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ABSTRACT: The rational design of highly antifouling materials is crucial for a wide range of fundamental research and practical
applications. The immense variety and complexity of the intrinsic physicochemical properties of materials (i.e., chemical structure,
hydrophobicity, charge distribution, and molecular weight) and their surface coating properties (i.e., packing density, film thickness
and roughness, and chain conformation) make it challenging to rationally design antifouling materials and reveal their fundamental
structure—property relationships. In this work, we developed a data-driven machine learning model, a combination of factor analysis
of functional group (FAFG), Pearson analysis, random forest (RF) and artificial neural network (ANN) algorithms, and Bayesian
statistics, to computationally extract structure/chemical/surface features in correlation with the antifouling activity of self-assembled
monolayers (SAMs) from a self-construction data set. The resultant model demonstrates the robustness of Q¢ = 0.90 and RMSEy,
= 0.21 and the predictive ability of Q% = 0.84 and RMSE,,, = 0.28, determines key descriptors and functional groups important for
the antifouling activity, and enables to design original antifouling SAMs using the predicted antifouling functional groups. Three
computationally designed molecules were further coated onto the surfaces in different forms of SAMs and polymer brushes. The
resultant coatings with negative fouling indexes exhibited strong surface resistance to protein adsorption from undiluted blood serum
and plasma, validating the model predictions. The data-driven machine learning model demonstrates their design and predictive
capacity for next-generation antifouling materials and surfaces, which hopefully help to accelerate the discovery and understanding of
functional materials.
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1. INTRODUCTION mostly unchanged, involving a four-step pipeline of data
extraction, data enrichment, materials design/prediction, and
experimental validation,” which has also been applied to data-
driven material discovery for new functional materials
(batteries,”’ catalysts,10 nanopar‘cicles,11 and semiconduc-

The design of functional materials for engineering and
medicinal applications is still largely driven by the “trial-and-
error” strategy, whose empirical design nature lacks control

d prediction for the structure—functi f designed
and prediction for the structure~function property of designe tors'>"?), as well as for predicting the specific property

materials, thus making the entire design process expensive, ( ductivity, 1415 Ivti ity 1016 U o Tumi
time-consuming, and fraught with failures. With the advent of con }‘ffé‘”ty’ catalytic ' activity, photolumines-

f o 19-21 .
big data, artificial intelligence, and high-performance comput- cence, thermodynamics, and mechanical proper-
ing, the data-driven material discovery has become an

emerging and powerful approach to accelerate the systematic Received:  January 11, 2021

design of original materials with predictable properties.' Accepted:  February 17, 2021

Historically, data-driven approaches have been well developed Published: February 26, 2021

and widely applied to drug discovery,” disease diagnosis,”

transportation analysis,” and financial risk assessment.® A

general methodology of data-driven approaches still remains
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Table 1. Relative Protein Adsorption Data (%ML) of Fibrinogen and Lysozyme on the 48 SAMs

Protein Adsorption
Entry  Structure Fibrinogen Lysozyme
(%ML) (%ML)
01 HoN 100 100
F FF FFR F
02 H,N F 96 86
FFFFFF F T
03 CCO 106 130
o)
\
o)
04 0/ 75 105
H,N
o—
05 NN 53 15
06 > 47 14
07 /0\/\H/\/°\ 50 35
08 HN” OSSO 1.5 1.1
09 HNT SO oM 1.6 1.0
10 IO NN N O 0.3 0.5
1 IO NN OO 0.4 1.0
12 HN N 3.7 27
|\_/ Ny '
13 AN~ 40 14
|
14 Mo 25 3.9
HZN/\/ \Cl- .
15 HZN/\/O\/\O/\/NHZ 37 18
16 HN N— 16 1.0
|
17 N 8.5 7.8
I
H
18 N 54 80
o]
19 w7 39 12
(o]
20 HN ‘u—{ 38 6.5
H
21 qu/\/"\n/ 40 5.4
o
I
2 >SN 12 38
T
NH2
3 Y 58 30
(o]
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Table 1. continued

Protein Adsorption
Entry  Structure Fibrinogen Lysozyme
(%ML) (%ML)
\
24 H,N ~ 33 15

25 8.8
26 2.4
27 1.1
28 1.5
29 1.0
30 9.6
31 6

32 83
33 25
34 30
35 9.3
36 20
37 6.1
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Table 1. continued

Protein Adsorption
Entry  Structure Fibrinogen Lysozyme
(%ML) (%ML)
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o
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46 H 36 19
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| o
|-
48 HT/\/ \//P/\N _ 4.3 0.3
° \
ties”>*?) of any given materials. Of note, these studies mainly the literature to construct antifouling databases for different

. . . . 24-26 .2
focus on inorganic solid materials of metals, 4726 ceramics,”’

zeolites,”®* and metal—organic frameworks (MOFs),**!
simply because of largely available data sets, well-characterized
molecular structures, and mostly consistent chemical/physical/
biological properties, which allows us to establish a reliable,
data-driven model to encode the composition—structure—
property relationships of original materials as accurate and
comprehensive as possible. However, it remains a great
challenge to develop a data-driven model for the rational
design of original soft materials and coatings (e.g., polymers,
elastomers, and hydrogels), mainly due to the lack of high-
quality data at both structure and property levels.

Among different functional polymers, the development of
highly bioinert and biocompatible antifouling materials is
crucial for many scientific and technological applications
including implantable devices, biosensors, membrane separa-
tion, antibacterial coatings, and regenerative medicine.’* A
wide variety of antifouling polymers have been developed to
form biofouling-resistant surfaces against protein adsorption,
cell adhesion, and/or bacterial attachment. However, the
experimental design of antifouling surfaces that fulfill the
criteria of low toxicity, broad-spectrum activity, and ease of
production usually requires an empirical time/cost-expensive
optimization procedure. Alternatively, the data-driven design
of antifouling surfaces also encounters different road blockers.
First, there are no existing antifouling databases available, thus
it requires the researchers to collect experimental results from

modelings. Furthermore, the antifouling performance of even
the same materials, but coming from different laboratories,
could be varied considerably due to different synthesis
conditions and characterization methods. Next, molecular
dynamics (MD) simulations allow us to reveal the specific
interactions between any foulant and a given antifouling
surface,>* ™ from which the antifouling performance of the
surface can be readily determined by the extent of repulsive
forces acting on the foulant, along with the examination of the
structural effects of carbon spacer lengths,’ surface terminal
groups,” surface dipole orientations,”' surface hydrophilic-
ity,"> and surface grafting density’® on the antifouling
performance of the surface. From a viewpoint of the
computational design, it also remains challenging to discover
special structural descriptors to encode antifouling materials
that possess a wide variety of molecular weights, conforma-
tionally labile structures, and nonsystematic cross-linking.
While MD simulations can provide atomic details of structural,
dynamics, and free energy properties in relation to antifouling
mechanisms, MD simulations only allow us to study individual
antifouling material systems in a “one-at-a-time” manner, thus
lacking a data-driven capacity for the rapid prediction of a large
number of antifouling materials from a given database or for
building a broad data set by examining enough materials, due
to high computational cost. Apparently, these difficulties urge a
strong need for constructing a reliable antifouling material
database and a computational predictive model for better
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Figure 1. Schematic workflow of a three-step machine learning model, including (a) data collection and processing including data set construction
of SAMs from the literature (left), data featuring by molecular descriptors (middle), and variable reduction by a combination of Pearson analysis,
factor analysis, and random forest algorithm (right), (b) model training and validation by ANN, and (c) material prediction/design by SPR

validation.

assessing the component—structure—property—performance
relationship of antifouling surfaces.

The quantitative—structure—property/activity relationship
(QSPR or QSAR)* assisted by machine learning algorithms
has recently been reported to study the antifouling property of
different materials and coatings. Almeida et al."* developed a
linear regression QSAR model to evaluate the antifouling
activity of chalcone derivatives against various micro- and
macrofouling species. Descriptors that encode the hydrogen
bonds, shape, branching ratio, and constitutional diversity of
the molecule were found as influential factors for the
antifouling activity. As guided by the QSAR model, several
chalcone derivatives were synthesized to show a high inhibitory
effect on some bacterial growth. Feng et al.** also built a QSAR
model to evaluate the inhibition activity of acylamino
compounds containing gramine groups against Escherichia
coli growth. The model indicated that the antibacterial activity
of these compounds can be greatly improved by reducing the
HOMO energy and molar refractivity. Furthermore, QSAR
modeling for antifouling coatings becomes even more
complicated because apart from the physicochemical property
of materials (i.e., chemical structure, hydrophobicity, charge
distribution, and molecular weight), surface properties (i.e.,
packing density, film thickness and roughness, and chain

conformation) also contribute to antifouling performance.

11310

Rasulev et al.*® presented genetic algorithm-multiple linear
regression-based (GA-MLR-based) QSAR models to predict
the fouling-release activity of different marine fouling
organisms (bacteria, algae, and barnacles) on amphiphilic
polysiloxane-based polymer coatings. They found that several
descriptors of polarizability indices, size, mass, and van der
Waals volume were critically important for the fouling-release
activity of polysiloxane-based coatings. Le et al.*” applied both
linear (MLREM) and non-linear (BRANNGP and
BRANNLP) methods to quantitatively predict the protein
adsorption on self-assembled monolayers (SAMs). The models
revealed that the additional properties of size flexibility and the
polarizability of SAMs are highly related to their antifouling
ability. Specifically, SAMs with large, conformationally mobile,
and polarizable functional groups (e.g., ethylene glycol group)
are predicted to highly resist the protein adsorption. Recently,
Kwaria et al.** recently used the different data sets of SAMs to
construct a QSAR model, which can predict both the water
contact angle and protein adsorption on SAMs and determine
the importance of each structural parameter for the water
contact angle and protein adsorption.

The abovementioned QSAR/QSPR studies, despite very few
to date, mostly focus on the evaluation of the antifouling
property of any given materials and surfaces, instead of the
design of original antifouling materials and surfaces. Addition-

https://dx.doi.org/10.1021/acsami.1c00642
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Figure 2. Data set selection and factor determination for a machine learning model. (a) Eigenvalues (blue) and percentage of cumulative variance
(%) (red) for 43 factors and (b) molecular structures of 10 explicit functional groups from factor analysis. (c) Importance score ranking of 11
variables (10 functional groups and protein type) from the random forest algorithm. (d) Correlation coefficient matrix between every two variables

of 11 variables from Pearson analysis.

ally, the key descriptors in these models (e.g., N-066, N-067,
C-002, C-006, AlogP, etc.) lack the physical or chemical basis,
making the design of original antifouling materials not
straightforward. To address the above limitations, we first
assembled the protein adsorption data on self-assembled
monolayers (SAMs) from the literature.”” Table 1 summarizes
the compositions of the 48 SAMs, all of which contain well-
characterized end points of the protein adsorption amount and
cover a wide variety of chemical structures (e.g., hydrophilic
groups of hydroxyl, amide, acrylate, ether, and ethylene
glycol’®™>* and zwitterionic groups of carboxylic, sulfonate,
sulfate, and quaternary/tertiary/secondary/primary ammo-
nium**~%). The molecular-level surface uniformity and high
structural diversity of SAMs make them an ideal model for
generating protein adsorption data in a consistent manner,
which can be used as a reliable source to develop machine
learning models for studying and understanding the adsorption
of proteins on surfaces. Figure 1 shows a three-step process of
our machine learning model with a four-layer artificial neural
network (ANN), including data collection and processing from
experiments (Figure la), model training and validation by
ANN (Figure 1b), and material design validation by experi-
ments (Figure 1c). The resulting models were able to
determine the important molecular descriptors for surface
resistance to proteins, provide the specific functional groups
important for antifouling materials, and design molecules with
the predicted antifouling properties as both positive and
negative fouling indexes. Finally, we synthesized the three
antifouling molecules, coated them onto surfaces in different
forms of SAMs and polymer brushes, and tested their protein
resistance property by surface plasma resonance (SPR). SPR
results showed that SAMs and polymer brushes with negative
fouling indexes exhibited excellent surface resistance to protein
adsorption from undiluted human blood serum and plasma,
while surface coatings with positive fouling indexes had high
protein adsorption, consistent with the model predictions. This
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work demonstrates a data-driven machine learning model for
the functional group-based design of antifouling surfaces.

2. RESULTS AND DISCUSSION

2.1. Data Set Selection and Factor Determination for
Machine Learning Models. Table 1 collects a total of 48
self-assembled monolayers (SAMs), each containing two
different protein adsorption data (fibrinogen and lysozyme).
The protein resistance capacity (%¥ML) of any SAM is
determined and normalized by the protein adsorption amount
on a hydrophobic SAM of —CONH(CH,),,CH; as a
reference. Preliminary analysis has shown that entries 02, 14,
43, and 48 possessed significant noise and weak reliability in
the machine learning model, thus they were excluded from the
data set. Finally, there were a total of 88 protein adsorption
data points (44 SAMs X 2 protein adsorption data = 88) for
subsequent data featuring using molecular descriptors by
alvaDesc software and data training using ANN. The initial
structural and property analysis of SAMs led to 105
descriptors, which were then reduced to 43 descriptors by
removing some redundant or over-correlated descriptors using
a criterion of the paired correlation coeflicient of >0.85. Next,
Figure 2a shows the factor analysis of the eigenvalues and
percentage of cumulative variance (%) on 43 descriptors. It can
be seen that the first 10 functional group factors (Figure 2b)
possessed an eigenvalue of >1, a communality value of >0.5
(Table S1), a rotated regression coefficient of >0.3 (Table S2),
and 87.3% structural variance of the 43 descriptors (Table S3),
all indicating that these 10 functional groups are sufficient for
encoding the compositional, structural, geometrical, and
connectivity information of 43 descriptors. Next, we applied
the random forest algorithm to determine the importance of 10
functional groups and the protein type for their contributions
to the protein adsorption on SAMs. Figure 2c shows a
decreasing important score of 11 variables (10 functional
groups and protein type), all of which have an acceptable and

https://dx.doi.org/10.1021/acsami.1c00642
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Figure 3. Training performance of the ANN model. (a) Training epoch evolution of MSE and (b) relative errors of predicted values with respect to
the experimental values for both training and test sets in the ANN model.

important score of >0.01, while Pearson analysis in Figure 2d
shows the high independence of 11 variables, both confirming
that 11 resulting variables are qualified for a machine learning
model.

2.2. Training and Validation of Machine Learning
Models. We have applied both ANN and supporting vector
regression (SVR) models with radial basis function (RBF) and
polynomial kernels to (i) train and test the antifouling property
of SAMs in relation to the functional groups and (ii) compare
their reliability and predictivity of different machine learning
models. However, both internal and external cross-validation
have shown that the ANN model (Q&y = 0.9 and Q%, = 0.84)
exhibits the better reliability and predictivity than SVR-RBF
(Q&y = 0.86 and Q% = 0.71) and SVR-Polynomial (QZy =
0.93 and Q%, = 0.29) models. More importantly, the SVR-
Polynomial model showed the overfitting behavior, as
evidenced by a much higher value of Q¢y (0.93) than that
of Q%, (0.29) (data not shown). In this work, we used a four-
layer ANN model for the prediction of protein adsorption on
SAMs, starting with the first input layer containing the data
feature of 11 variables (10 functional group factors and protein
type), followed by the second and third hidden layers
containing 96 and 48 neurons, ending with an objective
function of the logarithmic relative protein adsorption amount,
log(RPA), on SAMs. A binary function was used to present the
protein type (1 for fibrinogen and 0 for lysozyme). During the
ANN training process, two protein adsorption data of
lysozyme on SAMs (entries 16 and 30) were identified as
outliers, thus they were removed from the data set. For the
remaining 86 protein adsorption data, 70% of the data set (60
data) was used for training, while the remaining 30% (26 data)
was used for the testing of the trained model. The training
performance of the ANN model was assessed by the
convergence of mean squared errors (MSEs) of log(RPA)
for both training and test sets. Figure 3a shows that both MSE
values for training and validation stopped at a very early stage
of 30 epochs, while Figure 3b further shows that all errors
(100%) for the test set were less than 0.6, while 59 errors
(98%) for the training set were less than 0.5. We further
randomly distributed the whole data to 70% of the training set
and 30% of the test set and similar behaviors of MSE values for
the validation and testing sets were observed, confirming the
satisfactory distribution of the data. These results indicate the
good fitting and training performance of the ANN model for
both validation and testing sets.

Next, we applied both leave-five-out cross-validation and
external validation to assess the reliability and predictivity of
the ANN model, respectively. In Table 2, the leave-five-out
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Table 2. Internal Cross-Validation and External Validation
for the ANN Model

validation method number of samples Q? RMSE
leave-five-out cross-validation 60 0.90 0.21
external validation 26 0.84 0.28

cross-validation conducted the five iterative and random tests
on the training set, yielding Q¢y = 0.90 and RMSEy = 0.21.
The high value of Qfy and the small value of RMSE(y
confirmed that the constructed model was stable. Meanwhile,
external validation on the test set gave Q% = 0.84 and RMSE,,,
= 0.28, both of which were also close to those for cross-
validation on the training set. This indicates the good
prediction power of the ANN model without significant
overfitting. In addition, the low values of both RMSEy and
RMSE,,, also indicated that the model was uncertain.
Consistently, a plot of the predicted log(RPA) versus the
experimental ones for both training and test sets gave r* values
of 0.92 and 0.87, respectively (Figure 4a), indicative of the
high predictive accuracy of the model.

In parallel, to analyze the accuracy and robustness of models,
we assessed whether the predefined applicability domain could
accurately identify query samples from the test set using the k-
nearest neighbor (KNN) approach.”” Figure 4b shows that the
applicability domain increased dramatically as the k value
increased from 1 to 4 but remained almost unchanged after k =
S. When the k value (1—4) is too small, more samples would
be out of the applicability domain, leading to the diminution of
the data diversity. When the k value is too large, very few
samples will be excluded to achieve the purpose of optimizing
models. Taking these factors into consideration, the optimal k
value was set to 8. The models with k = 8 performed best,
proving the prediction reliability of models.

2.3. Structure-Dependent Design and Protein Resist-
ance Property of SAMs. To better understand the
structure—antifouling property relationship of SAMs, we
performed Bayesian statistics to quantify the contribution of
10 functional groups and the protein type to protein
adsorption capacity (i, fouling index) on SAMs. In Figure
S, a positive fouling index indicates that the functional group
promotes protein adsorption on SAMs, while a negative index
indicates a better antifouling property. The probability
distribution of the fouling index of functional groups presents
the extent of importance for protein adsorption on SAMs. It
can be seen that among 10 functional groups, functional
groups 1 and 4 had almost 100% of the negative fouling index,
suggesting that SAMs containing these groups would have the
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number of hydrogen bond acceptors in SAMs enables the
formation of a strong surface hydration layer on SAMs, which
in turn offers a physical barrier to prevent protein adsorption.
Consistently, SAM entries 26, 27, 28, and 29 or entries 8, 10,
and 37 containing either group 1 or group 4 exhibited the low
protein adsorption of 0.3—9.1%ML for fibrinogen and 0.5—
6.1%ML for lysozyme (Table 1). Next, additional functional
group 10 also had the higher negative fouling index of 81.5%,
which was consistent with the experimental observation that
SAM entries 21 and 25 containing group 10 exhibited high
surface resistance to nonspecific protein adsorption, as
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Figure S. Fouling index probability (%) to describe the protein
resistance and protein adsorption of 10 functional groups and the

protein type.

strongest surface resistance to proteins. Functional group 1
containing tertiary amine (—NR;) and carbonyl (=0) groups
as hydrogen bond acceptors has a similar chemical structure to
acrylamide, while functional group 4 has a sole hydrogen bond
acceptor of the ether (—O—) group. The presence of a large

respectively, leading to the weaker surface resistance ability
as compared to functional groups 1, 4, and 10. These three
groups are hydrophilic and contain both hydrogen bond
acceptors and donors of O—, OH—, NH—, and COO—, again
indicating that the hydrogen bonds formed at SAM/water
interfaces are critical factors for protein resistance.”®* Thus,
the protein resistance of SAMs is attributed to their ability to
form a strong surface hydration layer via hydrogen bonding
groups. In contrast, groups 3, S, 6, 7, and 8 possessed dominant
hydrophobic motifs of the aromatic ring, methyl chains, and

a
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Figure 6. (a) Molecular design of antifouling SAMs with different terminal groups and anchors for synthesis. (b) Predicted protein adsorption
amount (%ML) of fibrinogen and lysozyme on the three designed antifouling SAMs.
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highly charged cyano groups, which contributed to the higher
positive fouling indexes of 67.0—95.4%. This is not surprising
because hydrophobic and charged surfaces (e.g., entries 32, 34,
35, 38, 39, 40, 41, and 44) always promote nonspecific protein
adsorption.’”®" Apart from the intrinsic antifouling property of
functional groups alone, the surface properties of packing,
grafting density, smoothness, and thickness also contribute to
the overall antifouling property. In addition, fibrinogen has a
higher positive fouling index than lysozyme, suggesting that
fibrinogen is relatively easier to be adsorbed on the studied
SAMs than lysozyme. This could be due to different sizes and
p! between fibrinogen (340 kDa, pI = S.5) and lysozyme (15
kDa, pI = 10.9). The large and negatively charged fibrinogen at
physiological pH has a higher probability to be adsorbed on
the SAMs we examined in the data set.

Based on the predictive relationship between the functional
groups and protein resistance of SAMs, we applied an inverse
molecular design strategy to design the three antifouling
molecules via a combination of different functional groups with
negative fouling indexes. Briefly, the designed antifouling
molecule consists of a common backbone of methylene (group
6) and acrylamide (group 10) and different terminal groups of
1-9. A number of studies have demonstrated that acrylamide-
based polymers can achieve excellent antifouling performance
to resist protein adsorption, cell/bacteria adhesion, and
macrofoulant attachment.*>**°***%* A primary or secondary
amine group is included for the substitution reaction by
replacing one hydrogen atom attached to a nitrogen atom with
the acyl chain.”” The inclusion of the hydrophobic methylene
group is to increase the mechanical property of coating
materials. From a synthesis viewpoint, two design strategies
were applied to use either acrylamide or methylene regions as
surface anchor sites to connect with the acyl chain (Figure 6a).
Before the experimental tests, we computationally assessed the
protein resistance property of the three designed SAMs. As
shown in Figure 6b, SAM-2 containing group S promoted the
adsorption of both fibrinogen (71.75%ML) and lysozyme
(47.31%ML). This again confirms that group S with a positive
fouling index contributes to protein adsorption. In contrast, the
other two designs of SAM-1 and SAM-3 showed a high surface
resistance to both fibrinogen and lysozyme adsorption. Among
them, SAM-3 presented the best and predicted protein
resistance property, due to the presence of multiple hydrogen
bonding groups, allowing the formation of a massive hydrogen
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bond network with interfacial water for preventing protein
adsorption. More importantly, since all of the designed SAMs
have the same functional groups in the backbone, our
modeling indicates that different adsorbed amounts of proteins
are largely attributed to terminal groups in SAMs.®*

2.4. Protein Adsorption on the Designed Antifouling
SAMs. Upon demonstration of the predicted protein
adsorption property of the designed SAMs, we synthesized
the three molecules capped with S atoms and then formed
SAMs on the gold substrate via S—Au anchoring chemistry.
Next, the antifouling property (i.e., protein adsorption
amount) of the resultant SAMs was evaluated by undiluted
blood plasma and serum containing ~500 proteins by SPR.
Figure 7a shows three typical SPR sensorgrams of protein
adsorption on SAMs. As an example of SAM-1 with the
excellent predicted protein resistance property, upon flowing
freshly prepared undiluted blood plasma through independent
SPR channels coated with SAM-1, a very large amount of
proteins was immediately adsorbed on SAM-1. However, when
the plasma solution was switched to the phosphate-buffered
saline (PBS) solution, the initially adsorbed proteins on the
SAM-1 surface were almost completely washed away by PBS,
leading to protein adsorption of ~2 and ~3 ng/cm’ from
undiluted blood plasma and serum. This indicates that initially
adsorbed proteins are very loosely bound to SAM-1. For
comparison, final adsorbed proteins from undiluted blood
serum/plasma on the three SAMs were ~3/~2 ng/cm’ on
SAM-1, ~120/~150 ng/cm2 on SAM-2, and ~7/~4 ng/cm2
on SAM-3 (Figure 7b), whose protein resistance capacity is in
the decreasing order of SAM-1 > SAM-3 > SAM-2, consistent
with modeling prediction. There are two major differences
between SAM-1 and SAM-3. First, while the amide group is
presented in the three newly designed SAMs (SAM-1, SAM-2,
and SAM-3), the amide group was used as an anchor group for
SAM-1 and SAM-2 but as a terminal group for SAM-3. Second,
while both SAM-1 and SAM-3 achieved excellent surface
resistance to protein adsorption of ~3/~2 and ~7/~4 ng/cm*
from undiluted blood serum/plasma, the ether group in SAM-
1 and the amide group in SAM-3 contributed differently to
their respective protein resistant ability.

Different from other indirect, descriptor-based material
designs, we further expanded our functional group-based
design strategy to design, from a synthesis viewpoint, other
types of acrylamide derivatives of N-(2-cyanoethyl)acrylamide

https://dx.doi.org/10.1021/acsami.1c00642
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(CEAA), N-(2-methoxyethyl)acrylamide (MEAA), and N-(2-
aminoethyl)acrylamide (AEAA) (Figure 8a), followed by the
polymerization and grafting of them onto a gold substrate to
form polymer brushes using a surface-initiated atom transfer
radical polymerization (ATRP) method.>*® The three
resultant polymer brushes were tested for their protein
resistance capacity by undiluted blood plasma and serum. As
shown in Figure 8b, the polyCEAA brush involving group 4 of
methyl-alkoxy ether with a higher negative fouling index
achieved extremely high surface resistance to protein
adsorption, as evidenced by the undetectable amount (<0.03
ng/cm?) of the adsorbed protein on polyCEAA from undiluted
human serum/plasma. PolyAEAA brush with functional group
7 as the terminal group, instead of as the anchor site, enabled
to produce a strong surface hydration layer through their rich
hydrogen bond donors, thus leading to very low protein
adsorption of ~5 ng/cm* from human serum and ~8 ng/cm”
from human plasma. As a negative design, the polyMEAA
brush containing group S of cyano with a higher positive
fouling index exhibited a weaker surface resistance to protein
adsorption of ~85 ng/cm” from human serum and ~63 ng/
cm” from human plasma. In addition to antifouling SAMs and
polymer brushes, the machine learning-enabled functional
group-based design strategy could be further applied to other
surface coatings of hydrogels and elastomers.

3. CONCLUSIONS

In this work, we complied protein adsorption data on SAMs
from the literature and developed a data-driven machine
learning model to assess the antifouling performance of any
given and designed SAMs. The resultant model not only
achieved excellent robustness of Q%y = 0.90 and RMSEy, =
0.21 and predictive ability of Q%, = 0.84 and RMSEy, = 0.21 of
the model but also identified both critical molecular
descriptors and functional groups important for the rational
design of antifouling materials. Among them, the functional
groups 1 (tertiary amine derivative), 4 (methyl-alkoxy ether), 9
(carboxy), and 10 (amide) were predicted to be the most
promising groups for antifouling materials. Based on the model
prediction above, we designed and synthesized three different
SAMs and three polyacrylamide-based brushes containing
functional groups with both positive and negative fouling
indexes. As expected, among these designed SAMs and
polymer brushes, two antifouling SAMs (SAM-1 and SAM-
3) and two antifouling brushes (polyCEAA and polyAEAA)
exhibited an excellent protein resistance of <8 ng/cm* from
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undiluted human serum/plasma measured by SPR, consistent
with model prediction. An alternative to experimental or
molecular simulation methods, this work demonstrates a data-
driven machine learning method to not only gain quantitative
perspectives on the informative material correlations between
functional groups and the antifouling property of SAMs but
also offer specific functional group-based design guidance for
effective antifouling materials. Of note, it is clear for any data-
driven method that the acquirement and expansion of high-
quality data are equally important for the development of
efficient machine learning algorithms and workflows, which are
expected to greatly accelerate the material design process by
examining wide compositional and structural spaces efficiently.
On the other hand, it is not always necessary to mine massive
data from open-access literature and databases, instead, it is
more innovative and challenging to extract all possible
information from the limited existing data to conduct state-
of-art material designs via a “the best we can do with the
limited data we have” strategy.

4. MATERIALS AND METHODS

4.1. Machine Learning Section. 4.1.1. Data Set. In this work,
we applied the data set published by Whitesides’ group® for the
adsorption of lysozyme and fibrinogen on 48 mixed self-assembled
monolayers (SAMs) with 30 min exposure to present the machine
learning study (Table 1). The protein adsorption (%ML) is referred
to the amount of protein adsorbed on each mixed SAM(—COR)
surface as the percentage of the protein adsorption amount on a
referenced monolayer SAM of —CONH(CH,),,CH,.** We used a
binary function to present the protein type (1 for lysozyme and 0 for
fibrinogen). To reduce the noise and ensure the reliability of the
machine learning model, entries 02, 14, 43, and 48 were removed
from the data set.

4.1.2. Molecule Drawing and Molecular Descriptor Calculation.
The molecular structures of all SAMs were drawn using ChemDraw
software. Geometrical optimization of these compounds was carried
out using the Chem3D package through the Merck molecular force
field (MMFF94) with the steepest descent algorithm. A pool of one-
dimensional (1D) molecular descriptors containing constitutional
indices, ring descriptors, functional group counts, atom-centered
fragments, and molecular properties was selected and computed to
characterize the SAMs in the data set using alvaDesc 1.0.14 software
(https://www.alvascience.com/alvadesc). Based on the univariate
statistics and correlation analysis, descriptors with missing values,
constant values, near-constant values, and paired correlation
coefficients of >0.95 were removed for accuracy, ultimately leading
to 10S descriptors for model construction.

4.1.3. Variable Reduction for the Machine Learning Model. To
reduce the high-dimensional data, we carried out four consecutive
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procedures to reduce the number of variables. First, we statistically
analyzed the correlation between the descriptors for the 105
molecular descriptors and removed redundant descriptors by taking
care of multicollinearity between the descriptors. After removing the
descriptors with the correlation coefficient greater than the bench-
mark value of 0.85, 43 descriptors were obtained. Then, factor
analysis”” was carried out to generate a smaller number of explicit
functional groups, which can summarize the entire cluster of 43
resultant descriptors using IBM SPSS Statistics 26 software. The
obtained functional groups are linearly correlated with the 43
descriptors and can describe the covarying variables by a latent
structure. In this study, the principal component method was used to
extract the functional groups by clustering the highly intercorrelated
descriptors. The factor coefficients involved in a matrix are regression
coeflicients, which can quantify the relationship between the
descriptors and the inferred functional groups. Rotation was
performed to make the factors interpretable since it can maximize
the loadings of some descriptors for the specific functional groups but
minimize the loadings of these descriptors for other factors. To obtain
independent functional groups with no correlation with each other,
the varimax rotation algorithm with Kaiser normalization was used to
rotate the factors to generate interpretable functional groups. A value
of 0.3 was used as the cutoff for the absolute value of regression
coefficients to select descriptors with high correlation with the
interpretable functional group. In this way, descriptors with squared
correlated coefficient values greater than 0.3 with the factors can be
used for interpreting the factor as the functional group. Further, the
random forest algorithm was performed to screen variables (func-
tional groups and protein type) that were highly correlated with the
antifouling property/protein adsorption ability of SAMs. Finally,
Pearson analysis was performed to ensure the independence of these
variables.

4.1.4. Training and Validation of the Machine Learning Model.
In this work, we designed a four-layer sequential artificial neural
network (ANN) using keras and TensorFlow modulus implemented
in Python 3.6. The training of a machine learning model used random
model initiation and the data set was randomly split into a training set
and a test set with a ratio of 7/3 to ensure the repeatability of the
predictive performance of the trained machine learning model. The
training set was used to train the model based on the designed neural
network, while the test set was applied to validate the predictivity and
robustness of the model. This ANN model consists of an input layer
that contains the variable information of the data. The dimension of
the input layer was first flattened. We next added two dense hidden
layers with 96 and 48 neurons. The activation function applied for the
input layer and the two dense hidden layers were rectified linear unit
(relu), hyperbolic tangent (tanh), and rectified linear unit (relu)
functions, respectively. An output layer was used to present a
prediction of the property of interest. Two dense hidden layers
connect the input and the output layers through every node in the
previous layer weighted connecting with every node in the next layer.
Each dense layer enables to manage its own weight matrix and a
vector of bias terms. Before starting the training of the model, the
weights between the neurons of the previous layer and the neurons of
the next layer were randomly assigned using the He normal method.
During the training process, the weights between each neuron of the
previous layer and each node of the next layer were consensus
optimized. To obtain the optimal performance in the designed neural
network, the error of the cost function was applied for optimizing the
model evaluated by mean squared errors (MSEs) between the
experimental log(RPA) and the predicted log(RPA) of the training set
and the test set. For the training process, leave-five-out cross-
validation and external validation were performed to estimate the
convergence of MSE. To this end, deep-learning methods (e.g,
automatic learning-rate reduction and early stopping) were carried
out to avoid overfitting. When the MSE of both training and
validation reaches the minimum cross-entropy, the model at this state
was regarded as the optimal model.

The k-nearest neighbors (KNN) algorithm®” was performed to
evaluate the applicability domain (AD) for testing samples. The

principle of kNN applied for evaluating AD basically reflects whether
a testing sample is suitable to predict the property of interest by the
constructed machine learning model. The threshold for the training
samples was first defined. Then, the distance of a testing sample is
considered from its k closest data points from the training samples in
the chemical space. If the testing data was outside the threshold, it will
be regarded as an outlier and vice versa. A lower distance reflects a
higher similarity between training samples and testing samples, while
a higher distance corresponds to a higher mismatch in the structural
space between the training and testing samples. Herein, in the process
of performing kNN, the k value was continuously optimized. At the k
value with least outliers from the testing sample, k is the optimal one
to evaluate AD.

4.1.5. Evaluation of the Machine Learning Model. The
robustness and predictive ability of the ANN model were evaluated
using the squared correlation coefficient (QZy) and root-mean-square
error (RMSE¢y) from leave-five-out cross-validation as well as
squared correlation coefficient (QZ;) and root-mean-square error
(RMSE,,,) from external validation. The following equations are used
tc; quantify Q¢y (eq 1), RMSEcy (eq 2), Q3 (eq 3), and RMSE,, (eq
4
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where ¥ and y%*? in eqs 1 and 2 are the experimental and predicted
log(RPA) values of the training samples, respectively, 7°°° is the
average value of log(RPA) from the experiment for the training set,
5 and y2°9 in eqs 3 and 4 are the experimental and predicted
log(RPA) values of the testing samples, respectively, and 7° is the
average value of log(RPA) from the experiment for the test set.
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5. EXPERIMENTAL SECTION

5.1. Materials. Trifluoroacetic anhydride, 16-mercaptohexadeca-
noic acid, 3-methoxypropanamide, acryloyl chloride, triethylamine,
sodium bicarbonate, cyanoacetamide, and 3-amino-propionitrile were
purchased from Sigma-Aldrich. N-methyl-2-pyrrolidone (NMP,
anhydrous), 3-amino-N-methylpropanamide hydrochloride, N-(2-
aminoethyl)acrylamide, and 1-amino-2-methoxyethane were obtained
from VWR. All other chemicals introduced in this project were used
without prepurification.

5.2. Preparation of Targeted SAMs. The preparation protocol
of SAMs was followed as the previous work reported by Prof.
Whitesides’s group.*”® In brief, the SPR chips were cut into 1.5 cm X
2 cm pieces, washed with absolute ethanol, and exposed into a 3 nM
16-mercaptohexadecanoic acid solution (solvent: ethanol) at room
temperature overnight. The modified SPR chips were named “SPR-1".
Subsequently, precleaned SPR-1 substrates colonized with carboxylic
acid were immersed into a 10 mL solution of 0.2 M triethylamine and
0.1 M trifluoroacetic anhydride in anhydrous dimethylformamide
(DMF) for at least 30 min. The obtained chips were referred to as
“SPR-2” and rinsed thoroughly with CH,Cl,. After undergoing the
abovementioned two steps, the grafted interchain anhydride was
generated. The precleaned SPR-2 substrates were immersed into a 10
mL solution containing 10 mM alkylamine (solvent: anhydrous 1-
methyl-2-pyrrolidinone) for 1 h. The resultant chips referred to as
SAM-1-3 chips (cyanoacetamide 3-amino-N-methylpropanamide

https://dx.doi.org/10.1021/acsami.1c00642
ACS Appl. Mater. Interfaces 2021, 13, 11306—11319


www.acsami.org?ref=pdf
https://dx.doi.org/10.1021/acsami.1c00642?ref=pdf

ACS Applied Materials & Interfaces

Research Article

www.acsami.org

hydrochloride) were rinsed with ethanol and dried with a nitrogen
stream for standby.

5.3. Synthesis of the Predicted Monomers. According to the
previous studies, two predicted yet uncommercial monomers, i.e., N-
(2-cyanoethyl)acrylamide (CEAA) and N-(2-methoxyethyl)-
acrylamide (MEAA) were synthesized by coupling acryloyl chloride
and corresponding amine derivatives (Figure S1). For example,
acryloyl chloride (0.04 mol) in 100 mL of anhydrous CH,Cl, was
added dropwise to the mixture containing anhydrous CH,Cl, (100
mL), triethylamine (20 mL), and equimolar 1-amino-2-methoxy-
ethane (0.04 mol) at ice—salt baths. After the feeding was completed,
the substitution reaction stopped after additional 6 h at 25 °C. The
unreacted acryloyl chloride was consumed by adding 100 mL of pure
water. In addition, the oil/water layers were washed with a NaHCO;
solution and water twice, separated using a separatory funnel, and
fully dried by sodium sulfate (anhydrous) overnight. The organic
layer was then concentrated and evaporated to obtain the transparent
liquid products (yield: 67, 65, and 74%, respectively). 'H-NMR
(DMSO-dg or CDCl,, 300 MHz): (CEAA: —CH,—, 3.04—3.67, 4H;
—CH;, 3.28, 3H; —CH, = CH—, 5.74—6.48, 3H; —NH—, 8.41, 1H),
(MEAA: —CH,—, 3.17-3.33, 4H; —CH, = CH—, 5.74—6.52, 3H;
—NH-, 8.42, 1H).

5.4. Preparation of Polymer Brushes on SPR Chips. The
typical protocol of polymer brushes on SPR chips was according to
our previous work via a surface-initiated (SI) ATRP method.*>®® The
precleaned SPR chips were first immersed into a solution containing 1
mM @-mercaptoundecyl bromoisobutyrate (solvent: ethanol) at 25
°C overnight. Next, a tube containing the target monomer (0.5 g),
Me,TREN (30 mg), and degassed methanol were transferred to
another tube with SPR chips grafted with immobilized initiators and
CuBr (15 mg) under the protection of high-purity nitrogen. The SI-
ATRP reaction was immediately initiated and was stopped by
exposing to air after 12 h. The dissociative polymer chains and
unreacted monomers were removed by soaking chips into a PBS
solution overnight.

5.5. Protein Adsorption by SPR Measurement. The detailed
protocol was followed as our previous reported literature.® Generally,
a homemade SPR sensor based on wavelength interrogation was
utilized to determine protein adsorption on target SAM- or polymer
brush-grafted substrates. The undiluted human protein (plasma and
serum) solution and PBS buffer flowed through four channels under
the pressure of a peristaltic pump. To obtain the absolute adsorption
value, a 1 nm SPR wavelength shift was regarded as ~1S ng/ cm?
protein adsorption.
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