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Solutions to the backreaction equation in 1+1-dimensional semiclassical electrodynamics

are obtained and analyzed when considering a time-varying homogeneous electric field ini-

tially generated by a classical electric current, coupled to either a quantized scalar field or

a quantized spin- 12 field. Particle production by way of the Schwinger effect leads to back-

reaction effects that modulate the electric field strength. Details of the particle production

process are investigated along with the transfer of energy between the electric field and

the particles. The validity of the semiclassical approximation is also investigated using a

criterion previously implemented for chaotic inflation and, in an earlier form, semiclassical

gravity. The criterion states that the semiclassical approximation will break down if any

linearized gauge-invariant quantity constructed from solutions to the linear response equa-

tion, with finite nonsingular data, grows rapidly for some period of time. Approximations

to homogeneous solutions of the linear response equation are computed and it is found that

the criterion is violated when the maximum value, Emax, obtained by the electric field is of

the order of the critical scale for the Schwinger effect, Emax ∼ Ecrit ≡ m2/q, where m is the

mass of the quantized field and q is its electric charge. For these approximate solutions the

criterion appears to be satisfied in the extreme limits qEmax

m2 � 1 and qEmax

m2 � 1.
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I. INTRODUCTION

The semiclassical approximation has been commonly used among a wide variety of physical sce-

narios where a quantized field on a classical background is investigated, with interesting phenomena

emerging from such considerations including the decay of an electric field by the Schwinger effect

[1], particle creation in an expanding universe [2], and black hole evaporation via the Hawking effect

[3] (see also Refs. [4, 5] and references therein). Consider for instance quantum electrodynamics,

described in terms of an electromagnetic potential Aµ and a Dirac field ψ, with classical action

S[Aµ, ψ̄, ψ]. The semiclassical theory can be formally described using the concept of the effective

action Γ[Aµ], obtained by functional integration of the matter degrees of freedom [6]

exp{iΓ[Aµ]} =

∫
Dψ̄Dψ exp

{
iS[Aµ, ψ̄, ψ]

}
. (1.1)

Within this framework the (semiclassical) Maxwell field equations take the form

∂µF
µν = q〈0A|ψ̄γµψ|0A〉 , (1.2)

and replace the proper Maxwell equations of the full quantized theory in the Schwinger-Dyson

form ∂µ〈Fµν〉 = q〈ψ̄γµψ〉. In Eqs. (1.1) and (1.2) the electromagnetic field is treated as a purely

classical entity. Moreover, the right-hand side of Eq. (1.2) is implicitly a function of Aµ in the

sense that the assumed vacuum depends on Aµ. This is so because the modes of the charged Dirac

field, defining the appropriate vacuum |0A〉, satisfy equations involving the background field Aµ.

This semiclassical approach is usually regarded as a truncated and effective version of the fully

quantized theory, with a limited range of validity.

One advantage of the semiclassical viewpoint is that it provides a clear description of the

spontaneous particle creation phenomena. The nonzero imaginary part of the effective action Γ[Aµ]

indicates the quantum instability of the vacuum |0A〉 and the corresponding pair creation process

[1]. This phenomena can be better understood in the canonical language: a positive-frequency

solution of the Dirac equation (i /D − m)ψ = 0 at early times will evolve into a superposition of

positive- and negative-frequency solutions at late times (this was first described for a gravitational

background [2]). The semiclassical approach encapsulates in a clear way this very important effect.

The original calculation by Schwinger [1] involved a background field calculation in which the

electric field E is constant in both space and time. A particle production rate was obtained. The

dependence on the coupling constant q displayed an essential singularity e−m
2/qE , showing the

nonperturbative nature of the Schwinger effect. The damping of the electric field can be deduced
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from this particle production rate. The real part of the (Heisenberg-Euler) effective action can

also account for perturbative effects, such as light-by-light scattering, in agreement with the exact

one-loop calculation in the limit of low-frequency light, or the running of the effective coupling

constant.

Subsequently the semiclassical backreaction equation was solved for an electromagnetic field

coupled to a massive scalar field or a massive spin- 1
2 field in 1+1 dimensions (D) [7–9] and 3+1D [9–

11]. The electric field was assumed to be homogeneous in space, but was allowed to vary in time

in response to the electric current that occurs when the produced particles are accelerated by

the electric field. It was found the counter-electric field produced by this current initially starts

to negate the original background electric field. Eventually the background field is completely

canceled, but by this time there is a significant electric current due to particle production and the

result is that the particles keep moving which generates an electric field in the opposite direction.

The process continues and the particles end up undergoing plasma oscillations with an overall

electric field oscillation in time. Similar studies have also been done by solving the Vlasov equation

with a source term to account for particle production [7–9, 12], using lattice simulations [13, 14],

and classical statistical field theory techniques [11].

In this paper we obtain and further study solutions to the semiclassical backreaction equation

in 1+1D for both scalar and spin- 1
2 fields coupled to an electromagnetic field initially generated by

a homogeneous, classical current. We have two primary goals. The first is to study the details of

the particle production process when backreaction effects have been taken into account, including

also the transfer of energy between the electric field and the created particles. The second goal is

to estimate the importance of certain types of quantum fluctuations and use the results to assess

the validity of the semiclassical approximation.

We study three classical current profiles which generate an electric field that is initially zero.

The first is similar to the previous cases in that the current is proportional to a delta function

potential and the electric field goes from zero to a constant value instantaneously. A second profile

involves a sudden turn on of the classical current but a gradual turn on of the electric field. The

third profile is that of the Sauter pulse [15] in which the current is in the form of a smooth pulse

that has a significant value only for a finite period of time. For the Sauter pulse the turn on and, if

quantum effects are ignored, the turn off of both the current and the electric field are very gradual.

In all three cases there is a well-defined vacuum state for the quantum fields since the electric field

is initially zero. The semiclassical backreaction equation is solved numerically both in the case of

semiclassical scalar and spinor electrodynamics. To our knowledge the semiclassical backreaction
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equations have not been generically studied for the second and third classical current profiles. The

first one has been considered in Refs. [10–14].

The particle production process for individual modes of the quantum field has previously been

studied in background field calculations where the electric field is either constant [16, 17] or is

gradually turned on and then off [18]. It was found that a single particle creation event occurs

for many modes when the electric field is either constant or approximately constant. Here, we

consider particle production when backreaction effects are taken into account. Because of the

plasma oscillations, there is a richer evolution for some modes that involves multiple particle

creation events and can also involve particle destruction events. We do this for individual modes

for the delta function classical current profile.

For completeness, and to give better insight into the particle creation process, we also compute

the total number of particles produced for all three profiles and the energy density of the produced

particles for the delta function current profile. The energy density of the particles is compared

with the energy density of the electric field. Similar calculations have been done previously in

1 + 1D using lattice simulations [13] and in 3 + 1D using canonical quantization [10] and classical

statistical field theory techniques [11].

We compute the energy density of the quantum field using the continuous adiabatic regular-

ization prescription, obtaining compatible results. The agreement between both approaches for

Dirac massless fermions can be easily understood since the full QED2 model is integrable [19] and

particle production can be well described within the semiclassical framework. The presence of a

nonzero mass breaks integrability and hence one could expect it to also break the accuracy of the

semiclassical picture.

The validity of the semiclassical approximation is studied here by estimating the importance

of some of the quantum fluctuations. The semiclassical approximation breaks down if quantum

fluctuations are too large. We use a criterion for the validity of the semiclassical approximation

that has been previously applied to the process of preheating in models of chaotic inflation [20].

An earlier version of the criterion has also been used to study the validity of the semiclassical

approximation for free scalar fields in flat space when the fields are in the Minkowski vacuum

state [21] and for the conformally invariant scalar field in the Bunch-Davies state in de Sitter space

in the usual spatially flat cosmological coordinates [22]. To our knowledge no similar study of the

validity of the semiclassical approximation has been done previously for scalar electrodynamics or

quantum electrodynamics when particle creation occurs due to the presence of a strong electric

field.
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The method we use to study the validity of the semiclassical approximation involves an analysis

of solutions to the linear response equation which can be obtained by perturbing the semiclassical

backreaction equation. In general, the linear response equation obtained in this way is an integro-

differential equation which involves an integral over the retarded two-point correlation function

for the source term in the semiclassical backreaction equation. In this case, that is the two-point

correlation function for the electric current. While the general form is known, the specific forms

for the case of a homogeneous electric field in 1+1D coupled to either a massive scalar field or a

spin-1
2 field has not previously been derived. We do so in the Appendix for both of these cases.

Although the linear response equation can be solved directly, there is a simpler method which can

be used to obtain an approximate solution which should be valid at early times if the exact solution

is relatively small. The method involves computing the difference ∆E between two solutions to the

semiclassical backreaction equation which have similar starting values at a given time. This method

was used to investigate the validity of the semiclassical approximation during the preheating phase

of chaotic inflation in Ref. [20]. It works for the homogeneous solutions to the linear response

equation that we consider here.

The paper is organized as follows. In Sec. II brief reviews are given of the quantization of complex

charged scalar and spin- 1
2 fields in electrodynamics. The semiclassical backreaction equations are

also discussed along with the renormalization techniques used. In Sec. III the details of the particle

production process are investigated for the case of a classical current profile proportional to a delta

function. Also discussed is the transfer of energy between the electric field and the created particles.

The criterion for the validity of the semiclassical approximation that we use is discussed in Sec. IV

where both the general form and the specific form of the linear response equation are displayed

for the separate cases of a scalar field and spin- 1
2 field coupled to the electromagnetic field. In

Sec. V some of the results of numerical calculations we have made related to the validity of the

semiclassical approximation are presented and discussed. A summary of our results and some

conclusions are given in Sec. VI. The Appendix contains derivations of the specific contributions

to the linear response equations from the current-current commutators when scalar fields and spin

1
2 fields are coupled to the electromagnetic field.
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II. QUANTIZATION AND RENORMALIZATION OF COMPLEX SCALAR AND

SPIN- 12 FIELDS

In this section we will briefly describe the models under consideration: a quantized complex

scalar field and a quantized Dirac field, both interacting with a background electromagnetic field

generated by a prescribed classical source. For the two systems under investigation, we restrict our

analysis to a 1 + 1D Minkowski space and assume that the background electric field is spatially

homogeneous so that E = E(t) in a given reference frame. We use units such that ~ = c = 1 and

our convention for the metric signature is (−,+).

A. Scalar field

The classical action representing a scalar field φ(t, x) coupled to a background electromagnetic

field is

S =

∫
d2x

[
− 1

4
FµνF

µν +AµJ
µ
C −Dµφ

†Dµφ−m2φ†φ

]
, (2.1)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field-strength tensor, the mass of scalar field

excitations is given by m, and Dµ = ∂µ − iqAµ is the gauge-covariant derivative required to make

the action gauge invariant. JµC is a classical and conserved external source. Variation of Eq. (2.1)

with respect to the vector potential yields the classical Maxwell equations

−2Aµ + ∂µ∂νA
ν = JµC + JµQ , (2.2)

where the source term JµQ induced by the scalar field is given by

JµQ = ηµν
[
− iq

(
φ†∂νφ−

(
∂νφ

†
)
φ

)
− 2q2Aν

(
φ†φ

)]
. (2.3)

The field equation for φ(t, x) is
(
DµDµ −m2

)
φ(t, x) = 0. We choose the Lorentz gauge ∂µA

µ = 0,

and fix the vector potential in the convenient form

Aµ = (0, A(t)) , (2.4)

which therefore yields F01 = ∂0A1 = Ȧ = −E. The field equation reduces to[
− ∂2

t + ∂2
x − 2iqA(t)∂x − q2A2(t)−m2

]
φ(t, x) = 0 . (2.5)

Quantizing the scalar field and expanding it in terms of modes yields

φ(t, x) =
1√
2π

∫ ∞
−∞

dk

[
akUk(t, x) + b†kVk(t, x)

]
. (2.6)
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where ak, a
†
k, bk, and b†k are the usual creation and annihilation operators obeying the commutation

relations [ak, a
†
k′

] = [bk, b
†
k′

] = δ(k − k
′
). Due to spatial homogeneity we can write the modes

Uk(t, x) and Vk(t, x) in the convenient form Uk(t, x) = fk(t)e
ikx, Vk(t, x) = f∗−k(t)e

−ikx, where

fk(t) satisfies the ordinary differential equation

f̈k(t) +

[
(k − qA)2 +m2

]
fk(t) = 0 (2.7)

and is normalized using the Wronskian condition

fkḟ
∗
k − f∗k ḟk = i. (2.8)

This allows us to recast the scalar field mode decomposition as

φ(t, x) =
1√
2π

∫
dk

[
akfk(t) + b†−kf

∗
k (t)

]
eikx . (2.9)

B. Spin- 12 field

The classical action representing a spin- 1
2 field ψ(t, x) coupled to a background electric field is

S =

∫
d2x

[
− 1

4
FµνF

µν +AµJ
µ
C + iψ̄γµDµψ −mψ̄ψ

]
. (2.10)

where ψ̄ = ψ†γ0, with Fµν and Dµ defined the same as for the scalar field case. The Dirac matrices

γµ satisfy the anticommutation relations {γµ, γν} = −2ηµν . As for the scalar field, JC is an external

classical source. The Maxwell equations include the source term induced by the field ψ

JµQ = q ψ̄ γµ ψ . (2.11)

The field equation for ψ(t, x) is the Dirac equation
(
i γµDµ − m

)
ψ(t, x) = 0. With the gauge

choice (2.4) the explicit form of the Dirac equation is[
i γt∂t + i γx∂x + q γxA(t)−m

]
ψ(t, x) = 0 . (2.12)

Quantizing the spin- 1
2 field and expanding it in terms of modes yields

ψ(t, x) =

∫ ∞
−∞

dk

[
Bkuk(t, x) +D†kvk(t, x)

]
, (2.13)

where here Bk, B
†
k, Dk, andD†k are the usual creation and annihilation operators obeying the an-

ticommutation relations {Bk, B†k′} = {Dk, D
†
k′
} = δ(k − k′). Using the formalism introduced in

Refs. [23, 24], we can construct two independent spinor solutions as follows

uk(t, x) =
eikx√

2π

(
hIk(t)

−hIIk (t)

)
, vk(t, x) =

e−ikx√
2π

(
hII∗−k (t)

hI∗−k(t)

)
. (2.14)
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Utilizing the Weyl representation of the Dirac matrices γµ

γt =

 0 1

1 0

 , γx =

 0 1

−1 0

 , γ5 = γtγx =

 −1 0

0 1

 , (2.15)

one can show that hIk(t) and hIIk (t) are solutions of the mode equations

ḣIk − i (k − qA)hIk − imhIIk = 0 , (2.16a)

ḣIIk + i (k − qA)hIIk − imhIk = 0. (2.16b)

The normalization condition |hIk|2+|hIIk |2 = 1 ensures that the standard anticommutation relations

between the creation and annihilation operators are satisfied.

C. Semiclassical backreaction equation and renormalization

A simple way to obtain the semiclassical backreaction equation is to replace JµQ in Eq. (2.2)

with 〈JµQ〉 and then use Eq. (2.4) and either (2.9) or Eq. (2.13), with the result

d2

dt2
A(t) = − d

dt
E(t) = JC + 〈JQ〉 . (2.17)

Here we have simplified the notation by omitting the superscript x on JC and JQ since in this

case the t component of these vectors vanishes. When particle production occurs the background

electric field accelerates the produced particles creating a current which then reacts back on this

electric field. In the semiclassical approximation this current is 〈JQ〉. The net electric field E(t) is

then generated by both the classical current JC and the current from the created particles 〈JQ〉.

We now obtain the generic forms of the finite, physical expression of 〈JQ〉 for both scalar and

fermion fields. This is nontrivial since the formal expressions for the current are quadratic in the

quantized fields. Here we will explain how the ultraviolet divergences can be tamed by using the

so-called adiabatic regularization method. The method was originally proposed to obtain finite

expectation values for the stress-energy tensors of scalar fields in expanding universes [25–27]

(see also Refs. [4, 5] for scalar fields and Refs. [28–33] for fermion fields). The adiabatic method

has been adapted to treat spatially homogeneous electric backgrounds in Refs. [8, 34, 35], and it

has been improved to make it consistent with gravity in Refs. [23, 36, 37] and connected to the

DeWitt-Schwinger proper-time expansion in Ref. [38]. Here we follow the procedure proposed in

Ref. [23, 36, 37].
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1. Scalar field

It is useful to symmetrize the current operator for the scalar field with the result

JµQ =
1

2
ηµν
[
− iq

(
φ†∂νφ−

(
∂νφ

†
)
φ

)
+ iq

(
φ∂νφ

† − (∂νφ)φ†
)
− 2q2Aν

(
φ†φ+ φφ†

)]
. (2.18)

Using Eq. (2.4) and evaluating Eq. (2.18) in the vacuum state gives for the nontrivial spatial

component

〈JQ〉 =
q

π

∫ ∞
−∞

dk

(
k − qA(t)

)
|fk(t)|2 . (2.19)

Note that the µ = 0 component of the current is identically zero, meaning that no net charge

is created. The integral (2.19) contains ultraviolet divergences and hence must be renormalized.

Since the external electric field is assumed to be spatially homogeneous, it is especially convenient

to use an extension of the adiabatic regularization method. For scalar fields the procedure is based

on the standard WKB-type expansion of the field modes. In our case one writes the ansatz

fk(t) =
1√

2Ωk(t)
e−i

∫ t Ωk(t′)dt′ , (2.20)

where Ωk is expanded in powers of derivatives of A(t), as Ωk = ω(0) + ω(1) + ω(2) + · · · . The

leading term ω(0) is assumed to be of zeroth adiabatic order, while ω(1) is of adiabatic order one,

etc. The choice of the leading-order term ω(0) determines univocally the subsequent orders. A

natural possibility [35] is ω(0) =
√

(k − qA)2 +m2, which assumes that A(t) should be considered

as a variable of adiabatic order zero, Ȧ of adiabatic order one, etc.

However, A(t) is intrinsically a dimensionful quantity and this suggests an alternative possibility.

As proposed in Refs. [23, 36], one can also choose ω(0) ≡ ω =
√
k2 +m2. This choice is attached

to the adiabatic assignment of one for A(t), while Ȧ is considered to be of adiabatic order two,

etc. This second possibility is actually the only consistent possibility in the presence of both

electromagnetic and gravitational backgrounds. We then obtain

〈JQ〉ren =
q

π

∫ ∞
−∞

dk

[(
k − qA(t)

)
|fk(t)|2 −

k

2ω
+
q m2

2ω3
A(t)

]
. (2.21)

Similarly, one can also determine the renormalized energy density 〈T00〉 = 〈ρ〉 induced by the

quantized field

〈ρ〉ren =
1

2π

∫ ∞
−∞

dk

[
|ḟk(t)|2 +

(
m2 +

(
k − qA(t)

)2)|fk(t)|2 − ω +
kq

ω
A(t)− m2q2

2ω3
A2(t)

]
.

(2.22)
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2. Spin- 12 field

For the spin-1
2 field the appropriate antisymmetrized term is [4]

JµQ =
q

2
[ψ̄, γµψ]. (2.23)

The expression for µ = 0 corresponds to the induced electric charge and, as expected, 〈J0
Q〉 is iden-

tically zero, i.e. no net charge is created. The renormalized expression for the spatial component

of the spin-1
2 current evaluated in the vacuum state is [23, 37]

〈JQ〉ren =
q

2π

∫ ∞
−∞

dk

[
|hIk(t)|2 − |hIIk (t)|2 +

k

ω
− q m2

ω3
A(t)

]
. (2.24)

It is particularly interesting to consider the massless case where the first two terms in the above

integral cancel and the expression for the current becomes

〈JQ〉ren = −q
2

π
A(t) . (2.25)

This result is consistent with the two-dimensional axial anomaly

∂µ〈Jµ5 〉ren =
q

π
εµνFµν , (2.26)

where Jµ5 = ψ̄γµγ5ψ and JµQ = −qεµνJν5. Furthermore, the renormalized energy density is given

by

〈ρ〉ren =
1

2π

∫ ∞
−∞

dk

[
i
[
hIIk (t)ḣII∗k (t) + hIk(t)ḣ

I∗
k (t)

]
+ ω − kq

ω
A(t) +

m2q2

2ω3
A2(t)

]
. (2.27)

III. PARTICLE PRODUCTION AND ENERGY CONSERVATION IN THE

SEMICLASSICAL FRAMEWORK

In this section we study both the details of the particle production process and the transfer of

energy between the electric field and the produced particles for some solutions to the semiclassical

backreaction equation for the delta function current profile mentioned in the Introduction.

The vacuum instability due to pair production was first realized by Heisenberg and Euler [39],

who predicted, on the basis of an effective action for a constant and homogeneous electromagnetic

background, a pair production rate in an electric field of order ∼ q2E2e
−m

2π
qE . Schwinger, using

the modern language of QED, computed the imaginary part of the one-loop effective action, also

for a homogeneous and constant electric field, to evaluate the vacuum persistence amplitude (for a
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historical perspective, see Ref. [40]). From the exponential factor one notes immediately that the

order of the critical scale for pair production can be defined to be

Ecrit ∼ m2/q . (3.1)

For some of the numerical work described in the following sections we compare the classical electric

field to Ecrit and for those comparisons we take Ecrit to be equal to m2/q, as is customary in the

literature on the Schwinger effect.

While particle production in quantum field theory is a nonlocal process, for free quantum fields

such as the ones we are considering, it is possible to define a time-dependent particle number

that is based on the WKB approximation for the modes of the quantum field. This has been done

previously in the electric field case in Refs. [16–18] where background electric fields were considered.

While there was some variation in the details depending on the order of the WKB approximation

used, it was found for a constant electric field that when a given mode starts out in an adiabatic

vacuum state, as the vector potential A(t) increases in time, there is a particle creation event

that occurs when |k − qA| ∼ m and lasts for a relatively short period of time. After which the

particle number for that mode approaches a constant value. Here we use the zeroth-order WKB

approximation, used in Refs. [16–18]:

gk(t) ≡
1√

2Ωk(t)
e
−i

∫ t
t0

Ωk(t1)dt1 , (3.2a)

ġk(t) ≡ −i
√

Ω(t)

2
e
−i

∫ t
t0

Ωk(t1)dt1 , (3.2b)

Ωk(t) ≡
√

[k − qA(t)]2 +m2 . (3.2c)

Writing the exact mode functions as

fk(t) = αk(t)gk(t) + βk(t)g
∗
k(t) , (3.3a)

ḟk(t) = αk(t)ġk(t) + βk(t)ġ
∗
k(t) , (3.3b)

and substituting these expressions into Eq. (2.7) converts the mode equation into two first-order

coupled differential equations for αk(t) and βk(t). Substitution into the Wronskian condition (2.8)

gives the condition |αk(t)|2 − |βk(t)|2 = 1. Note that if the vector potential stops varying in

time then the zeroth-order WKB approximation becomes exact and αk and βk become Bogoliubov
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coefficients which relate the in vacuum state to the out vacuum state. With this motivation one

can define the time-dependent particle number for a given mode k to be

Nk(t) ≡ |βk(t)|2 , (3.4)

with the total number of created particles at time t given by

〈N(t)〉 ≡ 2

∫ ∞
−∞

dk

2π
|βk(t)|2 . (3.5)

Inverting Eqs. (3.3a) and (3.3b) gives

βk(t) =
1

i
(gkḟk − ġkfk) . (3.6)

A similar analysis can be done for spin- 1
2 particles. Time-dependent Bogoliubov coefficients can

be obtained by first defining

gIk ≡

√
Ωk − (k − qA)

2Ωk
e
−i

∫ t
t0

Ωk(t1)dt1 , gIIk ≡ −

√
Ωk + (k − qA)

2Ωk
e
−i

∫ t
t0

Ωk(t1)dt1 , (3.7)

and then imposing the relations

hIk(t) = αk(t)g
I
k(t) + βk(t)g

II∗
k (t) , (3.8a)

hIIk (t) = αk(t)g
II
k (t)− βk(t)gI∗k (t) , (3.8b)

with the result that

βk(t) = [gIk(t)hIIk (t)− gIIk (t)hIk(t)] . (3.9)

A classical current adds energy to the electric field and, if particle production occurs, then

some of the electric field’s energy is used for this process. If the classical current shuts off at some

point then, since the calculations are being done in flat space, energy is conserved but can still be

transferred between the electric field and the produced particles. To see this, note that the energy

density of the electric field is ρelec = 1
2E

2. A formula for the energy density of a scalar field in the

case of a homogeneous electric field in 1 + 1D is given in Eq. (2.22) and one for the energy density

of a spin-1
2 field is given in Eq. (2.27). With these definitions it is easy to check that

d

dt

(
ρelec + 〈ρ〉ren

)
=
dA

dt

(
d2A

dt2
− 〈JQ〉

)
= 0 , (3.10)

where the last term in parentheses is precisely the semiclassical Maxwell equation for the electric

field (2.17). Thus one can investigate the time dependence of the transfer of energy between the
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electric field and the particles by simply plotting ρelec and 〈ρ〉ren. We note that in our approach

energy conservation is a rigorous consequence of the adiabatic renormalization prescription.

To study the effects of both particle production and the transfer of energy we consider models

in which the electric field is initially generated by a classical current of the form

JC = −E0 δ(t) . (3.11)

Since the electric field is zero for t < 0, there is a natural initial vacuum state which for a scalar

field is

fk(t = 0) =
1√
2ω

, ḟk(t = 0) = −i
√
ω

2
. (3.12)

For a spin-1
2 field the initial vacuum state is

hIk(t = 0) =

√
ω − k

2ω
, hIIk (t = 0) = −

√
ω + k

2ω
. (3.13)

Since the classical current is zero for t > 0, the total energy density of the system is constant for

both the scalar and spin- 1
2 cases.

To solve the semiclassical backreaction equations numerically we have used dimensionless vari-

ables and parameters. We have scaled the mode equations, (2.7) for scalars, (2.16a), (2.16b) for

spin-1
2 fields, and also the semiclassical Maxwell equation (2.17) in terms of the electric charge q.

The new scaled parameters are

k → k/q, ω → ω/q, t→ qt, m→ m/q . (3.14)

For the mode functions for the scalar field

f(t)→ √qf(t) . (3.15)

We also use the definitions

Ẽ ≡ E

Ecrit
, J̃ ≡ J

qEcrit
, ρ̃ =

ρ

E2
crit

, 〈Ñ〉 =
〈N〉
Ecrit

, (3.16)

where Ecrit is the critical scale for pair production defined in Eq. (3.1).

A. Particle production and energy transfer

Here we investigate some of the details of the particle production process including the transfer

of energy between the electric field and the particles for solutions to the semiclassical backreaction
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equation when either a scalar field or a spin- 1
2 field is coupled to the electric field and the classical

current is given by Eq. (3.11). The specific solutions considered have Ecrit = m2

q = 10 and either

E0 = Ecrit or E0 = 5Ecrit.

In Fig. 1, some of our results for a scalar field coupled to the electric field are shown for E0 = Ecrit

in the top panels and E0 = 5Ecrit in the bottom ones. cIt is apparent that as soon as particle

production starts to occur, the initial electric field decays and the electric current increases as a

consequence of the created particles. When the electric field has been reduced significantly the

current reaches a plateau and the particle creation saturates. Furthermore, when the electric field

changes sign and its magnitude again becomes large, the particle creation rate is enhanced while

the current is slowed and then reversed. This results in plasma oscillations. Note also that the

duration of the initial growth of the electric current 〈J̃Q〉 is of the same order as the duration of

the initial growth in the particle number 〈Ñ〉.

In Fig. 2, some of our results for a spin- 1
2 field coupled to the electric field are shown for

E0 = Ecrit in the top panels and E0 = 5Ecrit in the bottom ones. Comparing Fig. 2 with Fig. 1,

one finds that for the smaller value of the initial electric field, E0 = Ecrit, all of the details are very

similar to the scalar field case. For the larger initial value of the electric field many of the general

features are also similar including the initial damping of the electric field and subsequent plasma

oscillations. However, some of the details differ significantly. Due to Pauli blocking the particle

production for the spin- 1
2 field effectively shuts off fairly early in the process. One result is that

there is less energy permanently transferred to the particles than in the scalar field case.

There are some differences in both the scalar field and spin- 1
2 cases between the solution for

which the electric field is at the critical value initially and the solution for which it is initially much

larger. As would be expected there is significantly more particle production and a significantly

faster initial damping for the larger field. Once the plasma oscillations begin there also appears to

be a much faster approach of the amplitude of the electric field and the total number of particles

to their asymptotic values when the initial electric field is larger. Further, examination of the

energy density shows that a significant amount of the initial energy of the larger electric field is

permanently transferred to the particles during the first damping phase and this increases during

the plasma oscillation phase. For the smaller field less energy is transferred initially to the particles

during the first damping phase and the permanent transfer of energy to the particles upon each

plasma oscillation is smaller.

For both the scalar and spin- 1
2 fields, a clear correlation is found between the maxima of the

energy density of the created particles and the maxima and minima of the current due to the created
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Figure 1. Various quantities are plotted for solutions to the semiclassical backreaction equations for a

quantized scalar field with the classical current profile JC = −E0 δ(t). The solutions for Ẽ0 = 1 are shown

across the top row of panels and those for Ẽ0 = 5 are shown across the bottom row. The mass of the scalar

field is m2

q2 = 10 and thus E0

q = 10 and 50 respectively. In the left panels the electric field Ẽ and the electric

current 〈J̃Q〉ren are plotted. For each of the middle panels the blue dashed curve corresponds to the energy

density of the electric field ρelec, the orange solid curve represents the energy density of the created particles

〈ρ̃〉ren, and the straight yellow line is the total energy density of the system. The total particle number 〈Ñ〉

is plotted in the right panels.

particles. For cases in which the total number of particles continues to increase significantly after

the first burst of particle production, the maxima in the energy density of the created particles

correlate with the middles of the time periods when the total number of particles is approximately

constant. As expected, the minima of the energy densities of the created particles correspond to

times when a new round of significant particle production is just beginning in cases where there

is significant particle production after the first burst. In general the periods of significant particle

production correspond to periods when energy is being transferred to the particles. It is interesting

to note that the above results, obtained within the adiabatic renormalization prescription in the

continuous limit, are compatible with the results obtained using a similar method in 3 + 1D [10]
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Figure 2. Various quantities are plotted for solutions to the semiclassical backreaction equations for a

quantized spin- 12 field with the classical current profile JC = −E0 δ(t). The structure of the figure, and also

the initial conditions for the electric profile, are the same than in Figure 1.

as well as those obtained in 1 + 1D and/or 3 + 1D using lattice simulations [13, 14] and classical

statistical field theory techniques [11].

It was shown in Refs. [16–18] that a single particle creation event occurs for an individual mode

if the background electric field is either constant or approximately constant. What is different

here is that the backreaction of the produced particles produces plasma oscillations. The resulting

oscillations of the electric field lead to some modes undergoing multiple particle creation events and

sometimes also particle destruction events. This can be seen in Fig. 3 where the time evolution of

the function |βk|2 for Ẽ0 = 1 is shown for both the scalar field and spin- 1
2 field cases. Comparison

with the plot of the vector potential A(t) shows that the creation, or destruction, process for an

individual mode k happens when k − qA(t) ≈ m.
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Figure 3. The time-dependent particle number is shown for individual modes when Ẽ0 = 1 for the scalar

field (top row) and spin- 12 (bottom row) cases for the classical current profile JC = −E0 δ(t). The mass of

the scalar field is m2

q2 = 10 and thus E0

q = 10. The vector potential is plotted in the far right panels. For

each row the first panel on the left shows the particle number for k
q = −20 and the middle panel shows the

particle number for k
q = −40.

B. Massless limit for the spin- 12 field

For completeness we extend our analysis to the massless limit for the spin- 1
2 field. In this

case, the mode equations (2.16a) and (2.16b) decouple, and with the initial conditions given in

Eq. (3.13), their solutions are given by

hI,IIk (t) = ±θ(∓k)e
±i

∫ t
t0

(k−qA(t′))dt′
, (3.17)

where θ(x) is the Heaviside step function. The electric current 〈JQ〉ren has the simple form given

in Eq. (2.25), and hence, the semiclassical Maxwell equation (2.17) turns out to be the equation

of a harmonic oscillator Ä(t) + q2

π A(t) = 0. With the initial conditions E(0) = E0 and A(0) = 0,

we immediately find the analytic solution E(t) = E0 cos
(
|q|√
π
t
)

. The energy density (2.27) and the

number of the created particles are 〈ρ(t)〉ren = q2

2πA
2(t) and 〈N(t)〉 = |qA(t)|

π . For a detailed analysis
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of the adiabatic invariance of the particle number see Ref. [41]. As in the general case, the total

energy of the system is conserved. We note the exact analytic solubility of the case m = 0 is due

entirely to the axial anomaly in 1 + 1D. In fact, the constant |q|√
π

is the mass of the “photon” in

the Schwinger model generated by radiative corrections [19]. In the massless case the (nonlocal)

effective action Γ[Aµ, JC ] can be obtained exactly and it describes a gauge-invariant vector field

with mass |q|√
π

(see, for instance, Ref. [42]). The semiclassical calculation of the produced energy

due to the external source provides an accurate result. In the massive case the effective action does

not describe an integrable model [43, 44] and the semiclassical picture is expected to break down

at some point. The validity of the semiclassical approximation for massless and massive spin- 1
2

fields for the asymptotically constant classical profile is addressed in Sec. V A.

IV. VALIDITY CRITERION FOR THE SEMICLASSICAL APPROXIMATION

The semiclassical backreaction equation can be derived from Eq. (1.1) via a loop expansion [6].

In this case when solving the semiclassical backreaction equation, the semiclassical approximation

breaks down if contributions from the quantum terms to the equations become comparable to that

of the classical background field and any other classical fields. The reason is that one expects higher-

order terms in the loop expansion to be important in that limit. However, there is a different way

to derive the semiclassical backreaction equation called the large-N expansion. In this expansion

one considers N identical quantum fields coupled to the background field, which to leading order

is treated as a classical field. At next-to-leading order in the large-N expansion, quantum effects

due to the background field first appear [45, 46]. Thus in this expansion it is consistent to consider

solutions to the semiclassical backreaction equation for which the quantum fields have a significant

effect on the classical background field. Here we will take N = 1 and consider a wide range

of situations ranging from those where the background electric field is small compared with the

(Schwinger) critical scale Ecrit ≡ m2/q and quantum effects are correspondingly small to those

where the background electric field is large compared to the critical value and quantum effects are

correspondingly large. The critical value is the threshold for which a significant amount of particle

production is expected to occur.

The large-N expansion provides a formal framework for the semiclassical backreaction equation

when quantum effects are significant. However, it does not guarantee that the semiclassical approx-

imation is valid. There are three reasons. The first is that interactions of the quantum fields which

are coupled to the classical background field are ignored in most cases, including those considered
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here. This works if the interactions are small over the time scales relevant to the problem. The

second is that even if the next-to-leading order terms in the large-N expansion are initially small

in size, it has been shown in certain quantum mechanics calculations that they undergo secular

growth [47] and there is evidence that secular growth also occurs for such terms in quantum field

theory [48]. However, there is also evidence that partial resummations of certain classes of Feynman

diagrams eliminate this problem [49, 50]. The third is that the semiclassical backreaction equation

involves an expectation value of some quantity such as the electric current or stress-energy tensor

that is constructed from the quantum fields. For an expectation value to be a good approximation

to what one would measure in quantum theory, it is necessary that quantum fluctuations are small.

A natural way to estimate the size of quantum fluctuations is to evaluate the two-point correla-

tion function for the current. There are several different two-point correlation functions including

(i) 〈J(t, x)J(t′, x′)〉, (ii) the connected part, i.e., 〈J(t, x)J(t′, x′)〉−〈J(t, x)〉〈J(t′, x′)〉, (iii) the time-

ordered correlation function 〈T (J(t, x)J(t′, x′))〉, etc. There are problems associated with some of

these, as described in Refs. [21, 51, 52]. For example, it has been shown for the symmetric part

of the stress-energy tensor two-point correlation function that there can be state-dependent diver-

gences in the limit that the points come together [51]. A related issue is that it has been shown in

at least one case in the limit that the points come together that different renormalization schemes

can give different results for a particular quantity made from one component of the stress-energy

tensor two-point correlation function [52]. There can also be covariance issues with some of the

quantities made from the stress-energy tensor two-point correlation function [21].

There is a correlation function that is free of these problems and which emerges naturally from

the semiclassical theory itself and that is 〈[J(t, x), J(t′, x′)]〉. By perturbing the semiclassical back-

reaction equation one is led to the so-called linear response equation which contains this correlation

function and which describes the time evolution of perturbations about a given semiclassical solu-

tion. A criterion was developed in Ref. [21] for the validity of the semiclassical approximation in

gravity which states that a necessary condition for the validity of the semiclassical approximation

to be valid is that any linearized, gauge-invariant scalar quantity constructed from solutions to the

linear response equations with finite nonsingular initial data should not grow without bound. It is

important to emphasize that this is not a sufficient condition for the validity of the semiclassical

approximation. The criterion was adapted to cover preheating during chaotic inflation [20] where

a significant amount of particle production occurs and quantum effects are large. If the criterion

is applied to semiclassical quantum electrodynamics then it would state that the semiclassical ap-

proximation breaks down if any linearized gauge-invariant quantity constructed from solutions to
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the linear response equation with finite nonsingular initial data grows rapidly for some period of

time.

A. Linear response equation

The linear response equation for semiclassical electrodynamics can be obtained by perturbing

Eq. (2.17) about a background solution to the semiclassical equation with the result

d2

dt2
δA(t) = − d

dt
δE = δJC + δ〈JQ〉 . (4.1)

It can be seen from Eq. (4.1) that a first integral of the linear response equation gives the perturbed

electric field, which is gauge invariant.

To analyze the behaviors of solutions to this equation, particularly at early times, it is useful

to break the solutions to the semiclassical backreaction equation into two parts with

EQ ≡ E − EC , (4.2a)

EC ≡ −
∫ t

t0

dt1 JC(t1) . (4.2b)

From the structure of the linear response equation it is clear that its solutions δE can be broken

up in exactly the same way. Then, the criterion for the validity of the semiclassical approximation

can be modified to state that if the quantity δEQ grows significantly during some period of time

then the semiclassical approximation is invalid. It is worth noting that because 〈JQ〉 and δ〈JQ〉

are constructed from solutions to the mode equation which depend on the vector potential A, and

therefore indirectly on E, then EQ depends on EC and δEQ depends on δEC .

In Appendix A it is shown for both the scalar and spin- 1
2 coupled systems that for homogeneous

perturbations, δ〈JQ〉 depends upon the two-point correlation function for the current. A more

general derivation is given in Ref. [53]. For scalar fields the result is

δ〈JQ〉ren = −q
2

π
δA(t)

∫ ∞
−∞

dk

(
|fk(t)|2 −

m2

2ω3

)
+ i

∫ ∞
−∞

dx′
∫ t

−∞
dt′ 〈[JQ(t, x), JQ(t′, x′)]〉 δA(t′) ,

(4.3)

where

ω ≡
√
m2 + k2 , (4.4)

and∫ ∞
−∞

dx′〈[JQ(t, x), JQ(t′, x′)]〉 =
4 i q2

π

∫ ∞
−∞

dk

(
k − qA(t)

)(
k − qA(t′)

)
Im

{
fk(t)

2f∗k (t′)2

}
.

(4.5)
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It can be shown, using the point-splitting technique, that the divergence structure in the first

integral is conveniently compensated for by the divergence structure that is inherent in the second

integral. 1 Therefore, δ〈JQ〉 is finite and the overall equation is well defined.

For spin-1
2 fields the renormalized perturbation of the quantum current in (4.1) is

δ〈JQ〉ren = −q
2m2

2π
δA(t)

∫ ∞
−∞

dk

ω3
+ i

∫ ∞
−∞

dx
′
∫ t

−∞
dt
′〈[JQ(t, x), JQ(t

′
, x
′
)]〉 δA(t

′
) , (4.6)

with ∫ ∞
−∞

dx′〈[JQ(t, x), JQ(t
′
, x
′
)]〉 =

4i q2

π

∫ ∞
−∞

dk Im

{
hIk(t)h

II
k (t)hI∗k (t′)hII∗k (t′)

}
. (4.7)

Recall that in the massless limit we find that the mode equations decouple and the solutions

are given in Eq. (3.17). Thus, for a given value of k either hIk or hIIk is zero, and hence hIkh
II
k = 0

for any value of k. Therefore in the massless limit the current-current commutator in Eq. (4.7) is

zero.

B. Approximate solutions to the linear response equation

From Eqs. (4.1), (4.3), and (4.6), it is clear that the linear response equation is an integro-

differential equation. This makes it significantly more difficult to solve numerically compared to

an ordinary differential equation. A useful way to approximate the solutions to the linear response

equation for the case of homogeneous perturbations was given in Ref. [20]. It involves solving the

semiclassical backreaction equation for two sets of initial conditions which differ from each other by

only a small amount. At early times we expect these two solutions to be an approximate solution

to the linear response equation so long as the difference does not grow too large. If this difference

grows significantly, then the corresponding solution to the linear response equation should also grow

substantially. Hence, our criterion for the validity of the semiclassical approximation is considered

to be violated.

As has been mentioned previously, solutions to the semiclassical backreaction equation tend to

oscillate over long periods of time due to plasma oscillations and it is possible that solutions to the

linear response equation could oscillate over shorter periods of time. While there is no problem in

comparing the absolute difference between two solutions to the semiclassical backreaction equation,

it is more problematic when one considers the relative difference because the denominator will

1 It is not obvious that there is a divergence in the second integral because the commutator vanishes in the limit

that the points come together. However, a careful analysis shows it to be there.
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vanish at certain points. For this reason we introduce a modified version of the relative difference

which is guaranteed to be no smaller than zero and no larger than one. Consider two solutions

to either the classical or semiclassical backreaction equation in 1+1D, ~E1 = E1x̂ and ~E2 = E2x̂

(or just E1 and E2 since we are only considering one spatial dimension). Then the absolute and

relative differences are respectively

∆E ≡ E2 − E1 , (4.8a)

R ≡ |∆E|
|E1|+ |E2|

. (4.8b)

We note that R can be easily reexpressed as a Lorentz-invariant quantity.

It is useful to apply the relative difference R for two solutions to the classical backreaction

equation which, as can be seen in Eq. (4.2b), are simply integrals over the classical current JC .

Consider a classical current of the form

JC = −E0 ġ(t) . (4.9)

Here ġ(t) is the time derivative of some well-behaved, dimensionless function g(t), and the solution

to the classical Maxwell equation is EC = E0g(t). In the following sections we will consider the

cases g(t) = qt
1+qt and g(t) = sech2(qt), with the latter being the Sauter pulse. The solutions are

parametrized by the constant E0. For two solutions to Eqs. (4.2b) with (4.9), EC1 and EC2, with

E0 = E01 and E0 = E02 respectively, we have for the absolute and relative difference

∆E0 ≡ E02 − E01 , (4.10a)

RC =
|∆EC |

|EC1|+ |EC2|
=

|∆E0|
|E01|+ |E02|

. (4.10b)

Next, consider two solutions to the semiclassical backreaction equation. Since we are considering

classical currents, which are zero initially, and an electric field that is zero initially, there is no

ambiguity in the choice of vacuum state. Therefore these solutions are also parametrized by the

value of E0 for a given function g(t). Using the subscripts 1 and 2 to denote quantities computed

for these solutions, it is clear that the difference ∆E is an exact solution to the equation

− d∆E

dt
= ∆JC + ∆〈JQ〉 . (4.11)

with ∆JC = JC2 − JC1 and ∆〈JQ〉 = 〈JQ2〉 − 〈JQ1〉.
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Suppose at some early time t1, when EC is still very small with no significant amount of particle

production, that RC(t1)� 1. One can then arrange the initial conditions for the perturbation δE

such that δE(t1) = ∆E(t1). It is also obvious that one can set for all times δJC(t) = ∆JC(t). Then

Eq. (4.11) is approximately equivalent to the linear response equation (4.1) so long as ∆〈JQ〉 ≈

δ〈JQ〉, which one would certainly expect to be the case at times near t1.

As discussed in the previous subsection [see Eq. (4.2a)], it is more useful at early times to

consider the quantity ∆EQ ≈ δEQ. To measure the relative growth of ∆EQ we compute the

relative difference

RQ =
|∆EQ|

|EQ1|+ |EQ2|
. (4.12)

This difference can then be compared to the relative difference between the corresponding classical

solutions RC in Eq. (4.10b), which does not change in time.

Consider two times t2 > t1 where t1 is the initial time discussed above when one imagines fixing

the starting values for the linear response equation and t2 is a relatively early time after that.

Then the possibilities are as follows. (i) If RQ(t) . RC then the criterion for the validity of the

semiclassical approximation will be satisfied by the approximate homogeneous solutions that we

consider up to the time t2. (ii) If for any times between t1 and t2, RQ(t)� RC , then the solution to

the linear response equation, δE, grows rapidly during at least some part of the period t1 ≤ t ≤ t2

and the criterion for validity of the semiclassical approximation is not satisfied. Note that once the

semiclassical approximation has broken down, one can no longer trust its solutions even if for later

times RQ . RC . (iii) Finally, the intermediate case when RQ is larger than RC but still of the

same order of magnitude is ambiguous. Perhaps the best that can be said is in this case quantum

fluctuations are increasing and so the accuracy of the semiclassical approximation is decreasing in

proportion to this increase.

V. NUMERICAL RESULTS

In this section we implement a numerical analysis to study the validity of the semiclassical

approximation for two different classical source profiles. To do so, we use the method described in

the previous section to compare the numerical solutions of the semiclassical backreaction equation

for two distinct, but very close values of the external source amplitude E0. The first profile

considered has a classical source current given by

JC = − qE0

(1 + qt)2
, (5.1)
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for t ≥ 0 and JC = 0 for t < 0. The classical solution of the Maxwell equation (−ĖC = JC) gives

rise to the asymptotically constant electric field profile for t ≥ 0

EC(t) = E0

(
qt

1 + qt

)
. (5.2)

The second profile considered is the Sauter pulse with source current given by

JC = 2qE0sech2(qt)tanh(qt) , (5.3)

and corresponding classical electric field

EC(t) = E0sech2(qt) . (5.4)

In Fig. 4 we show the classical behavior of both profiles. For the first profile, one can easily see

that at late times the electric field approaches the constant value E0. The Sauter pulse models a

possibly more realistic scenario for the detection of the Schwinger effect, in which both the initial

and the final values of the classical electric field tend to zero. Note that, for the first profile we

choose an initial time t0 = 0, while for the Sauter pulse the initial time has to be fixed as t0 = −∞.

As discussed in Sec. IV B, it is useful, particularly at early times, to work with the quantity EQ

in Eq. (4.2a) which is the difference between the net electric field and the electric field EC that

would be present if there were no quantum effects. Therefore the natural quantity to consider is

the relative difference RQ in Eq. (4.12) which is constructed from two solutions to the semiclassical

backreaction equation with values of E0 that differ by some small amount. This can be compared

to the relative difference RC between two solutions to the classical Maxwell equation with the same

values of E0.

In what follows, numerical results will be shown for calculations of RQ and other quantities such

as E(t), 〈JQ〉, and 〈N〉 for scalar and spin- 1
2 semiclassical electrodynamics for the asymptotically

constant classical profile and then for the Sauter pulse classical profile. As stressed before, we

mainly focus on the early-time behavior. In both cases it is assumed that the electric field and

vector potential are initially zero. As a result, for scalar fields the initial conditions for the mode

functions are

fk(t0) =
1√
2ω

, ḟk(t0) = −i
√
ω

2
. (5.5)

For spin-1
2 fields the initial conditions are

hIk(t0) =

√
ω − k

2ω
, hIIk (t0) = −

√
ω + k

2ω
. (5.6)
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Figure 4. Electric profiles for E0/q = 2. In the left (top) panel we show the asymptotically constant profile.

In the right (top) panel we show the Sauter pulse. In both bottom panels, the classical current generating

the respective electric field profiles is plotted. For the asymptotically constant profile we choose an initial

time t0 = 0, while for the Sauter pulse the initial time has to be fixed as t0 = −∞.

First, we discuss the mass dependence of the function RQ and its relation to the validity of the

semiclassical approximation, with a focus on the asymptotically constant profile. Then, we show

the results of our analysis for the most relevant case E0 ∼ Ecrit = m2/q for both the asymptotically

constant profile and the Sauter pulse. As in Sec. III, for the numerical computations we use the

dimensionless parameters described therein. However, in this section the electric field and the

electric current are given in terms of E/q and J/q2 respectively.

Since we are considering multiple cases and subcases, a summary of all relevant information,

including all cases and sub-cases with figure references, can be found in Table I.
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Quantum Field Classical Profile Mass Cases Figure Reference

Spin 1/2

Asymptotically

Constant

m2 � qE0 (or m→ 0) 6, 7

m2 ∼ qE0 5, 6, 7, 9

Sauter Pulse
m2 � qE0(or m→ 0) N/A

m2 ∼ qE0 10

Complex Scalar

Asymptotically

Constant

m2 � qE0 (or m→ 0) 8

m2 ∼ qE0 8, 9

Sauter Pulse
m2 � qE0 (or m→ 0) N/A

m2 ∼ qE0 10

Table I. A table organizing the various cases and subcases that are investigated in the paper. Included are

figure references for ease of use. Note that cases with m2 � qE0 are not included; they are discussed in the

main text on the basis of the decoupling mechanism.

A. Asymptotically constant classical profile

1. Massless spin- 12 field

As explained in Sec. III B, for m = 0 the mode equations (2.16a) and (2.16b) decouple, and

〈JQ〉ren = − q2

π A. Thus the semiclassical Maxwell equation (2.17) reduces to

Ä+
q2

π
A = JC , (5.7)

which is the equation for a simple harmonic oscillator with frequency |q|√
π

and external source JC .

In this case, the linear response equation is just

δÄ+
q2

π
δA = δJC . (5.8)

Note that δ〈JQ〉ren = − q2

π δA and also that the initial conditions for δJC can be arranged so that

δJC ≡ ∆JC .

For the asymptotically constant profile, JC is given in Eq. (5.1). With initial conditions A(0) = 0

and E(0) = 0, we immediately find

A(t) = −E0

q

[
cos

(
1 + qt√

π

)
Ci(π−1/2)− cos

(
1 + qt√

π

)
Ci

(
1 + qt√

π

)

+
√
π sin

(
qt√
π

)
+ sin

(
1 + qt√

π

)
Si(π−1/2)− sin

(
1 + qt√

π

)
Si

(
1 + qt√

π

)]
,

(5.9)

where Ci(x) = −
∫∞
x

cos(t)
t dt and Si(x) =

∫ x
0

sin(t)
t dt are the cosine and the sine integral functions

respectively. Hence, we can conclude that for any two solutions E1(t) and E2(t) with E0 = E01
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and E0 = E02 respectively, the relation

RQ(t) =
|EQ1(t)− EQ2(t)|
|EQ1(t)|+ |EQ2(t)|

=
|E01 − E02|
|E01|+ |E02|

= RC , (5.10)

is always satisfied. Although this result was derived for the asymptotically constant profile (5.1),

it holds for any classical current of the form JC = −E0g(t).

2. Massive spin- 12 field

We next study the relationship between the behavior of RQ, the mass of the spin 1
2 field, and

the value of E0 in Eq. (5.1). As illustrated in our numerical results below, the most important

effect on RQ comes from the size of the dimensionless quantity qE0

m2 . We distinguish between three

different cases: (i) qE0

m2 � 1 in which the mass is relatively small compared to the electric field and

there is a lot of particle production, (ii) the intermediate case qE0

m2 ∼ 1 where there is a significant

amount of particle production, and (iii) qE0

m2 � 1 in which the mass is relatively large compared to

the electric field and there is very little particle production.

The beginning of the transition from intermediate to large effective masses is shown in Fig. 5

where various quantities, such as the electric field, are plotted for E0/q = 1 and m2

q2
= 1 and

m2

q2
= 2. As expected, the amount of particle production that occurs decreases significantly as qE0

m2

decreases and thus as the effective mass increases. Note that the time scale on which backreaction

effects occur increases significantly with an increase in the effective mass.

In the very-large-mass limit qE0

m2 → 0, the electric field will not have enough energy to create

particles, so one expects that 〈JQ〉ren → 0 and E → EC . This is in agreement with the decoupling

theorem in perturbative quantum field theory [54]. Heavy masses decouple in the low-energy

description of the theory, which in this case is purely classical electrodynamics for m2 →∞, with

E0 fixed.

In the intermediate cases shown in Fig. 5 where qE0

m2 ∼ 1, there is a significant amount of particle

production and once enough particle production has occurred the value of RQ starts to increase

rapidly, possibly exponentially for qE0

m2 = 1. This rapid rise continues until the backreaction of

the particles on the background electric field is strong enough that the electric field has stopped

increasing and has begun to noticeably decrease in size. Thus in the intermediate case it appears

that our criterion for the validity of the semiclassical approximation is not satisfied due the rapid

and significant growth in RQ at relatively early times.

The transition from the intermediate case to the small-effective-mass case when E0/q = 1 is

shown in Fig. 6. Comparison with Fig. 5 shows that the intermediate case extends to m2

q2
= 0.1,
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but not to m2

q2
= 0.01 which has a qualitatively different behavior. In particular for the relatively

small-mass and zero-mass cases the particle production is more rapid and backreaction effects on

the electric field are significant after a much smaller amount of time than for intermediate masses.

Examination of the behavior of RQ shows that it does not grow rapidly in time for the small-mass

case and, as mentioned above, is constant in the massless case. Thus our criterion for the validity

of the semiclassical approximation is satisfied by the homogeneous approximate solutions that we

consider in the relatively small-mass case.

In the above analysis the value of the ratio qE0

m2 has been shown to dictate the different types

of qualitative behaviors the solutions have. Of course one can change the values of qE0 and m2 in

ways that keep the ratio fixed. In Figs. 5 and 6, E0/q = 1. In Fig. 7, E0/q = 10 is chosen along

with several masses that lead to small and intermediate values of qE0

m2 . Comparison with Fig. 6

shows that while the details of the various curves are different, they are qualitatively the same

when the ratio qE0

m2 is the same.

Figure 5. Results obtained from numerical solutions to the semiclassical backreaction equation for spin- 12

fields and the asymptotically constant classical profile are shown for E0/q = 1. The masses are chosen so

that qE0

m2 ≤ 1. The electric field and the induced electric current 〈JQ〉/q2 for each case are plotted in the

left panels. Plots for the corresponding number of particles, 〈N〉, are shown in the middle panel and plots

of the quantity RQ appear in the right panel. For the latter, the values E01/q = 1 and E02/q = 1 + 10−3

have been chosen for the two solutions that are subtracted. The values of m2/q2 for each case are shown

along with the type of curve for that solution in the legend in the right panel.
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Figure 6. Results obtained from numerical solutions to the semiclassical backreaction equation for spin- 12

fields and the asymptotically constant classical profile are shown for E0/q = 1. The masses are chosen so

that qE0

m2 ≥ 1. he structure of the figure is the same as in Figure 5.

Figure 7. Results obtained from numerical solutions to the semiclassical backreaction equation for spin- 12

fields and the asymptotically constant classical profile are shown for E0/q = 10. The masses are chosen so

that qE0

m2 > 1. The structure of the figure is the same as in Figure 5. Here, the values E01/q = 10 and

E02/q = 10 + 10−3 have been chosen for the representation of the function RQ.

3. Scalar field

Unlike the case of the spin- 1
2 field, there is no clear limit that we have found as m → 0 for a

scalar field coupled to the electromagnetic field. However, our numerical results shown in Fig. 8

indicate that, as for the spin- 1
2 field, RQ grows significantly at early times for qE0

m2 ∼ 1 but grows

much less rapidly in time for larger values of qE0

m2 . Thus our criterion is violated for qE0

m2 ∼ 1 but,

at least for the homogeneous approximate solutions that we consider, it appears to be satisfied for

qE0

m2 � 1.
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We have found that the behaviors of solutions to the semiclassical backreaction equation when

a scalar field is present are in many ways qualitatively similar to the corresponding ones for the

spin-1
2 field for cases in which the ratio qE0

m2 is not too large. This is illustrated in Fig. 9 for qE0

m2 = 1

and 10. The main difference occurs for the latter case where a larger ratio results in more particle

production for the scalar field than for the spin- 1
2 field due to Pauli blocking. Even in that case

the early-time behaviors of RQ are similar for the two fields.

For the large-mass limit, we expect that, as for the spin- 1
2 case, the semiclassical approximation

will approach the classical limit as qE0

m2 → 0.

Figure 8. Results obtained from numerical solutions to the semiclassical backreaction equation for scalar

fields and the asymptotically constant classical profile are shown for E0/q = 10. The masses are chosen

so that qE0

m2 ≥ 1. The structure of the figure is the same as in Figure 5. We have chosen E01/q = 10 and

E02/q = 10 + 10−3 to represent the function RQ.

B. Sauter pulse classical profile

While our results relating to the validity of the semiclassical approximation are the same for the

scalar and spin-1
2 fields for the asymptotically constant classical profile, one might be concerned

that there could be significant differences for other classical profiles. To test this we have also in-

vestigated the validity of the semiclassical approximation for the Sauter pulse classical profile given

in Eq. (5.4) with the classical current (5.3). Unlike the asymptotically constant classical profile,

the classical current in this case is a C∞ function so there is no extraneous particle production due

to the sudden approximation.

We find for the Sauter pulse classical profile for both the scalar and spin- 1
2 cases, that RQ grows

significantly at early times for qE0

m2 ∼ 1, as it does for the asymptotically constant classical profile,
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Figure 9. Results obtained from numerical solutions to the semiclassical backreaction equation for both

spin- 12 fields and scalar fields when the asymptotically constant classical profile is used are shown. For all

of the plots the solid curve (blue) corresponds to the scalar field, the dashed curve (orange) corresponds to

the spin- 12 field, and the dotted curve (yellow), when shown, corresponds to the classical solution when no

quantum fields are coupled to the electromagnetic field. In the upper tier qE0

m2 = 1 and m2/q2 = 1 while in

the lower tier qE0

m2 = 10 and m2/q2 = 1. For each tier the left panels show plots of the electric field and the

induced electric current 〈JQ〉/q2, the middle panel shows plots of the number of particles 〈N〉, and the right

panel shows the quantity RQ. For the latter the values E01/q = E0/q and E02/q = E0/q + 10−3 have been

chosen for the two solutions that are subtracted.

and it is bounded for qE0

m2 � 1. Thus we find that our criterion for the validity of the semiclassical

approximation is violated for qE0

m2 ∼ 1 while, for the approximate homogeneous solutions that we

consider, our criterion appears to be satisfied for qE0

m2 � 1.

Not surprisingly, given the difference between the Sauter pulse and asymptotically constant

classical profiles, there are significant qualitative differences in the solutions for the electric field

and in the time dependence of the number of particles that have been created. These results are

illustrated in Fig. 10 for both the scalar field and spin- 1
2 field cases. It is clear from the plots that

for the values qE0

m2 = 1 and 10 the backreaction effects start to be relevant before the classical pulse
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ends. After the effect of the classical current subsides, plasma oscillations are expected to occur

because of the current created by the produced particles. There is evidence for this in the plots

of the electric field. In the case qE0

m2 = 1, backreaction effects are relatively weak and the particle

creation essentially ceases once the pulse in the electric field has ended. However, for qE0

m2 = 10 the

initial plasma oscillation is large enough that particles are created in the scalar field case after the

pulse ends.

Figure 10. Results obtained from numerical solutions to the semiclassical backreaction equation for both

spin- 12 fields and scalar fields and the Sauter pulse classical profile are shown. The structure of the figure,

including the initial values and the parameters of the fields, is the same than in Figure 9.
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VI. CONCLUSIONS AND FINAL COMMENTS

Numerical solutions to the semiclassical backreaction equation for quantum electrodynamics in

1+1D have been obtained for models of the Schwinger effect where particle production occurs due

to the presence of a strong electric field. The particle production results from the coupling of either

a quantized massive charged scalar field or spin- 1
2 field to a classical electric field. In each case the

homogeneous electric field is zero initially, as it would be in a laboratory setting, and is generated

by a classical current. We have also used a renormalization scheme for the electric current and for

the energy density of the quantum fields that is consistent with what would be used in a curved

space background. This is different from previous backreaction calculations where the electric field

was nonzero initially [7, 8, 34].

In agreement with the previous backreaction calculations, it was found that if the electric field

becomes large enough so that qE
m2 & 1 then a significant amount of particle production occurs.

Subsequently, the produced particles create a current which generates an electric field in the op-

posite direction which begins to cancel the background electric field. After the initial damping

of the background electric field, both the electric field and the current generated by the particles

oscillate.

The particle creation process has been discussed in detail for background electric fields in

Refs. [16–18]. It was found that individual modes undergo a quasilocal particle creation event

at roughly the time when (k − qA)2 ≈ m2. Here we have found that when backreaction effects

are taken into account the same type of particle creation events occur. What is different is that,

because of the oscillations in the the vector potential at late times, there are modes that undergo

multiple particle creation events. Furthermore, once a given mode has undergone a particle cre-

ation event, it is possible for it to also undergo a particle destruction event although this does not

always happen.

The total number of particles was obtained using the standard definition of a time-dependent

particle number [16, 17]. For all three profiles considered it was found that the total particle number

never decreases by any significant amount but that it is approximately constant for periods of time.

This is compatible with previous calculations of the total particle number when the electric field

is turned on suddenly by a classical current that is proportional to δ(t) in 3 + 1D using canonical

quantization [10] and in both 1 + 1D and 3 + 1D using lattice simulations [13, 14].

The energy density of the quantum field was computed for a classical current that is proportional

to δ(t) and is thus zero for t > 0. The total energy of the system is then constant and one can
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unambiguously track the transfer of energy between the particles and the electric field. It was

found that a significant amount of energy is permanently transferred to the particles during the

first damping phase of the electric field. More is then permanently transferred to the particles

upon subsequent oscillations of the electric field. This is also consistent with previous calculations

in 1+1D using lattice simulations [13] and in 3+1D using canonical quantization [10] and classical

statistical field theory techniques [11].

Correlations between the energy density of the particles, the current due to the particles, and

the total particle number were found. In particular, times when the number of particles grows

directly correspond to times when the current is changing, and times when the total number is not

growing significantly correspond to times when the current is approximately constant. However,

the current keeps oscillating even after the particle number stops growing significantly.

Since semiclassical electrodynamics is an approximation to quantum electrodynamics, an im-

portant question is whether this approximation is a good one for a given solution to the semiclas-

sical backreaction equation. We have addressed this question by adapting a criterion developed

for semiclassical gravity and modified for chaotic inflation models, that should be satisfied if the

semiclassical approximation is valid. It is therefore a necessary but not sufficient condition. The

condition is based upon the fact that the retarded two-point function for the current appears in

the linear response equations for semiclassical electrodynamics. If this correlation function grows

significantly in time and therefore solutions to the linear response equation grow significantly, then

one expects that quantum fluctuations are significant. We have approximated homogeneous so-

lutions to the linear response equation by taking two solutions to the semiclassical backreaction

equation which are nearly the same at early times and plotting a relative difference between them

which we call RQ, defined in Eq. (4.12). In cases where this difference grows significantly in time

one expects that the corresponding solution to the linear response equation will also do so.

We have investigated the validity of the semiclassical approximation for both the scalar and

spin-1
2 fields using two different classical current profiles which are shown along with the resulting

electric field (if backreaction effects are ignored) in Fig. 4.

In the zero-mass limit for the spin- 1
2 field, the solutions to the semiclassical backreaction equa-

tions are completely determined by the axial anomaly. In this case, there is no growth whatsoever

in the relative difference RQ, and thus, for the approximate homogeneous solutions to the linear

response equation that we considered, our criterion appears to be satisfied. We have investigated

the behaviors of solutions in the small-mass case, i.e., m2 � qE0, and found that they smoothly

approach those found in the zero-mass limit. Thus, for the same type of solutions to the linear
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response equation, our criterion appears to be satisfied in the small-mass limit as well. Note that

in this limit there is a great deal of particle production and backreaction effects are very strong

(see Figs. 6 and 7). Although there is no solvable massless limit for spin-0 field, we have also

checked numerically that there is less growth in RQ with time as we decrease the mass of the

created particles (see Fig. 8).

The intermediate case m2 ∼ qE0 is very different. In both the asymptotically constant and

Sauter pulse models and for both the scalar and spin- 1
2 fields, once the amount of particle production

has become significant, there is a rapid and significant growth in the ratio RQ. Thus in this case our

criterion is not satisfied because of this growth. This is similar to the breakdown of the semiclassical

approximation found in Ref. [20] for the preheating phase of chaotic inflation.

In the large-mass limit where qE0

m2 → 0, particle production does not occur and the behavior

of the electric field can be predicted by classical electrodynamics. This is in agreement with the

decoupling theorem [54].

It is very likely that the first experimental verification of the Schwinger effect will be for the

intermediate-mass case. Thus it is worth examining the predictions for that case more carefully.

First, there is no observed growth in RQ at very early times before backreaction effects become

significant. Therefore our criterion appears to be initially satisfied. However, given the difficulty

in creating a strong enough electric field for the Schwinger effect to be observed in the laboratory

(the field strength required being on the order of Ecrit ∼ 1018 V/m), the focus of the initial

experiments is likely to be on the detection of particles rather than their backreaction effects.

Thus the semiclassical approximation should be able to give a good description of the particle

production process at such early times. Second, once backreaction effects become significant, a

relatively large number of particles is likely to have been created. In previous work on the study of

the validity of the semiclassical approximation for preheating in chaotic inflation [20] it was found

that in one case that could be compared there was good qualitative agreement with calculations

that used a random-phase approximation [55–57] even though the semiclassical approximation

broke down early in the process. Similarly, the backreaction calculations in Ref. [13] using classical

statistical field theory techniques in 1+1 D are in qualitative agreement with our calculations of

the electric field, energy density, and total particle number. Thus the semiclassical approximation

can, at least in some cases, provide reasonable qualitative predictions even when its quantitative

predictions cannot be trusted.
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Appendix A: Derivation of the linear response equation

1. Scalar field

The mode equation for a massive complex scalar field can be obtained by substituting Eq. (2.6)

into Eq. (2.5) with the result

[
−∂2

t + ∂2
x − 2iqA(t)∂x − q2A2(t)−m2

]
Uk(t, x) = 0 . (A1)

If one perturbs the vector potential about some solution to the semiclassical backreaction equation

A(t) such that A(t)→ A(t)+δA(t) and writes for the mode function Uk(t, x)→ Uk(t, x)+δUk(t, x),

then to leading order

[
−∂2

t + ∂2
x − 2iqA(t)∂x − q2A2(t)−m2

]
δUk(t, x) = 2qδA(t)

(
i∂xUk(t, x) + qA(t)Uk(t, x)

)
.

(A2)

For a massive scalar field, the retarded Green’s function [5]

GR(t, x; t′, x′) = iθ(t− t′)〈[φ(t, x), φ†(t′, x′)]〉 , (A3)

is a solution to the inhomogeneous equation[
− ∂2

t + ∂2
x − 2iqA(t)∂x − q2A(t)2 −m2

]
GR(t, x; t′, x′) = −δ(t− t′)δ(x− x′) . (A4)
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Thus the solutions to Eq. (A2) can be written in the form

δUk(t, x) = δUHk (t, x)− 2q

∫ ∞
−∞

dt′
∫ ∞
−∞

dx′GR(t, x; t′, x′)
[
i ∂x′ + q A(t′)

]
Uk(t

′, x′)δA(t′) , (A5)

where δUHk (t, x) is a solution to the homogeneous part of Eq. (A2).

The explicit form of GR(x, x
′
) can be found using Eq. (A3) with Eq. (2.9) evaluated in the

vacuum state, which yields

GR(t, x; t′x′) =
i

2π
θ(t− t′)

∫ ∞
−∞

dk

[
fk(t)f

∗
k (t
′
)− fk(t

′
)f∗k (t)

]
eik(x−x′ ) . (A6)

Restricting attention to spatially homogeneous perturbations we have

δUk(t, x) = δfk(t)e
ikx . (A7)

Substituting Eqs. (A6) and (A7) into Eq. (A5) and integrating yields

δfk(t) = δfHk (t) + 2 i q

∫ t

−∞
dt′
(
k − qA(t′)

)[
fk(t)f

∗
k (t′)− fk(t′)f∗k (t)

]
fk(t

′)δA(t′) . (A8)

The perturbation of the renormalized current (2.21) yields

δ〈JQ〉ren =
q

π

∫ ∞
−∞

dk

[(
k − qA(t)

)[
fk(t)δf

∗
k (t) + δfk(t)f

∗
k (t)

]
− q|fk(t)|2δA(t) +

q m2

2ω3
δA(t)

]
.

(A9)

Substituting Eq. (A8) and its complex conjugate into Eq. (A9) yields

δ〈JQ〉ren =
q

π

∫ ∞
−∞

dk

{(
k − qA(t)

)[
fk(t)δf

∗H
k (t) + f∗k (t)δfHk (t)

]
−
[
|fk(t)|2 −

m2

2ω3

]
q δA(t)

}

−4q2

π

∫ ∞
−∞

dk

∫ t

−∞
dt′
(
k − qA(t)

)(
k − qA(t′)

)
Im

{
fk(t)

2f∗k (t′)2

}
δA(t′) .(A10)

Our goal is to show that the above linear response equation can be written in terms of the

two-point correlation function for the current, 〈[JQ(t, x), JQ(t′, x′)]〉. To accomplish this we next

calculate the two-point correlation function using the symmetrized current density (2.18) and the

scalar field mode expansion (2.9) evaluated in the vacuum state. After integrating over the spatial

coordinate one finds∫ ∞
−∞

dx′〈[JQ(t, x), JQ(t′, x′)]〉 =
4 i q2

π

∫ ∞
−∞

dk

(
k − qA(t)

)(
k − qA(t′)

)
Im

{
fk(t)

2f∗k (t′)2

}
.

(A11)

Comparing Eqs. (A10) and (A11), it is clear that Eq. (A10) can be written in the form

δ〈JQ〉ren =
q

π

∫ ∞
−∞

dk

[(
k − qA(t)

)[
fk(t)δf

∗H
k (t) + f∗k (t)δfHk (t)

]
−
[
|fk(t)|2 −

m2

2ω3

]
q δA(t)

]
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+ i

∫ ∞
−∞

dx′
∫ t

−∞
dt′ 〈[JQ(t, x), JQ(t′, x′)]〉δA(t′) . (A12)

Thus δ〈JQ〉ren for a scalar field has been cast in terms of the current-current two-point correlation

function. Note that δfHk (t) corresponds to a change of state of the quantum field. For the cases

considered in this paper the vector potential and its first time derivative are zero initially so the

perturbations do not cause a change in the state of the field so δfHk (t) = 0. Then the linear

response equation (4.1) becomes

d2

dt2
δA(t) = − d

dt
δE(t) = δJC −

q2

π
δA(t)

∫ ∞
−∞

dk

[
|fk(t)|2 −

m2

2ω3

]
+ i

∫ ∞
−∞

dx′
∫ t

−∞
dt′ 〈[JQ(t, x), JQ(t′, x′)]〉δA(t′) .

(A13)

2. Spin- 12 field

The mode equation for a massive charged spin 1
2 field can be obtained by substituting Eq. (2.13)

into Eq. (2.12) with the result[
i γt∂t + i γx∂x + q γxA(t)−m

]
uk(t, x) = 0 . (A14)

If one perturbs the vector potential about some solution to the semiclassical backreaction equation

A(t) such that A(t)→ A(t)+ δA(t) and writes for the mode function uk(t, x)→ uk(t, x)+ δuk(t, x)

then to leading order[
i γt∂t + i γx∂x + q γxA(t)−m

]
δuk(t, x) = −qγxuk(t, x)δA(t) . (A15)

For a massive spin- 1
2 field the retarded Green’s function

GR(t, x; t′, x′) = i θ(t− t′)〈{ψ(t, x), ψ̄(t′, x′)}〉 , (A16)

is a solution to the inhomogeneous equation[
i γt∂t + i γx∂x + q γxA(t)−m

]
GR(t, x; t′, x′) = −1 δ(t− t′)δ(x− x′) , (A17)

where 1 is the identity matrix. Thus the solution to Eq. (A15) can be written in the form

δuk(t, x) = δuHk (t, x) + q

∫ ∞
−∞

dt′
∫ ∞
−∞

dx′GR(t, x; t′, x′) γx δA(t
′
)uk(t

′, x′) . (A18)
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where H represents the homogeneous solution. The explicit form of GR(x, x
′
) can be found using

Eq. (A16) with the Dirac field expansion (2.13) in terms of spinor solutions (2.14) evaluated in the

vacuum state, which yields

GR(t, x; t′, x′) =
i θ(t− t′)

2π

∫
dk eik(x−x′ )


−hIk(t)hII∗k (t

′
) + hII∗k (t)hIk(t

′
) hIk(t)h

I∗
k (t

′
) + hII∗k (t)hIIk (t

′
)

hIIk (t)hII∗k (t
′
) + hI∗k (t)hIk(t

′
) −hIIk (t)hI∗k (t

′
) + hI∗k (t)hIIk (t

′
)

 .

(A19)

Restricting attention to spatially homogeneous perturbations and using Eq. (2.14) gives

δuk(t, x) =
eikx√

2π

 δhIk(t)

−δhIIk (t)

 . (A20)

Changing the integration variable to k′ in (A19), substituting the result along with (A14) and

(A20) into (A18), and integrating first over x′ and then over k′ gives


δhIk(t)

−δhIIk (t)

 =


δhIHk (t)

−δhIIHk (t)

− i q
∫ t

−∞
dt
′


hIk(t)

(
|hIk(t

′
)|2 − |hIIk (t

′
)|2
)

+ 2hII∗k (t)hIk(t
′
)hIIk (t

′
)

hIIk (t)

(
|hIIk (t

′
)|2 − |hIk(t

′
)|2
)

+ 2hI∗k (t)hIk(t
′
)hIIk (t

′
)

 δA(t
′
) .

(A21)

The perturbation of the renormalized current (2.24) yields

δ〈JQ〉ren =
q

2π

∫ ∞
−∞

dk

[
hI∗k (t)δhIk(t)+hIk(t)δh

I∗
k (t)−hII∗k (t)δhIIk (t)−hIIk (t)δhII∗k (t)− q m

2

ω3
δA(t)

]
.

(A22)

Equation (A21) and its complex conjugate can be substituted into Eq. (A22) to yield

δ〈JQ〉ren =
q

2π

∫ ∞
−∞

dk

[
hI∗k (t) δhI,Hk (t) + hIk(t) δh

I∗H
k (t)− hII∗k (t) δhII,Hk (t)− hIIk (t) δhII∗Hk (t)− q m2

ω3
δA(t)

]

−4 q2

π

∫ ∞
−∞

dk

∫ t

−∞
dt
′
Im

{
hI(t)hII(t)hI∗(t

′
)hII∗(t

′
)

}
δA(t

′
) .

(A23)

As in the scalar field case, an explicit expression for the two-point correlation function is needed.

To calculate the two-point correlation function we begin by utilizing the antisymmetrized current

density (2.23) with the fermion field mode expansion (2.13) evaluated in the vacuum state. Inte-

grating over the spatial coordinate gives∫ ∞
−∞

dx
′〈[JQ(t, x), JQ(t′, x′)]〉 =

4i q2

π

∫ ∞
−∞

dk Im

{
hIk(t)h

II
k (t)hI∗k (t

′
)hII∗k (t

′
)

}
. (A24)
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Comparing Eqs. (A23) and (A24), it is clear that Eq. (A23) can be written in the form

δ〈JQ〉ren =
q

2π

∫ ∞
−∞

dk

[
hI∗k (t) δhI,Hk (t) + hIk(t) δh

I∗H
k (t)− hII∗k (t) δhII,Hk (t)− hIIk (t) δhII∗Hk (t)

−q m
2

ω3
δA(t)

]
+ i

∫ ∞
−∞

dx
′
∫ t

−∞
dt
′〈[JQ(t, x), JQ(t′, x′)]〉 δA(t

′
) .(A25)

Thus δ〈JQ〉ren for spin-1
2 particle production has been cast in terms of the current-current two-point

correlation function. Note that δh
(I,II)H
k (t) corresponds to a change of state of the quantum field.

As mentioned above, for the cases considered in this paper the vector potential and its first time

derivative are zero initially so the perturbations do not cause a change in the state of the field so

δh
(I,II)H
k (t) = 0. Then the linear response equation (4.1) becomes

d2

dt2
δA(t) = − d

dt
δE(t) = δJC−

q2m2

2π
δA(t)

∫ ∞
−∞

dk

ω3
+i

∫ ∞
−∞

dx
′
∫ t

−∞
dt
′〈[JQ(t, x), JQ(t′, x′)]〉 δA(t

′
) .

(A26)
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