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Solutions to the backreaction equation in 1+1-dimensional semiclassical electrodynamics
are obtained and analyzed when considering a time-varying homogeneous electric field ini-
tially generated by a classical electric current, coupled to either a quantized scalar field or
a quantized spin—% field. Particle production by way of the Schwinger effect leads to back-
reaction effects that modulate the electric field strength. Details of the particle production
process are investigated along with the transfer of energy between the electric field and
the particles. The validity of the semiclassical approximation is also investigated using a
criterion previously implemented for chaotic inflation and, in an earlier form, semiclassical
gravity. The criterion states that the semiclassical approximation will break down if any
linearized gauge-invariant quantity constructed from solutions to the linear response equa-
tion, with finite nonsingular data, grows rapidly for some period of time. Approximations
to homogeneous solutions of the linear response equation are computed and it is found that
the criterion is violated when the maximum value, F,.x, obtained by the electric field is of
the order of the critical scale for the Schwinger effect, Fiax ~ Eerit = m?/q, where m is the
mass of the quantized field and ¢ is its electric charge. For these approximate solutions the

criterion appears to be satisfied in the extreme limits % < 1 and % > 1.
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I. INTRODUCTION

The semiclassical approximation has been commonly used among a wide variety of physical sce-
narios where a quantized field on a classical background is investigated, with interesting phenomena
emerging from such considerations including the decay of an electric field by the Schwinger effect
[1], particle creation in an expanding universe [2], and black hole evaporation via the Hawking effect
[3] (see also Refs. [4, 5] and references therein). Consider for instance quantum electrodynamics,
described in terms of an electromagnetic potential A, and a Dirac field 1, with classical action
S[Au, 1, 1]. The semiclassical theory can be formally described using the concept of the effective

action I'[A,,], obtained by functional integration of the matter degrees of freedom [6]

exp{iF[Au]}:/DQ/_)Dd)exp{iS[A”,d_J,@b]} . (1.1)

Within this framework the (semiclassical) Maxwell field equations take the form

OuF™ = q(0alvy"|04) (1.2)

and replace the proper Maxwell equations of the full quantized theory in the Schwinger-Dyson
form 8, (F*) = q(ipy*1p). In Eqgs. (1.1) and (1.2) the electromagnetic field is treated as a purely
classical entity. Moreover, the right-hand side of Eq. (1.2) is implicitly a function of A, in the
sense that the assumed vacuum depends on A,,. This is so because the modes of the charged Dirac
field, defining the appropriate vacuum |04), satisfy equations involving the background field A,,.
This semiclassical approach is usually regarded as a truncated and effective version of the fully
quantized theory, with a limited range of validity.

One advantage of the semiclassical viewpoint is that it provides a clear description of the
spontaneous particle creation phenomena. The nonzero imaginary part of the effective action I'[4,,]
indicates the quantum instability of the vacuum |04) and the corresponding pair creation process
[1]. This phenomena can be better understood in the canonical language: a positive-frequency
solution of the Dirac equation (il) —m)y = 0 at early times will evolve into a superposition of
positive- and negative-frequency solutions at late times (this was first described for a gravitational
background [2]). The semiclassical approach encapsulates in a clear way this very important effect.
The original calculation by Schwinger [1] involved a background field calculation in which the
electric field F is constant in both space and time. A particle production rate was obtained. The
dependence on the coupling constant ¢ displayed an essential singularity e~m*/aE , showing the

nonperturbative nature of the Schwinger effect. The damping of the electric field can be deduced



from this particle production rate. The real part of the (Heisenberg-Euler) effective action can
also account for perturbative effects, such as light-by-light scattering, in agreement with the exact
one-loop calculation in the limit of low-frequency light, or the running of the effective coupling
constant.

Subsequently the semiclassical backreaction equation was solved for an electromagnetic field
coupled to a massive scalar field or a massive spin-3 field in 141 dimensions (D) [7-9] and 3+1D [9-
11]. The electric field was assumed to be homogeneous in space, but was allowed to vary in time
in response to the electric current that occurs when the produced particles are accelerated by
the electric field. It was found the counter-electric field produced by this current initially starts
to negate the original background electric field. Eventually the background field is completely
canceled, but by this time there is a significant electric current due to particle production and the
result is that the particles keep moving which generates an electric field in the opposite direction.
The process continues and the particles end up undergoing plasma oscillations with an overall
electric field oscillation in time. Similar studies have also been done by solving the Vlasov equation
with a source term to account for particle production [7-9, 12|, using lattice simulations [13, 14],
and classical statistical field theory techniques [11].

In this paper we obtain and further study solutions to the semiclassical backreaction equation
in 141D for both scalar and spin—% fields coupled to an electromagnetic field initially generated by
a homogeneous, classical current. We have two primary goals. The first is to study the details of
the particle production process when backreaction effects have been taken into account, including
also the transfer of energy between the electric field and the created particles. The second goal is
to estimate the importance of certain types of quantum fluctuations and use the results to assess
the validity of the semiclassical approximation.

We study three classical current profiles which generate an electric field that is initially zero.
The first is similar to the previous cases in that the current is proportional to a delta function
potential and the electric field goes from zero to a constant value instantaneously. A second profile
involves a sudden turn on of the classical current but a gradual turn on of the electric field. The
third profile is that of the Sauter pulse [15] in which the current is in the form of a smooth pulse
that has a significant value only for a finite period of time. For the Sauter pulse the turn on and, if
quantum effects are ignored, the turn off of both the current and the electric field are very gradual.
In all three cases there is a well-defined vacuum state for the quantum fields since the electric field
is initially zero. The semiclassical backreaction equation is solved numerically both in the case of

semiclassical scalar and spinor electrodynamics. To our knowledge the semiclassical backreaction



equations have not been generically studied for the second and third classical current profiles. The
first one has been considered in Refs. [10-14].

The particle production process for individual modes of the quantum field has previously been
studied in background field calculations where the electric field is either constant [16, 17] or is
gradually turned on and then off [18]. It was found that a single particle creation event occurs
for many modes when the electric field is either constant or approximately constant. Here, we
consider particle production when backreaction effects are taken into account. Because of the
plasma oscillations, there is a richer evolution for some modes that involves multiple particle
creation events and can also involve particle destruction events. We do this for individual modes
for the delta function classical current profile.

For completeness, and to give better insight into the particle creation process, we also compute
the total number of particles produced for all three profiles and the energy density of the produced
particles for the delta function current profile. The energy density of the particles is compared
with the energy density of the electric field. Similar calculations have been done previously in
1+ 1D using lattice simulations [13] and in 3 4+ 1D using canonical quantization [10] and classical
statistical field theory techniques [11].

We compute the energy density of the quantum field using the continuous adiabatic regular-
ization prescription, obtaining compatible results. The agreement between both approaches for
Dirac massless fermions can be easily understood since the full QEDy model is integrable [19] and
particle production can be well described within the semiclassical framework. The presence of a
nonzero mass breaks integrability and hence one could expect it to also break the accuracy of the
semiclassical picture.

The validity of the semiclassical approximation is studied here by estimating the importance
of some of the quantum fluctuations. The semiclassical approximation breaks down if quantum
fluctuations are too large. We use a criterion for the validity of the semiclassical approximation
that has been previously applied to the process of preheating in models of chaotic inflation [20].
An earlier version of the criterion has also been used to study the validity of the semiclassical
approximation for free scalar fields in flat space when the fields are in the Minkowski vacuum
state [21] and for the conformally invariant scalar field in the Bunch-Davies state in de Sitter space
in the usual spatially flat cosmological coordinates [22]. To our knowledge no similar study of the
validity of the semiclassical approximation has been done previously for scalar electrodynamics or

quantum electrodynamics when particle creation occurs due to the presence of a strong electric

field.



The method we use to study the validity of the semiclassical approximation involves an analysis
of solutions to the linear response equation which can be obtained by perturbing the semiclassical
backreaction equation. In general, the linear response equation obtained in this way is an integro-
differential equation which involves an integral over the retarded two-point correlation function
for the source term in the semiclassical backreaction equation. In this case, that is the two-point
correlation function for the electric current. While the general form is known, the specific forms
for the case of a homogeneous electric field in 141D coupled to either a massive scalar field or a
spin—% field has not previously been derived. We do so in the Appendix for both of these cases.

Although the linear response equation can be solved directly, there is a simpler method which can
be used to obtain an approximate solution which should be valid at early times if the exact solution
is relatively small. The method involves computing the difference A E between two solutions to the
semiclassical backreaction equation which have similar starting values at a given time. This method
was used to investigate the validity of the semiclassical approximation during the preheating phase
of chaotic inflation in Ref. [20]. It works for the homogeneous solutions to the linear response
equation that we consider here.

The paper is organized as follows. In Sec. II brief reviews are given of the quantization of complex
charged scalar and spin—% fields in electrodynamics. The semiclassical backreaction equations are
also discussed along with the renormalization techniques used. In Sec. I1I the details of the particle
production process are investigated for the case of a classical current profile proportional to a delta
function. Also discussed is the transfer of energy between the electric field and the created particles.
The criterion for the validity of the semiclassical approximation that we use is discussed in Sec. IV
where both the general form and the specific form of the linear response equation are displayed
for the separate cases of a scalar field and spin—% field coupled to the electromagnetic field. In
Sec. V some of the results of numerical calculations we have made related to the validity of the
semiclassical approximation are presented and discussed. A summary of our results and some
conclusions are given in Sec. VI. The Appendix contains derivations of the specific contributions
to the linear response equations from the current-current commutators when scalar fields and spin

% fields are coupled to the electromagnetic field.



II. QUANTIZATION AND RENORMALIZATION OF COMPLEX SCALAR AND
SPIN-1 FIELDS

In this section we will briefly describe the models under consideration: a quantized complex
scalar field and a quantized Dirac field, both interacting with a background electromagnetic field
generated by a prescribed classical source. For the two systems under investigation, we restrict our
analysis to a 1 + 1D Minkowski space and assume that the background electric field is spatially
homogeneous so that E = E(t) in a given reference frame. We use units such that ~ = ¢ =1 and

our convention for the metric signature is (—, +).

A. Scalar field

The classical action representing a scalar field ¢(t,z) coupled to a background electromagnetic

field is
1
S:/ﬁ%[—J%FW+AW%—DMMW¢—m%% : (2.1)

where Fy,, = 0,4, — 0, A, is the electromagnetic field-strength tensor, the mass of scalar field
excitations is given by m, and D, = 0,, — iqA,, is the gauge-covariant derivative required to make
the action gauge invariant. Jg is a classical and conserved external source. Variation of Eq. (2.1)

with respect to the vector potential yields the classical Maxwell equations
— A+ "0, A" = Je + g (2.2)
where the source term Jg induced by the scalar field is given by
T =n" [ —iq (as*ayqs ~ (0u0) ¢> - 244, (Mﬂ . (2.3)

The field equation for ¢(¢, z) is (D“DH - m2) ¢(t,z) = 0. We choose the Lorentz gauge 9, A" = 0,

and fix the vector potential in the convenient form
AP = (0, A1), (2.4)
which therefore yields Fy; = pA; = A = —E. The field equation reduces to
—£+%—mw@@—fﬁw—wpmwzo. (2.5)
Quantizing the scalar field and expanding it in terms of modes yields

o(t,z) = \/12? /OO dk {akUk(t, x)+ bLVk(t,x)] . (2.6)



where ay, aL, by, and bz are the usual creation and annihilation operators obeying the commutation
relations [ak,az,] = [bk,bz,] = §(k — k). Due to spatial homogeneity we can write the modes
Uk(t,x) and Vi(t,x) in the convenient form Ug(t,z) = fi(t)e*®, Vi(t,z) = f*,(t)e**, where

fr(t) satisfies the ordinary differential equation
o)+ [ = 0 407 ) =0 (2.7)
and is normalized using the Wronskian condition
fufi = fifi =i (2.8)
This allows us to recast the scalar field mode decomposition as

ot x) = jfﬂ / dk [akfk@) Lot ] e (2.9)

B. Spin—% field

The classical action representing a spin—% field ¢ (t, z) coupled to a background electric field is
1 - _
S = / d*z [ — ZFWF‘“’ + Ay JE + Wy Dyp — myp | (2.10)

where ¢ = 40, with F* and D,, defined the same as for the scalar field case. The Dirac matrices
~H satisfy the anticommutation relations {y*,v"} = —2n**. As for the scalar field, J¢ is an external

classical source. The Maxwell equations include the source term induced by the field 1
Jo=aqv'y . (2.11)

The field equation for ¢ (t,z) is the Dirac equation (iy*D, —m)¢(t,z) = 0. With the gauge

choice (2.4) the explicit form of the Dirac equation is

[i VO + iy Oy + gy A(L) — m] Y(t,x)=0 . (2.12)
Quantizing the spin—% field and expanding it in terms of modes yields
W(t,x) = / dk [Bkuk(t, ) + Dlog(t, x)] : (2.13)

where here By, B,i, Dy, and Dli are the usual creation and annihilation operators obeying the an-
ticommutation relations { By, B;L,} = {Dk,Dch,} — §(k — k'). Using the formalism introduced in
Refs. [23, 24], we can construct two independent spinor solutions as follows

ikx hi —ikz [ pIIx
w(tw)zj%(_h";;f()t)) , Uk@,x):em(h,_*z((;) ) (2.14)




Utilizing the Weyl representation of the Dirac matrices v*

01 0 1 -10
10 -10 01

one can show that hl(t) and hil(t) are solutions of the mode equations

hi —i(k—qAYhE —imhil =0, (2.16a)
M40 (k—qA) R —imhl = 0. (2.16b)
‘2

The normalization condition |hL|2+|hif|? = 1 ensures that the standard anticommutation relations

between the creation and annihilation operators are satisfied.

C. Semiclassical backreaction equation and renormalization

A simple way to obtain the semiclassical backreaction equation is to replace Jg in Eq. (2.2)
with (J;) and then use Eq. (2.4) and either (2.9) or Eq. (2.13), with the result

d? d

SSA() = =SB = Jo + (Tq) (217)

Here we have simplified the notation by omitting the superscript = on Jo and Jg since in this
case the t component of these vectors vanishes. When particle production occurs the background
electric field accelerates the produced particles creating a current which then reacts back on this
electric field. In the semiclassical approximation this current is (Jg). The net electric field E(t) is
then generated by both the classical current Jco and the current from the created particles (Jg).
We now obtain the generic forms of the finite, physical expression of (Jg) for both scalar and
fermion fields. This is nontrivial since the formal expressions for the current are quadratic in the
quantized fields. Here we will explain how the ultraviolet divergences can be tamed by using the
so-called adiabatic regularization method. The method was originally proposed to obtain finite
expectation values for the stress-energy tensors of scalar fields in expanding universes [25-27]
(see also Refs. [4, 5] for scalar fields and Refs. [28-33] for fermion fields). The adiabatic method
has been adapted to treat spatially homogeneous electric backgrounds in Refs. [8, 34, 35], and it
has been improved to make it consistent with gravity in Refs. [23, 36, 37] and connected to the
DeWitt-Schwinger proper-time expansion in Ref. [38]. Here we follow the procedure proposed in

Ref. [23, 36, 37)].



1. Scalar field

It is useful to symmetrize the current operator for the scalar field with the result

Th= 0" [ ~ iq (¢>Tay¢ — (0,9) ¢> +ig <¢6V¢T - (99) ¢T) - 2%4, (as*qs + ¢¢T>] - (218)

Using Eq. (2.4) and evaluating Eq. (2.18) in the vacuum state gives for the nontrivial spatial
component

() =4 [~ ar (k= g4 A0 (2.19)

Note that the y = 0 component of the current is identically zero, meaning that no net charge
is created. The integral (2.19) contains ultraviolet divergences and hence must be renormalized.
Since the external electric field is assumed to be spatially homogeneous, it is especially convenient
to use an extension of the adiabatic regularization method. For scalar fields the procedure is based

on the standard WKB-type expansion of the field modes. In our case one writes the ansatz

1 -t N 4!
t — 7€_Zf Qk(t )dt , 220
ilt) = s (2:20)
where Qj is expanded in powers of derivatives of A(t), as Q = WO+ w® 4 w@ 4 ... The

leading term w(©) is assumed to be of zeroth adiabatic order, while wW is of adiabatic order one,

etc. The choice of the leading-order term w(®) determines univocally the subsequent orders. A

natural possibility [35] is w(® = \/(k — ¢A)2 + m2, which assumes that A(t) should be considered
as a variable of adiabatic order zero, A of adiabatic order one, etc.

However, A(t) is intrinsically a dimensionful quantity and this suggests an alternative possibility.
As proposed in Refs. [23, 36], one can also choose w©® = w = VEkZ + m2. This choice is attached
to the adiabatic assignment of one for A(t), while A is considered to be of adiabatic order two,
etc. This second possibility is actually the only consistent possibility in the presence of both
electromagnetic and gravitational backgrounds. We then obtain

on =L [~ b (k=0 )1 - 1 + L5 aw)] (221)

o 2w 2w

Similarly, one can also determine the renormalized energy density (Tpo) = (p) induced by the
quantized field

m2q?
2w3

217T/-oo dk I:’fk(t)P + (m2 + (k _ qA(t))2>’fk(t)’2 W+ %A(t) _

—0o0

(e = A0

(2.22)
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2. Spin-% field
For the spin—% field the appropriate antisymmetrized term is [4]
Jb = 217y (2.23)

The expression for = 0 corresponds to the induced electric charge and, as expected, (J82> is iden-
tically zero, i.e. no net charge is created. The renormalized expression for the spatial component

of the spin-3 current evaluated in the vacuum state is [23, 37]

Uehen = ot [~ an [k - It + £ - T ae)| (224

27 J_

It is particularly interesting to consider the massless case where the first two terms in the above

integral cancel and the expression for the current becomes
_ g
<‘]Q>ren - *;A(t) . (2'25)

This result is consistent with the two-dimensional axial anomaly

q

O (JE ) ven = ;e‘“’FW , (2.26)
where JI' = Ppy*y01) and JH = —qe* J,5. Furthermore, the renormalized energy density is given
by

hen =52 [ ak|i [ 00 + W0t 0] +0 - Ma + S L0 L 2m

III. PARTICLE PRODUCTION AND ENERGY CONSERVATION IN THE
SEMICLASSICAL FRAMEWORK

In this section we study both the details of the particle production process and the transfer of
energy between the electric field and the produced particles for some solutions to the semiclassical
backreaction equation for the delta function current profile mentioned in the Introduction.

The vacuum instability due to pair production was first realized by Heisenberg and Euler [39],
who predicted, on the basis of an effective action for a constant and homogeneous electromagnetic
background, a pair production rate in an electric field of order ~ qQEQe_%QEW. Schwinger, using
the modern language of QED, computed the imaginary part of the one-loop effective action, also

for a homogeneous and constant electric field, to evaluate the vacuum persistence amplitude (for a
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historical perspective, see Ref. [40]). From the exponential factor one notes immediately that the

order of the critical scale for pair production can be defined to be
Ecrit ~ m2/q . (31)

For some of the numerical work described in the following sections we compare the classical electric
field to Eej; and for those comparisons we take Eey to be equal to m?/q, as is customary in the
literature on the Schwinger effect.

While particle production in quantum field theory is a nonlocal process, for free quantum fields
such as the ones we are considering, it is possible to define a time-dependent particle number
that is based on the WKB approximation for the modes of the quantum field. This has been done
previously in the electric field case in Refs. [16-18] where background electric fields were considered.
While there was some variation in the details depending on the order of the WKB approximation
used, it was found for a constant electric field that when a given mode starts out in an adiabatic
vacuum state, as the vector potential A(t) increases in time, there is a particle creation event
that occurs when |k — gA| ~ m and lasts for a relatively short period of time. After which the
particle number for that mode approaches a constant value. Here we use the zeroth-order WKB

approximation, used in Refs. [16-18]:

_ 1 —i [} Qi(t)dty
gr(t) = QQk(t)e , (3.2a)
g(t) = — Qét)eiftto Qult)dts (3.2b)
Qu(t) = [k — qA@)]2 +m?2. (3.2¢)
Writing the exact mode functions as
Ji(t) = o (t)gi(t) + Br()gr(t) (3.3a)
fe() = ar(t)gn(t) + Br(t)gi(t) (3.3b)

and substituting these expressions into Eq. (2.7) converts the mode equation into two first-order
coupled differential equations for ay(t) and S (¢). Substitution into the Wronskian condition (2.8)
gives the condition |ax(t)|> — |Bx(t)|*> = 1. Note that if the vector potential stops varying in

time then the zeroth-order WKB approximation becomes exact and oy and S become Bogoliubov
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coefficients which relate the in vacuum state to the out vacuum state. With this motivation one

can define the time-dependent particle number for a given mode k to be

Ni(t) = 1B (3.4)

with the total number of created particles at time ¢ given by

woy=2 [ SisP . (35)
Inverting Eqs. (3.3a) and (3.3b) gives
Br(t) = %(gkfk — Grfr) - (3.6)

A similar analysis can be done for spin—% particles. Time-dependent Bogoliubov coefficients can

be obtained by first defining

ol = [ Emad) ifioean o [kt k) i avean g
204 20,

and then imposing the relations

hi(t) = ar(D)gi(t) + Br(t)gi™* (t) (3.8a)

! () = ar(t)gr! () = Be()gi™ (1) (3.8b)
with the result that

Bi(t) = [gh()hE (t) — i ()hi(1)] - (3.9)

A classical current adds energy to the electric field and, if particle production occurs, then
some of the electric field’s energy is used for this process. If the classical current shuts off at some
point then, since the calculations are being done in flat space, energy is conserved but can still be
transferred between the electric field and the produced particles. To see this, note that the energy
density of the electric field is pelec = %EQ. A formula for the energy density of a scalar field in the
case of a homogeneous electric field in 14 1D is given in Eq. (2.22) and one for the energy density

of a spin—% field is given in Eq. (2.27). With these definitions it is easy to check that

d dA (d*A
% (pelec + <p>ren) = E <dt2 - <JQ>> =0 , (310)

where the last term in parentheses is precisely the semiclassical Maxwell equation for the electric

field (2.17). Thus one can investigate the time dependence of the transfer of energy between the
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electric field and the particles by simply plotting pelec and (p)ren. We note that in our approach
energy conservation is a rigorous consequence of the adiabatic renormalization prescription.
To study the effects of both particle production and the transfer of energy we consider models

in which the electric field is initially generated by a classical current of the form
Jo=—Epd(t) . (3.11)

Since the electric field is zero for ¢ < 0, there is a natural initial vacuum state which for a scalar

field is
flt=0)= —— | fult=0)=—i\ /< (3.12)
' Vaw " 2 '
For a spin—% field the initial vacuum state is
—0) = =0) = — 1
Me=0)=\*—* . =0 . (313)

Since the classical current is zero for ¢ > 0, the total energy density of the system is constant for
both the scalar and spin—% cases.

To solve the semiclassical backreaction equations numerically we have used dimensionless vari-
ables and parameters. We have scaled the mode equations, (2.7) for scalars, (2.16a), (2.16b) for
Spin-% fields, and also the semiclassical Maxwell equation (2.17) in terms of the electric charge q.

The new scaled parameters are
k—k/q, w— w/q, t — qt, m— m/q. (3.14)

For the mode functions for the scalar field

f@) = Vaf(t) . (3.15)
We also use the definitions
n_ E = J P G N)
F = J = = N) = 3.16
Eerit ’ chrit P Egrit ’ < > Ecrit ’ ( )

where Ej is the critical scale for pair production defined in Eq. (3.1).

A. Particle production and energy transfer

Here we investigate some of the details of the particle production process including the transfer

of energy between the electric field and the particles for solutions to the semiclassical backreaction
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equation when either a scalar field or a spin—% field is coupled to the electric field and the classical
current is given by Eq. (3.11). The specific solutions considered have E;; = m72 = 10 and either
Ey = Eeit or Eg = 5Ecit-

In Fig. 1, some of our results for a scalar field coupled to the electric field are shown for g = Fit
in the top panels and Ey = 5F; in the bottom ones. clt is apparent that as soon as particle
production starts to occur, the initial electric field decays and the electric current increases as a
consequence of the created particles. When the electric field has been reduced significantly the
current reaches a plateau and the particle creation saturates. Furthermore, when the electric field
changes sign and its magnitude again becomes large, the particle creation rate is enhanced while
the current is slowed and then reversed. This results in plasma oscillations. Note also that the
duration of the initial growth of the electric current (jQ> is of the same order as the duration of
the initial growth in the particle number (N).

In Fig. 2, some of our results for a spin—% field coupled to the electric field are shown for
Ey = Eit in the top panels and Ey = 5Fi in the bottom ones. Comparing Fig. 2 with Fig. 1,
one finds that for the smaller value of the initial electric field, Fy = Ej;, all of the details are very
similar to the scalar field case. For the larger initial value of the electric field many of the general
features are also similar including the initial damping of the electric field and subsequent plasma
oscillations. However, some of the details differ significantly. Due to Pauli blocking the particle
production for the spin—% field effectively shuts off fairly early in the process. One result is that
there is less energy permanently transferred to the particles than in the scalar field case.

There are some differences in both the scalar field and spin—% cases between the solution for
which the electric field is at the critical value initially and the solution for which it is initially much
larger. As would be expected there is significantly more particle production and a significantly
faster initial damping for the larger field. Once the plasma oscillations begin there also appears to
be a much faster approach of the amplitude of the electric field and the total number of particles
to their asymptotic values when the initial electric field is larger. Further, examination of the
energy density shows that a significant amount of the initial energy of the larger electric field is
permanently transferred to the particles during the first damping phase and this increases during
the plasma oscillation phase. For the smaller field less energy is transferred initially to the particles
during the first damping phase and the permanent transfer of energy to the particles upon each
plasma oscillation is smaller.

For both the scalar and spin—% fields, a clear correlation is found between the maxima of the

energy density of the created particles and the maxima and minima of the current due to the created
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Figure 1. Various quantities are plotted for solutions to the semiclassical backreaction equations for a

quantized scalar field with the classical current profile Jo = —Fj 6(¢). The solutions for Ey = 1 are shown

across the top row of panels and those for Ey = 5 are shown across the bottom row. The mass of the scalar
q

current (Jg)ren are plotted. For each of the middle panels the blue dashed curve corresponds to the energy

field is 21—22 = 10 and thus £2 = 10 and 50 respectively. In the left panels the electric field E and the electric

density of the electric field pge., the orange solid curve represents the energy density of the created particles

(p)ren, and the straight yellow line is the total energy density of the system. The total particle number (N

is plotted in the right panels.

particles. For cases in which the total number of particles continues to increase significantly after
the first burst of particle production, the maxima in the energy density of the created particles
correlate with the middles of the time periods when the total number of particles is approximately
constant. As expected, the minima of the energy densities of the created particles correspond to
times when a new round of significant particle production is just beginning in cases where there
is significant particle production after the first burst. In general the periods of significant particle
production correspond to periods when energy is being transferred to the particles. It is interesting
to note that the above results, obtained within the adiabatic renormalization prescription in the

continuous limit, are compatible with the results obtained using a similar method in 3 + 1D [10]
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Figure 2. Various quantities are plotted for solutions to the semiclassical backreaction equations for a
quantized spin—% field with the classical current profile Jo = —E( §(t). The structure of the figure, and also

the initial conditions for the electric profile, are the same than in Figure 1.

as well as those obtained in 1 + 1D and/or 3 + 1D using lattice simulations [13, 14] and classical
statistical field theory techniques [11].

It was shown in Refs. [16-18] that a single particle creation event occurs for an individual mode
if the background electric field is either constant or approximately constant. What is different
here is that the backreaction of the produced particles produces plasma oscillations. The resulting
oscillations of the electric field lead to some modes undergoing multiple particle creation events and
sometimes also particle destruction events. This can be seen in Fig. 3 where the time evolution of
the function |By|? for Ey = 1 is shown for both the scalar field and spin—% field cases. Comparison
with the plot of the vector potential A(t) shows that the creation, or destruction, process for an

individual mode k happens when k& — qA(t) =~ m.
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Figure 3. The time-dependent particle number is shown for individual modes when Ey =1 for the scalar

field (top row) and spin-1 (bottom row) cases for the classical current profile Jo = —Ed(t). The mass of

the scalar field is ZL—; =

each row the first panel on the left shows the particle number for %

particle number for % = —40.

B. Massless limit for the spin-% field

Eq

10 and thus

= 10. The vector potential is plotted in the far right panels. For
20 and the middle panel shows the

For completeness we extend our analysis to the massless limit for the spin—% field. In this

case, the mode equations (2.16a) and (2.16b) decouple, and with the initial conditions given in

Eq. (3.13), their solutions are given by

k

1,11
h:

(t) = £0(Fk)e

+i ftto(k—qA(t’))dt’

(3.17)

where 6(z) is the Heaviside step function. The electric current (Jg)ren has the simple form given

in Eq. (2.25), and hence, the semiclassical Maxwell equation (2.17) turns out to be the equation

of a harmonic oscillator A(t) + %A(t) = 0. With the initial conditions E(0) = Ey and A(0) = 0,

we immediately find the analytic solution E(t) = Ey cos(\‘iﬁt). The energy density (2.27) and the

number of the created particles are (p(t))ren = %AQ (t) and (N (t)) =

|
T

W. For a detailed analysis
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of the adiabatic invariance of the particle number see Ref. [41]. As in the general case, the total
energy of the system is conserved. We note the exact analytic solubility of the case m = 0 is due

entirely to the axial anomaly in 1 + 1D. In fact, the constant is the mass of the “photon” in

= SE

the Schwinger model generated by radiative corrections [19]. In the massless case the (nonlocal)

effective action I'[A4,,, Jc| can be obtained exactly and it describes a gauge-invariant vector field
with mass % (see, for instance, Ref. [42]). The semiclassical calculation of the produced energy
due to the external source provides an accurate result. In the massive case the effective action does
not describe an integrable model [43, 44] and the semiclassical picture is expected to break down

at some point. The validity of the semiclassical approximation for massless and massive spin—%

fields for the asymptotically constant classical profile is addressed in Sec. V A.

IV. VALIDITY CRITERION FOR THE SEMICLASSICAL APPROXIMATION

The semiclassical backreaction equation can be derived from Eq. (1.1) via a loop expansion [6].
In this case when solving the semiclassical backreaction equation, the semiclassical approximation
breaks down if contributions from the quantum terms to the equations become comparable to that
of the classical background field and any other classical fields. The reason is that one expects higher-
order terms in the loop expansion to be important in that limit. However, there is a different way
to derive the semiclassical backreaction equation called the large- N expansion. In this expansion
one considers N identical quantum fields coupled to the background field, which to leading order
is treated as a classical field. At next-to-leading order in the large- N expansion, quantum effects
due to the background field first appear [45, 46]. Thus in this expansion it is consistent to consider
solutions to the semiclassical backreaction equation for which the quantum fields have a significant
effect on the classical background field. Here we will take N = 1 and consider a wide range
of situations ranging from those where the background electric field is small compared with the
(Schwinger) critical scale Eei = m?/q and quantum effects are correspondingly small to those
where the background electric field is large compared to the critical value and quantum effects are
correspondingly large. The critical value is the threshold for which a significant amount of particle
production is expected to occur.

The large-N expansion provides a formal framework for the semiclassical backreaction equation
when quantum effects are significant. However, it does not guarantee that the semiclassical approx-
imation is valid. There are three reasons. The first is that interactions of the quantum fields which

are coupled to the classical background field are ignored in most cases, including those considered
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here. This works if the interactions are small over the time scales relevant to the problem. The
second is that even if the next-to-leading order terms in the large- N expansion are initially small
in size, it has been shown in certain quantum mechanics calculations that they undergo secular
growth [47] and there is evidence that secular growth also occurs for such terms in quantum field
theory [48]. However, there is also evidence that partial resummations of certain classes of Feynman
diagrams eliminate this problem [49, 50]. The third is that the semiclassical backreaction equation
involves an expectation value of some quantity such as the electric current or stress-energy tensor
that is constructed from the quantum fields. For an expectation value to be a good approximation
to what one would measure in quantum theory, it is necessary that quantum fluctuations are small.

A natural way to estimate the size of quantum fluctuations is to evaluate the two-point correla-
tion function for the current. There are several different two-point correlation functions including
(i) (J(t,z)J(t',2")), (ii) the connected part, i.e., (J(t,x)J(t',z")) — (J(t,x))(J(t',2")), (iil) the time-
ordered correlation function (T'(J(t,z)J(t',2"))), etc. There are problems associated with some of
these, as described in Refs. [21, 51, 52]. For example, it has been shown for the symmetric part
of the stress-energy tensor two-point correlation function that there can be state-dependent diver-
gences in the limit that the points come together [51]. A related issue is that it has been shown in
at least one case in the limit that the points come together that different renormalization schemes
can give different results for a particular quantity made from one component of the stress-energy
tensor two-point correlation function [52]. There can also be covariance issues with some of the
quantities made from the stress-energy tensor two-point correlation function [21].

There is a correlation function that is free of these problems and which emerges naturally from
the semiclassical theory itself and that is ([J(¢,z), J(¢',2)]). By perturbing the semiclassical back-
reaction equation one is led to the so-called linear response equation which contains this correlation
function and which describes the time evolution of perturbations about a given semiclassical solu-
tion. A criterion was developed in Ref. [21] for the validity of the semiclassical approximation in
gravity which states that a necessary condition for the validity of the semiclassical approximation
to be valid is that any linearized, gauge-invariant scalar quantity constructed from solutions to the
linear response equations with finite nonsingular initial data should not grow without bound. It is
important to emphasize that this is not a sufficient condition for the validity of the semiclassical
approximation. The criterion was adapted to cover preheating during chaotic inflation [20] where
a significant amount of particle production occurs and quantum effects are large. If the criterion
is applied to semiclassical quantum electrodynamics then it would state that the semiclassical ap-

proximation breaks down if any linearized gauge-invariant quantity constructed from solutions to
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the linear response equation with finite nonsingular initial data grows rapidly for some period of

time.

A. Linear response equation

The linear response equation for semiclassical electrodynamics can be obtained by perturbing

Eq. (2.17) about a background solution to the semiclassical equation with the result

d? d
E(SA(t) = —%6E =dJo + 5<JQ> . (4.1)

It can be seen from Eq. (4.1) that a first integral of the linear response equation gives the perturbed
electric field, which is gauge invariant.
To analyze the behaviors of solutions to this equation, particularly at early times, it is useful

to break the solutions to the semiclassical backreaction equation into two parts with

EQ =F- EC s (4.2&)
t

Fo=— / it Jo(t) . (4.2b)
to

From the structure of the linear response equation it is clear that its solutions d E can be broken
up in exactly the same way. Then, the criterion for the validity of the semiclassical approximation
can be modified to state that if the quantity 6Eg grows significantly during some period of time
then the semiclassical approximation is invalid. It is worth noting that because (Jg) and 6(Jg)
are constructed from solutions to the mode equation which depend on the vector potential A, and
therefore indirectly on F, then Eg depends on F¢ and dFEg depends on dE¢.

In Appendix A it is shown for both the scalar and spin—% coupled systems that for homogeneous

perturbations, 6(.Jg) depends upon the two-point correlation function for the current. A more

general derivation is given in Ref. [53]. For scalar fields the result is

2

ar (InF - 55 ) +i [ [ ; At ([Ja(t, 2), Jo(t', ) GA(H) .

o0

5(J0)ren = —‘faA(t) /

—0o0

(4.3)
where
w=Vm2 k2 | (4.4)
and
[ atear.go ) = 2 [ (k- gaw) (k- aae) ) s

(4.5)
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It can be shown, using the point-splitting technique, that the divergence structure in the first
integral is conveniently compensated for by the divergence structure that is inherent in the second
integral. ! Therefore, 6(Jg) is finite and the overall equation is well defined.

For spin—% fields the renormalized perturbation of the quantum current in (4.1) is

2m2 o0 o0 / t / ’ ’ ’
Stahen = =130 [~ i [ ad [t (ot Jot S sAE) L 0)
with
[e%¢) i 2 0
|t oty =5 [ s wort on@r o)} @

Recall that in the massless limit we find that the mode equations decouple and the solutions
are given in Eq. (3.17). Thus, for a given value of k either hl or hl! is zero, and hence hlhl! =0
for any value of k. Therefore in the massless limit the current-current commutator in Eq. (4.7) is

Zero.

B. Approximate solutions to the linear response equation

From Egs. (4.1), (4.3), and (4.6), it is clear that the linear response equation is an integro-
differential equation. This makes it significantly more difficult to solve numerically compared to
an ordinary differential equation. A useful way to approximate the solutions to the linear response
equation for the case of homogeneous perturbations was given in Ref. [20]. It involves solving the
semiclassical backreaction equation for two sets of initial conditions which differ from each other by
only a small amount. At early times we expect these two solutions to be an approximate solution
to the linear response equation so long as the difference does not grow too large. If this difference
grows significantly, then the corresponding solution to the linear response equation should also grow
substantially. Hence, our criterion for the validity of the semiclassical approximation is considered
to be violated.

As has been mentioned previously, solutions to the semiclassical backreaction equation tend to
oscillate over long periods of time due to plasma oscillations and it is possible that solutions to the
linear response equation could oscillate over shorter periods of time. While there is no problem in
comparing the absolute difference between two solutions to the semiclassical backreaction equation,

it is more problematic when one considers the relative difference because the denominator will

1 Tt is not obvious that there is a divergence in the second integral because the commutator vanishes in the limit

that the points come together. However, a careful analysis shows it to be there.
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vanish at certain points. For this reason we introduce a modified version of the relative difference
which is guaranteed to be no smaller than zero and no larger than one. Consider two solutions
to either the classical or semiclassical backreaction equation in 141D, El = F1Z and Eg = FEyx
(or just E; and Fj since we are only considering one spatial dimension). Then the absolute and

relative differences are respectively

AE = E2 — E1 s (48&)
|AE]|

R= ———— 4.8b

|E1] + |E2| (4.8b)

We note that R can be easily reexpressed as a Lorentz-invariant quantity.
It is useful to apply the relative difference R for two solutions to the classical backreaction
equation which, as can be seen in Eq. (4.2b), are simply integrals over the classical current Jc.

Consider a classical current of the form
Jo=—Eog(t) . (4.9)

Here ¢(t) is the time derivative of some well-behaved, dimensionless function ¢(t), and the solution

to the classical Maxwell equation is Ec = Egg(t). In the following sections we will consider the

cases ¢(t) = % and g(t) = sech?(qt), with the latter being the Sauter pulse. The solutions are

parametrized by the constant Fy. For two solutions to Egs. (4.2b) with (4.9), Ec1 and E¢q, with

Ey = Ey1 and Ey = Ey respectively, we have for the absolute and relative difference

AEO = E02 — E01 s (410&)

_ |AEc| _ JAE
|Eci| + |Ec2|  |Eoi| + |Eoz|

Re (4.10b)

Next, consider two solutions to the semiclassical backreaction equation. Since we are considering
classical currents, which are zero initially, and an electric field that is zero initially, there is no
ambiguity in the choice of vacuum state. Therefore these solutions are also parametrized by the
value of Ey for a given function g(¢). Using the subscripts 1 and 2 to denote quantities computed

for these solutions, it is clear that the difference AFE is an exact solution to the equation

- ‘Z?TE — AJo+AUTg) (4.11)

with AJo = Joo — Jo1 and A(JQ> = <JQ2> — <JQ1>.
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Suppose at some early time t1, when E¢ is still very small with no significant amount of particle
production, that Rco(t1) < 1. One can then arrange the initial conditions for the perturbation § E
such that 6E(t1) = AE(t1). It is also obvious that one can set for all times 6Jc(t) = AJo(t). Then
Eq. (4.11) is approximately equivalent to the linear response equation (4.1) so long as A(Jg) ~
d(Jg), which one would certainly expect to be the case at times near ¢;.

As discussed in the previous subsection [see Eq. (4.2a)], it is more useful at early times to
consider the quantity AEg ~ 0Eg. To measure the relative growth of AEg we compute the
relative difference

|AEq|

Rg=—2fel
@ |EQ1| + |Eg2|

(4.12)

This difference can then be compared to the relative difference between the corresponding classical
solutions R¢ in Eq. (4.10b), which does not change in time.

Consider two times to > t; where t; is the initial time discussed above when one imagines fixing
the starting values for the linear response equation and t9 is a relatively early time after that.
Then the possibilities are as follows. (i) If Rg(t) < Rc then the criterion for the validity of the
semiclassical approximation will be satisfied by the approximate homogeneous solutions that we
consider up to the time ¢. (ii) If for any times between ¢; and t2, Rg(t) > R, then the solution to
the linear response equation, 6 F, grows rapidly during at least some part of the period t; <t < to
and the criterion for validity of the semiclassical approximation is not satisfied. Note that once the
semiclassical approximation has broken down, one can no longer trust its solutions even if for later
times Rg < Re. (iii) Finally, the intermediate case when R is larger than R¢ but still of the
same order of magnitude is ambiguous. Perhaps the best that can be said is in this case quantum
fluctuations are increasing and so the accuracy of the semiclassical approximation is decreasing in

proportion to this increase.

V. NUMERICAL RESULTS

In this section we implement a numerical analysis to study the validity of the semiclassical
approximation for two different classical source profiles. To do so, we use the method described in
the previous section to compare the numerical solutions of the semiclassical backreaction equation
for two distinct, but very close values of the external source amplitude Ey. The first profile
considered has a classical source current given by

qEo
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for t > 0 and Jo = 0 for £ < 0. The classical solution of the Maxwell equation (—EC = Jo) gives
rise to the asymptotically constant electric field profile for ¢ > 0
Fo(t) = By | 2 (5.2)
C — 0 1 + qt . .

The second profile considered is the Sauter pulse with source current given by
Jo = 2qFosech?(qt)tanh(qt) | (5.3)
and corresponding classical electric field
Ec(t) = Egsech?(qt) . (5.4)

In Fig. 4 we show the classical behavior of both profiles. For the first profile, one can easily see
that at late times the electric field approaches the constant value Ey. The Sauter pulse models a
possibly more realistic scenario for the detection of the Schwinger effect, in which both the initial
and the final values of the classical electric field tend to zero. Note that, for the first profile we
choose an initial time tg = 0, while for the Sauter pulse the initial time has to be fixed as tg = —o0.
As discussed in Sec. IV B, it is useful, particularly at early times, to work with the quantity Eq
in Eq. (4.2a) which is the difference between the net electric field and the electric field E¢ that
would be present if there were no quantum effects. Therefore the natural quantity to consider is
the relative difference Rg in Eq. (4.12) which is constructed from two solutions to the semiclassical
backreaction equation with values of Ey that differ by some small amount. This can be compared
to the relative difference R¢ between two solutions to the classical Maxwell equation with the same
values of Fj.

In what follows, numerical results will be shown for calculations of Rg and other quantities such
as E(t), (Jo), and (N) for scalar and spin-1 semiclassical electrodynamics for the asymptotically
constant classical profile and then for the Sauter pulse classical profile. As stressed before, we
mainly focus on the early-time behavior. In both cases it is assumed that the electric field and
vector potential are initially zero. As a result, for scalar fields the initial conditions for the mode

functions are

w

1 .
ty)) = —— to) = —iy/ = . 5.5
(o) Tos fi(to) 5 (5.5)
For spin—% fields the initial conditions are
w—k w+k
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qt

Figure 4. Electric profiles for Ey/q = 2. In the left (top) panel we show the asymptotically constant profile.
In the right (top) panel we show the Sauter pulse. In both bottom panels, the classical current generating
the respective electric field profiles is plotted. For the asymptotically constant profile we choose an initial

time tg = 0, while for the Sauter pulse the initial time has to be fixed as tg = —oo0.

First, we discuss the mass dependence of the function R¢ and its relation to the validity of the
semiclassical approximation, with a focus on the asymptotically constant profile. Then, we show
the results of our analysis for the most relevant case Eg ~ Eeyy = m?/q for both the asymptotically
constant profile and the Sauter pulse. As in Sec. III, for the numerical computations we use the
dimensionless parameters described therein. However, in this section the electric field and the

electric current are given in terms of E/q and J/q? respectively.

Since we are considering multiple cases and subcases, a summary of all relevant information,

including all cases and sub-cases with figure references, can be found in Table I.
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Quantum Field|Classical Profile Mass Cases Figure Reference
Asymptotically |m? < gEqy (or m — 0) 6,7
Constant m? ~ qEy 5,6,7,9
Spin 1/2
m? < qEp(or m — 0) N/A
Sauter Pulse
m2 ~ qF 10
Asymptotically |m? < gEy (or m — 0) 8
Constant m? ~ qEy 8,9
Complex Scalar
m? < qEp (or m — 0) N/A
Sauter Pulse
m? ~ qE 10

Table I. A table organizing the various cases and subcases that are investigated in the paper. Included are
figure references for ease of use. Note that cases with m? > ¢FEj are not included; they are discussed in the

main text on the basis of the decoupling mechanism.
A. Asymptotically constant classical profile

1. Massless spz'n-% field

As explained in Sec. III B, for m = 0 the mode equations (2.16a) and (2.16b) decouple, and

(JQ)ren = —%A. Thus the semiclassical Maxwell equation (2.17) reduces to

. q2
A+?A:h , (5.7)

which is the equation for a simple harmonic oscillator with frequency \l;”; and external source Jg.

In this case, the linear response equation is just

. 2
sA+LsA=06J0 . (5.8)
T

Note that 0(Jg)ren = —%514 and also that the initial conditions for §.J- can be arranged so that
0Jc = Ade.
For the asymptotically constant profile, J¢ is given in Eq. (5.1). With initial conditions A(0) =

and F(0) = 0, we immediately find

A(t) = ——| cos Ci(m cos Ci| —=
(t) . NG (%) = NG
. at . 1+qt (7~ 1/2) —si I+qt\,. [1+qt
+ﬁ31n<ﬁ> +s ( — sin NG Si NG ,
(5.9)
where Ci(z) = — [ %(t)dt and Si(z) = [ %dt are the cosine and the sine integral functions

respectively. Hence, we can conclude that for any two solutions Ej(t) and Fs(t) with Ey = Ep;
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and Ey = FEyy respectively, the relation

Rolt) = [EQi(t) — EQ2(t)] _ |Eor — Eog
[Equ(t)| + [Eq2(t)]  |Eoi| + [Eoz|
is always satisfied. Although this result was derived for the asymptotically constant profile (5.1),

=Rc , (5.10)

it holds for any classical current of the form Jo = —Epg(t).

2. Massive spin—% field

We next study the relationship between the behavior of Rg, the mass of the spin % field, and

the value of Ey in Eq. (5.1). As illustrated in our numerical results below, the most important

effect on R comes from the size of the dimensionless quantity ‘fq%o. We distinguish between three

different cases: (i) ‘fnir? > 1 in which the mass is relatively small compared to the electric field and
there is a lot of particle production, (ii) the intermediate case % ~ 1 where there is a significant
amount of particle production, and (iii) qmigo < 1 in which the mass is relatively large compared to
the electric field and there is very little particle production.

The beginning of the transition from intermediate to large effective masses is shown in Fig. 5
where various quantities, such as the electric field, are plotted for Ey/q = 1 and Z‘—; = 1 and
%22 = 2. As expected, the amount of particle production that occurs decreases significantly as ‘i%o
decreases and thus as the effective mass increases. Note that the time scale on which backreaction
effects occur increases significantly with an increase in the effective mass.

In the very-large-mass limit 3%0 — 0, the electric field will not have enough energy to create
particles, so one expects that (Jg)ren — 0 and E — E¢. This is in agreement with the decoupling
theorem in perturbative quantum field theory [54]. Heavy masses decouple in the low-energy

description of the theory, which in this case is purely classical electrodynamics for m? — oo, with

Eo fixed.

qEo

In the intermediate cases shown in Fig. 5 where T2 ~ 1, there is a significant amount of particle

production and once enough particle production has occurred the value of Rg starts to increase
rapidly, possibly exponentially for ‘37%0 = 1. This rapid rise continues until the backreaction of
the particles on the background electric field is strong enough that the electric field has stopped
increasing and has begun to noticeably decrease in size. Thus in the intermediate case it appears
that our criterion for the validity of the semiclassical approximation is not satisfied due the rapid
and significant growth in Rq at relatively early times.

The transition from the intermediate case to the small-effective-mass case when Ey/q = 1 is

shown in Fig. 6. Comparison with Fig. 5 shows that the intermediate case extends to ’(’;—22 = 0.1,
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but not to 7:;—22 = 0.01 which has a qualitatively different behavior. In particular for the relatively
small-mass and zero-mass cases the particle production is more rapid and backreaction effects on
the electric field are significant after a much smaller amount of time than for intermediate masses.
Examination of the behavior of R¢g shows that it does not grow rapidly in time for the small-mass
case and, as mentioned above, is constant in the massless case. Thus our criterion for the validity

of the semiclassical approximation is satisfied by the homogeneous approximate solutions that we

consider in the relatively small-mass case.

In the above analysis the value of the ratio ‘Im%o has been shown to dictate the different types
of qualitative behaviors the solutions have. Of course one can change the values of ¢FEg and m? in
ways that keep the ratio fixed. In Figs. 5 and 6, Ey/q = 1. In Fig. 7, Ey/q = 10 is chosen along
with several masses that lead to small and intermediate values of ‘37%0. Comparison with Fig. 6

shows that while the details of the various curves are different, they are qualitatively the same

. Eo -
when the ratio -2 is the same.
777777 e 107 -
s —_—————— —_ _ 25 -7
Y \ P
05 / \\; -
/ T~ 2 s
/ T -
° \\ —
T 4
Ey/q=1 \\ o 15 / // —
05 L . . . /
10 15 20 25 30 35 40 feny /7
t [~ = ’
q = o /
1 /
Jo
- 5 [
N
\ // /\ ‘c J
\ (\w// R En/q=1
| 7 i Ep/q=1+10""
\ A IR _ /
A e | En/q=1 o5k
L L L L 10 L L L L L L L L L
10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30
qt qt qt

Figure 5. Results obtained from numerical solutions to the semiclassical backreaction equation for Spin—%
fields and the asymptotically constant classical profile are shown for Fy/q = 1. The masses are chosen so
that ‘%‘9 < 1. The electric field and the induced electric current (Jg)/q* for each case are plotted in the
left panels. Plots for the corresponding number of particles, (IV), are shown in the middle panel and plots
of the quantity R¢ appear in the right panel. For the latter, the values Ey1/q = 1 and Epa/q =1+ 1073
have been chosen for the two solutions that are subtracted. The values of m?/q? for each case are shown

along with the type of curve for that solution in the legend in the right panel.
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Figure 6. Results obtained from numerical solutions to the semiclassical backreaction equation for spin—%
fields and the asymptotically constant classical profile are shown for Fy/q = 1. The masses are chosen so

that ’inié’ > 1. he structure of the figure is the same as in Figure 5.

Ro(t)
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Ep/q=10+10"°

Figure 7. Results obtained from numerical solutions to the semiclassical backreaction equation for spin—%
fields and the asymptotically constant classical profile are shown for Ey/q = 10. The masses are chosen so
that ‘%ﬁ > 1. The structure of the figure is the same as in Figure 5. Here, the values Ep;/q¢ = 10 and

FEg2/q =10 + 1073 have been chosen for the representation of the function Rg.

3. Scalar field

Unlike the case of the Spin—% field, there is no clear limit that we have found as m — 0 for a
scalar field coupled to the electromagnetic field. However, our numerical results shown in Fig. 8
indicate that, as for the Spin—% field, Rg grows significantly at early times for 37%0 ~ 1 but grows
much less rapidly in time for larger values of %' Thus our criterion is violated for 3%0 ~ 1 but,

at least for the homogeneous approximate solutions that we consider, it appears to be satisfied for

ko 5 1,

m2
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We have found that the behaviors of solutions to the semiclassical backreaction equation when

a scalar field is present are in many ways qualitatively similar to the corresponding ones for the

spin—% field for cases in which the ratio €2 is not too large. This is illustrated in Fig. 9 for 37%0 =1

m?2

and 10. The main difference occurs for the latter case where a larger ratio results in more particle

production for the scalar field than for the spin—% field due to Pauli blocking. Even in that case

the early-time behaviors of R are similar for the two fields.

For the large-mass limit, we expect that, as for the spin—% case, the semiclassical approximation

will approach the classical limit as 3%9 — 0.

Eoi/q=10
Ep/q=10+107°

Figure 8. Results obtained from numerical solutions to the semiclassical backreaction equation for scalar

fields and the asymptotically constant classical profile are shown for Fy/q = 10. The masses are chosen

so that ‘fﬂif > 1. The structure of the figure is the same as in Figure 5. We have chosen Epy;/q = 10 and

FEo2/q =10+ 1073 to represent the function Rg.

B.

Sauter pulse classical profile

While our results relating to the validity of the semiclassical approximation are the same for the

scalar and spin—% fields for the asymptotically constant classical profile, one might be concerned

that there could be significant differences for other classical profiles. To test this we have also in-

vestigated the validity of the semiclassical approximation for the Sauter pulse classical profile given

in Eq. (5.4) with the classical current (5.3). Unlike the asymptotically constant classical profile,

the classical current in this case is a C* function so there is no extraneous particle production due

to the sudden approximation.

We find for the Sauter pulse classical profile for both the scalar and spin—% cases, that R¢g grows

significantly at early times for

qEo

m2

~ 1, as it does for the asymptotically constant classical profile,
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Figure 9. Results obtained from numerical solutions to the semiclassical backreaction equation for both
spin—% fields and scalar fields when the asymptotically constant classical profile is used are shown. For all
of the plots the solid curve (blue) corresponds to the scalar field, the dashed curve (orange) corresponds to
the spin—% field, and the dotted curve (yellow), when shown, corresponds to the classical solution when no

quantum fields are coupled to the electromagnetic field. In the upper tier ‘if;’ =1 and m?/¢*® = 1 while in

the lower tier 37%0 =10 and m?/q? = 1. For each tier the left panels show plots of the electric field and the
induced electric current (Jg)/q¢?, the middle panel shows plots of the number of particles (N), and the right
panel shows the quantity Rg. For the latter the values Fy1/q = Fo/q and Ega/q = Eo/q + 1072 have been

chosen for the two solutions that are subtracted.

and it is bounded for 3%0 > 1. Thus we find that our criterion for the validity of the semiclassical
approximation is violated for qﬂ% ~ 1 while, for the approximate homogeneous solutions that we
consider, our criterion appears to be satisfied for qn%o > 1.

Not surprisingly, given the difference between the Sauter pulse and asymptotically constant
classical profiles, there are significant qualitative differences in the solutions for the electric field
and in the time dependence of the number of particles that have been created. These results are

illustrated in Fig. 10 for both the scalar field and spin—% field cases. It is clear from the plots that

for the values ‘inigo = 1 and 10 the backreaction effects start to be relevant before the classical pulse
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ends. After the effect of the classical current subsides, plasma oscillations are expected to occur
because of the current created by the produced particles. There is evidence for this in the plots
of the electric field. In the case % = 1, backreaction effects are relatively weak and the particle
creation essentially ceases once the pulse in the electric field has ended. However, for ‘;%0 = 10 the
initial plasma oscillation is large enough that particles are created in the scalar field case after the

pulse ends.
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Figure 10. Results obtained from numerical solutions to the semiclassical backreaction equation for both
spin—% fields and scalar fields and the Sauter pulse classical profile are shown. The structure of the figure,

including the initial values and the parameters of the fields, is the same than in Figure 9.
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VI. CONCLUSIONS AND FINAL COMMENTS

Numerical solutions to the semiclassical backreaction equation for quantum electrodynamics in
141D have been obtained for models of the Schwinger effect where particle production occurs due
to the presence of a strong electric field. The particle production results from the coupling of either
a quantized massive charged scalar field or spin—% field to a classical electric field. In each case the
homogeneous electric field is zero initially, as it would be in a laboratory setting, and is generated
by a classical current. We have also used a renormalization scheme for the electric current and for
the energy density of the quantum fields that is consistent with what would be used in a curved
space background. This is different from previous backreaction calculations where the electric field

was nonzero initially [7, 8, 34].

In agreement with the previous backreaction calculations, it was found that if the electric field
becomes large enough so that % 2 1 then a significant amount of particle production occurs.
Subsequently, the produced particles create a current which generates an electric field in the op-
posite direction which begins to cancel the background electric field. After the initial damping
of the background electric field, both the electric field and the current generated by the particles
oscillate.

The particle creation process has been discussed in detail for background electric fields in
Refs. [16-18]. It was found that individual modes undergo a quasilocal particle creation event
at roughly the time when (k — gA)? ~ m?. Here we have found that when backreaction effects
are taken into account the same type of particle creation events occur. What is different is that,
because of the oscillations in the the vector potential at late times, there are modes that undergo
multiple particle creation events. Furthermore, once a given mode has undergone a particle cre-
ation event, it is possible for it to also undergo a particle destruction event although this does not
always happen.

The total number of particles was obtained using the standard definition of a time-dependent
particle number [16, 17]. For all three profiles considered it was found that the total particle number
never decreases by any significant amount but that it is approximately constant for periods of time.
This is compatible with previous calculations of the total particle number when the electric field
is turned on suddenly by a classical current that is proportional to §(¢) in 3 4+ 1D using canonical
quantization [10] and in both 1 + 1D and 3 + 1D using lattice simulations [13, 14].

The energy density of the quantum field was computed for a classical current that is proportional

to 6(t) and is thus zero for t > 0. The total energy of the system is then constant and one can
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unambiguously track the transfer of energy between the particles and the electric field. It was
found that a significant amount of energy is permanently transferred to the particles during the
first damping phase of the electric field. More is then permanently transferred to the particles
upon subsequent oscillations of the electric field. This is also consistent with previous calculations
in 141D using lattice simulations [13] and in 34 1D using canonical quantization [10] and classical
statistical field theory techniques [11].

Correlations between the energy density of the particles, the current due to the particles, and
the total particle number were found. In particular, times when the number of particles grows
directly correspond to times when the current is changing, and times when the total number is not
growing significantly correspond to times when the current is approximately constant. However,
the current keeps oscillating even after the particle number stops growing significantly.

Since semiclassical electrodynamics is an approximation to quantum electrodynamics, an im-
portant question is whether this approximation is a good one for a given solution to the semiclas-
sical backreaction equation. We have addressed this question by adapting a criterion developed
for semiclassical gravity and modified for chaotic inflation models, that should be satisfied if the
semiclassical approximation is valid. It is therefore a necessary but not sufficient condition. The
condition is based upon the fact that the retarded two-point function for the current appears in
the linear response equations for semiclassical electrodynamics. If this correlation function grows
significantly in time and therefore solutions to the linear response equation grow significantly, then
one expects that quantum fluctuations are significant. We have approximated homogeneous so-
lutions to the linear response equation by taking two solutions to the semiclassical backreaction
equation which are nearly the same at early times and plotting a relative difference between them
which we call Rg, defined in Eq. (4.12). In cases where this difference grows significantly in time
one expects that the corresponding solution to the linear response equation will also do so.

We have investigated the validity of the semiclassical approximation for both the scalar and
Spin-% fields using two different classical current profiles which are shown along with the resulting
electric field (if backreaction effects are ignored) in Fig. 4.

In the zero-mass limit for the spin—% field, the solutions to the semiclassical backreaction equa-
tions are completely determined by the axial anomaly. In this case, there is no growth whatsoever
in the relative difference Rg, and thus, for the approximate homogeneous solutions to the linear
response equation that we considered, our criterion appears to be satisfied. We have investigated
the behaviors of solutions in the small-mass case, i.e., m? < ¢Fy, and found that they smoothly

approach those found in the zero-mass limit. Thus, for the same type of solutions to the linear
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response equation, our criterion appears to be satisfied in the small-mass limit as well. Note that
in this limit there is a great deal of particle production and backreaction effects are very strong
(see Figs. 6 and 7). Although there is no solvable massless limit for spin-0 field, we have also
checked numerically that there is less growth in Rg with time as we decrease the mass of the

created particles (see Fig. 8).

2 ~ qEy is very different. In both the asymptotically constant and

The intermediate case m
Sauter pulse models and for both the scalar and spin—% fields, once the amount of particle production
has become significant, there is a rapid and significant growth in the ratio Rg. Thus in this case our
criterion is not satisfied because of this growth. This is similar to the breakdown of the semiclassical

approximation found in Ref. [20] for the preheating phase of chaotic inflation.

In the large-mass limit where ZT%O — 0, particle production does not occur and the behavior
of the electric field can be predicted by classical electrodynamics. This is in agreement with the

decoupling theorem [54].

It is very likely that the first experimental verification of the Schwinger effect will be for the
intermediate-mass case. Thus it is worth examining the predictions for that case more carefully.
First, there is no observed growth in R at very early times before backreaction effects become
significant. Therefore our criterion appears to be initially satisfied. However, given the difficulty
in creating a strong enough electric field for the Schwinger effect to be observed in the laboratory
(the field strength required being on the order of Eui; ~ 10'® V/m), the focus of the initial
experiments is likely to be on the detection of particles rather than their backreaction effects.
Thus the semiclassical approximation should be able to give a good description of the particle
production process at such early times. Second, once backreaction effects become significant, a
relatively large number of particles is likely to have been created. In previous work on the study of
the validity of the semiclassical approximation for preheating in chaotic inflation [20] it was found
that in one case that could be compared there was good qualitative agreement with calculations
that used a random-phase approximation [55-57] even though the semiclassical approximation
broke down early in the process. Similarly, the backreaction calculations in Ref. [13] using classical
statistical field theory techniques in 141 D are in qualitative agreement with our calculations of
the electric field, energy density, and total particle number. Thus the semiclassical approximation
can, at least in some cases, provide reasonable qualitative predictions even when its quantitative

predictions cannot be trusted.
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Appendix A: Derivation of the linear response equation

1. Scalar field

The mode equation for a massive complex scalar field can be obtained by substituting Eq. (2.6)

into Eq. (2.5) with the result
(=07 + 02 — 2igA(t)dy — P A%(t) — m?| Up(t,x) =0 . (A1)

If one perturbs the vector potential about some solution to the semiclassical backreaction equation
A(t) such that A(t) — A(t)+JA(t) and writes for the mode function Uy (t, ) — Ug(t, z)+Uk(t, x),

then to leading order

[—0F + 02 — 2iqA(t)0, — > A*(t) — m?] SU(t,z) = 2q0A(t) (i@xUk(t, z) + qA(t)Ugk(t, x)>
(A2)
For a massive scalar field, the retarded Green’s function [5]
Gr(t,z;t',a') = i0(t — ') ([o(t. ), 6" (¢, 2")]) (A3)

is a solution to the inhomogeneous equation

— 02 4+ 0% — 2iqA(t) 0, — °A(t)? — m?|GRr(t,z;t' ') = —6(t —t')0(x — ') . (A4)
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Thus the solutions to Eq. (A2) can be written in the form
SUL(t, ) = UL (t, x) — 2q/ dt’/ do'Gr(t,z;t',2") [i 0y + q A(t)| Up(t', 2" )0A() , (A5)

where 0UH (¢, z) is a solution to the homogeneous part of Eq. (A2).
The explicit form of Gr(x,z’) can be found using Eq. (A3) with Eq. (2.9) evaluated in the
vacuum state, which yields

Gult,ita') = -0t ~1) [~ k| A5 - AOKO|H L (a9

™ —00

Restricting attention to spatially homogeneous perturbations we have
SUL(t, ) = & fr(t)e™ ™ . (A7)

Substituting Eqgs. (A6) and (A7) into Eq. (A5) and integrating yields

t

510(t) = 611 (1) + 2iq /

—00

at (k: - qA(t'>) [fk(t)fé‘(t') - fk(t')f;l‘(t)] RBAE) . (AR)

The perturbation of the renormalized current (2.21) yields

Stiahen =1 [

o0

n [(k: _ qA<t>) [fk(t)5f$(t) " 5fk(t)f£?(t)] a0 PAM) + qufaAu)]

h (49
Substituting Eq. (A8) and its complex conjugate into Eq. (A9) yields
oo 2
gl =2 [~ ar { (k= 0a) | 0057 @ + O8] - |18 - 325040}

_4;12 /Z dk /; dt’ <k - qA(t)) (k - qA(t’)>Im{fk(t)Qf;(t’)Q}éA(t') (A10)

Our goal is to show that the above linear response equation can be written in terms of the
two-point correlation function for the current, ([Jg(t,z), Jo(t',2)]). To accomplish this we next
calculate the two-point correlation function using the symmetrized current density (2.18) and the
scalar field mode expansion (2.9) evaluated in the vacuum state. After integrating over the spatial

coordinate one finds

o] ;2 o
[ttt ot ) = HE [ (k- gaw) (k- oa) i 02 s
o T Joo
(A11)
Comparing Egs. (A10) and (A11), it is clear that Eq. (A10) can be written in the form

S(Jalen =2 [

—0o0

m2

ik [ (= o)) [0 + Fe88L )| = 1RO = 532500400

w3

o0
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+z‘/oo da?’/ dt' ([Jo(t,x), Jo(t',2")])6A(t') . (Al2)

Thus 6 <JQ>ren for a scalar field has been cast in terms of the current-current two-point correlation
function. Note that § f,f (t) corresponds to a change of state of the quantum field. For the cases
considered in this paper the vector potential and its first time derivative are zero initially so the
perturbations do not cause a change in the state of the field so dfZ(t) = 0. Then the linear

response equation (4.1) becomes

d? d
Z_SA(t) = —
A

2 oo
q
E(t) = — —0A
ZOB(t) = 8Jc — L6 (t)/

T 9.3
—o 2w

m2
i 15 - 5]
+z/i dx’ /OO dt' ([Jg(t,z), Jo(t',z")])6 At')
(A13)

2. Spin—% field

The mode equation for a massive charged spin 3 field can be obtained by substituting Eq. (2.13)
into Eq. (2.12) with the result

[z’ VO + iy 0 + gy A(L) — m] ug(t,x) =0 . (A14)

If one perturbs the vector potential about some solution to the semiclassical backreaction equation
A(t) such that A(t) — A(t) +0A(t) and writes for the mode function ux(t, x) — uk(t, x) + dug(t, x)

then to leading order
[i VO + iy O + gy A(L) — m] oug(t,x) = —qy ur(t,x)0A(t) . (A15)
For a massive spin—% field the retarded Green’s function
Grlt,zit,a') = i0(t — ) {v(t,2), D(t"2)}) (A16)
is a solution to the inhomogeneous equation
iy O + iy 0x + gy A(t) —m} Gr(t,z;t' 2"y = -16(t —t)d(x —2') (A17)
where 1 is the identity matrix. Thus the solution to Eq. (A15) can be written in the form

Sug(t, ©) = dul (t, x) —|—q/ dt’/ dr’' Gr(t,z:t, 2') " SAME ) u(t', 2') (A18)
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where H represents the homogeneous solution. The explicit form of Gg(z, :17,) can be found using
Eq. (A16) with the Dirac field expansion (2.13) in terms of spinor solutions (2.14) evaluated in the

vacuum state, which yields

—hi @R () + R ORLE) R0 () + R (OR(E)

Gr(t,z;t',2") = -t) /dk ¢ik(a—z)
27
hel Oh() + b (O () =hif (R () + hi*(0)hi! (F)
(A19)

Restricting attention to spatially homogeneous perturbations and using Eq. (2.14) gives

ik 5% (t)
V2T | —onf! (1)

du(t,x) = (A20)

Changing the integration variable to k" in (A19), substituting the result along with (A14) and

(A20) into (A18), and integrating first over ' and then over k" gives

sy 1 [ snico o [mo (IO = €7 + 20 k¢
= —iq / dt SA(t)
—Ohy! (t) —oni(t) R (1) <|h£1(t’)]2 - hg(t’)|2) + 2hl () RL (¢RI (E)

(A21)
The perturbation of the renormalized current (2.24) yields

ST = o [ [hi*(t)éhi(t)+h£<t>6h£*<t>—hif*(twhéf(t)—hif(t)dhgf*u)—qw”faA@)}
(A22)

—0o0

Equation (A21) and its complex conjugate can be substituted into Eq. (A22) to yield

[e'S) 2
O qben = g [ i |6 (6 + 0 () — T (0) 042 0) — it ) g1 1) — 00

3
oo w

4q2
T

"k / t dt’lm{hf(t)h”(t)hf*(t’)h”*(t’)}M(t’)
(A23)

As in the scalar field case, an explicit expression for the two-point correlation function is needed.
To calculate the two-point correlation function we begin by utilizing the antisymmetrized current
density (2.23) with the fermion field mode expansion (2.13) evaluated in the vacuum state. Inte-

grating over the spatial coordinate gives

oo ; 2 [e%e] , ,
/ dx’([JQ(t,x),JQ(t',x’)}):4q/ dklm{h,ﬁ(t)hgf(t)hg*(t)hgf*(t)} . (A24)

—o00 m —00
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Comparing Eqgs. (A23) and (A24), it is clear that Eq. (A23) can be written in the form

5(JQ)ren = 5= / dk [hé*(t) Ohy " (t) + hig(t) SR (1) — i (8) ohy " (1) — h (8) oy (1)

—0o0

m2 (o) , t , ,
—qéA(t)}~|—i /_ do /_ dt ([Jo(t,z), Jo(t', 2V} SA(E) . (A25)

w3

Thus §(JQ)ren for spin—% particle production has been cast in terms of the current-current two-point

correlation function. Note that 5h,(:’H)H(t) corresponds to a change of state of the quantum field.
As mentioned above, for the cases considered in this paper the vector potential and its first time
derivative are zero initially so the perturbations do not cause a change in the state of the field so

5h,(€I’H)H(t) = 0. Then the linear response equation (4.1) becomes

d? d >m?
—0A(t) = ——0E(t) = —
2 SA(t) 7 0E(t) =dJc 5

SA(t) /_ b %H’ /_ " /_ dt ([Tt ), Jo(t'2'))) SA(E)

™
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