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Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting
such a signal would allow probing of the physical properties of matter under extreme conditions. A
significant fraction of the known pulsar population belongs to binary systems. Searching for unknown
neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency
modulations. We present a search for continuous gravitational waves emitted by neutron stars in
binary systems in early data from the third observing run of the Advanced LIGO and Advanced
Virgo detectors using the semicoherent, GPU-accelerated, BinarySkyHough pipeline. The search
analyzes the most sensitive frequency band of the LIGO detectors, 50 — 300 Hz. Binary orbital
parameters are split into four regions, comprising orbital periods of 3 — 45 days and projected
semimajor axes of 2 — 40 light-seconds. No detections are reported. We estimate the sensitivity
of the search using simulated continuous wave signals, achieving the most sensitive results to date

across the analyzed parameter space.

I. INTRODUCTION

Continuous gravitational waves (CWs) are a long-
lasting form of gravitational radiation. For ground-
based interferometric detectors the canonical sources
are rapidly spinning neutron stars (NSs) sustaining a
quadrupolar deformation. Several emission mechanisms
have been proposed, such as crustal deformations, r-
modes, or free precession (see [1] for a recent review).
Detecting CWs would probe the physics of such compact
objects, leading us to a better understanding of the
equation of state of matter under extreme conditions.
More exotic types of CW sources are also theorized, such
as boson clouds around spinning black holes [2].

Every CW search method assumes certain information
about the intended sources. All-sky searches, such as the
one reported in this paper, impose the least constraints
on the CW emission. The latest results obtained by
the LIGO-Virgo collaboration using Advanced LIGO |[3]
and Advanced Virgo [4] data, covering targeted (known
pulsars), directed (known sky locations), and all-sky
searches, can be found in [5-10].

All-sky searches require highly efficient analysis
methods because they must account for a Doppler
modulation due to the Earth’s movement with respect
to the Solar System Barycenter (SSB), an effect that
depends on sky position. In principle, one can construct
a search pipeline using fully coherent matched filtering;
for wide parameter space searches, however, such an
approach quickly becomes computationally unaffordable
[11].  As a result, semicoherent methods are used,
splitting the data stream into smaller time segments
that can be coherently analyzed. Then, per-segment
results are combined according to the expected frequency
evolution of the template under analysis. This method
reduces the computational cost of a search while
achieving a reasonable sensitivity.

Only a small fraction of the expected population
of galactic NSs has been detected electromagnetically
[12].  Through gravitational waves we could access
these unknown populations of NSs. About half

of the NSs detected using electromagnetic means
within the most sensitive frequency band of current
ground-based detectors are part of a binary system
(13, 14]. Searches for CWs from this class of
NSs pose an additional, substantial computational
challenge compared to standard all-sky searches that
target isolated NSs because additional unknown binary
orbital parameters increase the search parameter space
dimensionality. As a result, one must use specialized
methods in order to search for this type of signal.

We present an all-sky search for CWs produced
by NSs in binary systems using the semicoherent
BinarySkyHough pipeline [13]. It builds upon SkyHough
[15], inheriting its characteristic noise robustness and
computational efficiency, and uses Graphics Processing
Units (GPUs) to speed up the core part of the
search. The concept of BinarySkyHough is to
compute search statistics over the parameter space
and to use those statistics to rank the interesting
regions for subsequent follow up using more sensitive,
computationally demanding techniques. This balance
between sensitivity and computational cost has proven
effective in previous searches of the LIGO O2 observing
run data using both the isolated SkyHough (8] and
BinarySkyHough [16] flavors of this pipeline.

In Sec. IT we introduce the signal model; Sec. IIT
describes the early third observing run of the Advanced
LIGO and Advanced Virgo detectors; Sec. IV briefly
describes the main analysis pipeline; Sec. V introduces
the first post processing stage; and in Sec. VI we
estimate the sensitivity of this search. In Sec. VII we
further analyze the most significant outliers and rule
them out as non-astrophysical candidates. We present
our conclusions in Sec. VIII.

II. SIGNAL MODEL

A non-axisymmetric neutron star spinning about one
of its principal axes is expected to emit gravitational
waves at twice its rotation frequency fo = 2fio¢ with



a strain amplitude given by [17]
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where F, , are the antenna patterns of the
interferometric detectors, depending on the polarization
angle ¢ and the sky position 1 of the source; hg and
cos ¢ are the characteristic CW amplitude and the cosine
of the inclination of the source with respect to the line
of sight, respectively; ¢(t) represents the phase of the
gravitational wave signal.

The CW amplitude hy can be expressed in terms of
the physical properties of the source once an emission
mechanism has been assumed. The three principal
moments of inertia of a non-axisymmetric NS are given
by I, Iy, I,, and the equatorial ellipticity is given by
€ = |Ix — I| /I,, assuming the spin axis is aligned with
I,. The gravitational wave amplitude can be expressed
as

(1)
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where d denotes the distance to the source from the
detector, fy the gravitational wave frequency, and G and
c respectively refer to the gravitational constant and the
speed of light. We can further relate this quantity to the
mass quadrupole Q95 of the star through the equatorial
ellipticity
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We can describe the signal phase via Taylor expansion
with respect to a fiducial starting time 79 in the source
frame

A(1) = do+2m [fo- (T —710) +...], (4)

where 7 is the proper source frame time and ¢ represents
the initial phase at 75. The number of higher order terms
to include in this expansion depends on the population
of NSs under consideration. After analyzing the ATNF
pulsar catalog [14], it was argued in [13| that searching
for NSs in binary systems need not take into account
any spindown parameters when using datasets lasting for
less than a few years. As we will discuss in Sec. VIII,
this search remains sensitive to signals up to a certain
spindown value, but there is an implicit limit on the
astrophysical reach.

Because of the relative motion of the detector around
the SSB and the relative motion of the source around the
Binary System Barycenter (BSB), the phase as measured
by the detector at time ¢ is Doppler-modulated according
to the timing relation

T—}—apsin[Q(T—TaSC)]:t—l—r(t)Tn—g, (5)
where a, represents the semi-major axis of the binary
orbit projected onto the line of sight (measured in light-
seconds), 2 represents the orbital frequency of the source,

Tasc Tepresents the time of passage through the ascending
node as measured from the source frame and 7 represents
the position of the detector in the SSB. In order to derive
this expression, we assumed circular, Keplerian orbits;
the search remains sensitive, however, to signals from
sources in binary systems up to a certain eccentricity as
discussed in Section VITA and [13].

We define a template as A = {fo, 7, ap, Q, tasc}. The
parameter space (i.e. the set of all templates searched)
will be denoted as P. The orbital period is related to the
orbital angular frequency by P = 27 /.

We refer the reader to [18] for a complete derivation
of Eq. (5) and a discussion about how to express Eq. (4)
in the detector frame. The gravitational wave frequency
evolution associated to a template A as measured from
the detector frame is thus

O
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where ¥(t) refers to the detector velocity and s is akin
to Tasc measured from the detector frame. We choose
the initial phase t,sc to be located within the range
[tmid — g, tmid + g], where t,;q represents the mean
time between the start and the end of the run measured
in GPS seconds.

III. DATA USED

The first part of the third observing run of the
Advanced LIGO and Advanced Virgo detectors (O3a)
comprises six months of data collected from the 1st
of April 2019 at 15:00 UTC to the 1st of October
2019 at 15:00 UTC. Data was taken by the Advanced
LIGO detectors, located in Hanford (Washington,
USA, designated H1) and Livingston (Lousiana, USA,
designated L1), together with the Advanced Virgo
detector, located in Cascina (Pisa, Italy). We did
not make use of Advanced Virgo data because of
an unfavorable trade-off between computing cost and
expected sensitivity improvement of the search. The
detector duty factor (the fraction of the run when the
detector is collecting observational-quality data) was
71.2% for H1 and 75.8% for L1. The implementation
of instrumental upgrades has allowed the detectors to
improve their overall sensitivities with respect to the
previous observing run (O2) [19].

For the duration of the run, several artificial signals
were injected into both detectors in order to calibrate and
monitor their performance. Calibration lines are artificial
monochromatic signals, injected at different frequencies
in each detector to avoid coherent artifacts. They
are used to monitor time-varying detector operating
parameters. Hardware injections, on the other hand,
are artificial quasi-monochromatic signals consistently
injected into both detectors in order to mimic the
effects of an actual CW signal present in both detectors.
They are used to verify expected detector response and
characterize calibrated data [20]. Both of these artificial



Search setup parameter Value

Tspr 1024 s

BTukey 0.5

Tobs 14832675 s
tmid 1245582821.5 s
Af 0.125 Hz

TABLE 1. Miscellaneous parameters used in the search. Tspr
denotes the time span employed to compute Short Fourier
Transforms (SFTS). SBrukey refers to the tapering parameter
of the Tukey window, denoting the fractional length of the
window’s central unitary plateau. Tobs is the observing time
of the run. tmiq represents the mean time between the start
and the end of the run measured in GPS seconds. A f refers to
the bandwidth of the individual sub-bands analyzed by each
computing job.

signals may interfere with CW searches in general,
showing up as significant candidates due to their high
strength in the detector spectrum. Spectral artifacts
in detector data can be produced by environmental or
instrumental noise and also interfere with CW searches

[21].
The search was performed using Short Fourier
Transforms (SFTs) created from the CO00 (initial

calibration version) time-domain observing-quality strain
data [22]. These SFTs were extracted from SFDB
(Short Fourier Data Base) data [23], which incorporates
a time-domain cleaning procedure to avoid noise-
floor degradation due to glitches and other forms
of transient noise. Every SFT lies completely
within observing-quality data. Fourier transforms
were computed using a Tukey-windowed baseline of
Tspr = 1024s with tapering parameter Stykey = 0.5 and
a 50% overlap. These values are collected in table I.
Following the same procedure used in the O2 SkyHough
search [8], SFT data are split into two datasets to be
used in two different stages of the search. The first
dataset, which we refer to as non-overlapping, leaves out
overlapping SFTs (i.e. every SFT starts at the end of
the previous one). The second dataset, which we refer to
as overlapping, contains all of the SFTs. Using the non-
overlapping set for the first stage of the analysis reduces
the computational cost of the search at a manageable loss
in sensitivity. Table II lists the number of SFTs in each
of the datasets. Datasets contain SFTs from both LIGO
detectors (i.e. we perform a multi-detector search [13]).

IV. THE SEARCH PIPELINE

We split the search into two main frequency bands:
the low-frequency band, from 50 Hz to 100 Hz, and the
high-frequency band, from 100 Hz to 300 Hz. These
bands are further divided into A f = 0.125 Hz sub-bands,
which constitute the basic working unit of our setup: each
computing job performs an all-sky search over one such
sub-band, searching for binary modulated signals within
a certain region of the binary parameter space among

Non-overlapping Overlapping

Hi1 10172 20577
L1 10962 22049
Total 21234 42626

TABLE II. Number of Short Fourier Transforms (SFTs) in
each of the datasets. Characteristics of these SFTs are
summarized in table I and section III.

the ones specified in Fig. 1 and Table III. Because of the
limited computing power available, the high-frequency
search focuses on a single binary parameter space region,
denoted as B in Table III; the low-frequency search is
performed in all four binary parameter space regions.

The search parameter space is gridded with templates
as described in [13]:
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where 060 refers to the angular sky position resolution,
v =|9] and v/c ~ 10*. Tpps denotes the observing time
of the search, quoted in Table I. The variables P; and m
are the so-called pizel factor and mismatch parameters,
which can be used to manually control the parameter
space template density. In this search, we tune them in
order to adjust the computing cost as we reach higher
frequencies, where template spacing naturally becomes
finer. Table IV summarizes the choices made for each of
the frequency bands.

The pipeline uses the Hough transform to relate tracks
in the digitized spectrogram, as explained below, to
points in the parameter space. For each point in the
parameter space A € IP there is a corresponding track [see
Eq. (6)] of the time-frequency evolution, which denotes
the instantaneous frequency of the signal as observed by
the detector.

A. Ranking statistics

Let us assume the data can be described as a noise
background plus a CW signal

x(t; A) = n(t) + h(t; A) . (8)

We start by computing the normalized power of SFT data

: 9)

where tildes represents a Fourier transformed quantity, k
indexes frequency bins, « indexes SFTs and (-) denotes
a running median average using 101 frequency bins, as
explained in [13]. Each SFT « can be related to a certain
starting time t,, effectively obtaining a spectrogram
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FIG. 1. Binary orbital parameters considered by the present search. Solid color regions denote parameter space regions in
which a search was performed; blue dots mark binary orbital parameters corresponding to the known binary pulsar population.
Regions A, B, C and D were covered by the low-frequency analysis, while region B was covered by the high-frequency analysis
as well. Time of ascending node passage is taken into account according to the orbital frequency, as explained in Sec. II. Pulsar

population data was taken from [14] using [24].

Binary Region P [days| ay [s]

A [15, 45] [10, 40]
B [7,15] |5, 15]
C 5,71 2, 10]
D [3,5] |2, 5]

TABLE III. Binary parameter space regions analyzed by the
search, corresponding to the four colored regions in Fig. 1.
Time of passage through the ascending node #asc is searched
along the interval specified in Sec. II.

where each bin («a,k) corresponds to the normalized
power pj present at a certain frequency bin £ in a certain
SFT «. Then, we impose a normalized power threshold
pih = 1.6 to digitize the spectrogram, obtaining a discrete
spectrogram populated by ones and zeros.

For each template, we follow the corresponding track
and define the first ranking statistic, the number count,
as the weighted sum of ones and zeroes

Z w? H (pg - p'ﬁh) 5
(avk)e.f}\

n(A) (10)

where H denotes the Heaviside step function and the
weights w§ account for varying noise floor and antenna
response effects [25].

The number count statistic can be efficiently computed
by means of the Look Up Table (LUT) approach
described in [15]. Incidentally, this strategy simplifies
the cost by analyzing multiple sky positions (called sky
patches) together. The approach applies the Doppler
modulation used to analyze a particular frequency bin
to a neighborhood of frequency bins. The sensitivity loss
introduced by this approximation is later compensated

Label Frequency [Hz] m F;

L [50, 100) 0.4 1
H1  [100,125) 04 1
H2  [125,150) 0.6 1
H3  [150,200) 0.9 0.8
H4  [200,250) 1.6 0.75
H5  [250,300) 2 0.7

TABLE IV. Mismatch and pixel factor configurations for the
different frequency bands of the search. L refers to the low-
frequency band; H1-5 refer to each of the five sub-bands into
which the high-frequency band was partitioned: 1 and 2 span
25Hz each, while 3 to 5 span 50 Hz each.

by re-analyzing the most significant candidates using
their exact time-frequency tracks [26].

The re-analysis uses the weighted normalized power
statistic,

pN) = D wipi

(avk)e.f}\

(11)

Using this new ranking statistic instead of simply re-
computing Eq. (10) along the exact track yields a
10 — 20% improvement in detection efficiency for the
toplists (ranking of the most significant candidates)
based on the number-count statistic used here and
discussed below [g].

In order to further select candidates across different
sky patches, we compute a significance statistic by
normalizing Eq. (11) to the ezpected noise values derived
in [15]:

(12)



Result: Toplist per 0.125 Hz sub-band
Select 0.125 Hz sub-band;
for SkyPatchIndex p do
Initialize per-patch toplist p;
for FrequencyBinIndex k do
Rank candidates by number count (10);
Select top 5 candidates;
Rank candidates by norm. power (11);
Select top 0.1 candidates;
Write candidates into per-patch toplist p;
end
end
Initialize sub-band toplist;
Collect all per-patch toplists into sub-band toplist;
Rank sub-band toplist by significance (12);
Select top 80000 candidates.

FIG. 2. Explicit description of the BinarySkyHough toplist
construction process.

where p and o, represent the expected value and
standard deviation of weighted normalized power in pure
Gaussian noise. This statistic removes any dependency
on the sky position of the source due to the weights, being
well suited for comparisons across different sky patches.

B. Toplist construction

Toplists are constructed frequency-bin wise across sky
patches, as shown schematically in Fig. 2. For a
given sky patch and frequency bin, the top 5% of
parameter space candidates are selected according to the
number count statistic Eq. (10) using the LUT approach
and the non-overlapping set of SFTs. Then, they are
re-analyzed computing their corresponding normalized
power Eq. (11) along the exact time-frequency evolution
given by Eq. (6) using the overlapping set of SFTs.
Finally, top candidates according to Eq. (12) are collected
into a final toplist. We collect the top 80000 candidates
from each 0.125 Hz sub-band.

This approach optimizes the GPU usage in the number
count stage (preventing loud spectral artifacts from
saturating the toplist) as each frequency bin provides a
controlled number of candidates.

V. POST PROCESSING

Similar to previous searches [8, 16], we apply a
clustering algorithm to the resulting candidates in order
to look for particularly interesting candidates. Clustering
candidates reduces the total number of candidates to
follow up since typically many candidates are found to
be produced by a single source (either a CW signal or an
instance of instrumental noise).

We implement a new clustering algorithm using the
frequency evolution of a candidate to define a parameter
space distance [27]. This choice allows the algorithm
to naturally take into account the parameter space
structure, avoiding the usage of ad hoc sky projections

or mishandling periodic boundary conditions.

After the cluster selection, we apply the well-known
line veto, used in previous searches (e.g. [8, 16, 28, 29]|)
in order to rule out non-astrophysical candidates.

A. Clustering

The clustering algorithm is summarized below; see [27]
for further details. Given two candidates with template
values A\, \* € P, we define the parameter space distance
as

T

AN N) = R0 (ta) = falta) - (13)

where f)(t,) represents the instantaneous frequency of a
CW produced by a source with parameters A as measured
by the detector at time ¢, and N, denotes the number
of SFT timestamps used. Essentially, Eq. (13) is the
average mismatch among time-frequency tracks.

Clusters are formed by grouping together candidates
from connected components, i.e. each candidate in a
cluster is closer than a maximum distance d'® = 1 to
at least one other candidate in the same cluster. Final
clusters are ranked according to the significance of their
loudest candidate, which we will refer to as the cluster
center.

For each 0.125 Hz toplist, the top 5 clusters according
to their significance are selected. This leaves us with a
total of 16000 clusters: 8000 for the high-frequency search
and 2000 for each region of the low-frequency search.

B. Line Veto

Before the outlier follow up, we apply the line veto
to the obtained cluster centers. Using the list of
identified narrow spectral artifacts [30], the veto discards
any candidate whose time-frequency track crosses an
instrumental line, since such a candidate would likely
become significant not because of astrophysical reasons
but rather instrumental ones.

For every cluster center with parameters A, we
compute its bandwidth

BW()‘) = [ntlin f)\(ta),ﬂ%gx f)\(ta)} . (14)

If the bandwidth of a candidate contains or overlaps with
any of the lines present in [30], then the candidate is
discarded because of its likely non-astrophysical origin.
This veto reduces the number of clustered candidates by
~20% in the low-frequency search and by a few percent in
the high-frequency search (see Table V). This difference
is to be expected, considering the greater amount of
instrumental lines present at lower frequencies.

Other narrow spectral artifacts have not yet been
identified as clearly non-astrophysical in origin in an
unidentified list [31]. Although this list has not been used
to veto clustered candidates, some of them are consistent
with artifacts in the unidentified list (see appendix A).



Regions LA° LB LC LD HI1B H2B H3B H4B H5B

Initial Clusters 2000 2000 2000 2000 1000 1000 2000 2000 2000
Vetoed by Identified Line 366 359 359 373 44 0 32 30 30

Surviving Clusters 1634 1641 1641 1627 956 1000 1968 1970 1970
Fraction (%) 81.7 82.05 82.05 81.35 95.6 100 98.4 98.5 98.5

Surviving Outliers after 2%, veto 73

71 71 7 6 8 3 0

TABLE V. Numbers of cluster centers discarded by the line veto using lines present in [30]. The number of surviving outliers
after the follow-up stage (see Sec. VII) is here specified for the sake of completeness. Five clusters were collected from each
0.125 Hz band: regions H1B and H2B, being the only ones spanning 25 Hz, yield a lower number of clusters.

VI. SENSITIVITY

The sensitivity of the search is determined using a
similar procedure as for previous all-sky searches [8, 16,
28, 29|. A campaign of adding software-simulated signals
to the data in order to estimate the hg that corresponds
to a 95% average detection rate was carried out. We
quantify sensitivity using the sensitivity depth (32, 33|

VSa

D =
ho

(15)

where S, represents the single-sided Power Spectral
Density of the data (PSD), /S, is referred to as
the Amplitude Spectral Density (ASD) and hg is the
previously defined CW amplitude. This figure of merit
characterizes the sensitivity of the search to putative
signals and accounts for the detector sensitivity as a
function of frequency. The actual single-sided PSD in
Eq. (15) depends on the analysis method being used.
BinarySkyHough sensitivity is dominated by the first
stage using the weighted number count statistic meaning
one should use the inverse squared averaged PSD as
shown in equations (42) to (44) of [34]

Na
S [Sal()) 72

where S, (f) represents the running-median noise floor
estimation using 101 bins corresponding to the SFT
labeled by starting time t, at frequency f. The
goal is to characterize the average detection rate by
numerically computing the efficiency distribution with
respect to the depth. The result is interpolated to find
the estimated sensitivity depth that corresponds to 95%
detection efficiency. Using Eq. (15) the sensitivity depth
is converted to the sensitivity amplitude. It is in this
last step where the systematic error of the calibration is
potentially relevant.

Systematic error in the amplitude of calibration of C01
data (final calibration version) is estimated to be lower
than 7% (68% confidence interval) for both detectors over
all frequencies throughout O3a [20]. Relative deviations
of ASDs computed using CO00 data with respect to
ASDs computed using C01 data (used as a proxy for
an estimate of systematic error in C00 data calibration
which otherwise does not exist for all time or frequencies)

Sn(f) = ) (16)

are below 7% for all frequency bands except in the
[59,61] Hz sub-band, where the relative deviation is
10%. Assuming the proxy for C00 systematic error is
complete, the impact of such 10%-level of systematic
error is negligible to the conclusions of this analysis.

Five representative frequency bands are selected
across each 25 Hz band and binary parameter space
region, and five sensitivity depth values used, namely
[18, 20,22, 24, 26] Hz /2. Two hundred signals drawn
from uniform distributions in phase and amplitude
parameters are added to the data at each depth, band
and binary parameter space region. For each simulated
signal, BinarySkyHough analyzes the data again in order
to evaluate how many of them are detected. Sensitivity
depth values are selected such that the 95% efficiency
depth was properly bracketed; regions H4B and H5B
required two extra depth values [14,16] Hz Y% to
ensure this. Using a small number of frequency bands
drastically reduces the computing cost of the sensitivity
estimation procedure while yielding consistent results
when compared to an exhaustive injection campaign, as
justified in [16].

Three criteria must be fulfilled in order to label a
simulated signal as “detected”. First, the toplist obtained
from the injection search should contain at least one
candidate whose significance Eq. (12) is greater than the
minimum significance present in the corresponding all-
sky toplist. Second, after clustering the injection toplist,
at least one cluster with a significance greater than the
lowest significance recovered by the corresponding all-
sky clustering must be obtained. These two criteria
ensure the injection is prominent enough so as not to
be discarded by the first stage of the search. Lastly,
we require at least one of the top five clusters from the
injection toplist to be located closer than two parameter
space bins in each of the parameters with respect to
the injection parameters. This last criterion takes into
account the fact that, in the actual search, a follow up will
be done in corresponding regions around each significant
cluster center.

After separating detected from non-detected simulated
signals, we construct efficiency curves akin to the example
shown in Fig. 3. Each point is the fraction of simulated
signals detected (i.e. detection efficiency) as a function
of the sensitivity depth. For each sensitivity depth set of
Ny = 200 simulated signals, the uncertainty on detection
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FIG. 3. Example of 95% sensitivity depth interpolation. Five
sensitivity depths were selected at 124.625 Hz in region H1B.
200 injections were injected at each of these depths, applying
the criteria exposed in the text in order to label injections
as detected/not detected. Blue dots represent the fraction
of detected injections; the sigmoid fit is represented by a
blue line; fit uncertainties at one, two and three sigmas are
represented by pale yellow shades. The interpolated 95%
sensitivity depth D% = 21 4+ 0.4 is marked using a star.

efficiency F is given by

E-(1-E)

E=
5 N

(17)

Then, using SciPy’s curve_fit function [35], we fit a
sigmoid curve to the data given by

1
14 epo(D—p1)’ (18)
with fitted parameters p= (pg,p1). This expression can
be inverted in order to find the 95% sensitivity depth.
The interpolations are accompanied by a
corresponding uncertainty, obtained through the
covariance matrix of the fit C(D) as

§D%% = \[pT-C(D) - p (19)

D=D95%

The resulting interpolated depths per frequency band are
shown in Fig. 4. The high-frequency search shows a
clear degradation of depth values as frequency increases.
This is related to the decaying density of parameter
space templates: the higher the frequency, the finer one
must construct a template bank in order to achieve a
comparable level of sensitivity.

Finally, we compute an average 95% sensitivity depth
for each of the regions quoted in Table VI. We also quote
a corresponding 3¢ uncertainty, which previous studies
have proven to deliver a good coverage of the actual
95% efliciency sensitivity depth [16]. These values are
translated to CW amplitude hg via Eq. (15) and shown
in Fig. 5.
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FIG. 4. Average 95% sensitivity depths obtained in the

low-frequency (top panel) and high-frequency (bottom panel)
bands. Data points correspond to the interpolated results
obtained through the sigmoid fit of the efficiencies at the
selected frequency bands (5 bands randomly selected in each
25 Hz). Error bars correspond to 95% efficiency uncertainties
towards low depth values. Shaded regions show the averaged
results with their uncertainties, as summarized in Table VI. In
the top panel, shading is only shown for the results obtained
for the binary parameter space region B.

Region (D%%) + 3¢ [Hz 1/?]

LA 229425
LB 228421
LC 23.0+2.5
LD 23.0+2.5
H1B 21.8+1.2
H2B 21.1+1.0
H3B 20.1+£2.0
H4B 18.7+1.2
H5B 19.3+2.0

TABLE VI. Average 95% sensitivity depths for the parameter
space regions analyzed in this search. Region labels are
defined in Tables III and IV.

VII. FOLLOW UP

Remaining candidates from the main search are
followed up applying a more sensitive method to the data.
Longer coherence times constrain the phase evolution of
the candidate under consideration and would yield higher
significance for a true continuous wave signal. A potential
downside remains that a true signal could be discarded
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if it is not well modeled by the assumed phase evolution.
Moreover, increasing the coherence time also requires
increasing the density of templates so as not to overlook
a putative signal.

An effective way to cover small parameter regions is
through Markov Chain Monte Carlo (MCMC) methods,
which, rather than following a prescribed parameter
space grid, sample the parameter space following a
certain probability density function. Reference [36]
describes how this can be implemented in a search for
continuous waves by using the so-called F-statistic, a
well-established CW analysis technique, as a likelihood
function. We refer to [36] and references therein for an
in-depth explanation of this method.

The F-statistic is a coherent statistic, usually referred
to as 2F, which compares data against templates by
matched filtering. A semicoherent F-statistic 2F can be
defined by adding individual 2F values computed over
Nseg segments spanning Teon each, in the same way as
weighted normalized power was computed from weighted
power in Eq. (11):

where the index s indicates the coherent quantity has
been computed for a certain segment spanning T .

We use software injections in order to calibrate a
threshold 2F),. Candidates such that 2F(\) < 2F, will
be deemed as non-significant and consequently discarded.

This algorithm is implemented in PyFstat [37, 38]. It
builds on top of LALSuite [39], which provides the CW
data analysis functionality, and ptemcee [40, 41], which
implements the MCMC algorithms.

Hyperparameter Value
Parallel chains 3
Walkers per chain 100

Burn-in & Production steps 100 + 100

TABLE VII. MCMC hyperparameter choice for the first stage
of the follow up. Each of the parallel chains sample the
likelihood at a different temperature, as explained in [41].

A. MCMC follow-up configuration

The MCMC follow up employed is not intended to
describe the posterior distribution of parameters defining
a candidate. Rather, we only require enough convergence
such that the sampled F-statistic values are close enough
to the local maximum to establish a reliable veto
threshold.

1. Sampler configuration

The ptemcee package implements an ensemble-based
sampler that uses several walker chains to sample
multimodal distributions. Expensive setups are not
required in order to perform a first-stage follow up using
a threshold-based approach. The reason for this is two-
fold: we are increasing the coherence time with respect to
the search, and we do not require extensive convergence
to be achieved. No second-stage follow up was required
because all of the first-stage outliers were attributed
to instrumental causes. If this was not the case, we
would have applied a second follow-up stage using a more
expensive setup. The number of parallel chains, walkers
per chain, and number of steps to take are summarized
in Table VIL

We choose to use Ny, = 260, which corresponds to



Teon =~ 17h. This is a longer coherence time with respect
to that of the initial stage of the search, a choice used in
previous searches [16].

2. Prior choice

Following a similar prescription as the one given in
[36], we set up uniform priors in each parameter space
dimension, forming a box centered on each cluster center.
Each edge of this box spans two parameter space bins
according to the spacing given in Eq. (7), where the
parameter-space-dependent quantities are computed at
the center of the cluster. This is in agreement with
the detection criteria imposed to perform the sensitivity
estimation.

Although BinarySkyHough targets CW sources in
circular orbits, it is still sensitive to signals with
eccentricities up to a certain value, as long as the Doppler
modulation derived from eccentricity is smaller than half
a frequency bin. The upper bound for the maximum
allowable eccentricity according to this argument was
derived in [13]

e = [2Tspr foa, Q)" . (21)

Therefore, uniform priors on eccentricity, [0, e™?], and
argument of periastron, [0,27] are included as MCMC
parameters. Maximum eccentricities range from 0.2—0.5
at 50 Hz to less than 0.1 at 300 Hz.

B. Setting up a threshold

We use the BinarySkyHough and the MCMC follow
up on a total of 71306 software injections in order
to calibrate a significance threshold. The employed
injections are consistent with the ones used for
the sensitivity estimation, focusing on those detected
according to the three criteria (see Sec. VI). This
implies a significant fraction of the injections will
possess an amplitude below the obtained 95% sensitivity
amplitude, as they will be distributed according to the
five original depths. The threshold obtained using this
calibration strategy will have a low false-dismissal rate
(< 1/71306 ~ 1.5 x 107°) against signals detectable by
this pipeline.

We run the MCMC algorithm in order to sample 2F
values, retrieving the maximum value for each of the
injections. Resulting 2F values for these simulations are
plotted in Fig. 6. These results support the choice of
2.7:"th = 2500 as the threshold value, with all detected
injections above this threshold.

C. Surviving Outliers

After executing the MCMC follow up and imposing
the 2/, = 2500 threshold, 287 outliers remain in the
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FIG. 6. Recovered 2F values using a set of injections

labeled as detected by the sensitivity estimation criteria. The
amplitudes of these injections were distributed using the five
sensitivity depth values explained in Sec. VI. The top panel
shows the results for the four regions of the low-frequency
search, involving 33757 injections; the bottom panel shows
the same result for the high-frequency search, using 37549
injections. The horizontal orange line marks the threshold
2F e = 2500.

low-frequency band and 24 outliers remain in the high-
frequency band, as shown in Fig. 7. It is clear from the
figure that low-frequency outliers mostly belong to the
same frequency bands across the four binary parameter
space regions. We next analyze each candidate using a
cumulative semicoherent F-statistic, defined as

2F(Nt) = > 2Fa(N), (22)

ity <t

in order to discern those candidates originating from
instrumental noise.

We use three flavors of Eq. (22), one for each of the
detectors (H1 and L1) and another one using a multi-
detector approach (H1 + L1). These statistics lead to the
rejection of the remaining outliers, as described below.

1. Line-crossing outliers

CWs are expected to accumulate a 2F value linearly
with respect to the observing time. We find that 263
outliers surpass the 2/, = 2500 threshold due to the
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FIG. 7. MCMC follow-up results. Dots represent cluster
centers not vetoed by the identified line veto, and a horizontal
line represents the imposed threshold 2F i = 2500, calibrated
by software injections (see Fig. 6). The horizontal axis
represents the frequency value associated to each cluster
center, and the vertical axis represents the maximum 2F value
sampled by the MCMC run.

presence of prominent values of segment-wise F-statistic
at certain times of the run in one of the detectors (260
in H1 and 3 in L1), as exemplified in Fig. 8. The higher
number of outliers in H1 arise from the greater number
of instrumental lines present in that detector [30, 31].
This behavior would be expected from a candidate
whose frequency evolution track crosses a narrow
instrumental artifact (line) for a limited duration, either
because of the frequency track drifting away from the
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line or the transient nature of the line itself. Most
strong persistent instrumental disturbances are already
discarded using the known lines list [30], but weaker lines
or transient disturbances (lasting hours to days), which
are more difficult to identify in the run-averaged spectra,
could still affect our searches [21, 42].

In Table VIII in Appendix A, we present a list of
frequency bands containing these 263 candidates whose
behavior suggests a brief line crossing or the presence
of a transient instrumental disturbance. Outliers were
selected as belonging to this category if they have at least
one per-segment F-statistic value greater than 100, and
for each frequency band listed in the table, the first/last
timestamps bracket the data segments where F-statistic
values greater than 50 were observed for at least one
of those candidates. Overlapping frequency bands were
merged together for the sake of clarity.

2. Detector consistency veto

A second set of 28 outliers is discarded by the detector
consistency veto (see e.g. [28]). During O3a, the L1
detector presents a better sensitivity than HI1 at low
frequencies [19]. A CW candidate would be expected to
behave consistently, i.e. 2.7:"L1 > 2.7:"H1 for most signals.
We calibrate this veto using the aforementioned set of
software injections in order to take detector sensitivity
anisotropies due to the antenna pattern functions into
account, obtaining a maximum relative 5% excess of
2.7:"H1 with respect to 2.7:"L1.

The 28 outliers rejected with this veto show more than
a 30% relative excess of 2Fy; with respect to 2F7,.
Hence, we discard them as being inconsistent with an
astrophysical signal. Figure 9 shows an example of these
outliers. After computing the bandwidth covered by each
of these candidates, we obtain seven distinct frequency
bands affected by instrumental disturbances of this type,
summarized in Table IX in appendix A.

3. Powerline sidebands

The last 20 outliers were consistently present in
each one of the four parameter space regions within
the [60.46,60.48] Hz sub-band. These outliers were
not vetoed by any of the previous stages. As shown
in Fig. 10, 2F was accumulated in a fairly linear
fashion, achieving greater values in L1 than H1. The
detector ASD (Fig. 11), however, shows that these
candidates were caused by sidebands of the 60 Hz power
supply artifact. These sidebands can be explained by
a non-linear coupling between the main power supply
frequency and a low-frequency noise. They do not appear
in the line lists [30, 31] as they do not correspond to
narrow spectral artifacts and their effect on CW searches
is highly dependent on the search method. Due to the
presence of said artifact in the data and the wide spread
of the candidates obtained by our search across these
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threshold later vetoed by inspection of the detector spectra.
The combined ASD of both detectors around the frequency of
this group of outliers is shown in Fig. 11. Candidates related
to this signal saturated the toplist in the four regions LA,
LB, LC, LD. Dashed lines denote an H1-only analysis, dotted
blue lines an L1-only analysis, and solid black lines a multi-

detector analysis. The 2ﬁth = 2500 threshold is shown as a
horizontal line.
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FIG. 11. Location of the manually inspected outliers (vertical
dashed line) with respect to the amplitude spectral density
of the detector, here represented as a multi-detector inverse
squared average (orange line). A diamond and a square mark
the twin peaks’ frequency, 59.53Hz and 60.47Hz respectively.

bands, we deem this final set of candidates as non-
astrophysical.

VIII. CONCLUSION

We report on a search for continuous gravitational
wave signals from unknown sources in binary systems
using LIGO data from the first six months of the third
Advanced LIGO and Advanced Virgo observing run.
Four different binary parameter space regions, spanning
orbital periods of 3 — 45 days and projected semimajor
axes of 2 — 40 light-seconds, are searched across the
50 — 300 Hz frequency band. We claim no detections
and estimate the sensitivity of the search in terms of
the gravitational wave amplitude corresponding to the
interpolated 95% detection efficiency using a simulated
population of signals.

The minimum amplitude sensitivity attains an average
value of h85% = (2.44£0.1) x 1072% in the fy = 149.5 Hz
sub-band. This is a factor of ~1.6 lower than the lowest
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amplitude sensitivity obtained by a previous search
performed on data from the second Advanced LIGO
observing run [16]. The estimated amplitude sensitivity
can be interpreted in terms of astrophysical reach and
equatorial ellipticity by means of equation Eq. (2), as
shown in Fig. 12.

The validity of this estimation must be discussed in
terms of the spindown [imit, which corresponds to the
maximum gravitational wave amplitude achievable by a
neutron star assuming its rotational energy is solely lost
via gravitational waves. We refer the reader to Appendix
A of [6] for its definition and the relevant conversion
equations.

_The maximum spindown value probed by our search is
|fol = (Tspr - Tops) =~ 6.5 x 10 11Hz/s [13], meaning
sources braking at higher rates would not be detected
by our pipeline (see Table I for the definition of Tgpr
and Tops). Assuming the canonical emission model of a
deformed NS as in Eq. (2), this implies the existence
of a distance beyond which the required ellipticity to
emit a detectable amplitude would imply a greater
spindown than the one probed by the search, as long
as no processes balancing the rotational energy loss are
in place'. Regions excluded by the spindown limit
correspond to shaded areas in Fig. 12.

Equatorial ellipticity values can be constrained below
€ = 107® for sources in binary systems such as the ones
analyzed by this search located at 1 kpc emitting within
the 150 — 300 Hz band. Constraints below ¢ — 107*
can be set for sources located at 2 kpc emitting within
the 75 — 150 Hz band. These sensitivities approach
the expected allowed maximum ellipticities of relativisitic

1 An accretion-driven torque balance [43] could be subject to
fluctuating accretion [44], leading to long-term phase wandering.
This effect is unlikely to affect a semicoherent search like the one
here reported, but it could have a significant impact during the
follow-up stage, where longer coherence times are used [45, 46].

stars, which range from the order of 1076107 to values
around 105 for more exotic equations of state [47].

Future enhancements of the terrestrial gravitational
wave detector network will improve our sensitivity to
fainter gravitational wave signals, providing a valuable
tool to prospect the expected population of galactic NSs
in binary systems [48-52].
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Appendix A: Frequency bands containing outliers

We provide a list of frequency bands in which outliers
surviving the follow up were found. These outliers were
discarded due to their inconsistent behavior with respect
to an astrophysical signal, as discussed in Sec. VII.
Table VIII lists frequency bands where line-crossing
outliers were found. Table IX corresponds to frequency
bands presenting outliers discarded by the detector
consistency veto. In both tables, overlapping frequency
bands are merged together for the sake of compactness.

14



15

Min. frequency [Hz] Max. frequency [Hz| First timestamp [GPS] Last timestamp [GPS| Duration [days| Detector Listed

55.605
57.588
59.501
62.474
64.257
64.284
64.470
64.403
64.364
64.415
70.124
80.067
83.307
83.446
85.712
85.964
99.966
107.113
140.253
151.800
199.946
213.301

55.606
57.592
59.513
62.478
64.266
64.291
64.475
64.408
64.375
64.417
70.128
80.070
83.316
83.448
85.715
85.965
99.979
107.119
140.254
151.800
199.955
213.301

1239194624
1243670016
1238290944
1244523008
1241190400
1238955520
1239557632
1240341504
1238529536
1239375872
1238408192
1238351360
1238351360
1238831616
1239194624
1239738880
1238290944
1241129984
1238955520
1253105152
1242149888
1242339840

1253831680
1253770240
1253831680
1251895296
1252681728
1253831680
1253770240
1253588992
1253831680
1253831680
1245484544
1238351360
1253831680
1253831680
1253831680
1253165568
1253831680
1253709824
1245424128
1253105152
1253770240
1242339840

169
116
179
85
133
172
164
153
177
167
81
0
179
173
169
155
179
145
74
0
134
0

H1
H1
H1
H1
H1
H1
H1
Hi1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
L1

Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

TABLE VIII. Frequency bands containing line-crossing outliers. As described in Sec. VIIC 1, these could be produced because
of the presence of a transient instrumental artifact or the frequency evolution of a candidate drifting away from the spectral
disturbance. Overlapping frequency bands were grouped together for the sake of simplicity. Outliers belonging to this category
show at least one per-segment F-statistic value greater than 100. Timestamps refer to the first and last coherent segments
(Teon ~ 17h) for which at least one of those candidates showed an F-statistic value over 50. The last column relates these
bands to the list of unidentified lines [31].

Min. frequency [Hz] Max. frequency [Hz| Listed

53.709
55.603
57.583
62.823
64.400
83.442
85.815

53.721
55.609
57.600
62.828
64.411
83.453
85.824

No
Yes
Yes
Yes
Yes
Yes
No

TABLE IX. Frequency bands containing outliers discarded by the detector consistency veto as described in Sec. VIIC 2.
Overlapping frequency bands were grouped together for the sake of simplicity. The last column relates these bands to the list
of unidentified lines of the H1 detector [31].
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