate of phase speed decreases
so that the phase speed approaches 0.24 m s™! instead of zero. For all the modes transitioning
from Figure 2a to 2b, see the animation in mp4 format in the supplemental material, where black
and red curves denote dispersion relations with and without NCTs. Except the last frame of the
animation (Figure 2b), sound of piano is played at a sound frequency proportional to the
effective buoyancy frequency used to plot every frame. With decreasing NV, the zonal phase
speed of all modes decreases, and the dispersion curves with and without NCTs separate farther.
Overall, the contributions of NCTs become noticeable when the effective buoyancy frequency
becomes comparable or smaller than the meridional planetary vorticity, which is consistent with
Miiller (1989).

The results suggest that O number (Ong and Roundy 2019) can measure the significance
of NCTs in unforced equatorial waves. To estimate O number, choose L as the characteristic ¥
and L, and 2H as the characteristic D. Then, plug these choices and equation (15a) into O =
aD /Y'ZZ, and assume low frequency where w? < 4£22. For the neutral case, 0 = 1; in words,
NCTs are on the leading order. For a strongly stable case where 202 /N — 0, 0~ 202 /N; in
words, NCTs are negligible, so Matsuno’s (1966) solutions, using the hydrostatic approximation,
can become valid.

5. Benchmarking Test

To test the model performance with the implementation of NCTs under a neutral
condition, we choose the compressional Rossby wave solutions in Section 3 as a benchmark

because the model configuration is simpler than the solutions in Section 4. The spatial domain is
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a zonal vertical rectangle. The lateral boundaries are periodic, and the upper and lower
boundaries are rigid. The planetary vorticity has a northward component but no vertical
component, i.e., using the generalized equatorial f-plane. We make the planetary rotation rate
much faster to save process time; the wave period becomes as short as 86,400 s. The basic state
is hydrostatic and motionless. The initial perturbations are set using equations (5) and (6). Table
2 lists the parameters for the benchmarking test.

For the thermodynamics, we aim to eliminate buoyancy. A possible way is to initiate the
test with constant potential temperature, but this drastically enhances the vertical decrease of the
density scale height. Instead, we use a barotropic ideal gas whose thermodynamic properties fit
our goal; its heat capacity is infinity, so an isothermal atmosphere becomes isentropic because its

Poisson constant is zero. ¢ for such a gas denotes perturbation of pressure divided by basic-state
density. For a fully compressible model, its speed of sound is \/g_H, where g denotes gravity

acceleration, and equation (1e) becomes:

o0 ou 0w _w_
gH at ~ ox + 9z H 0. (18)

While the structures in equation (6) still apply, the dispersion relation becomes:

2 2 —1
2=2(ek2+m2+L+i—e‘“—) . (19)
k H 4H?2 gH gH

Compressional Rossby waves propagate slightly slower in the fully compressible case as
equation (19) than the anelastic case as equation (5). In Table 2, different values of m are given

2
for the two cases so that the wave period remains 86,400 s. In practice, —€ :—H in equation (19) is

omitted. If the Earth rotation rate is used, the difference between equation (5) and (19) will be

negligible, but the process time for the test will drastically increase.
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The implementation of NCTs has been a compiler option in the MPAS atmospheric
dynamical core (Skamarock et al. 2012), which is fully compressible. Testing this option with
the compressional Rossby waves, this study identified a flaw in its source code (the vertical NCT
had been mistakenly divided by the grid-cell area in m?) and corrected it. For the simulation, the
grid mesh comprises regular hexagons of which a pair of opposite sides lies in the zonal
direction. The zonal grid spacing is 5 km, so 400 grid cells cover the domain width. The domain
depth is equally divided into 64 grid boxes, so the vertical grid spacing is 198.77 m. All physical
parameterization schemes and Rayleigh damping are switched off. The results suggest that the
numerical solutions reasonably conform to the analytical solutions in this study; the contours of
the results almost overlap those on Figure 1. In terms of the Euclidean norm of the zonal velocity
field, Figure 3 depicts the percentages of the difference between the numerical and the analytical
solutions to the analytical solution. This normalized difference decreases with u,; at the end of
one wave period (24 hours), 1.315% for uy = 0.09 m s™!, 0.811% for uy = 0.045 m s7!, and
0.625% for uy = 0.0225 m s7!. For the zonal velocity field output every 3,600 s, see compilation
of graphics in pdf format in the supplemental material, where the thick black and thin green
contours denote analytical and numerical solutions. The difference is small and can be
substantially explained by the zonal advection of zonal velocity. This conformation validates the
recent correction of the implementation of NCTs in the MPAS atmospheric dynamical core.

6. Compressional beta-effect in the MJO

To demonstrate how to analyze the compressional beta-effect from reanalysis data, we

take the MJO as an example, focusing on its zonal-vertical overturning circulation. The slow

eastward phase speed of the compressional Rossby wave solutions motivates us to explore

possible contributions of the compressional beta-effect to the eastward propagation of the MJO,

( Deleted: motivated by
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which is on the slowest end of the spectrum of Wheeler and Kiladis (1999) but 20 times on
average faster than the compressional Rossby wave solutions. Accordingly, this study analyzes
the MJO-filtered compressional beta-effect and local meridional vorticity tendency reconstructed

from ERA-Interim (Dee et al. 2011) reanalysis data from 1979 to 2018. The compressional beta-

effect is approximated from —22 % as equation (3) to %%, where p denotes pressure, with the

data in isobaric coordinates. The local meridional vorticity tendency is approximated with a
central finite difference with a spacing of one day. An MJO index for every longitude is created
by filtering tropical precipitation for an MJO band covering zonal wavenumber from 1 to 10 and
time period from 30 days to 96 days. For the tropical precipitation, GPCP Version 1.3 One-
Degree Daily Precipitation Data Set (Mesoscale Atmospheric Processes Branch and Earth
System Science Interdisciplinary Center 2018) is averaged from 15°S to 15°N. Then, the
compressional beta-effect and the local meridional vorticity tendency are regressed upon the
MJO index. The statistical significance is tested with two-tailed Student’s t-test at 95%
confidence level, where the equivalent degrees of freedom take autocorrelation of one-day lag
into account.

Figure 4 depicts zonal vertical distributions at the equator of the results regressed upon
the MJO-filtered precipitation at 90°E. The most prominent signal of the compressional beta-
effect is negative in the mid-upper troposphere in the MJO-active (convective) phase from 60°E
to 135°E minimizing at 90°E. This negative compressional beta-effect can be explained by
upward motion associated with the MJO-active phase. The most prominent negative signal of the
meridional vorticity tendency is collocated with the negative signal of the compressional beta-
effect. In terms of the ratio of the minimum values, the compressional beta-effect contributes

10.8% of the meridional vorticity tendency. In other words, the east-up-west circulation in the
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west of the MJO-active phase is propagating toward the MJO-active phase partially owing to the
compressional beta-effect. The compressional beta-effect is lacking in most of the current global
atmospheric models because of the omission of NCTs, but the consequences of this lack may
vary. For such models to yield an appropriate phase speed and amplitude of the MJO, they would
need at least one of the other terms in equation (3) to overact, e.g., an overestimated west-east
buoyancy gradient across the MJO-active phase. For the other terms to remain appropriate, the
phase speed would be underestimated to maintain the amplitude, or the amplitude would
decrease with time to maintain the phase speed. Another mechanism whereby NCTs can
contribute to vorticity budgets is through tilting (Hayashi and Itoh 2012). We suspect that the
tilting unlikely affects propagation for the following reasons. Adding only the tilting to
Matsuno’s (1966) model does not change the dispersion relations of the equatorial waves
(Fruman 2009; Roundy and Janiga 2012). Adding both the tilting and the compressional beta-
effect to it yields additional eastward propagation (Section 4). Removing the tilting from this
result by removing the y-dimension does not change the eastward propagation (Section 3).

7. Summary and Discussion

This study corrects the derivation of the compressional Rossby wave solutions of
Verhoeven and Stellmach (2014) by accounting for dynamical consistency and energy
constraints. Compressional Rossby waves are meridional vorticity disturbances in the equatorial
region that propagate eastward owing to the compressional beta-effect. This effect is due to
vertical density-weighted advection of the meridional planetary vorticity; the advected quantity
is the meridional planetary vorticity divided by density, and multiplying density converts such an
advection to local meridional relative vorticity tendency via compression or expansion. A

signature of compressional Rossby waves is a low-pressure anomaly between easterly winds
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below and westerly winds above, and vice versa. The compressional Rossby wave solutions can
serve as a benchmark to validate the implementation of the nontraditional Coriolis terms (NCTs).
With effectively neutral static stability and initial large-scale disturbances given a half vertical
wavelength spanning the troposphere on Earth, compressional Rossby waves are expected to
propagate eastward at a phase speed of 0.24 m s™!. The phase speed increases with the planetary
rotation rate and the vertical wavelength, and it also changes with the density scale height. This
benchmark can be important because many model developers are restoring NCTs. We recently
corrected the implementation of NCTs in the MPAS atmospheric dynamical core and validated
the correction by simulating the compressional Rossby waves. This benchmarking test uses a
generalized equatorial f-plane. Also, it uses fast planetary rotation rate to save process time.

Nonetheless, it uses barotropic ideal gas to magnify the compressional beta-effect without adding

moist processes. The numerical solutions reasonably conform to the analytical solutions.

This study also derives a complete set of equatorially confined wave solutions from an
anelastic equation set with the complete Coriolis terms, which include both the vertical and
meridional planetary vorticity. The propagation mechanism can change with the effective static
stability. In a strongly stable case in which the effective buoyancy frequency is larger than the
meridional planetary vorticity, the dispersion relations appear like Matsuno’s (1966), which is
true for the canonical convectively coupled equatorial wave bands on Earth (e.g., Wheeler and
Kiladis 1999). In the neutral case, in which buoyancy ceases, the compressional beta-effect
replaces buoyancy as the eastward-propagation mechanism, and westward-propagating modes
that depend on buoyancy disappear. The complete set derived in this study remarkably differs
from Matsuno’s (1966) only if the meridional planetary vorticity is comparable or larger than the

effective buoyancy frequency, which is consistent with Miiller (1989).

e . .
Deleted: make the dry dynamics more relevant to moist
| dynamics but less complicated than
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As a demonstration of data analysis, the compressional beta-effect and the meridional
vorticity tendency are reconstructed using reanalysis data and regressed upon tropical
precipitation data filtered for the MJO. In the mid-upper troposphere in the MJO-active phase,
the compressional beta-effect is prominently negative owing to the upward motion. In the same
region, the meridional vorticity is decreasing with time. The compressional beta-effect explains
10.8% of the decrease of the meridional vorticity in the MJO-active phase in terms of the ratio of
the minimum values.

More consideration shall be given to theories about a dynamical continuum from the
Kelvin waves to the MJO. Roundy (2020) showed that observed signals conforming to unforced
Kelvin waves exist in the upper troposphere throughout the Kelvin-wave—-MJO spectrum.
Adames et al. (2019) included moisture variability into a zero-v wave framework, and the results
suggest that the moisture dynamics becomes significant while the system is adjusted toward the
MJO. The present study encourages a combination of both NCTs and moisture variability for
future studies because NCTs are also potentially considerable for MJO propagation. Still, this
combination may not combine the unforced wave framework and the forced-dissipative
framework. Yet the MJO appears like unforced waves in the upper troposphere but like forced
flow in the lower troposphere (Roundy 2012). This challenge is also left for future studies.

Acknowledgments. This work was funded by National Science Foundation (grants
AGS1757342, AGS1358214, and AGS1128779). This paper originated as a course project of
Hing Ong in ATM 523, Large Scale Dynamics of the Tropics, instructed by Paul Roundy. It
became a chapter of Hing Ong’s PhD dissertation, accepted by a committee composed of Paul
Roundy, William Skamarock, Brian Rose, and Robert Fovell. We thank William Skamarock for

discussion and technical support on the development of the benchmarking test. We thank Paul



571

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

25

Roundy’s (previously Hing Ong’s) department for funding this paper and thank the other
students in the class for discussion. We thank Kai-Chih Tseng, Kevin Reed, and four anonymous
reviewers for the useful comments. Hing Ong thanks especially an anonymous student reviewer
in the class. We thank ECMWF for granting access to ERA-Interim data via NCAR Research
Data Archive.

Data Availability Statement. GPCP Version 1.3 and ERA-Interim data can be obtained
via https://doi.org/10.5065/PV8B-HV 76 and https://doi.org/10.5065/D6CR5RD9. The source
code generating analytical solutions for the compressional Rossby waves are available from
https://github.com/HingOng/CompressionalRossbyWave. The source code of the MPAS and the
mesh file for the test case can be obtained via https://github.com/MPAS-Dev/MPAS-Model and
https://www2.mmm.ucar.edu/projects/mpas/test_cases/v7.0/mountain_wave.tar.gz.

REFERENCES

Adames, A. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture
wave: Theory and observations. J. Atmos. Sci., 73, 913-941, https://doi.org/10.1175/JAS-
D-15-0170.1.

Adames, A. F., D. Kim, S. K. Clark, Y. Ming, and K. Inoue, 2019: Scale analysis of moist
thermodynamics in a simple model and the relationship between moisture modes and
gravity waves. J. Atmos. Sci., 76, 3863-3881, https://doi.org/10.1175/JAS-D-19-0121.1.

Borchert, S., G. Zhou, M. Baldauf, H. Schmidt, G. Zangl, and D. Reinert, 2019: The upper-
atmosphere extension of the ICON general circulation model (version: ua-icon-1.0).

Geosci. Model Dev., 12, 3541-3569, https://doi.org/10.5194/gmd-12-3541-2019.



598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

26

Bretherton, C. S., and A. H. Sobel, 2003: The Gill model and the weak temperature gradient
approximation. J. Atmos. Sci., 60, 451-460, https://doi.org/10.1175/1520-
0469(2003)060<0451: TGMATW>2.0.CO;2.

Busse, F., 1994: Convection driven zonal flows and vortices in the major planets. Chaos, 4, 123—
134, https://doi.org/10.1063/1.165999.

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance
of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597,
https://doi.org/10.1002/q;j.828.

Fruman, M. D., 2009: Equatorially bounded zonally propagating linear waves on a generalized
plane. J. Atmos. Sci., 66,2937-2945, https://doi.org/10.1175/2009JAS2932.1.

Gerkema, T., J. Zimmerman, L. Maas, and H. Van Haren, 2008: Geophysical and astrophysical
fluid dynamics beyond the traditional approximation. Rev. Geophys., 46, 1-33,
https://doi.org/10.1029/2006RG000220.

Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy.
Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

Gilman, P. A., and G. A. Glatzmaier, 1981: Compressible convection in a rotating spherical
shell. I1I-Analytic model for compressible vorticity waves. Astrophys. J., Suppl. Ser., 45,
335-388.

Glatzmaier, G. A., M. Evonuk, and T. M. Rogers, 2009: Differential rotation in giant planets
maintained by density-stratified turbulent convection. Geophys. Astrophys. Fluid Dyn.,
103, 31-51, https://doi.org/10.1080/03091920802221245.

Haertel, P. T., and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61,

2707-2721, https://doi.org/10.1175/JAS3352.1.



621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

27

Hayashi, M., and H. Itoh, 2012: The importance of the nontraditional Coriolis terms in large-
scale motions in the tropics forced by prescribed cumulus heating. J. Atmos. Sci., 69,
2699-2716, https://doi.org/10.1175/JAS-D-11-0334.1.

Heimpel, M., J. Aurnou, and J. Wicht, 2005: Simulation of equatorial and high-latitude jets on
Jupiter in a deep convection model. Nat., 438, 193, https://doi.org/10.1038/nature04208.

Holton, J. R., and G. J. Hakim, 2013: An introduction to dynamic meteorology. Academic press,
532 pp, https://doi.org/10.1016/B978-0-12-384866-6.00001-5.

Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric
model dynamical cores. Quart. J. Roy. Meteor. Soc., 132,2943-2975,
https://doi.org/10.1256/qj.06.12.

Jung, J.-H., and A. Arakawa, 2008: A three-dimensional anelastic model based on the vorticity
equation. Mon. Wea. Rev., 136, 276-294, https://doi.org/10.1175/2007MWR2095.1.

Kasahara, A., 2003: On the nonhydrostatic atmospheric models with inclusion of the horizontal
component of the Earth’s angular velocity. J. Meteor. Soc. Japan, 81, 935-950,
https://doi.org/10.2151/jms;j.81.935.

Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009:
Convectively coupled equatorial waves. Rev. Geophys, 47, 1-42,
https://doi.org/10.1029/2008RG000266.

Kohma, M., and K. Sato, 2013: Kelvin and Rossby Waves Trapped at Boundaries under the Full
Coriolis Force. Sci. Online Lett. Atmos., 9, 9-14, https://doi.org/10.2151/s0la.2013-003.

Lipps, F. B., and R. S. Hemler, 1982: A scale analysis of deep moist convection and some related
numerical calculations. J. Atmos. Sci., 39, 2192-2210, https://doi.org/10.1175/1520-

0469(1982)039<2192:ASAODM>2.0.CO;2.



644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

28

Miiller, R., 1989: A note on the relation between the “traditional approximation” and the metric
of the primitive equations. Tellus A, 41, 175178, https://doi.org/10.1111/j.1600-
0870.1989.tb00374 x.

Maher, P., and Coauthors, 2019: Model hierarchies for understanding atmospheric circulation.
Rev. Geophys, 57, 250-280, https://doi.org/10.1029/2018RG000607.

Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44,
25-43, https://doi.org/10.2151/jmsj1965.44.1 25.

Mesoscale Atmospheric Processes Branch/Laboratory for Atmospheres/Earth Sciences
Division/Science and Exploration Directorate/Goddard Space Flight Center/NASA, and
Earth System Science Interdisciplinary Center/University of Maryland, 2018: GPCP
Version 1.3 One-Degree Daily Precipitation Data Set. Research Data Archive at the
National Center for Atmospheric Research, Computational and Information Systems
Laboratory, accessed 10 August 2019, https://doi.org/10.5065/PV8B-HV76.

Neelin, J. D., D. S. Battisti, A. C. Hirst, F. F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak,
1998: ENSO theory. J. Geophys. Res.: Oceans, 103, 14261-14290,
https://doi.org/10.1029/97JC03424.

Ong, H., and P. E. Roundy, 2019: Linear effects of nontraditional Coriolis terms on intertropical
convergence zone forced large-scale flow. Quart. J. Roy. Meteor. Soc., 145, 2445-2453,
https://doi.org/10.1002/qj.3572.

Ong, H., and P. E. Roundy, 2020: Nontraditional hypsometric equation. Quart. J. Roy. Meteor.

Soc., 146, 700—706, https://doi.org/10.1002/qj.3703.



665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

29

Reed, K. A., and C. Jablonowski, 2012: Idealized tropical cyclone simulations of intermediate
complexity: A test case for AGCMs. J. Adv. Model. Earth Syst., 4, M04001,
https://doi.org/10.1029/2011MS000099.

Roundy, P. E., 2012: Observed structure of convectively coupled waves as a function of
equivalent depth: Kelvin waves and the Madden—Julian oscillation. J. Atmos. Sci., 69,
2097-2106, https://doi.org/10.1175/JAS-D-12-03.1.

Roundy, P. E., 2020: Interpretation of the spectrum of eastward-moving tropical convective
anomalies. Quart. J. Roy. Meteor. Soc., 146, 795-806, https://doi.org/10.1002/qj.3709.

Roundy, P. E., and M. A. Janiga, 2012: Analysis of vertically propagating convectively coupled
equatorial waves using observations and a non-hydrostatic Boussinesq model on the
equatorial beta-plane. Quart. J. Roy. Meteor. Soc., 138, 1004-1017,
https://doi.org/10.1002/qj.983.

Silva Dias, P. L., W. H. Schubert, and M. DeMaria, 1983: Large-scale response of the tropical
atmosphere to transient convection. J. Atmos. Sci., 40, 26892707,
https://doi.org/10.1175/1520-0469(1983)040<2689:LSROTT>2.0.CO:;2.

Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012:
A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and
C-grid staggering. Mon. Wea. Rev., 140, 3090-3105, https://doi.org/10.1175/MWR-D-
11-00215.1.

Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation
and balanced tropical moisture waves. J. Atmos. Sci., 58, 3650-3665,

https://doi.org/10.1175/1520-0469(2001)058<3650: TWTGAA>2.0.CO;2.



687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

30

Ullrich, P. A., T. Melvin, C. Jablonowski, and A. Staniforth, 2014: A proposed baroclinic wave
test case for deep-and shallow-atmosphere dynamical cores. Quart. J. Roy. Meteor. Soc.,
140, 1590-1602, https://doi.org/10.1002/qj.2241.

Vallis, G. K., 2017: Atmospheric and oceanic fluid dynamics. Cambridge University Press, 946
pp, https://doi.org/10.1017/9781107588417.

Verhoeven, J., and S. Stellmach, 2014: The compressional beta effect: A source of zonal winds
in planets? Icarus, 237, 143—158, https://doi.org/10.1016/j.icarus.2014.04.019.

Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of
clouds and temperature in the wavenumber—frequency domain. J. Atmos. Sci., 56, 374—
399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO0>2.0.CO;2.

Yano, J.-1., 1998: Deep convection in the interior of major planets: a review. Aust. J. Phys., 51,
875-889, https://doi.org/10.1071/P97079.

Yano, J.-1., and M. Bonazzola, 2009: Scale analysis for large-scale tropical atmospheric

dynamics. J. Atmos. Sci., 66, 159—172, https://doi.org/10.1175/2008JAS2687.1.



702

703

704

705

TABLE

Table 1. Categories of equatorially confined wave solutions
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Hydrostatic Quasi-hydrostatic ~ Fully nonhydrostatic

Shallow water ~ Matsuno (1966)

Boussinesq Fruman (2009)

Anelastic Holton and Hakim (2013)
Table 2. Parameters used in the benchmarking test

0 (planetary rotation rate)

g (gravity acceleration)

R (gas constant for dry air)

T (basic-state temperature)

H (density scale height)

k (Poisson constant)

Py, (basic-state pressure at the bottom)

L, (domain width)

k (zonal wavenumber)

L, (domain depth)

m (vertical wavenumber)

U, (initial perturbation amplitude of zonal velocity)

Roundy and Janiga (2012)

The present study

6.973339 x 103 57!

9.80616 m 52
287.0 T kg K!
311.0K

RT /g =9.1x10°m

0

1.0 x 10° Pa

2.0 x 10°m

2m /Ly

12,721 m (fully compressible)
12,500 m (anelastic)

m/L,

0.09ms!
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Figure 1. Snapshots of the zonal vertical structures of the analytical solution of (a-b) the

compressional Rossby waves (IV = 0) and (c) the Kelvin waves (V= V). In panel (a), the [Deleted: a
[Deleted: a
contours denote the mass stream function, and the arrows denote the mass flux direction. The ( Deleted: 1

shading denotes the meridional planetary vorticity divided by density normalized by the surface
value. In panels (b-c), the contours denote ¢ (a pressure-like perturbation), and the shading
denotes the zonal wind. The dashed contours denote negative values (negative stream function
corresponds to positive meridional relative vorticity), and the zero contours are omitted. The

length and depth scales are normalized by the wavelengths.
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Figure 2. Zonal temporal dispersion relations of the equatorially confined wave solutions for (a)

a strongly stable case and (b) the neutral case. Panel (c) depicts the transition of the zonal phase

speed of the zero-v waves with and without NCTs from slightly stable to strongly stable.
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Figure 3. Temporal evolutions of the normalized root-mean-square errors of the numerical
solutions of the compressional Rossby waves using the MPAS. The numbers by the curves

denote the initial perturbation amplitude of zonal velocity in m s,
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Figure 4. Zonal vertical distributions at the equator of the meridional vorticity tendency
(contours, s2) and the compressional beta-effect (shading, s) regressed upon MJO-filtered
tropical precipitation at 90°E. Significant at 95% confidence level, shown results are the
prediction at one standard deviation of the filtered precipitation. The solid and dashed contours

denote positive and negative values. The zero contour is omitted.

36



