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Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting
such a signal would allow probing of the physical properties of matter under extreme conditions. A
significant fraction of the known pulsar population belongs to binary systems. Searching for unknown
neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency
modulations. We present a search for continuous gravitational waves emitted by neutron stars in
binary systems in early data from the third observing run of the Advanced LIGO and Advanced
Virgo detectors using the semicoherent, GPU-accelerated, BinarySkyHough pipeline. The search
analyzes the most sensitive frequency band of the LIGO detectors, 50 − 300 Hz. Binary orbital
parameters are split into four regions, comprising orbital periods of 3 − 45 days and projected
semimajor axes of 2 − 40 light-seconds. No detections are reported. We estimate the sensitivity
of the search using simulated continuous wave signals, achieving the most sensitive results to date
across the analyzed parameter space.

I. INTRODUCTION

Continuous gravitational waves (CWs) are a long-
lasting form of gravitational radiation. For ground-
based interferometric detectors the canonical sources
are rapidly spinning neutron stars (NSs) sustaining a
quadrupolar deformation. Several emission mechanisms
have been proposed, such as crustal deformations, r-
modes, or free precession (see [1] for a recent review).
Detecting CWs would probe the physics of such compact
objects, leading us to a better understanding of the
equation of state of matter under extreme conditions.
More exotic types of CW sources are also theorized, such
as boson clouds around spinning black holes [2].

Every CW search method assumes certain information
about the intended sources. All-sky searches, such as the
one reported in this paper, impose the least constraints
on the CW emission. The latest results obtained by
the LIGO-Virgo collaboration using Advanced LIGO [3]
and Advanced Virgo [4] data, covering targeted (known
pulsars), directed (known sky locations), and all-sky
searches, can be found in [5–10].

All-sky searches require highly efficient analysis
methods because they must account for a Doppler
modulation due to the Earth’s movement with respect
to the Solar System Barycenter (SSB), an effect that
depends on sky position. In principle, one can construct
a search pipeline using fully coherent matched filtering;
for wide parameter space searches, however, such an
approach quickly becomes computationally unaffordable
[11]. As a result, semicoherent methods are used,
splitting the data stream into smaller time segments
that can be coherently analyzed. Then, per-segment
results are combined according to the expected frequency
evolution of the template under analysis. This method
reduces the computational cost of a search while
achieving a reasonable sensitivity.

Only a small fraction of the expected population
of galactic NSs has been detected electromagnetically
[12]. Through gravitational waves we could access
these unknown populations of NSs. About half

of the NSs detected using electromagnetic means
within the most sensitive frequency band of current
ground-based detectors are part of a binary system
[13, 14]. Searches for CWs from this class of
NSs pose an additional, substantial computational
challenge compared to standard all-sky searches that
target isolated NSs because additional unknown binary
orbital parameters increase the search parameter space
dimensionality. As a result, one must use specialized
methods in order to search for this type of signal.

We present an all-sky search for CWs produced
by NSs in binary systems using the semicoherent
BinarySkyHough pipeline [13]. It builds upon SkyHough

[15], inheriting its characteristic noise robustness and
computational efficiency, and uses Graphics Processing
Units (GPUs) to speed up the core part of the
search. The concept of BinarySkyHough is to
compute search statistics over the parameter space
and to use those statistics to rank the interesting
regions for subsequent follow up using more sensitive,
computationally demanding techniques. This balance
between sensitivity and computational cost has proven
effective in previous searches of the LIGO O2 observing
run data using both the isolated SkyHough [8] and
BinarySkyHough [16] flavors of this pipeline.

In Sec. II we introduce the signal model; Sec. III
describes the early third observing run of the Advanced
LIGO and Advanced Virgo detectors; Sec. IV briefly
describes the main analysis pipeline; Sec. V introduces
the first post processing stage; and in Sec. VI we
estimate the sensitivity of this search. In Sec. VII we
further analyze the most significant outliers and rule
them out as non-astrophysical candidates. We present
our conclusions in Sec. VIII.

II. SIGNAL MODEL

A non-axisymmetric neutron star spinning about one
of its principal axes is expected to emit gravitational
waves at twice its rotation frequency f0 = 2frot with

ar
X

iv
:2

0
1
2
.1

2
1
2
8
v
2
  
[g

r-
q
c]

  
1
9
 M

ar
 2

0
2
1



2

a strain amplitude given by [17]

h(t) =h0 [F+(t;ψ, n̂)
1 + cos ι

2
cosφ(t)

+ F×(t;ψ, n̂) cos ι sinφ(t)] ,
(1)

where F+,× are the antenna patterns of the
interferometric detectors, depending on the polarization
angle ψ and the sky position n̂ of the source; h0 and
cos ι are the characteristic CW amplitude and the cosine
of the inclination of the source with respect to the line
of sight, respectively; φ(t) represents the phase of the
gravitational wave signal.

The CW amplitude h0 can be expressed in terms of
the physical properties of the source once an emission
mechanism has been assumed. The three principal
moments of inertia of a non-axisymmetric NS are given
by Ix, Iy, Iz, and the equatorial ellipticity is given by
ǫ = |Ix − Iy| /Iz, assuming the spin axis is aligned with
Iz. The gravitational wave amplitude can be expressed
as

h0 =
4π2G

c4
Izǫ

d
f20 , (2)

where d denotes the distance to the source from the
detector, f0 the gravitational wave frequency, and G and
c respectively refer to the gravitational constant and the
speed of light. We can further relate this quantity to the
mass quadrupole Q22 of the star through the equatorial
ellipticity

ǫ =

√

8π

15

Q22

Iz
. (3)

We can describe the signal phase via Taylor expansion
with respect to a fiducial starting time τ0 in the source
frame

φ(τ) = φ0 + 2π [f0 · (τ − τ0) + . . . ] , (4)

where τ is the proper source frame time and φ0 represents
the initial phase at τ0. The number of higher order terms
to include in this expansion depends on the population
of NSs under consideration. After analyzing the ATNF
pulsar catalog [14], it was argued in [13] that searching
for NSs in binary systems need not take into account
any spindown parameters when using datasets lasting for
less than a few years. As we will discuss in Sec. VIII,
this search remains sensitive to signals up to a certain
spindown value, but there is an implicit limit on the
astrophysical reach.

Because of the relative motion of the detector around
the SSB and the relative motion of the source around the
Binary System Barycenter (BSB), the phase as measured
by the detector at time t is Doppler-modulated according
to the timing relation

τ + ap sin [Ω (τ − τasc)] = t+
~r(t) · n̂
c

− d

c
, (5)

where ap represents the semi-major axis of the binary
orbit projected onto the line of sight (measured in light-
seconds), Ω represents the orbital frequency of the source,

τasc represents the time of passage through the ascending
node as measured from the source frame and ~r represents
the position of the detector in the SSB. In order to derive
this expression, we assumed circular, Keplerian orbits;
the search remains sensitive, however, to signals from
sources in binary systems up to a certain eccentricity as
discussed in Section VII A and [13].

We define a template as λ = {f0, n̂, ap,Ω, tasc}. The
parameter space (i.e. the set of all templates searched)
will be denoted as P. The orbital period is related to the
orbital angular frequency by P = 2π/Ω.

We refer the reader to [18] for a complete derivation
of Eq. (5) and a discussion about how to express Eq. (4)
in the detector frame. The gravitational wave frequency
evolution associated to a template λ as measured from
the detector frame is thus

fλ(t) = f0 ·
(

1 +
~v(t) · n̂

c
− apΩcos [Ω(t− tasc)]

)

, (6)

where ~v(t) refers to the detector velocity and tasc is akin
to τasc measured from the detector frame. We choose
the initial phase tasc to be located within the range
[

tmid − P
2
, tmid + P

2

]

, where tmid represents the mean
time between the start and the end of the run measured
in GPS seconds.

III. DATA USED

The first part of the third observing run of the
Advanced LIGO and Advanced Virgo detectors (O3a)
comprises six months of data collected from the 1st
of April 2019 at 15:00 UTC to the 1st of October
2019 at 15:00 UTC. Data was taken by the Advanced
LIGO detectors, located in Hanford (Washington,
USA, designated H1) and Livingston (Lousiana, USA,
designated L1), together with the Advanced Virgo
detector, located in Cascina (Pisa, Italy). We did
not make use of Advanced Virgo data because of
an unfavorable trade-off between computing cost and
expected sensitivity improvement of the search. The
detector duty factor (the fraction of the run when the
detector is collecting observational-quality data) was
71.2% for H1 and 75.8% for L1. The implementation
of instrumental upgrades has allowed the detectors to
improve their overall sensitivities with respect to the
previous observing run (O2) [19].

For the duration of the run, several artificial signals
were injected into both detectors in order to calibrate and
monitor their performance. Calibration lines are artificial
monochromatic signals, injected at different frequencies
in each detector to avoid coherent artifacts. They
are used to monitor time-varying detector operating
parameters. Hardware injections, on the other hand,
are artificial quasi-monochromatic signals consistently
injected into both detectors in order to mimic the
effects of an actual CW signal present in both detectors.
They are used to verify expected detector response and
characterize calibrated data [20]. Both of these artificial
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Search setup parameter Value

TSFT 1024 s
βTukey 0.5
Tobs 14832675 s
tmid 1245582821.5 s
∆f 0.125 Hz

TABLE I. Miscellaneous parameters used in the search. TSFT

denotes the time span employed to compute Short Fourier
Transforms (SFTs). βTukey refers to the tapering parameter
of the Tukey window, denoting the fractional length of the
window’s central unitary plateau. Tobs is the observing time
of the run. tmid represents the mean time between the start
and the end of the run measured in GPS seconds. ∆f refers to
the bandwidth of the individual sub-bands analyzed by each
computing job.

signals may interfere with CW searches in general,
showing up as significant candidates due to their high
strength in the detector spectrum. Spectral artifacts
in detector data can be produced by environmental or
instrumental noise and also interfere with CW searches
[21].

The search was performed using Short Fourier
Transforms (SFTs) created from the C00 (initial
calibration version) time-domain observing-quality strain
data [22]. These SFTs were extracted from SFDB
(Short Fourier Data Base) data [23], which incorporates
a time-domain cleaning procedure to avoid noise-
floor degradation due to glitches and other forms
of transient noise. Every SFT lies completely
within observing-quality data. Fourier transforms
were computed using a Tukey-windowed baseline of
TSFT = 1024 s with tapering parameter βTukey = 0.5 and
a 50% overlap. These values are collected in table I.

Following the same procedure used in the O2 SkyHough

search [8], SFT data are split into two datasets to be
used in two different stages of the search. The first
dataset, which we refer to as non-overlapping, leaves out
overlapping SFTs (i.e. every SFT starts at the end of
the previous one). The second dataset, which we refer to
as overlapping, contains all of the SFTs. Using the non-
overlapping set for the first stage of the analysis reduces
the computational cost of the search at a manageable loss
in sensitivity. Table II lists the number of SFTs in each
of the datasets. Datasets contain SFTs from both LIGO
detectors (i.e. we perform a multi-detector search [13]).

IV. THE SEARCH PIPELINE

We split the search into two main frequency bands:
the low-frequency band, from 50 Hz to 100 Hz, and the
high-frequency band, from 100 Hz to 300 Hz. These
bands are further divided into ∆f = 0.125 Hz sub-bands,
which constitute the basic working unit of our setup: each
computing job performs an all-sky search over one such
sub-band, searching for binary modulated signals within
a certain region of the binary parameter space among

Non-overlapping Overlapping

H1 10172 20577
L1 10962 22049
Total 21234 42626

TABLE II. Number of Short Fourier Transforms (SFTs) in
each of the datasets. Characteristics of these SFTs are
summarized in table I and section III.

the ones specified in Fig. 1 and Table III. Because of the
limited computing power available, the high-frequency
search focuses on a single binary parameter space region,
denoted as B in Table III; the low-frequency search is
performed in all four binary parameter space regions.

The search parameter space is gridded with templates
as described in [13]:

δf0 =
1

TSFT

, δθ =
c/v

TSFT f0 Pf

, δap =

√
6m

πTSFTf0Ω
,

δΩ =

√
72m

πTSFTf0apΩTobs

, δtasc =

√
6m

πTSFTf0apΩ2
,

(7)

where δθ refers to the angular sky position resolution,
v = |~v| and v/c ∼ 10−4. Tobs denotes the observing time
of the search, quoted in Table I. The variables Pf and m
are the so-called pixel factor and mismatch parameters,
which can be used to manually control the parameter
space template density. In this search, we tune them in
order to adjust the computing cost as we reach higher
frequencies, where template spacing naturally becomes
finer. Table IV summarizes the choices made for each of
the frequency bands.

The pipeline uses the Hough transform to relate tracks
in the digitized spectrogram, as explained below, to
points in the parameter space. For each point in the
parameter space λ ∈ P there is a corresponding track [see
Eq. (6)] of the time-frequency evolution, which denotes
the instantaneous frequency of the signal as observed by
the detector.

A. Ranking statistics

Let us assume the data can be described as a noise
background plus a CW signal

x(t;λ) = n(t) + h(t;λ) . (8)

We start by computing the normalized power of SFT data

ραk =
|x̃αk |

2

〈|ñα
k |

2〉
, (9)

where tildes represents a Fourier transformed quantity, k
indexes frequency bins, α indexes SFTs and 〈·〉 denotes
a running median average using 101 frequency bins, as
explained in [13]. Each SFT α can be related to a certain
starting time tα, effectively obtaining a spectrogram
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Result: Toplist per 0.125 Hz sub-band
Select 0.125 Hz sub-band;
for SkyPatchIndex p do

Initialize per-patch toplist p;
for FrequencyBinIndex k do

Rank candidates by number count (10);
Select top 5 candidates;
Rank candidates by norm. power (11);
Select top 0.1 candidates;
Write candidates into per-patch toplist p;

end

end

Initialize sub-band toplist;
Collect all per-patch toplists into sub-band toplist;
Rank sub-band toplist by significance (12);
Select top 80000 candidates.

FIG. 2. Explicit description of the BinarySkyHough toplist
construction process.

where ρ̄ and σρ̄ represent the expected value and
standard deviation of weighted normalized power in pure
Gaussian noise. This statistic removes any dependency
on the sky position of the source due to the weights, being
well suited for comparisons across different sky patches.

B. Toplist construction

Toplists are constructed frequency-bin wise across sky
patches, as shown schematically in Fig. 2. For a
given sky patch and frequency bin, the top 5% of
parameter space candidates are selected according to the
number count statistic Eq. (10) using the LUT approach
and the non-overlapping set of SFTs. Then, they are
re-analyzed computing their corresponding normalized
power Eq. (11) along the exact time-frequency evolution
given by Eq. (6) using the overlapping set of SFTs.
Finally, top candidates according to Eq. (12) are collected
into a final toplist. We collect the top 80000 candidates
from each 0.125 Hz sub-band.

This approach optimizes the GPU usage in the number
count stage (preventing loud spectral artifacts from
saturating the toplist) as each frequency bin provides a
controlled number of candidates.

V. POST PROCESSING

Similar to previous searches [8, 16], we apply a
clustering algorithm to the resulting candidates in order
to look for particularly interesting candidates. Clustering
candidates reduces the total number of candidates to
follow up since typically many candidates are found to
be produced by a single source (either a CW signal or an
instance of instrumental noise).

We implement a new clustering algorithm using the
frequency evolution of a candidate to define a parameter
space distance [27]. This choice allows the algorithm
to naturally take into account the parameter space
structure, avoiding the usage of ad hoc sky projections

or mishandling periodic boundary conditions.
After the cluster selection, we apply the well-known

line veto, used in previous searches (e.g. [8, 16, 28, 29])
in order to rule out non-astrophysical candidates.

A. Clustering

The clustering algorithm is summarized below; see [27]
for further details. Given two candidates with template
values λ, λ∗ ∈ P, we define the parameter space distance
as

d(λ∗, λ) =
TSFT

Nα

∑

tα

|fλ∗(tα)− fλ(tα)| , (13)

where fλ(tα) represents the instantaneous frequency of a
CW produced by a source with parameters λ as measured
by the detector at time tα and Nα denotes the number
of SFT timestamps used. Essentially, Eq. (13) is the
average mismatch among time-frequency tracks.

Clusters are formed by grouping together candidates
from connected components, i.e. each candidate in a
cluster is closer than a maximum distance dth = 1 to
at least one other candidate in the same cluster. Final
clusters are ranked according to the significance of their
loudest candidate, which we will refer to as the cluster

center.
For each 0.125 Hz toplist, the top 5 clusters according

to their significance are selected. This leaves us with a
total of 16000 clusters: 8000 for the high-frequency search
and 2000 for each region of the low-frequency search.

B. Line Veto

Before the outlier follow up, we apply the line veto
to the obtained cluster centers. Using the list of
identified narrow spectral artifacts [30], the veto discards
any candidate whose time-frequency track crosses an
instrumental line, since such a candidate would likely
become significant not because of astrophysical reasons
but rather instrumental ones.

For every cluster center with parameters λ, we
compute its bandwidth

BW(λ) = [min
tα

fλ(tα),max
tα

fλ(tα)] . (14)

If the bandwidth of a candidate contains or overlaps with
any of the lines present in [30], then the candidate is
discarded because of its likely non-astrophysical origin.
This veto reduces the number of clustered candidates by
∼20% in the low-frequency search and by a few percent in
the high-frequency search (see Table V). This difference
is to be expected, considering the greater amount of
instrumental lines present at lower frequencies.

Other narrow spectral artifacts have not yet been
identified as clearly non-astrophysical in origin in an
unidentified list [31]. Although this list has not been used
to veto clustered candidates, some of them are consistent
with artifacts in the unidentified list (see appendix A).
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Regions LA LB LC LD H1B H2B H3B H4B H5B

Initial Clusters 2000 2000 2000 2000 1000 1000 2000 2000 2000
Vetoed by Identified Line 366 359 359 373 44 0 32 30 30

Surviving Clusters 1634 1641 1641 1627 956 1000 1968 1970 1970
Fraction (%) 81.7 82.05 82.05 81.35 95.6 100 98.4 98.5 98.5

Surviving Outliers after 2F̂th veto 73 72 71 71 7 6 8 3 0

TABLE V. Numbers of cluster centers discarded by the line veto using lines present in [30]. The number of surviving outliers
after the follow-up stage (see Sec. VII) is here specified for the sake of completeness. Five clusters were collected from each
0.125 Hz band: regions H1B and H2B, being the only ones spanning 25 Hz, yield a lower number of clusters.

VI. SENSITIVITY

The sensitivity of the search is determined using a
similar procedure as for previous all-sky searches [8, 16,
28, 29]. A campaign of adding software-simulated signals
to the data in order to estimate the h0 that corresponds
to a 95% average detection rate was carried out. We
quantify sensitivity using the sensitivity depth [32, 33]

D =

√
Sn

h0
(15)

where Sn represents the single-sided Power Spectral
Density of the data (PSD),

√
Sn is referred to as

the Amplitude Spectral Density (ASD) and h0 is the
previously defined CW amplitude. This figure of merit
characterizes the sensitivity of the search to putative
signals and accounts for the detector sensitivity as a
function of frequency. The actual single-sided PSD in
Eq. (15) depends on the analysis method being used.
BinarySkyHough sensitivity is dominated by the first
stage using the weighted number count statistic meaning
one should use the inverse squared averaged PSD as
shown in equations (42) to (44) of [34]

Sn(f) =

√

Nα
∑

α [Sα(f)]
−2

, (16)

where Sα(f) represents the running-median noise floor
estimation using 101 bins corresponding to the SFT
labeled by starting time tα at frequency f . The
goal is to characterize the average detection rate by
numerically computing the efficiency distribution with
respect to the depth. The result is interpolated to find
the estimated sensitivity depth that corresponds to 95%
detection efficiency. Using Eq. (15) the sensitivity depth
is converted to the sensitivity amplitude. It is in this
last step where the systematic error of the calibration is
potentially relevant.

Systematic error in the amplitude of calibration of C01
data (final calibration version) is estimated to be lower
than 7% (68% confidence interval) for both detectors over
all frequencies throughout O3a [20]. Relative deviations
of ASDs computed using C00 data with respect to
ASDs computed using C01 data (used as a proxy for
an estimate of systematic error in C00 data calibration
which otherwise does not exist for all time or frequencies)

are below 7% for all frequency bands except in the
[59, 61] Hz sub-band, where the relative deviation is
10%. Assuming the proxy for C00 systematic error is
complete, the impact of such 10%-level of systematic
error is negligible to the conclusions of this analysis.

Five representative frequency bands are selected
across each 25 Hz band and binary parameter space
region, and five sensitivity depth values used, namely
[18, 20, 22, 24, 26] Hz−1/2. Two hundred signals drawn
from uniform distributions in phase and amplitude
parameters are added to the data at each depth, band
and binary parameter space region. For each simulated
signal, BinarySkyHough analyzes the data again in order
to evaluate how many of them are detected. Sensitivity
depth values are selected such that the 95% efficiency
depth was properly bracketed; regions H4B and H5B
required two extra depth values [14, 16] Hz−1/2 to
ensure this. Using a small number of frequency bands
drastically reduces the computing cost of the sensitivity
estimation procedure while yielding consistent results
when compared to an exhaustive injection campaign, as
justified in [16].

Three criteria must be fulfilled in order to label a
simulated signal as “detected”. First, the toplist obtained
from the injection search should contain at least one
candidate whose significance Eq. (12) is greater than the
minimum significance present in the corresponding all-
sky toplist. Second, after clustering the injection toplist,
at least one cluster with a significance greater than the
lowest significance recovered by the corresponding all-
sky clustering must be obtained. These two criteria
ensure the injection is prominent enough so as not to
be discarded by the first stage of the search. Lastly,
we require at least one of the top five clusters from the
injection toplist to be located closer than two parameter
space bins in each of the parameters with respect to
the injection parameters. This last criterion takes into
account the fact that, in the actual search, a follow up will
be done in corresponding regions around each significant
cluster center.

After separating detected from non-detected simulated
signals, we construct efficiency curves akin to the example
shown in Fig. 3. Each point is the fraction of simulated
signals detected (i.e. detection efficiency) as a function
of the sensitivity depth. For each sensitivity depth set of
NI = 200 simulated signals, the uncertainty on detection
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Appendix A: Frequency bands containing outliers

We provide a list of frequency bands in which outliers
surviving the follow up were found. These outliers were
discarded due to their inconsistent behavior with respect
to an astrophysical signal, as discussed in Sec. VII.
Table VIII lists frequency bands where line-crossing
outliers were found. Table IX corresponds to frequency
bands presenting outliers discarded by the detector
consistency veto. In both tables, overlapping frequency
bands are merged together for the sake of compactness.
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Min. frequency [Hz] Max. frequency [Hz] First timestamp [GPS] Last timestamp [GPS] Duration [days] Detector Listed

55.605 55.606 1239194624 1253831680 169 H1 Yes
57.588 57.592 1243670016 1253770240 116 H1 Yes
59.501 59.513 1238290944 1253831680 179 H1 Yes
62.474 62.478 1244523008 1251895296 85 H1 Yes
64.257 64.266 1241190400 1252681728 133 H1 No
64.284 64.291 1238955520 1253831680 172 H1 Yes
64.470 64.475 1239557632 1253770240 164 H1 Yes
64.403 64.408 1240341504 1253588992 153 H1 Yes
64.364 64.375 1238529536 1253831680 177 H1 Yes
64.415 64.417 1239375872 1253831680 167 H1 Yes
70.124 70.128 1238408192 1245484544 81 H1 Yes
80.067 80.070 1238351360 1238351360 0 H1 No
83.307 83.316 1238351360 1253831680 179 H1 Yes
83.446 83.448 1238831616 1253831680 173 H1 Yes
85.712 85.715 1239194624 1253831680 169 H1 Yes
85.964 85.965 1239738880 1253165568 155 H1 Yes
99.966 99.979 1238290944 1253831680 179 H1 Yes
107.113 107.119 1241129984 1253709824 145 H1 Yes
140.253 140.254 1238955520 1245424128 74 H1 Yes
151.800 151.800 1253105152 1253105152 0 H1 Yes
199.946 199.955 1242149888 1253770240 134 H1 Yes
213.301 213.301 1242339840 1242339840 0 L1 Yes

TABLE VIII. Frequency bands containing line-crossing outliers. As described in Sec. VII C 1, these could be produced because
of the presence of a transient instrumental artifact or the frequency evolution of a candidate drifting away from the spectral
disturbance. Overlapping frequency bands were grouped together for the sake of simplicity. Outliers belonging to this category
show at least one per-segment F-statistic value greater than 100. Timestamps refer to the first and last coherent segments
(Tcoh ≃ 17h) for which at least one of those candidates showed an F-statistic value over 50. The last column relates these
bands to the list of unidentified lines [31].

Min. frequency [Hz] Max. frequency [Hz] Listed

53.709 53.721 No
55.603 55.609 Yes
57.583 57.600 Yes
62.823 62.828 Yes
64.400 64.411 Yes
83.442 83.453 Yes
85.815 85.824 No

TABLE IX. Frequency bands containing outliers discarded by the detector consistency veto as described in Sec. VII C 2.
Overlapping frequency bands were grouped together for the sake of simplicity. The last column relates these bands to the list
of unidentified lines of the H1 detector [31].
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