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rapid sky localization and inference of astrophysical sources. NNETFIX/is a ma-
chine learning, artificial neural network-based algorithm designed to estimate the
data containing a transient gravitational-wave signal with an overlapping glitch.as
though the glitch was absent. The sky localization calculated from the denoised
data may be significantly more accurate than the sky localization obtained’ from
the original data or by removing the portion of the data impaeted by the glitch.
We test NNETFIX in simulated scenarios of binary black helejcoalescence signals
and discuss the potential for its use in future low-latency LIGO-Virgo-KAGRA
searches. In the majority of cases for signals with a high signal-tosnoise ratio, we
find that the overlap of the sky maps obtained with/the deneised data and the
original data is better than the overlap of the sky mapssobtained with the original
data and the data with the glitch removed.
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1. Introduction

The field of gravitational-wave (GW) astronomy began with the first direct deteetion
of a GW signal from a binary black hole (BBH) merger [1| on September 141, 2015,
Nine additional BBH mergers were detected with high confidence during the first
and second LIGO [2] and Virgo [3] observation runs (Ol and O2), [1].“Buring the
first half of the third LIGO-Virgo observation run (O3a), 39 binary merger events
were detected with high confidence [5], including two exceptionaliBBH events [0
and a possible neutron star and black hole (NSBH) merger(|9].

On August 17", 2017, the first detection of a GW signal from a binary neutron
star (BNS) merger, GW170817, expanded multi-messenger astronomy to include GW
observations [10]. A short gamma-ray burst (GRB) was detected approximately
1.7 seconds after the BNS merger time [l 1]. Theusky map calculated from the
GW signal allowed the identification of the evént with an electromagnetic (EM)
counterpart [10, [1]. The association of this. GW event with the observed EM
transients supports the long-hypothesized modelithat at least some short GRBs
are due to BNS coalescences [12]| and has provided many insights into fundamental
astrophysics and cosmology. In April 20205.a second BNS merger without an EM
counterpart was detected [13].

In order to detect GW “signals;’ ground-based GW detectors must be
extremely sensitive, causing them to'hecome highly susceptible to instrumental and
environmental noise [4|. Inparticular, transient noise bursts, or glitches, may impair
the quality of detector data. yThe presence of a glitch in the proximity of a GW
signal can adversely affect/the analysis of the latter, including calculating the sky
localization of the source. “The anost notable example of such an occurrence was
GW170817, where the effect\of a glitch was mitigated in low-latency by removing
the contaminated pertion ofithe data and in follow-up studies by applying ad hoc
mitigation algorithms [10, [1].

Eleven confident detections out of the 50 observed in O1, O2 and O3a required
some form ofpad hoc analysis to mitigate the effect of glitches on the estimation of
candidate event parameters [4,5]. Given a single-detector glitch rate of 0.007 Hz
with signal-to-noise ratio (SNR) larger than 7.5 [15] and a percentage of observing
time with two detectors operating in coincidence of ~ 80% in O3a [5], the probability
of a glitch overlapping a signal in one detector is over 1% for a signal duration of
a fewnseconds (typical of a BBH event) and may be up to ~ 30% for a BNS event
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with a typical duration of a minute or more. Given the expected detection’rate of
astrophysical signals in the planned fourth LIGO-Virgo-KAGRA run (O4)/and later
runs, and the increased sensitivity in the detectors likely leading to am. increased
glitch rate, we expect a significant number of detections to overlap with glitches.

One possibility to mitigate the effect of a contaminating gliteh, would’ be to
discard the data from the affected detector. This is the simplest and fastest-solution;
however, it is also likely to impact the analysis and sky localization, especially in
cases where data is only available from two detectors. Another techmique that can
be used in low-latency is gating, which removes the data affected by the glitch. One
method of gating is to set the data affected by the gliteh to zere using a window
function to smoothly transition into and out of the gate [16}sGating was used in
the case of GW170817 to produce the low-latency sky localization for EM follow-up
observations [17]. On larger latencies, glitch mitigation techniques such as using
BayesWave | 18] to model and subtract the glitch can be used [17,19,20].

Figure 1 shows an example of the detrimental effect’gating data can have on the
sky localization error region of a simulated BBH merger signal. The sky localization
obtained with the gated data significantly. differsifrom the sky localization estimated
from the full data. Also, the 90% sky\localization error region after the gating is
applied no longer includes the true sky pesition of the injected signal.

The higher detector sensitivity of LIGO and Virgo in their third observing
run has led to an increased numberwof .GW candidate detections from different
astrophysical populations'[6, 9, [3]. Future observation runs with higher sensitivity
are expected to produce even greater detection rates, which would lead to higher
chances of observing GW. signals contaminated by glitches. The inability to
accurately estimate thessky localization of GW candidates with potential EM
counterparts due to [glitches contaminating the signal could put at risk new
astrophysical disceveriesisuch as those made with GW170817. Thus, the development
and implementation of accurate low-latency denoising methods could be highly
beneficial to malti-messenger observations.

In recent years, machine learning algorithms have been in development to
classify deteetor noise and reduce its effect on GW signals [21]. In particular, there
have been many efforts in applying different techniques involving neural networks.
GravitySpyuses citizen science to provide a data set used to train convolutional
neural network (CNN) based deep learning image classifiers to identify and classify
noise transients [15]. Other efforts include development of an algorithm based on
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Figure 1. Left: Whitened time fserieshof a’simulated BBH signal with two-
detector network SNR py =(42.4 and gompenent masses (my, ms) = (35,29) My
in advanced LIGO (aLIGO) recolored Gaussian noise (red curve). A 130 ms gate is
applied 30 ms before the geocentrichmerger time (gray curve). The vertical black-
dashed line denotes the mergeritime in LIGO-Hanford (H1). Right: The 90% sky
localization error regions fromythe full data (gray area) and the gated data (red
empty contours). The star indicates the true sky position of the simulated signal.

a total variational method for noise reduction assisted by the use of an artificial
neural network (ANN) [22], Deep@lean, a long short-term memory neural network
that has many layers and uses.withess channels for noise subtraction [23], and work
done to denoise GW data using CNNs [24]. There has also been research into using
ANNSs to quickly caleulate the sky localization of candidate signals using the raw and
processed strain data.from GW detectors [25]. A thorough overview of this subject
is presented in Refs [2T].

In this paper, we present a machine learning-based algorithm to denoise transient
GW signals calleddl NNETFIX (“A Neural NETwork to ‘FIX’ GW signals coincident
with short-duration glit¢hes in detector data”). The output from NNETFIX can be
used as input te other algorithms such as BAYESTAR [26] to produce sky maps or
LALInference [27] or Bilby [28] to perform parameter estimation. NNETFIX uses
ANNSs, to estimate the portion of a signal which is lost due to the presence of an



OO b WN =

O

AUTHOR SUBMITTED MANUSCRIPT - MLST-100315.R1

NNETFIX 6

overlapping glitch. We train the ANN to reconstruct the portion of a gated signalion
a template bank of BBH waveforms injected into simulated noise data. The aecuracy
of the algorithm is assessed by comparing the recovered waveform, SNR, and sky map
from the processed data to the corresponding quantities obtained before gatings We
derive a set of statistical metrics to assess the improvement in these quantities.

2. Algorithm implementation, training and testing

We consider a scenario in which a transient BBH GW signallis observed by a network
of at least two detectors and the data of one detector is.partially/ gated to remove
an overlapping glitch identified by software such as Omicren (29] or iDQ [30, 31].
Without loss of generality, we perform the analysis forythe two LIGO detectors,
LIGO-Hanford (H1) and LIGO-Livingston (L1), /with the gating applied to data
from the H1 detector. We assume the merger time at the geometric center of Farth
(or geocentric merger time) to be (approximately) known from L1 data. We denote
with s;(t), s,(t) and s,(t) the full time series without.the glitch, the gated time series,
and the NNETFIX reconstructed time series, respectively. The output of NNETFIX
can be thought of as the map

Selt)u=F [s4(0)] - (1)
We train an ANN regression algorithm te construct the map F such that s, (t) ~
s¢(t). The NNETFIX implementation /uses the SCIKIT-LEARN [32] Multi-Layered

Perceptron (MLP) Regressor,na type of ANN in which the artifical neurons
(mathematical functions) are arramged into layers and connected to every neuron
in the preceding and/orgsucceeding layers [33]. Each neuron calculates a weighted
linear combination of the’outputs from the preceding layer and applies an activation
function that intreducesia-non-linearity into the neuron’s output. The ANN trained
by NNETFIX consistsef one hidden layer containing 200 neurons. This configuration
is similar to the one employed in Ref. [22| based on a single hidden layer with 40
neurons. Multi-layer configurations have been used by other denoising algorithms,
such as DeepClean]?3] and the CNN-based algorithm in Ref. [24]. In the ANN
training process, NNETFIX uses the rectified linear unit (ReL U) activation function
[34, 35)sandithe’A DAM stochastic gradient-based optimizer [36] with a learning rate
of 1073, Ten percent of the training data samples are set aside and used for validating
the training. The training iteration stops if the ANN performance plateaus with a
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tolerance level of 107 to avoid overtraining. To reconstruct the gated portioft of the
time series, one hidden layer works better than multiple hidden layers for the loss
function of mean square error and the number of hidden layers tested.»The valies
from the loss function have a weak dependency on the number of neutons.

To train the algorithm, we first build template banks of simulated,non-spinning
IMRPHENOMD BBH merger waveforms [37] with varying intrinsic andyextrinsic
parameters. To reduce the potential for overtraining, each template bank also
includes a number of (pure) noise time series. We distributeghé positions of
the injected signals isotropically in the sky. The waveformi eoalescence phase,
polarization angle, and cosine of the inclination angle are amiformly distributed in the
intervals [0, 27|, [0, 7], and [—1, 1], respectively. We uniformly distribute the network
SNR pn [L6] of the simulated signals in the range [11:3342.4]. We consider three
distinct template banks corresponding to low, medium, and high BBH component
masses to assess the prediction accuracy of the trained ANNs for different signal
lengths. The BBH component masses are uniformly sampled according to a Jeffreys
prior for the matched-filter detection statistie, Asthe mass of the system decreases,
we employ a higher number of templates to preperly cover the mass parameter
space [38—41].

For each of the three distinct.template banks, we build 12 training+testing (TT)
sets: first, we inject each waveform,into 50 distinct realizations of recolored Gaussian
noise for advanced LIGO (aLIGO) at design sensitivity; second, we include the (pure)
noise time series; third, we,shuffle and/split the set by 70%-30% for training and
testing, with 10% of the training set used for internal validation; and finally, we
apply the 12 combinations of gate durations t; = (50, 75, 130) ms and gate end-
times before the geocentric merger time ¢, = (15, 30, 90, 170) ms. The time series
are sampled at 4096 Hz, whitened, and high-passed. A conservative value of 25 Hz is
used for the high*pass filter.«The gates are implemented as a reversed Tukey window
with a taper of 0.1 s'and held fixed with respect to geocentric merger time; however,
the merger timé seen.in the H1 detector naturally shifts due to the sky position and
the polarization angle of the GW signal. Table 1 shows the range of the component
masses, thesnumber:of waveforms, the number of noise series, and the dimension of
the sets forthe different scenarios.

We, testyothe effectiveness of the ANNs by calculating the coefficient of
determination for the MLP Regressor in SCIKIT-LEARN on the testing sets [32]. The
coeflicient Of determination ranges from —oo (bad) to 1 (perfect estimation), with
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my M) me | M) N Ny, Set dimension
(nsex 50 + 1)
Low 10-15 8-12 348 1900 19300
Medium 15-25 12-18 251 1350 13900
High 28-42 23-35 61 300 3380

Table 1. Component mass ranges, number of waveforms,(n), number of pure
noise series (n,,), and dimension of the TT sets for eachitef the three scenarios and
combinations of gate durations and end-times.

positive values corresponding to some degree of accuragy. We evaluate the coefficient
of determination on each testing set after training the ANN on the corresponding
training set. The ranges of the coefficient of determination for the testing sets are
[0.773, 0.882], [0.750, 0.883], and [0.691, 0.879] for the low-mass, medium-mass, and
high-mass scenarios, respectively, and the means,are 0.833, 0.827, and 0.814.

We test for potential statistical effécts inithe training method by considering the
medium-mass scenario with a gate duration of 50/ms and a gate end-time of 30 ms
as a representative case. For 100 trials, we find that the coefficient of determination
ranges from 0.800 to 0.826 withasmean of 0.815, which is consistent with the ranges
of the testing sets.

The effect of NNETFIX on quantities such as SNR and sky localization varies
for different component masses, network SNR, and gate settings. Therefore, we
construct 108 additional independent ezploration sets with fixed network SNR
pn = (11.3, 28.3, 42.4) and component masses of (12, 10), (20, 15), (35, 29) M,
and identical combinations of gate durations and end-times as the TT sets. Each
exploration set consists of 512jindependent time series with the remaining parameters
distributed as in the TT sets.

3. Performance inithe time-domain

NNETFIX’s. performance in estimating the full time series can be assessed by
computing the amount of SNR lost in the reconstruction process. We define the

fractional residual SNR, (FRS)

FRS = P/ —Pr 7 (2)
Pr

Page 8 of 28
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where ps and p, are the (single interferometer) peak SNR of the full time sefies and
the reconstructed time series in H1, respectively. Positive values of FRS3 elose to
zero generally indicate accurate time series reconstructions. However, FRS ~ 0 may
also occur when the gating does not significantly reduce the peak SNR of the full
series, and thus, p; ~ p, ~ p,. These cases can be separated by thefractional SNR
gain (FSG)

FSG =2 Po (3)

Pg

where p, is the peak SNR of the gated series. FSG characterizes the amount of
SNR gained by the reconstructed time series in comparisen to the gated time series.
Typically, NNETFIX performance is better for smaller values of FRS and larger
values of FSG.

Median values of FRS across the exploration sets range from FRS = —0.09 (high-
mass case with py = 11.3, t; = 170 ms and ¢, = 50ms) to FRS = 0.22 (medium-mass
case with py = 28.3, t; = 15 ms and ¢, = 130ams). Sets’with smaller gate durations
are generally characterized by lower FRS values.| Albexploration sets with t; = 50 ms
have FRS < 0.1. The fraction of sets‘with FRS'below this threshold reduces to 0.78
and 0.55 for gate durations of 75 ms and 130wus, respectively. Similarly, exploration
sets with gates that are farther away from the time of the merger also tend to have
a lower median value of FRS. “Allisets with gate end-times at 170 ms before merger
have median FRS < 0.07 while only 8%, 55% and 11% of the samples with ¢, = 90,
30 and 15 ms have FRS below this threshold, respectively. The effects of the network
SNR and component masses-omFRS are less significant. About 83% of the sets with
pn = 11.3 have median FRS < 0.1 compared to 75% for the sets with py = 28.3
and py = 42.4. The percentages-of low-mass, medium-mass and high-mass sets with
FRS < 0.1 are comparable atiabout 78%, 75% and 81%, respectively.

Median values of FSG range from ~ 0.02 (low-mass, low-SNR case with t; = 170
ms and t. = 50 ms)uto ~ 0.89 (high-mass, low-SNR case with ¢; = 130 ms and
te = 15 ms). High=mass (low-mass) exploration sets are typically characterized by
higher (lower)walues of FSG. All high-mass sets have FSG > 0.08, while all low-mass
sets have ESG <"0:07. The network SNR does not seem to significantly affect the
value of FSG. Gate end-times closer to the merger time tend to result in higher FSG.
The value'of ESG at t. = 30 ms is higher than the value at ¢, = 170 ms by a factor
of ~[2 on average for fixed component masses, network SNR, and gate duration. In
contrast, longer gate durations tend to result in higher FSG. The value of FSG at
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tq = 130 ms is higher than the value at ¢t; = 50 ms by a factor of ~ 2 on avetrage for
fixed component masses, network SNR, and gate end-time. Two thirds of the sets
with t; = 130 ms have FSG > 0.08 compared to only 42% of the sets with ¢t; =50
ms.

We find that a combined threshold of FRS > 0 and FSG/>, 0.01 selects
approximately 70% of the samples across all the exploration sets795% ofithese are
successfully reconstructed as defined in the rest of this section.| Figure 2 shows the
NNETFIX data reconstruction for the time series of Fig. 1. As shown'in Fig. 3, the
reconstructed time series recovers a large signal energy in the gated portion. In this

case, FRS = 0.05 and FSG = 0.53.

I|'l

MI \.Li | h'
Tl

&
|

Whitened time series

—150 A

70‘I175 70}150 70‘125 7&‘100 70‘075 7&‘050 70‘025 00‘00 04(;25
Time.from the geocentric merger time [s]

Figure 2. The whitened full time series (gray), the gated time series (red) and
the reconstructed time series (blue) for the simulated event of Fig. 1. The vertical
black-dashed dine denotes the merger time in H1.

A complementary metric to evaluate the performance of the algorithm is the
fractionalmatch gain (EMG)

M, — M,

FMG = ——=
Mf—Mg7

(4)

Page 10 of 28
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Figure 3. Time frequency representations of the full (left), gated (middle), and
reconstructed (right) time series for the simulated event of Fig. 2 using the Q
transform [42]. The vertical red-dashed line defotes the gate and the vertical
white-dotted line denotes the merger time in H1.

where the match M; between a time series s; and the injected waveform h is [13]

{silh)
M, = —A 5
v/ (silsay (1) o)

The inner product of two time series s; and.s; is defined as

I — DN
T

where the tilde indicategythe Fourier jtransform, the star denotes the complex

df (6)

conjugate, S(f) is the detectormoise power spectral density (PSD), f is the high-pass
frequency, and fy is the Nyquist frequency.

In Eq. (4), we assume Mp—4A/, > 0. In rare instances (0.5% of all exploration
set data samples), M, becomes larger than M. This occurs for small values of the
single interferometer peak SNR (median value of 4.6) when the gated portion of the
data is dominated by noise and anti-correlates with the injected waveform. In the
following, we remove these data samples from the exploration sets.

FMG asgesses how well the NNETFIX reconstructed data matches the signal
in comparison tonthe full data and gated data. Positive (negative) values of
FMG correspond to My greater (smaller) than A, indicating that the NNETFIX
reconstructed time series has a better (worse) match with the injected waveform
than/the gated time series. Values of FMG larger than 1 indicate that the ANN
overfits the'data, i.e., the reconstructed time series is more similar to the injected
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waveform than the full time series. Therefore, we consider the reconstructions with
0 < FMG <1 to be successful. As noted earlier, 95% of the samples.which pass the
combined threshold of FRS > 0 and FSG > 0.01 satisfy this conditions, Figures 4
and 5 show the distributions of FMG for two exploration sets from thefimedium-mass
scenario. Figure 6 displays the comparison of these distributions.

1.24 1.0
+
1.1+ 0.8
* \
1.0
= L r06
= o @
t 0.9 7 =
E ° - 0.4 -
0.8 1
0.2
0.7 1
0.6 0.0

0.65 070 075 5080 085 090

Mg/Mf

Figure 4. [Scatterplot of M,/My vs. M,/M; for the exploration set with
pn = 424, (mi,me) = (20,15) Mg, tg = 130 ms and t. = 30 ms. The circles
denote samples/with 0,<, FMG < 1, the x markers denote samples with FMG
< 0 and the 4+ 'markers/denote overfitted samples with FMG > 1. The gray area
denotes the.region of'the parameter space with 0 < FMG < 1, which contains
95% of the reconstructed time series. Two outliers with values FMG= —0.4 and
FMG=, 1.6/are not shown in the plot in order to improve readability.

We quantify,, NNETFIX’s performance by estimating the reconstruction
efficiency, which we define as the fraction of successfully reconstructed samples, i.e.,
samples with' 0 <oFMG < 1. The fractions of samples with FMG <0, 0 < FMG <1
and FMG >'1 for alllexploration sets are given in Tables 2-4. The efficiency across
all exploration sets varies from approximately 0.31 to over 0.95. There is a mild
dependence on the component masses of the system; the median value of the efficiency
decreases from 0.77 for the low-mass scenario to 0.61 for the high-mass scenario when

Page 12 of 28
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1.4

1.2+ .

M, | My
FMC

0.6 o

0.44

x

0.2 T T T T T 0.0
0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 5. Scatterplot of ,M, /My vs."Mg/M; for the exploration set with
pn = 11.3, (m1,m2) = (20,13) Mg, tg = 130 ms and t. = 30 ms. The circles
denote samples with 0 < FMG <« 1, the x markers denote samples with FMG
< 0 and the 4+ markers denote, overfitted samples with FMG > 1. The gray area
denotes the region ofsthe parameter space with 0 < FMG < 1, which contains 59%
of the reconstructed time series.

all other parameters (network SNR, gate duration and gate end-time) are held fixed.
The worst case is the meditmsmass scenario with py = 11.3, t. = 170 ms, and
tq = 130 ms, in which 68%'ef the samples are unsuccessfully reconstructed.

Within each mass seenario'when the gate duration and gate end-time are held
fixed, NNETFIX’s efficiency typically improves by a factor ~ 1.5-2 as the network
SNR increases. As the'SNR becomes higher, the algorithm can rely on a larger
amount of signal energy béfore and after the gated portion of the data to reconstruct
the time series/ NNETFIX successfully reconstructs over two thirds of the time series
with py = 283 er larger for all low-mass and medium-mass exploration sets and over
half of thetime series for the high-mass sets with the exception of two marginal cases
with gate duration t; = 75 ms and gate end-time t. = 90 ms. The exploration sets
with pgp =118 exhibit lower efficiencies, ranging from 31% for the high-mass set
with! t; = 75 ms and ¢, = 90 ms to 66% for the low-mass set with ¢; = 130 ms and



OO b WN =

O

AUTHOR SUBMITTED MANUSCRIPT - MLST-100315.R1

NNETFIX 14

0.10 1

0.08 1

0.06 1

0.04 1

Fraction of counts

0.02 1

0.00 T T T 1 } T
—2.0 -1.5 -1.0 —0.5 0.0 0.5

FMG

L R e e e e e e e e e e e ——————————

1.5 2.0

—

Figure 6. Distribution of FMG for the exploration sets with component masses
(m1, ma) = (20,15) Mg, gate duration t,/= 130 ms, gate end-time ¢, = 30 ms,
and py = 11.3 (gray-filled) and pp.= 42:4 (red). The vertical dashed lines denote
FMG= 0 and FMG= 1. The eflicieney’ of the set with py = 11.3 is 59%. The
efficiency of the set with.pn = 42.3 is/95%.

t. = 15 ms.

Figure 7 shows the efficiency for the exploration sets with component masses
(mqy,mg) = (20,15)M, asja funetion of the single interferometer peak SNR. The
percentage of successful reconstructions ranges from ~ 33%-66% at low peak SNR
to 2 80% at high peak SNR, with the lowest values < 40% occurring for the sets
with t; > 75 ms and'tg > 30 ms. Time series with peak SNR above ~ 20 show
successful reconstruetionsin 70% or more of the cases, irrespective of gate duration
and end-time.

Changing | the gate duration does not seem to have a significant effect on
NNETFIX’s ‘efficiency, which only varies slightly at fixed network SNR and gate
end-time across all'exploration sets. Similarly, for fixed gate duration and network
SNR, the gate end-time before merger time also has a marginal effect, although
NNETFIX tends to produce better reconstructions when the gate is closer to the
merger time, especially for long gate durations in the low-mass and medium-mass
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Figure 7. Efficiency as a function'of the single interferometer peak SNR for the
scenario with component masses (m1,ms) = (20,15) Mg. Each line corresponds
to a different gate durationjandigate end-time combination. The top (middle,
bottom) panel shows the efficiency for#y; = 50 (75, 130) ms. Green circle (blue
cross, black square, red,star) markers/denote gate end-times t. = 15 (30, 90, 170)
ms. The efficiency/is ealculated for the samples within a bin of width 5 centered
on each point.

scenarios.

In conclusion, we find 'that NNETFIX may successfully reconstruct gated data
of durations up to a few hundreds of milliseconds and as close as a few tens
of milliseconds before the merger time for a majority of time series with single
interferometer peak SNRygreater than 20.

4. Performance of sky maps

The NNETFEIX reeonstructed time series can be used to produce sky maps that
are expected to have hetter sky localization error regions of the astrophysical signal
in comparisen.to sky maps produced from the gated time series. We evaluate this
improvement by comparing the overlaps of the sky map derived from the full time
series with/the sky maps derived from the gated time series and the reconstructed
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time series. In the following, we generate the sky maps with a modified version of

a pyCBC [43] script, PYCBC_MAKE_SKYMAP, in which the data can be manually
gated.
Similar to Ref. [44], we define the overlap of two sky maps (1,2) as
dm /pl(Q)pz(Q) d
01,2 = 5 (7)

/ p1(Q)d / () A

where p;(£2) and py(€2) are the sky localization probability densities of the sky maps
in units of inverse square radians and the integrals are overithe solid angle 2. The
discretized version of Eq. (7) is

N
O12=N)>_ PPy, 8)
i=1
where Pj; and P»; each denote the sky localization'probability of the i-th pixel of
the corresponding sky map, and N is the total mimber of pixels. Each sky map is
normalized such that the sum of the pixel values over the entire map is 1. Equation
(8) gives values in the range (044V).. Higher values of O, indicate a better overlap
between the two maps while lowerwalues denote worse overlaps and/or maps which
tend to have less-localized error regionsnFor example, two overlapping sky maps each
with a uniform probabilitydistribution’ would have O; 5 = 1, while two sky maps
with their entire probability” distributions confined to the same single pixel would
have O = N.
A suitable metric torevaluate the improvement in the sky localization of a signal
due to NNETFIX’s reconstruction is the overlap log ratio (OLR)

OLR = log,,, g“f , (9)
9.f

where O,  (Qy,p) denote the overlaps of the sky maps obtained with the reconstructed
(gated) timesseriesyand the full series. Positive (negative) values of OLR indicate
that the sky map from the reconstructed time series has a larger (smaller) overlap
with the skyymap from the full time series than the latter has with the sky map from
the gated time series. Tables 5-7 give the fraction of samples with positive OLR for
all exploration sets.
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High values of OLR are obtained when the overlap of the reconstructed sky
map with the sky map from the full time series is large or when the overlap, of the
gated sky map with the sky map from the full time series is small. /The former
typically occurs for reconstructed time series with large values of FMG. The latter
may happen when the loss of signal due to the gate is high and even small gains in
the single interferometer peak SNR have a significant impact on thesky loealization.

An example of the OLR distribution as a function of O, ¢ is shown in Fig. 8
for the exploration set with py = 42.4, component masses (mq, may= (20, 15) M,
t, = 130 ms and ¢, = 30 ms. The median value of OLR is 1,143, where the error
is a 1-0 percentile. OLR is positive in 87% of the samples. Median values of OLR
for all exploration sets are given in Tables 8-10.

1.0
3 ] I
- 0.8
2 -
° 0.6
= =
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®
OT==""7~"""""""" 0.2
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Figure 8. Scatterplot of OLR and Oy ¢ for the 512 samples from the exploration
setewith pyn= 42.4, component masses (mq,mq) = (20,15) Mg, gate end-time
te = 30'ms and gate duration t; = 130 ms. The colored circles denote samples with
0 < FMG < 1, the x markers denote samples with FMG < 0 and the 4+ markers
denoteoverfitted samples with FMG > 1. 87% of the samples have positive OLR.
Thie median value is OLR= 1.147115, where the error is a 1-o percentile.

Valuesof OLR across the exploration sets generally increase with network SNR,
component/masses and gate duration. The network SNR of the signal is the main
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factor that determines the value of OLR. Because NNETFIX efficiently reconstruets
time series containing signals with large SNRs, when network SNRs are large, the
sky maps obtained from the full data are typically more similar to the, sky maps
from the reconstructed data than to the sky maps from the gated data. We-find
positive OLR median values for all exploration sets with py > 28.3, itrespective of
mass, gate duration and end-time. For these sets, the median ~@lues of 'OLR for
the high-SNR sets are greater than the corresponding values for the medium-SNR
sets by a factor ranging from ~ 1.4 for the high-mass scenario with' 7, = 130 ms
and t. = 15 ms to ~ 5 for the low-mass scenario with ¢;/,.=<75 ms and t. = 170
ms. The sky maps of reconstructed time series with lower,SNR.generally show little
improvement compared with the sky maps of gated time series. Median values of
OLR for the sets with py = 11.3 are typically around zero, irrespective of the mass
scenario, gate duration and gate end-time.

The second most important factor that determines OLR are the component
masses. Median OLR values typically increasepas values of the component masses
become larger. For the exploration sets with py =¢28.3 (42.4), the median values
of OLR for the high-mass exploration sets are greater than the corresponding values
for the low-mass exploration sets by a factermranging from ~ 1.5 (2.3) for t; = 130
ms and ¢, = 90 ms (g = 130 ms.and ¢, = 15 ms) to ~ 20.5 (12.6) for t; = 50 ms
and ¢, = 15 ms (t; = 50 ms and ta= 30 ms).

Median values of OLR have a roughly linear dependency on gate duration. For
the high-SNR and medium-SNR exploration sets, the median values of OLR for
tqy = 130 ms are larger than the corresponding values for t; = 50 ms by a factor
ranging from ~ 1.6 (medium-mass scenario with py = 42.4 and ¢, = 15 ms) to ~ 4.7
(high-mass scenario withepn =28.3 and ¢, = 90 ms). Since longer gate durations
correspond to greater sighal losses, NNETFIX’s reconstruction provides larger SNR
gains and OLR values asithe gate duration increases.

The portion of a signal close to the merger time has a greater impact on the sky
map than the portion of the signal in the early inspiral phase. Therefore, median
values of OLR for the medium-SNR and high-SNR exploration sets with ¢, = 15 ms
are typicallyshighersthan the corresponding values for the sets with ¢, = 170 ms by
a factor rapging from ~ 1.1 (low-mass scenario with py = 28.3 and ¢ty = 90 ms)
to ~ 7ol (highsimass scenario with py = 28.3 and ¢4 = 50 ms). For shorter signals
and larger gate durations, a gate end-time very close to the merger time may lead to
large signal losses and removal of the merger portion of the signal in H1, and thus,
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make the reconstruction process less efficient. Figure 9 shows OLR as a function
of the gate end-time for the high-mass sets with £; = 130 ms and different network
SNRs. Figure 10 shows the sky localization error region that is obtained with the
NNETFIX reconstructed data for the case of Fig. 1. The value of OLR iswer 1.7,
corresponding to improving the overlap by a factor of ~ 50.

160 M0 _ 120 W00 S0 60 40 20
L [mis|

Figure 9. OLR as a function of the gate end-time . for the exploration set
with component masses (m1, ma) = (35,29) Mg, gate duration t; = 130 ms, and
different network SNRs py = 11.3 (cyan solid), py = 28.3 (red dashed), and
pn = 42.4 (blueidashed). The curves denote median values. Shaded areas are 1-o
percentiles,

In summary,\for a majority of the cases with gate durations up to a few hundreds
of milliseconds and ag.close as a few tens of milliseconds to the merger time, the sky
maps of reconstructed time series with network SNR py > 28.3 better overlap with
the sky maps of the full time series compared to the sky maps obtained with gated
data (in some cases’by a factor up to over 1000%). In these cases, it can also be
shown that the true diréection of the signals typically belong to sky localization error
regions.for the teconstructed data with smaller probability contour values than the
regions obtained with gated data.
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Figure 10. The 90% probability sky localization error regions obtained with the
reconstructed (dashed-blue), full (gray area) and gated (solid-red) time series for
the case of Fig. 1. The star denotes the injection location.

5. Conclusion

In this paper, we have présented NNETFIX, a new machine learning-based algorithm
designed to estimate the portion of a BBH GW signal that may be gated due to the
presence of an overlapping glitch. The reconstructed data can be used by other
algorithms to [produee better sky maps and for parameter estimation. We have
tested the aceuracy of NNETFIX with different choices of signal parameters and
gate settingsy and defined several metrics to assess the algorithm’s performance.
Among these metrics, the most important ones are FMG and OLR.

EMG quantifies the algorithm’s efficiency in reconstructing the gated data in
the time domain. Positive values of this metric indicate that the full time series
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better matches the NNETFIX reconstructed time series than the gated timeé series.
The fraction of samples that show improvement varies from approximately /one third
to over 95% across the cases that we investigated. Results show thath NNETFIX
may be able to successfully reconstruct a majority of BBH signals with peak single
interferometer SNR greater than 20 and gates with durations up to'a few hundreds
of milliseconds as close as a few tens of milliseconds before their merger time.

OLR quantifies the algorithm’s efficiency in improving the sky map from the
gated time series. Positive values of this metric indicate thatsthe sky'map from the
NNETFIX reconstructed time series has a larger overlap ‘with' the sky map from
the full time series than the one obtained from the gated data.” Sky maps from
reconstructed data improve for higher network SNR wvalues as/the ANN can use a
larger amount of signal energy to estimate the missing portion of the waveform. We
find positive OLR median values for all cases that we investigated with network SNR
above 28.3. Perhaps surprisingly, NNETFIX seems also to perform better in cases
with longer gate durations or shorter signals. Imthese seéenarios, the sky localizations
obtained with gated data are considerably degradedisThus, the improvements in the
reconstructed sky maps are more sizeable. Reconstructed sky maps of more massive
BBH mergers typically show significant improvements compared to the sky maps
obtained with gated data.

In a real case scenario, we enyision NNETFIX to be pre-trained on real noise
data from the detectors for a sparse“set of models, each covering a region of the
five-dimensional parameterispace spanned by network SNR, component masses, gate
duration, and gate end-time before geocentric merger time, as was illustrated in Sec. 2
(but with a finer grid). While the optimal value of the network SNR and the best
estimates of the signal component masses are unknown to the observer because of the
gating, the gated data amwd/or the data from the second interferometer may provide
a rough estimatepof these.parameters. The estimated values of these parameters
and the known gate parameters can then be used to choose the most appropriate
pre-trained model“in, the NNETFIX bank. Typically, the NNETFIX reconstructed
time series will produce a higher single interferometer peak SNR than the gated time
series. If that,is thecase, the known FSG can be used to estimate the optimal single
interferometer peak SNR of the (unknown) full time series by fitting the expected
roughly linear.relation between FRS and FSG for the given TT set.

The overlap of the sky map from the NNETFIX reconstructed data with the
sky map.that could be obtained with the full data (if it were not contaminated by a
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glitch), O, f, can be estimated by looking at the distribution of OLR for the/TT set
at hand. The exploration sets that we investigated show that there is a well-defined
correlation between OLR, FSG and the overlap between the sky maps obtained from
the gated data and the NNETFIX reconstructed data, O,,. If thisteorrelation is
generally valid, OLR can be estimated from the observed values of the O, , and FSG
using a fit calculated from the TT set used to train the selected NNETFIX model.
To expedite this process, the samples in each TT set could be clustered according to
the distributions of OLR, the O, 4, and FSG. A classifier could then'be trained to
estimate the optimal SNR and sky localization error region of-the'full signal.

Once NNETFIX has been trained, the CPU time required _to reconstruct the
data is of the order of a few seconds for gate durations up to hundreds of milliseconds.
This short turnout makes the algorithm suitable to be usediin low-latency. Additional
machine learning-based algorithms could also be implemented to further speed up
the sky localization portion of the process. For'example, the method described in
Ref. [25] may produce sky localizations with amexecution time on the order of 0.01
seconds, making this method an interesting.optionfor generating low-latency sky
maps. NNETFIX could also be appliedito GW,signals other than BBH mergers,
such as BNS or NSBH mergers. Therefore, iticould be beneficial for rapid follow-up
of glitch-contaminated, potentially EM-bright candidate detections. In future work,
we intend to test NNETFIX ‘on real BBH. detections and explore the algorithm’s
application to BNS signals as well as,detector network configurations with more
than two detectors. Improving the sky localizations of potentially EM-bright signals
could increase the chances of eoincident EM and GW observations and lead to a
better understanding of the physical properties of their sources.
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NNETFIX

AUTHOR SUBMITTED MANUSCRIPT - MLST-100315.R1

Network SNR 11.3 28.3 42.4
talms] 50 75 130 50 75 130 50 75 130
15 |052 053 0.56 0.62 0.71 0.74 0.76 083 087
fms 30 ||0.56 053 0.52 0.68 0.73 0.76 081 0.85 091
90 [0.55 051 053 0.60 065 0.74 0.78 0.7 0.86
170 [ 0.61 058 0.51 0.72 0.64 0.65 0.79/0:77 076
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Table 5. Fraction of samples with positive OLR for the exploration sets with
component masses (mq,msz) = (12,10)Mg.

Network SNR 11.3 28.3 42.4
tg [ms] 50 75 130 50 75 130,750 75 130
15 H0.51 0.49 0.55 0.68 0.740.79 0.84 0.85 0.84
t, [ms] 30 H 0.46 0.48 0.51 0.69 0.76 0.80 0.85 0.88 0.88
90 H0.61 0:50.,.0.47°0.74/0.75 0.65 0.86 0.85 0.79
170 H0.62 0.56%0.47 0.77 0.78 0.67 0.84 0.87 0.82

Table 6. Fraction of samples with positive OLR for the exploration sets with
component masses (g, m2) = (20, 15)M,. Entries in italic denote sets where the
fraction of samples is smaller than 0.5.

Network SNR 11.3 28.3 42.4
tq [mis] 50 75 130 50 75 130 50 75 130
15 H0.57 0.53 0.4 077 0.79 0.69 0.85 0.83 0.73
t. [mg] 30 H0.51 0.45 0.49 0.81 0.81 0.82 0.91 0.87 0.87
90 H0.65 0.63 0.46 0.84 0.80 0.75 0.93 0.89 0.87
170 H0.65 0.64 0.57 0.79 0.84 0.80 0.88 0.91 091

Table 7. Fraction of samples with positive OLR for the exploration sets with
component masses (my, ms) = (35,29) M. Entries in italic denote sets where the
fraction of samples is smaller than 0.5.
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NNETFIX 28

Network SNR 11.3 28.3 42.4

tq [ms] o0 () 130 o0 () 130 50 75 130

15 H0.0012 0.0064 0.0096 0.016 0.031 0.056 0.051 0.0860.14

te [ms] 30 H0.0044 0.0059 0.0022 0.015 0.028 0.044 0.044 0.073°0.14

90 H0.00SQ 0.0005 0.0021 0.0091 0.011 0.034 0.026 0.04 10.10

170 H0.0026 0.0037 0.0007 0.0076 0.0063 0.018 ,0.018 0.032 0.060

Table 8. Median values of OLR for the exploration sets with component masses
(ml, mz) — (12, 10)M®

Network SNR 11.3 28.3 42.4

ty [ms] o0 75 130 a0 75 130 50 75 130

15 H0.0023 -0.0007 0.016  0:054 0.087 0.17 0.16 0.24 0.32

te [ms] 30 H -0.0050 -0.0029 0.0039 20.04470.079 0.15 0.13 0.22 0.31

90 H0.0049 0.0002__-0.0054 0.025 0.046 0.050 0.074 0.13 0.25

170 H0.0047 0.0051 "%=0.0044 0.023 0.037 0.045 0.046 0.098 0.17

Table 9. Median values of OLR for the exploration sets with component masses
(m1, mg) = (20, L5)M,. Ttalic entries denote sets with negative values.

Network SNR 11.3 28.3 42.4

tq [ms] o0 ) 130 a0 75 130 50 75 130

15 H0.0QS 0.0098 -0.1400 0.33 045 0.68 0.62 0.82 0.96

to [hs] 30 H0.00SQ -0.043 -0.0099 0.25 0.42 0.72 0.56 0.83 1.1

90 H0.013 0.024 -0.015 0.088 0.21 041 024 0.48 0.82

170 H0.0IQ 0.016 0.0085 0.046 0.081 0.11 0.12 0.22 0.29

Table 10. Median values of OLR for the exploration sets with component masses
(m1, mz2) = (35,29) M. Italic entries denote sets with negative values.



