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Multilinear Compressive Sensing and an Application to Convolutional Linear
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Abstract. We study a deep linear network endowed with the following structure: A matrix X is obtained
by multiplying K matrices (called factors and corresponding to the action of the layers). The
action of each layer (i.e., factor) is obtained by applying a fixed linear operator to a vector of
parameters satisfying a constraint. The number of layers is not limited. Assuming that X is given
and factors have been estimated, the error between the product of the estimated factors and X (i.e.,
the reconstruction error) is either the statistical or the empirical risk. We provide necessary and
sufficient conditions on the network topology under which a stability property holds. The stability
property requires that the error on the parameters defining the near-optimal factors scales linearly
with the reconstruction error (i.e., the risk). Therefore, under these conditions on the network
topology, any successful learning task leads to stably defined features that can be interpreted. In
order to do so, we first evaluate how the Segre embedding and its inverse distort distances. Then we
show that any deep structured linear network can be cast as a generic multilinear problem that uses
the Segre embedding. This is the tensorial lifting. Using the tensorial lifting, we provide a necessary
and sufficient condition for the identifiability of the factors up to a scale rearrangement. We finally
provide a necessary and sufficient condition called the deep-Null Space Property (because of the
analogy with the usual Null Space Property in the compressed sensing framework) which guarantees
that the stability property holds. We illustrate the theory with a practical example where the deep
structured linear network is a convolutional linear network. We obtain a condition on the scattering
of the supports which is strong but not empty. A simple test on the network topology can be
implemented to test whether the condition holds.
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networks
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1. Introduction.

1.1. The aim of the paper. Deep learning has led to many practical breakthroughs and
to significant improvements and state-of-the-art performances in many fields such as computer
vision, natural language processing, signal processing, robotics, etc. The range of applications
grows at a strong pace. Despite these empirical successes, the theory supporting deep learning
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MULTILINEAR COMPRESSIVE SENSING 447

is still far from satisfactory. For instance, sharp and accurate answers to the most natural
questions on (i) the efficiency of optimization algorithms when applied to the objective function
minimized in deep learning [55, 37, 22, 23, 69, 10, 11, 44, 80]; (ii) the expressiveness of the
networks [12, 3, 31, 26, 45, 27, 64, 77]; and (iii) guarantees on the statistical risk [42, 34, 81, 70]
for learned neural networks are still missing. This makes it difficult to optimize and configure
neural networks. Moreover, the absence of answers to these questions prevents certification
that systems built with deep learning algorithms are robust.

The reasons explaining the outcome of a neural network are often difficult to highlight
[8, 63, 41]. Even worse, despite the settings described in [6, 4, 14, 53, 72, 84], the instability
of the parameters optimizing the deep learning objective does not allow the interpretation of
the features defined by these parameters. This last problem is the one we investigate in this
work.

Our goal in this paper is to evaluate how far the architectures used in applications are
from architectures for which we can guarantee that the parameters returned by the algorithm,
and therefore the features defined using these parameters, are stably defined. To do so, we
consider two families of networks and establish necessary and sufficient conditions on their
topology guaranteeing that the features learned by the algorithm are stably defined.

More precisely, we establish statements of the following form for two families of deep
networks. Below, the action of the network parameterized by h is denoted fh.

Informal Theorem 1.1 (stability guarantee). We assume a known parameterized family of
functions fh and a metric1 d between parameter pairs. We establish a necessary and sufficient
condition on the family fh guaranteeing the following:

There exists a constant C > 0 such that for any input/output pairs I, X and any pair of
parameters h\ast , h for which

\delta = \| X  - fh\ast (I)\| 
and

\eta = \| X  - fh(I)\| 
are sufficiently small, we have

(1.1) d(h, h\ast ) \leq C(\delta + \eta ).

Considering a regression problem, the values \delta and \eta can be interpreted as the statistical
or the empirical risk for the parameters h and h\ast . Inequality (1.1) therefore guarantees that
the set made of the parameters leading to a small risk has a small diameter. The features
defined using such parameters are therefore stably defined. This seems to be the minimal
condition allowing the interpretation of the features. The condition on the family of functions
fh is typically a condition on the topology of the network.

In Informal Theorem 1.1, h and h\ast might have different roles. For instance, if we know
that the input/output pairs have been generated using a particular h, possibly up to some
error as modeled by \delta , then (1.1) guarantees that h\ast is close to h and provides a way to control
the statistical risk.

1The metric takes into account interlayer rescaling.
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448 FRANÇOIS MALGOUYRES AND JOSEPH LANDSBERG

The existing stability guarantees [6, 4, 14, 53, 72, 84, 60] consider this setting and describe
both a network topology and an algorithm whose output h\ast is guaranteed to be close to h. In
this study, we do not make any assumption on the construction of h and h\ast , and our objective
is more modest. With regard to their objective, giving a necessary and sufficient condition
of stability plays the same role as a complexity theory statement saying that a particular
configuration is NP-hard. It rules out some network topologies.

Notice that when I and X are such that it is possible to have \delta = \eta = 0, the above
stability guarantee implies that the minimizer of the network objective function is unique.
Theorems 6.4 and 6.5 will show that this uniqueness condition is strongly related to the level
of overspecification of the network. The simplified and intuitive statement is that optimal so-
lutions of overspecified networks are not unique and are unstable. This explains the instability
observed in applications. The theorems analyze this property in detail. This might be viewed
as a negative result since overspecification is currently the main hypothesis of statements
guaranteeing the success of the neural network optimization.

1.2. The considered deep networks.

1.2.1. Overview. We consider two kinds of deep networks: a general family of deep struc-
tured linear networks2 in sections 6 and 7, and a family of convolutional linear networks in
section 8. The formal statements for the deep structured linear networks are in Theorems 7.2
and 7.3. The statements for convolutional linear networks are in Theorem 8.4. Below, we
describe the deep structured linear networks.

1.2.2. Deep structured linear networks. The term deep linear network usually corre-
sponds to fully connected feed-forward networks, without bias, in which the activation func-
tion is the identity. In the general results described in this paper we consider deep linear
networks and provide two means to enforce some structure to the network. As we describe
below, the structures can be used to include feed-forward linear networks; convolutional linear
networks (as is done in section 8); the action of a ReLU activation function; sparse networks;
nonnegative networks; and combinations of the above. The family also includes most matrix
factorization problems.

We model a deep structured linear network as a product of matrices called factors. The
factors depend linearly on parameters in R

S for S \in N.
More precisely, consider an arbitrary depth parameter K \geq 1. The number of layers is

K+1, and the layers are enumerated in such a way that the layer receiving the input is K+1
and the layer returning the output is 1. We consider sizes m1 . . .mK+1 \in N, writing m1 = m,
mK+1 = n. We consider, for k = 1, . . . ,K, the linear map

(1.2)
Mk : RS  - \rightarrow R

mk\times mk+1

h \mapsto  - \rightarrow Mk(h).

Given some parameters, h1, . . . , hK \in R
S , the action of the deep structured linear network is

2We call this family deep structured linear networks because the family is endowed with tools to impose
structures. We analyze the impact of the structure on the stability property. However, these tools might be
used to define the usual deep linear network.
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MULTILINEAR COMPRESSIVE SENSING 449

the product
M1(h1) \cdot \cdot \cdot MK(hK).

The factor MK(hK) might involve the inputs of the samples by considering MK(hK) =
M \prime 

K(hK)I for a linear map M \prime 
K and for a matrix I whose columns contain the inputs. Given

outputs X \in R
m\times n, the optimization of the parameters h1, . . . , hK defining the network aims

at getting
M1(h1) \cdot \cdot \cdot MK(hK) \simeq X.

To model feed-forward linear networks, the mappings Mk, k = 1, . . . ,K  - 1 (and M \prime 
K)

construct the matrix by placing the entry of hk corresponding to an edge in the network in
the corresponding entry in Mk(hk).

For convolutional layers, Mk and M \prime 
K concatenate convolution matrices3 defined by a

portion of the entries in hk. Each convolution matrix is at the location corresponding to a
prescribed edge.

The main argument for studying deep structured linear networks is due to their strong
connection to nonlinear networks that uses the rectified linear unit (ReLU)4 activation func-
tion. We explain it in detail. The action of the ReLU activation function at the layer k treats
every entry independently of the other entries and multiplies it by either 1 (the entry is kept)
or 0 (the entry is canceled). More precisely, denoting h = (hk)k=1,...,K , the action of the ReLU
activation function on the layer k is to apply the map Ak : Rmk\times n \mapsto  - \rightarrow R

mk\times n (where mk \times n
is the size data in the layer k) such that

(AkM)i,j = ak(h)i,jMi,j for (i, j) \in \{ 1, . . . ,mk\} \times \{ 1, . . . , n\} ,

where ak(h) \in \{ 0, 1\} mk\times n is defined by

ak(h)i,j =

\Biggl\{ 
1 if

\Bigl( 
Mk+1(hk+1)Ak+1Mk+2(hk+2) \cdot \cdot \cdot AK - 1MK(hK)

\Bigr) 
i,j

\geq 0,

0 otherwise.

The function

ak : RS\times K  - \rightarrow \{ 0, 1\} mk\times n

h \mapsto  - \rightarrow ak(h)

is piecewise constant because \{ 0, 1\} mk\times n is finite. (This has already been used in [69].) As a
consequence, the parameter space R

S\times K is partitioned into subsets such that on every subset
ak is constant for all k = 1, . . . ,K. Therefore, on every subset the action of the nonlinear
network coincides with the action of a deep structured linear network that groups at every
layer Ak and Mk+1. Further, the landscape of the objective function of the nonlinear neural
network that uses ReLU coincides, on every part of the partition, with the landscape of a deep
structured linear network. This is a strong argument in favor of the study of deep structured
linear networks.

3Depending on the situation: Toeplitz, block-Toeplitz, circulant, or block-circulant matrices. The matrices
often involve downsampling.

4ReLU is the most common activation function.
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450 FRANÇOIS MALGOUYRES AND JOSEPH LANDSBERG

Notice that deep structured linear networks have also been obtained in [22, 23, 44] by
modeling the action of the activation function as random, independent of the input and
when considering the expectation of the network action. However, these assumptions are not
satisfied by the deep networks used in applications (see [23]), and it is not clear that this link
can be exploited to obtain theoretical guarantees for realistic deep networks.

In addition to the structure induced by the operators Mk, we also consider a structure
imposed on the vectors h. We assume that we know a collection of models \scrM = (\scrM L)L\in N
with the property that for every L, \scrM L \subset R

S\times K is a given subset. We will assume that the
parameters h \in R

S\times K defining the factors are such that there exists L \in N such that h \in \scrM L.
For instance, the constraint h \in \scrM L might be used to impose sparsity, grouped sparsity, or
cosparsity. One might also use the constraint h \in \scrM L to impose nonnegativity, orthogonality,
equality, compactness, etc. Generally speaking \scrM is used to impose some prior or some form
of regularity or to compress the parameter space and obtain better bounds [7]. The models
might also be used to alleviate ambiguities. For instance, if the operators Mk and Mk+1 allow
permutations (i.e., there exist (hk, hk+1) \not = (gk, gk+1) and a permutation matrix C such that
Mk(hk) = Mk(gk)C and Mk+1(hk+1) = C - 1Mk+1(gk+1)), we can use a complete ordering of
the parameter space R

K\times S and impose, using \scrM , the largest of all the equivalent versions of
parameters to be considered.

1.3. Bibliography.

1.3.1. Other matrix factorization and compressed sensing. The content of this paper is
strongly related to and can be considered as an extension of the research field usually named
compressed sensing. Because of the importance of this field of research and to simplify the
reading for readers whose main interest is in deep learning, we have separated this part of the
bibliography and placed it in section 2. Notice that the statement of Informal Theorem 1.1 can
be interpreted in the context of signal recovery. In particular, the results on deep structured
linear networks can probably be specialized to be applicable to matrix factorization problems
for which stability properties have not been established [78, 20, 21, 59, 58, 46, 56]. We have
not investigated this potential.

1.3.2. Tensors and deep networks. The analysis conducted in this paper is based on
a connection, named tensorial lifting, between deep structured linear networks and a tensor
problem (see section 5). The tensorial lifting has already been described in [60], but other
connections between tensor and network problems have been described by other authors. In
particular, in [26, 27, 45], the authors define a score function using a tensor. They highlight a
network topology that computes the score function defined by a tensor decomposable using a
CP-decomposition, a Hierarchical Tucker [26, 27], or a tensor train decomposition[45]. They
then deduce the expressive power of the network topology from the connections between the
tensor decompositions. These results highlight and analyze why deep networks are more ex-
pressive than shallow ones. Tensors and tensor decomposition have also been used to represent
the cross-moment and construct a solver [42], encode the convolution layers with a tensor of
order 4, and manipulate this tensor to improve the network [49, 66, 83] to represent a tensor
layer [74, 82].
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MULTILINEAR COMPRESSIVE SENSING 451

1.3.3. Stability property for neural networks. To the best of our knowledge, the articles
establishing stability properties are [4, 14, 53, 72, 84, 60].

Among them, [14, 53, 84] consider a family of networks of depth 1 or 2 (depending on
the article, the definition of the depth may vary). The article [72] contains a study on deep
networks (the depth can be large), but the study only focuses on the recovery of one layer.
The articles [4, 60] consider networks without depth limitation.

In [14], the authors consider the minimization of the statistical risk (not the empirical
risk). The input is assumed Gaussian and the output is generated by a network involving one
linear layer followed by ReLU and a mean. The number of intermediate nodes is smaller than
the input size. They provide conditions guaranteeing that, with high probability, a randomly
initialized gradient descent algorithm converges to the true parameters. The authors of [53]
consider a feed-forward network made of one unknown linear layer, followed by ReLU and a
sum. The size of the intermediate layer equals the size of the data, the size of the output is
1. Again, they assume Gaussian input data and consider the minimization of the risk (not
the empirical risk). They show that the stochastic gradient descent converges to the true
solution. In [84], the authors consider a nonlinear layer followed by a linear layer. The size
of the intermediate layer is smaller than the size of the input, and the size of the output is 1.
They describe an initialization algorithm based on a tensor decomposition such that with
high probability, the gradient algorithm minimizing the empirical risk converges to the true
parameters that generated the data.

The authors of [72] consider a feed-forward neural network and show that if the input
is Gaussian or its distribution is known, a method based on moments and sparse dictionary
learning can retrieve the parameters defining the first layer. Nothing is said about the stability
or the estimation of the other layers.

The authors of [4] consider deep feed-forward networks which are very sparse and randomly
generated. They show that they can be learned with high probability one layer after another.
However, very sparse and randomly generated networks are not used in practice, and one
might want to study more versatile structures. The article [60] studies deep structured linear
networks (without the models \scrM ) and uses the same tensorial lifting we use here. However,
in [60] the function d measuring the error between parameters is only defined using the \ell \infty 

norm and is not a metric. The transversality condition of [60] is sufficient to guarantee the
stability but is not necessary. All these weaknesses are corrected in this extended version.
The general result is also specialized to deep convolutional linear networks.

1.4. Organization of the paper. Because it is strongly related, we give an extensive
bibliography on compressive sensing and stable recovery properties for matrix factorization
problems in section 2. We describe the framework of the paper and our notations in section 3.

The following are the main contributions of this paper:
\bullet In section 4, we investigate and recall several results on tensors, tensor rank, and
the Segre embedding. In particular, we investigate how the Segre embedding distorts
distances.

\bullet In section 5, we describe the tensorial lifting. It expresses any deep structured linear
networks in a generic multilinear format. The latter composes a linear lifting operator
and the Segre embedding.
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452 FRANÇOIS MALGOUYRES AND JOSEPH LANDSBERG

\bullet When \delta = \eta = 0 (see section 6):
– We establish a simple geometric condition on the intersection of two sets which

is necessary and sufficient to guarantee the identifiability of the parameters up to
scale ambiguity (Proposition 6.3).

– We provide simpler conditions which involve the rank of the lifting operator (de-
fined in section 5) such that we have the following:
\ast Underspecified case: If the lifting operator rank is large (e.g., larger than
2K(S  - 1) + 2, when \scrM = R

S\times K) and the lifting operator is random, for
almost every lifting operator, the solution of

M1(h1) \cdot \cdot \cdot MK(hK) = X

is identifiable (Theorem 6.4).
\ast Overspecified case: If the lifting operator rank is small (e.g., smaller than
2S  - 1, when \scrM = R

S\times K), the solution of

M1(h1) \cdot \cdot \cdot MK(hK) = X

is not identifiable (Theorem 6.5).
– We also provide a simple algorithm to compute the rank of the lifting operator

(Proposition 5.3).
\bullet Stability guarantee statements for deep structured linear networks are in section 7:

– We define the deep-Null Space Property (Definition 7.1): a generalization of the
usual Null Space Property [25] that also applies to the deep problems.

– We establish that the deep-Null Space Property is a necessary and sufficient con-
dition to guarantee stability (see the informal statement above or Theorems 7.2
and 7.3).

\bullet We specialize the results to convolutional linear networks in section 8 and establish
a simple condition that can be computed (see Algorithm 8.1). The is such that (see
Theorem 8.4)
– if the condition is satisfied, the convolutional linear networks can be stably recov-

ered;
– if the condition is not satisfied, the convolutional linear network is not identifiable.

In simple words, the condition holds when the supports of the convolution kernels
are sufficiently scattered. This is not satisfied by the convolutional kernel used in
applications and explains their instability.

Because of space constraints, all the proofs are provided as a supplementary material or
in the public archive [61].

2. Bibliography on matrix factorization and compressed sensing. Before describing the
bibliography on compressed sensing, we interpret this stability statement of Informal Theo-
rem 1.1 in the context of signal processing. In signal processing, we usually know that h exists
and \delta represents the sum of a modeling error and noise. Inequality (1.1) guarantees that when
the condition is satisfied, even an approximative minimizer of

(2.1) argminL\in N,(hk)k=1..K\in \scrM L \| M1(h1) \cdot \cdot \cdot MK(hK) - X\| 2D
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MULTILINEAR COMPRESSIVE SENSING 453

leads to a solution h\ast close h. This property is often named the stable recovery guarantee.
When \delta = 0 (i.e., the data exactly fits the model and is not noisy) and \eta = 0 (i.e., (2.1)

is perfectly solved) this is an identifiability guarantee. This is a necessary condition of stable
recovery.

In this section, we distinguish the cases K = 1, K = 2, and K \geq 3.

2.1. K = 1: Linear inverse problems. The simplest version consists of a model with one
layer (i.e., K = 1) and \scrM = R

S\times K . Recovering h1 from X is a linear inverse problem. The
data X can be vectorized to form a column vector, and the operator M1 simply multiplies the
column vector h1 by a fixed (rectangular) matrix. Typically, when the linear inverse problem
is overdetermined, the latter matrix has more rows than columns, the uniqueness of a solution
to (2.1) depends on the column rank of the matrix, and the stable recovery constant depends
on the smallest singular value of M1.

When the matrix is not full column rank, the identifiability and stable recovery for this
problem has been intensively studied for many constraints \scrM . In particular, for sparsity con-
straints this is the compressed/compressive sensing problem (see the seminal articles [15, 30]).
Some compressed sensing statements (especially the ones guaranteeing that any minimizer
of the \ell 0 problem stably recovers the unknown problem) are special cases (K = 1) of the
statements provided in this paper. We will not give a complete review on compressed sensing
but would like to highlight the Null Space Property described in [25]. The fundamental limits
of compressed sensing (for a solution of the \ell 0 problem) have been analyzed in detail in [13].

Although the main novelty of the paper is to investigate stable recovery properties for any
K \geq 1, we specialize the statements made for K \geq 1 to the case K = 1 in order to illustrate
the new statements and to provide a way of comparison with well-known results.

2.2. K = 2: Bilinear inverse problems and bilinear parameterizations. When k \geq 2,
the problem becomes nonlinear because of the product in (2.1). This significantly complicates
the analysis. What follows are the main instances studied in the literature when K = 2.

Nonnegative matrix factorization and low rank prior. In nonnegative matrix factorization
(NMF) [50], M1 and M2 map the entries in h1 and h2 at prescribed locations in the factors
(say, one column after another). The constraints \scrM imposes that all the entries in h1 and h2
are nonnegative. The NMF has been widely used for many applications.

Conditions guaranteeing that the factors provided by the NMF identify5 the correct factors
(up to rescaling and permutation) were first established in the pioneering work [29]. To the
best of our knowledge, this is the first paper addressing recovery guarantees for a problem
of depth K = 2. It emphasizes a separability condition that guarantees identifiability. The
proof is purely geometric and relies on the analysis of inclusions of simplicial cones. This
result is significantly extended in [48]. In this paper, the continuity of the NMF estimator is
established. Concerning computational aspects, NMF is NP-complete [79]. However, under
the separability hypothesis of [29], the solution of the NMF problem can be computed in
polynomial time [5].

5Stable recovery is not established.
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454 FRANÇOIS MALGOUYRES AND JOSEPH LANDSBERG

We can slightly generalize6 the problem and introduce a linear degradation operator

H : Rm\times n  - \rightarrow R
m\times n.

Use the same mapping M1 and M2 as for the NMF, with \scrM = R
S\times K , but with a small

number of lines (resp., columns) in M2(h2) (resp., M1(h1)). Any solution of the problem

(h\ast 1, h
\ast 
2) \in argmin(h1,h2)\in RS\times K \| H(M1(h1)M2(h2)) - X\| 2

leads to a low rank approximation M1(h
\ast 
1)M2(h

\ast 
2) of an inverse of H at X. Again, a large

corpus of literature exists on the low rank prior [67, 17, 32, 19].

Phase retrieval. Phase retrieval fits the framework described in the present paper when we
take

M1(h1) = diag (\scrF h1) , M2(h2) = (\scrF h2)
\ast ,

and
\scrM = \{ (h, h) \in R

S\times K | h \in R
S\} ,

where S is the size of the signal, \scrF computes N linear measurements of any element in R
S

(typically Fourier measurements), diag (.) creates an N \times N diagonal matrix whose diagonal
contains the input, and \ast is the (entrywise) complex conjugate.

The tensorial lifting at the core of the present paper generalizes the lifting used in the
inspiring work on PhaseLift [52, 18, 16]. As is often the case when K = 2, PhaseLift is a
semidefinite program that can be efficiently solved when the unknown is of moderate size.
These papers also provide conditions on the measurements guaranteeing that the phases are
stably recovered by PhaseLift.

The benefit of the generalization introduced with the tensorial lifting is that it applies to
any multilinear inverse problem.

Self-calibration and demixing. Measuring operators often depend linearly on parameters
that are not perfectly known. The estimation of these parameters is crucial to restoring the
data measured by the device. This is the self-calibration problem. This naturally fits the
setting of this article: We let h1 be the parameters defining the sensing matrix and M1(h1)
be the sensing matrix. Then h2 defines the signal (or signals) contained in the column(s) of
M2(h2).

Many instances of this problem have been studied and much progress has been made to
obtain algorithms that can be applied to problems of larger and larger size. This leads to a
very interesting line of research.

To the best of our knowledge, the first stable recovery statements concern the blind-
deconvolution problem. In [2], the authors use a lifting to transform the blind-deconvolution
problem into a semidefinite program with an unknown whose size is the product of the sizes7

of h1 and h2. Such problems can be solved for unknowns of moderate size. The authors of
[2] provide explicit conditions guaranteeing the stable recovery with high probability. This

6The interested readers can check that this generalization only leads to a small change of the lifting operator
introduced in section 5. It is therefore done at no cost.

7With our notation this is simply S \times S, but this can be much more favorable.
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MULTILINEAR COMPRESSIVE SENSING 455

idea has been generalized and applied to other similar problems in [24, 9]. The authors of
[54] consider a significantly more general calibration model. In this model, M1(h1) is diagonal
and its diagonal contains the entries of h1. M2(h2) simply multiplies h2 by a fixed known
matrix (the theorems consider a random matrix). The constraint imposes h2 to be sparse. For
this problem, they prove that with high probability the numerical method called SparseLift
is stable with a controlled accuracy. SparseLift returns the left and right singular vectors of
the solutions of an \ell 1 optimization problem whose unknown is the same as in [2]. However,
solving an \ell 1 minimization problem is much simpler than a semidefinite problem. This is a
very significant practical improvement.

As emphasized in [51], in order to motivate its nonconvex approach, the only drawback
of the numerical methods described in [2, 54] is their complexity. The extra complexity is
due to the fact that they optimize a variable in the product space R

S\times S and then deduce
an approximate solution of the unlifted problem. This is what motivates the authors of [51]
to propose a nonconvex approach. The constructed algorithm provably stably recovers the
sensing parameters and the signals with a geometric convergence rate.

Sparse coding and dictionary learning. Sparse coding and dictionary learning is another kind
of bilinear problem (see [68] for an overview). In that framework, the columns of X contain
the data. Most often, people consider two layers: K = 2. The layer M1(h1) is an optimized
dictionary of atoms defined by the parameters h1, and each column of M2(h2) contains the
code (or coordinates) of the corresponding column in X. Most often, h2 is assumed sparse.

The identifiability and stable recovery of the factors has been studied in many dictionary
learning contexts and provides guarantees on the approximate recovery of both an incoherent
dictionary and sparse coefficients when the number of samples is sufficiently large (i.e., in our
setting when n is large). In [36], the authors developed local optimality conditions in the
noiseless case, as well as sample complexity bounds for local recovery when M1(h1) is square
and M2(h2) are i.i.d. Bernoulli-Gaussian. This was extended to overcomplete dictionaries in
[33] (see also [71] for tight frames) and to the noisy case in [43]. The authors of [75] provide ex-
act recovery results for dictionary learning when the coefficient matrix has Bernoulli–Gaussian
entries and the dictionary matrix has full column rank. This was extended to overcomplete
dictionaries in [1] and in [6] but only for approximate recovery. Finally, [35] provides such
guarantees under general conditions which cover many practical settings.

Contributions in these frameworks. The present article considers the identifiability and
stability of the recovery for any K \geq 1 in a general and unifying framework. As was already
mentioned, we do not investigate computational issues. As will appear later in the paper,
the analogue of the lifting at the core of the algorithms described in the above papers (in
particular the papers on phase retrieval and self-calibration) is a tensorial lifting (see section 5)
and involves tensors that cannot be manipulated in practice. Even when we are able to
manipulate the tensors, the computation of the best rank 1 approximation of such tensors
is an open nonconvex problem. Therefore, there is no numerically efficient and reliable way
to extract the unlifted parameters from an optimized tensor. Because of that, we have not
yet pursued the construction of a numerical scheme based on the tensorial lifting when K \geq 
3. As was already mentioned, as of this writing, the success of algorithms for K \geq 3 is
mostly supported by empirical evidence. Proving their efficiency is a wide open problem (see
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456 FRANÇOIS MALGOUYRES AND JOSEPH LANDSBERG

[55, 37, 22, 23, 69, 10, 11, 44, 80]). The purpose of the paper is to provide guarantees on the
stability of the solution when such an empirical success occurs.

The specialization of the presented results to problems with K = 2 leads to necessary and
sufficient conditions for the stable recovery. This is slightly different from the usual approach.
Usually, authors provide sufficient conditions and argue their sharpness by comparing the
number of samples required by their method and the information theoretic limit (typically,
the number of independent variables of the problem).

It would of course be interesting to see how far it is possible to unify the different problems
with K = 2 using the framework of this paper. We have not, however, pursued this route and
instead focus on the situation K \geq 3.

2.3. K ≥ 3. The difficulties, when K \geq 3, come from the fact that tools used for
problems with K = 2 are not applicable. In particular, we cannot use the usual lifting, the
singular value decomposition, or the sin-\theta theorem in [28]. Often, these tools are replaced by
analogous objects involving tensors. This complicates the analysis and prohibits the use of
numerical schemes that manipulate lifted variables.

To the best of our knowledge, little is known concerning the identifiability and the stability
of matrix factorization when K \geq 3. The uniqueness of the factorization corresponding to
the fast Fourier transform was proved in [57]. Other results consider the identifiability of the
factors which are sparse and random [65]. The authors of the present paper have announced
preliminary versions of the results described here in [60]. They are significantly extended here.

3. Notation and summary of the hypotheses. We continue to use the notation intro-
duced in the introduction. For an integer k \in N, set [k] = \{ 1, . . . , k\} .

We consider K \geq 1 and S \geq 2 and real-valued tensors of order K whose axes are of size
S, denoted T \in R

S\times \cdot \cdot \cdot \times S . The space of tensors is abbreviated R
SK

. The entries of T are
denoted Ti1,...,iK , where (i1, . . . , iK) \in [S]K . For i \in [S]K , the entries of i are i = (i1, . . . , iK)
(for j \in [S]K we let j = (j1, . . . , jK), etc). We either write Ti or Ti1,...,iK .

To simplify notation, from now on, the parameters defining the factors are gathered in
a single matrix and are denoted with bold fonts, h \in R

S\times K . The kth vector containing the
parameters for the layer k is denoted hk \in R

S . The ith entry of the kth vector is denoted
hk,i \in R. A vector not related to an element in R

S\times K is denoted h \in R
S (i.e., using a light

font). Throughout the paper we assume

\scrM = (\scrM L)L\in N, with \scrM L \subset R
S\times K .

We also assume that, for all L \in N, \scrM L \not = \emptyset . They can, however, be equal or constant after
a given L\prime .

All the vector spaces RSK

, RS\times K , RS etc., are equipped with the usual Euclidean norm.
This norm is denoted \| .\| and the scalar product \langle ., .\rangle . In the particular case of matrices, \| .\| 
corresponds to the Frobenius norm. We also use the usual p norm, for p \in [1,\infty ], and denote

it by \| .\| p. In particular, for h \in R
S\times K and T \in R

SK

, we have for p < +\infty 

\| h\| p =
\Biggl( 

K\sum 

k=1

S\sum 

i=1

| hk,i| p
\Biggr) 1/p

, \| T\| p =

\left( 
 \sum 

i\in [S]K
| Ti| p

\right) 
 

1/p
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MULTILINEAR COMPRESSIVE SENSING 457

and
\| h\| \infty = max

k\in [K]
i\in [S]

| hk,i| , \| T\| \infty = max
i\in [S]K

| Ti| .

Set

(3.1) R
S\times K
\ast = \{ h \in R

S\times K | \forall k \in [K], \| hk\| \not = 0\} .

Define an equivalence relation on R
S\times K
\ast : For any h, g \in R

S\times K , h \sim g if and only if there
exist (\lambda k)k\in [K] \in R

K such that

(3.2)

K\prod 

k=1

\lambda k = 1 and hk = \lambda kgk \forall k \in [K].

Denote the equivalence class of h \in R
S\times K
\ast by \langle h\rangle .

The zero tensor is of rank 0. A nonzero tensor T \in R
SK

is of rank 1 (or decomposable)
if and only if there exists h \in R

S\times K
\ast such that T is the outer product of the vectors hk for

k \in [K]. That is, for any i \in [S]K ,

Ti = h1,i1 \cdot \cdot \cdot hK,iK .

Let Σ1 \subset R
SK

denote the set of tensors of rank 0 or 1.
The rank of a tensor T \in R

SK

is

rk (T ) = min\{ r \in N | there exists T1, . . . , Tr \in Σ1 such that T = T1 + \cdot \cdot \cdot + Tr\} .

For r \in N, let
Σr = \{ T \in R

SK | rk (T ) \leq r\} .
The \ast superscript refers to optimal solutions. A set with a \ast subscript means that 0 is

ruled out of the set. In particular, Σ1,\ast denotes the nonzero tensors of rank 1. Attention
should be paid to R

S\times K
\ast (see (3.1)).

4. Facts on the Segre embedding and tensors of rank 1 and 2. Parameterize Σ1 \subset R
SK

by the map

(4.1)
P : RS\times K  - \rightarrow Σ1 \subset R

SK

h \mapsto  - \rightarrow (h1,i1h2,i2 \cdot \cdot \cdot hK,iK )i\in [S]K .

The map P is called the Segre embedding and is often denoted \widehat Seg in the algebraic
geometry literature.

Standard Facts.
1. Identifiability of \langle h\rangle from P (h): For h and g \in R

S\times K
\ast , P (h) = P (g) if and only if

\langle h\rangle = \langle g\rangle .
2. Geometrical description of Σ1,\ast : Σ1,\ast is a smooth (i.e., C\infty ) manifold of dimension

K(S  - 1) + 1 (see, e.g., [47, Chapter 4, p. 103]).
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3. Geometrical description of Σ2: We recall that the singular locus (Σ2)sing of the closure
Σ2 of Σ2 has dimension strictly less than that of Σ2 and that Σ2\setminus (Σ2)sing is a smooth
manifold. The dimension of Σ2\setminus (Σ2)sing is 2K(S - 1)+2 when K > 2, and is 4(S - 1)
when K = 2 (see, e.g., [47, Chapter 5]).

We can improve Standard Fact 1 and obtain a stability result guaranteeing that if we
know a rank 1 tensor sufficiently close to P (h), we approximately know \langle h\rangle . In order to state
this, we need to define a metric on R

S\times K
\ast / \sim (where \sim is defined by (3.2)). This has to be

considered with care since, whatever h \in R
S\times K
\ast , the subset \{ h | h \in \langle h\rangle \} is not compact. In

particular, considering

h\prime 
k =

\Biggl\{ 
\lambda hk if k = 1,

\lambda  - 1
K - 1 hk otherwise,

when \lambda goes to infinity, we easily construct examples that make the standard metric on
equivalence classes useless.8

This leads us to consider

R
S\times K
diag

= \{ h \in R
S\times K
\ast | \forall k \in [K], \| hk\| \infty = \| h1\| \infty \} .

The interest in this set comes from the fact that, whatever h \in R
S\times K
\ast , the set \langle h\rangle \cap R

S\times K
diag is

finite. Indeed, if g \in \langle h\rangle \cap R
S\times K
diag , then (\lambda k)k\in [K] \in R

K such that, for all k \in [K], hk = \lambda kgk
must all satisfy | \lambda k| = 1, i.e., \lambda k = \pm 1.

Definition 4.1. For any p \in [1,\infty ], we define the mapping dp : (R
S\times K
\ast / \sim \times R

S\times K
\ast / \sim ) \rightarrow R

by

dp(\langle h\rangle , \langle g\rangle ) = inf
h\prime \in \langle h\rangle \cap RS\times K

diag

g\prime \in \langle g\rangle \cap RS\times K
diag

\| h\prime  - g\prime \| p \forall h, g \in R
S\times K
\ast .

Proposition 4.2. For any p \in [1,\infty ], dp is a metric on R
S\times K
\ast / \sim .

The proof is in the supplementary material (subsection SM1.1) and the public archive
[61].

Notice that the equivalence relationship and metric defined above are not adapted to
operators Mk allowing invariance such as permutations. More precisely, for some opera-
tors Mk, there exist h, g, and a permutation matrix C such that (hk,hk+1) \not = (gk,gk+1)
and Mk(hk) = Mk(gk)C and Mk+1(hk+1) = C - 1Mk+1(gk+1). In such a case, we have

8For instance, if h and g \in R
S\times K
\ast are such that h1 = g1, we have

inf
h\prime \in \langle h\rangle ,g\prime \in \langle g\rangle 

\| h\prime  - g
\prime \| p = 0

even though we might have h2 \not = g2 (and therefore \langle h\rangle \not = \langle g\rangle ). This does not define a metric.
Also, when h and g are such that hk \not = gk, whatever k \in [K], we have

sup
h\prime \in \langle h\rangle 

inf
g\prime \in \langle g\rangle 

\| h\prime  - g
\prime \| p = +\infty .

Therefore, the Hausdorff distance between \langle h\rangle and \langle g\rangle is infinite for almost every pair (h,g). This metric is
therefore not very useful in the present context.
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dp(\langle h\rangle , \langle g\rangle ) \not = 0. However, the features defined at the layer k are just permuted and can
still be interpreted. As already said, in such a case, it is possible to use the models \scrM to
select one of the equally interpretable h.

Using the above metric, we can state that not only is \langle h\rangle uniquely determined by P (h),
but this operation is stable.

Theorem 4.3 (stability of \langle h\rangle from P (h)). Let h and g \in R
S\times K
\ast be such that \| P (g)  - 

P (h)\| \infty \leq 1
2 max (\| P (h)\| \infty , \| P (g)\| \infty ). For all p, q \in [1,\infty ],

(4.2) dp(\langle h\rangle , \langle g\rangle ) \leq 7(KS)
1
p min

\biggl( 
\| P (h)\| 

1
K
 - 1

\infty , \| P (g)\| 
1
K
 - 1

\infty 

\biggr) 
\| P (h) - P (g)\| q.

The proof of the theorem is in the supplementary material (subsection SM1.2) and in
[61].

In the final result, the bound established in Theorem 4.3 plays a role similar to the sin - \theta 
Theorem of [28] in [54, 18, 2].

The following proposition shows that the upper bound in (4.2) cannot be improved by a
significant factor, in particular when q is large.

Proposition 4.4. There exist h and g \in R
S\times K
\ast such that \| P (g)\| \infty \leq \| P (h)\| \infty , \| P (g)  - 

P (h)\| \infty \leq 1
2 \| P (h)\| \infty , and

7(KS)
1
p \| P (h)\| 

1
K
 - 1

\infty \| P (h) - P (g)\| q \leq Cq dp(\langle h\rangle , \langle g\rangle ),

where

Cq =

\Biggl\{ 
28(KS)

1
q if q < +\infty ,

28 if q = +\infty .

The proof of the proposition is in the supplementary material (subsection SM1.3) and in
[61].

As stated in the following theorem, we have a more valuable upper bound in the general
case.

Theorem 4.5 (“Lipschitz continuity” of P ). For any q \in [1,\infty ] and any h and g \in R
S\times K
\ast ,

(4.3) \| P (h) - P (g)\| q \leq S
K - 1

q K
1 - 1

q max

\biggl( 
\| P (h)\| 1 - 

1
K\infty , \| P (g)\| 1 - 

1
K\infty 

\biggr) 
dq(\langle h\rangle , \langle g\rangle ).

The theorem is proved in the supplementary material (subsection SM1.4) and in [61].
Notice that, considering h and g \in R

S\times K such that hk,i = 1 and gk,i = \varepsilon , for all k \in [K]
and i \in [S] and for a 0 < \varepsilon \ll 1, we easily calculate

S
K - 1

q K
1 - 1

q max

\biggl( 
\| P (h)\| 1 - 

1
K\infty , \| P (g)\| 1 - 

1
K\infty 

\biggr) 
dq(\langle h\rangle , \langle g\rangle ) \leq K\| P (h) - P (g)\| q.

As a consequence, the upper bound in Theorem 4.5 is tight up to at most a factor K.
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460 FRANÇOIS MALGOUYRES AND JOSEPH LANDSBERG

5. The tensorial lifting. The following proposition is clear (it can be shown by induction
on K).

Proposition 5.1. Let Mk, k \in [K], be as in (1.2). The entries of the matrix

M1(h1)M2(h2) \cdot \cdot \cdot MK(hK)

are multivariate polynomials whose variables are the entries of h \in R
S\times K . Moreover, every

entry is the sum of monomials of degree K. Each monomial is a constant times h1,i1 \cdot \cdot \cdot hK,iK

for some i \in [S]K .

Notice that any monomial h1,i1 \cdot \cdot \cdot hK,iK is the entry P (h)i in the tensor P (h). Therefore
every polynomial in the previous proposition takes the form

\sum 
i\in [S]K ciP (h)i for some constants

(ci)i\in [S]K independent of h. In words, every entry of the matrix M1(h1)M2(h2) \cdot \cdot \cdot MK(hK)
is obtained by applying a linear form to P (h). Moreover, the polynomial coefficients defining
the linear form are uniquely determined by the linear maps M1, . . . ,MK . This leads to the
following statement.

Corollary 5.2 (tensorial lifting). Let Mk, k \in [K] be as in (1.2). The map

(h1, . . . ,hK) \mapsto  - \rightarrow M1(h1)M2(h2) \cdot \cdot \cdot MK(hK)

uniquely determines a linear map

\scrA : RSK  - \rightarrow R
m\times n,

such that for all h \in R
S\times K

(5.1) M1(h1)M2(h2) \cdot \cdot \cdot MK(hK) = \scrA P (h).

We call (5.1) and its use the tensorial lifting. When K = 1, we simply have \scrA = M1.
When K = 2, it corresponds to the usual lifting already exploited to establish stability results
for phase recovery, blind-deconvolution, self-calibration, sparse coding, etc. Notice that when
K \geq 2, it may be difficult to provide a closed form expression for the operator \scrA . We can,
however, determine simple properties of \scrA . In most reasonable cases, \scrA is sparse. If the
operators Mk simply embed the values of h in a matrix, the matrix representing \scrA only
contains zeros and ones. Since the operators Mk are known, we can compute \scrA P (h), for any
h \in R

S\times K , using (5.1). Said differently, we can compute \scrA for any rank 1 tensor. Therefore,
since \scrA is linear, we can compute \scrA T for any low rank tensor T . If the dimensions of the
problem permit, one can manipulate \scrA in a basis of RSK

.
Since rk (\scrA ) is an important quantity, we emphasize that rk (\scrA ) \leq mn. It is also possible

to compute rk (\scrA ), when mn is not too large, using the following proposition.

Proposition 5.3. For R independent random hr, with r = 1, . . . , R, according to the normal
distribution in R

S\times K , we have with probability 1

(5.2) dim(Span ((\scrA P (hr))r=1,...,R)) =

\biggl\{ 
R if R \leq rk (\scrA ) ,
rk (\scrA ) otherwise.
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MULTILINEAR COMPRESSIVE SENSING 461

The proof is in the supplementary material (subsection SM1.5) and the public archive
[61].

Using Corollary 5.2, when (2.1) has a minimizer, we rewrite it in the form

(5.3) h\ast \in argminL\in N,h\in \scrM L \| \scrA P (h) - X\| 2.

We now decompose this problem into two subproblems: a least-squares problem,

(5.4) T \ast \in argmin
T\in RSK \| \scrA T  - X\| 2,

and a nonconvex problem,

(5.5) h\prime \ast \in argminL\in N,h\in \scrM L \| \scrA (P (h) - T \ast )\| 2.

Proposition 5.4. Let X and \scrA be such that (2.1) has a minimizer:
1. Let h\ast be a solution of (5.3). Then, for any solution T \ast of (5.4), h\ast also minimizes

(5.5).
2. Let T \ast be a solution of (5.4) and h\prime \ast a solution of (5.5). Then h\prime \ast also minimizes

(5.3).

The proof is in the supplementary material (subsection SM1.6) and the public archive
[61].

From now on, because of the equivalence between solutions of (5.5) and (5.3), we stop
using the notation h\prime \ast and write h\ast \in argminL\in N,h\in \scrM L \| \scrA (P (h) - T \ast )\| 2.

6. Identifiability (error-free case). Throughout this section, we assume that X is such

that there exist L and h \in \scrM L such that

(6.1) X = M1(h1) \cdot \cdot \cdot MK(hK).

Under this assumption, X = \scrA P (h), so

P (h) \in argmin
T\in RSK \| \scrA T  - X\| 2.

Moreover, we trivially have P (h) \in Σ1, and therefore h minimizes (5.5), (2.1), and (5.3). As
a consequence, (2.1) has a minimizer.

We ask whether there exist guarantees that the resolution of (2.1) allows one to recover
h up to the usual uncertainties.

In this regard, for any h \in \langle h\rangle , we have P (h) = P (h) and therefore \scrA P (h) = \scrA P (h) = X.
Thus unless we make further assumptions on h, we cannot expect to distinguish any particular
element of \langle h\rangle using only X. In other words, recovering \langle h\rangle is the best we can hope for.

Definition 6.1 (identifiability). We say that \langle h\rangle is identifiable if the elements of \langle h\rangle are the
only solutions of (2.1).

We say that \scrM is identifiable if for every L \in N and every h \in \scrM L, \langle h\rangle is identifiable.

Proposition 6.2 (characterization of the global minimizers). For any L\ast \in N and any h\ast \in 
\scrM L\ast 

, (L\ast ,h\ast ) \in argminL\in N,h\in \scrM \| \scrA P (h) - X\| 2 if and only if

P (h\ast ) \in P (h) + Ker (\scrA ) .
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The proposition is proved in the supplementary material (subsection SM1.7) and in [61].
In order to state the following proposition, we define for any L and L\prime \in N

P (\scrM L) - P (\scrM L\prime 
) :=

\Bigl\{ 
P (h) - P (g) | h \in \scrM L and g \in \scrM L\prime 

\Bigr\} 
\subset R

SK

.

Proposition 6.3 (necessary and sufficient conditions of identifiability).

1. For any L and h \in \scrM L, \langle h\rangle is identifiable if and only if for any L \in N

\bigl( 
P (h) + Ker (\scrA )

\bigr) 
\cap P (\scrM L) \subset \{ P (h)\} .

2. \scrM is identifiable if and only if for any L and L\prime \in N

(6.2) Ker (\scrA ) \cap 
\bigl( 
P (\scrM L) - P (\scrM L\prime 

)
\bigr) 
\subset \{ 0\} .

The proposition is proved in the supplementary material (subsection SM1.8) and in [61].
In the context of the usual compressed sensing (i.e., when K = 1, \scrM contains L-sparse

signals, \scrA is a rectangular matrix with full row rank, and X is a vector), the proposition is
already stated in Lemma 3.1 of [25].

In reasonably small cases and when P (\scrM ) is algebraic, one can use tools from numerical
algebraic geometry such as those described in [39, 40] to check whether condition (6.2) holds
or not. The drawback of Proposition 6.3 is that, given a deep structured linear network as
described by \scrA , condition (6.2) might be difficult to verify.

We therefore establish simpler conditions related to the identifiability of \scrM . First we
establish a condition such that for almost every \scrA satisfying it, \scrM is identifiable. The main
benefit of this condition is that its constituents can be computed in many practical situations.

Before that, we recall a few facts of algebraic geometry: For X,Y \subset R
N , the join of X

and Y (see, e.g., [38, Example 8.1]) is

J(X,Y ) := \{ sx+ ty | x \in X, y \in Y, s, t \in R\} .
If, for all L \in N, \scrM L is Zariski closed and invariant under rescaling (e.g., if they are all linear
spaces), then P (\scrM L) - P (\scrM L\prime 

) is a Zariski open subset of J(P (\scrM L), P (\scrM L\prime 
)). In general,

it is contained in this join.
Recall the following fact (*): for complex algebraic varieties X,Y \subset C

N , any component
Z of X \cap Y has dim (Z) \geq dim (X) + dim (Y )  - N , and equality holds generically (we make
“generically” precise in our context below). Moreover, if X,Y are invariant under rescaling,
since 0 \in X \cap Y , we have X \cap Y \not = \emptyset . (See, e.g., [73, section I.6.2].)

This intersection result indicates that if there exists L,L\prime such that

rk(\scrA ) < dim
\Bigl( 
P (\scrM L) - P (\scrM L\prime 

)
\Bigr) 
,

we expect to have nonidentifiability; and if the rank is larger, for every pair L,L\prime , we expect
identifiability. The following theorem states this more precisely.

Theorem 6.4 (almost surely sufficient condition for identifiability). For almost every \scrA such
that

rk(\scrA ) \geq dim
\Bigl( 
J(P (\scrM L), P (\scrM L\prime 

))
\Bigr) 

\forall L,L\prime ,

\scrM is identifiable.
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The theorem is proved in the supplementary material (subsection SM1.9) and in [61].
Since dim

\bigl( 
J(P (\scrM L), P (\scrM L\prime 

))
\bigr) 
\leq dim

\bigl( 
P (\scrM L)

\bigr) 
+ dim

\bigl( 
P (\scrM L\prime 

)
\bigr) 
, if Dmax is the maxi-

mum dimension of P (\scrM L) over all L, one has the same conclusion if rk(\scrA ) \geq 2Dmax.
When K = 1, we illustrate this result by interpreting it in the context of compressive

sensing, where h is a vector, X is a vector, \scrA is a rectangular sampling matrix of full row
rank, and Ker (\scrA ) is large. The statement analogous to Theorem 6.4 in the compressive
sensing framework takes the following form: “For almost every sampling matrix, any L sparse
signal h can be recovered from \scrA h as soon as 2L \leq rk (\scrA ).” Moreover, the constituents of the
\ell 0 minimization model used to recover the signal are also the constituents of (5.3). Again,
the main novelty is to extend this result to the identifiability of the factors of deep matrix
products.

In order to establish a necessary condition for identifiability, first note that if we extend
P (\scrM L) - P (\scrM L\prime 

) to be scale invariant, this will not affect whether or not it intersects ker(\scrA )
outside of the origin. We immediately conclude that in the complex setting where \scrM L,\scrM L\prime 

are both Zariski closed, \scrM is nonidentifiable whenever rk(\scrA ) < dim
\bigl( 
P (\scrM L) - P (\scrM L\prime 

)
\bigr) 
. This

indicates that we should always expect nonidentifiability whenever rk(\scrA ) < dim
\bigl( 
P (\scrM L)  - 

P (\scrM L\prime 
)
\bigr) 
, but is not adequate to prove it because real algebraic varieties need not satisfy

(*). However, it is true for real linear spaces, so we immediately conclude the following weak
result.

Theorem 6.5 (necessary condition for identifiability). Let C(P (\scrM L)  - P (\scrM L\prime 
)) be the set

of all points on all lines through the origin intersecting P (\scrM L)  - P (\scrM L\prime 
), and let q be the

maximal dimension of a linear space on C(P (\scrM L)  - P (\scrM L\prime 
)). Then if q > rk(\scrA ), \scrM is

not identifiable. In particular when the P (\scrM L)’s contain linear space and if we let S\prime be the
largest dimension of these vector spaces, if 2S\prime > rk(\scrA ), then \scrM is not identifiable.

Let us illustrate the theorems by considering a deep feed-forward ReLU network and
consider the structured linear network obtained by fixing the action of ReLU (as is done in
subsection 1.2.2). The matrix X contains the outputs, and the operator MK multiplies the
matrix containing the inputs by the weights between the first and the second layer. For every
input/output pair, the action of ReLU is different and removes paths from the input entries
to the output entries. We assume, however, that every entry of every output is reached by at
least one path in the network starting at a nonzero entry of the input. In that case, it is not
difficult to see that \scrA is a surjection, and therefore rk(\scrA ) = mn, where m is the size of the
output and n is the number of learning samples.

The condition in Theorem 6.4 becomes

mn \geq dim (Σ2) = 2K(S  - 1) + 2,

and KS is typically the number of parameters of the network. The intuition behind Theo-
rem 6.4 is that if the action of ReLU is sufficiently random and if the above inequality holds,
we can expect the network to be identifiable with high probability.9 This situation corresponds
to an underparameterized case (favorable for identifiability).

9This statement gives the intuition behind Theorem 6.4 but it should be made precise, as emphasized in
the perspectives of this paper.
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464 FRANÇOIS MALGOUYRES AND JOSEPH LANDSBERG

The condition in Theorem 6.5 is
2S > mn.

When this inequality holds, the network is not identifiable. It corresponds to an overpara-
meterized configuration. In the intermediate situation, when 2S \leq mn < 2K(S  - 1) + 2, and
when the action of the activation function does not introduce sufficiently randomness, the
theorems are inconclusive.

Notice that such networks can also be analyzed using Proposition 6.3. It is indeed not
difficult to see that if there exist two paths that (1) start from the same entry of the input
layer, (2) end at the same entry of the output layer, and (3) are both present (despite the
action of ReLU) for every input/output pair, then (6.2) does not hold10 and R

S\times K is not
identifiable. It is not clear at this point that conditions 1, 2, 3 are met by all nonidentifiable
structured linear feed-forward networks. However, removing paths from the network (as is
done by ReLU and Dropout) is a way to avoid conditions 1, 2, 3 being met.

7. Stability guarantee. In this section, we consider errors of different natures. We assume
that there exist L and L\ast \in N, h \in \scrM L, and h\ast \in \scrM L\ast 

, such that

(7.1) \| M1(h1) \cdot \cdot \cdot MK(hK) - X\| \leq \delta 

and

(7.2) \| M1(h
\ast 
1) \cdot \cdot \cdot MK(h\ast 

K) - X\| \leq \eta 

for \delta and \eta typically small.
Again, this corresponds to existing unknown parameters h that we estimate from a noisy

observation X, using an inaccurate solution h\ast of (2.1) (as in [13], where the case K = 1 is
studied). Otherwise, h and h\ast shall be interpreted as different learned parameters; \delta and \eta 
are the corresponding risks.

Notice that the above hypothesis does not even require (2.1) to have a solution. Algorithms
which do not come with a guarantee sometimes manage to reach small \delta and \eta values. In
those cases, the analysis we conduct in this section permits us to get the stability guarantee,
despite the lack of a guarantee of the algorithm. Finally, hypotheses (7.1) and (7.2) enable one
to obtain guarantees for algorithms that, instead of minimizing (2.1), minimize an objective
function which approximates the one in (2.1). This is particularly relevant for machine learning
applications when (2.1) can be an empirical risk that needs to be regularized or is not truly
minimized (for instance, when using Dropout [76]).

A necessary and sufficient condition for the identifiability of\scrM is stated in Proposition 6.3.
The condition is on the way that Ker (\scrA ) and P (\scrM L) - P (\scrM L\prime 

) intersect. In order to get a
stability guarantee, we need a stronger condition on the geometry of this intersection to hold
for every L and L\prime \in N. This condition is provided in the next definition.

Definition 7.1 (deep-Null Space Property). Let \gamma > 0 and \rho > 0. We say that Ker (\scrA )
satisfies the deep-Null Space Property (deep-NSP) with respect to the collection of models \scrM 

10Simply consider two rank 1 tensors, each tensor being a Dirac at the position corresponding to one of the
two paths.
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MULTILINEAR COMPRESSIVE SENSING 465

with constants (\gamma , \rho ) if for any L and L\prime \in N, any T \in P (\scrM L) - P (\scrM L\prime 
) satisfying \| \scrA T\| \leq \rho ,

and any T \prime \in Ker (\scrA ), we have

(7.3) \| T\| \leq \gamma \| T  - T \prime \| .

The deep-NSP implies that, for T \in P (\scrM L) - P (\scrM L\prime 
) close to Ker (\scrA ) in the sense that

\| \scrA T\| \leq \rho , we must have, by decomposing T = T \prime + T \prime \prime , with T \prime \in Ker (\scrA ) and T \prime \prime in its
orthogonal complement,

\| T\| \leq \gamma \| T  - T \prime \| = \gamma \| T \prime \prime \| \leq \gamma 

\sigma min
\| \scrA T \prime \prime \| \leq \gamma 

\sigma min
\rho ,

where \sigma min is the smallest nonzero singular value of \scrA . In words, \| T\| must be small. We can

conclude that under the deep-NSP, P (\scrM L)  - P (\scrM L\prime 
) and \{ T \in R

SK | \| \scrA T\| \leq \rho \} intersect
at most in the neighborhood of 0.

Additionally, (7.3) implies that in the neighborhood of 0, Ker (\scrA ) and P (\scrM L) - P (\scrM L\prime 
)

are not tangential; i.e., their intersection is transverse.
If Ker (\scrA ) satisfies the deep-NSP with respect to the collection of models\scrM with constants

(\gamma , \rho ), then for all T \prime \in Ker (\scrA ) and all T \in P (\scrM L) - P (\scrM L\prime 
) satisfying \| \scrA T\| \leq \rho ,

\| T \prime \| \leq \| T\| + \| T \prime  - T\| \leq (\gamma + 1)\| T \prime  - T\| .

Therefore,

(7.4) \forall T \prime \in Ker (\scrA ) , \| T \prime \| \leq (\gamma + 1)dloc(T
\prime , P (\scrM L) - P (\scrM L\prime 

)),

where we have set for any C \subset R
SK

dloc(T
\prime , C) = inf

T\in C,\| \scrA T\| \leq ρ
\| T \prime  - T\| .

The converse is also true: If Ker (\scrA ) satisfies (7.4), it satisfies the deep-NSP with respect to
the collection of models \scrM with appropriate constants. In the context of the usual compressed
sensing (i.e., when K = 1, \scrM L contains L-sparse signals, \scrA is a rectangular matrix with full
row rank, and X is a vector), the localization appearing in dloc can be discarded since the
inequality must hold when T \prime is small and since in this case this localization has no effect.
Therefore, in the compressed sensing context, (7.4) (and therefore deep-NSP) is the usual Null
Space Property with respect to L-sparse vectors, as defined in [25]. However, deep-NSP is
generalized to take into account deep structured linear network. This motivates the name.

In the general case, the deep-NSP can be understood as a local version of the generalized-
NSP for \scrA relative to P (\cup L\in N\scrM L) - P (\cup L\in N\scrM L), as defined in [13]. Our interest in locality
(as imposed by the constraint \| \scrA T\| \leq \rho ) is motivated by the fact that we want to use the
deep-NSP when the signal-to-noise ratio is controlled (i.e., the hypotheses of Theorem 4.3 are
satisfied). The condition for the stability property therefore includes such hypotheses.

We have not adapted the robust-NSP defined in [13]. The benefit in not using this defi-
nition is to obtain a simpler definition for deep-NSP. In particular (7.3) does not involve the
geometry of \scrA in the orthogonal complement of Ker (\scrA ). Looking in detail at the benefit of
this adaptation is of great interest.
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Finally, we trivially have the following facts:
\bullet If Ker (\scrA ) = \{ 0\} , then Ker (\scrA ) satisfies the deep-NSP with respect to the model RS\times K

with constants (1,+\infty ).
\bullet For any \gamma \prime \geq \gamma : If Ker (\scrA ) satisfies the deep-NSP with respect to the collection of
models \scrM with constants (\gamma , \rho ), then Ker (\scrA ) satisfies the deep-NSP with respect to
the collection of models \scrM with constants (\gamma \prime , \rho ).

\bullet For any \scrM \prime \subset \scrM : If Ker (\scrA ) satisfies the deep-NSP with respect to the collection of
models \scrM with constants (\gamma , \rho ), then Ker (\scrA ) satisfies the deep-NSP with respect to
the collection of models \scrM \prime 

with constants (\gamma , \rho ). In particular, if Ker (\scrA ) satisfies
the deep-NSP with respect to the model RS\times K with constants (\gamma , \rho ), it satisfies the
deep-NSP with respect to any collection of models, with constants (\gamma , \rho ).

Theorem 7.2 (sufficient condition for the stability property). Assume Ker (\scrA ) satisfies the
deep-NSP with respect to the collection of models \scrM and with the constants (\gamma , \rho ). For any
h\ast as in (7.2) with \eta and \delta (see (7.2) and (7.1)) such that \delta + \eta \leq \rho , we have

\| P (h\ast ) - P (h)\| \leq \gamma 

\sigma min
(\delta + \eta ),

where \sigma min is the smallest nonzero singular value of \scrA . Moreover, if h \in R
S\times K
\ast and γ

σmin
(\delta +

\eta ) \leq 1
2 max

\bigl( 
\| P (h)\| \infty , \| P (h\ast )\| \infty 

\bigr) 
, then

(7.5) dp(\langle h\ast \rangle , \langle h\rangle ) \leq 7(KS)
1
p \gamma 

\sigma min
min

\biggl( 
\| P (h)\| 

1
K
 - 1

\infty , \| P (h\ast )\| 
1
K
 - 1

\infty 

\biggr) 
(\delta + \eta ).

The first part of the proof is very similar to standard proofs in the compressed sensing
and stable recovery literature. The second part simply uses Theorem 4.3. The theorem is
proved in the supplementary material (subsection SM1.10) and in [61].

Theorem 7.2 provides a sufficient condition to obtain stability. The only significant hypoth-
esis made on the deep structured linear network is that Ker (\scrA ) satisfies the deep-NSP with
respect to the collection of models \scrM . One might ask whether this hypothesis is sharp or
not. The next theorem shows that the answer to this question is positive.

Theorem 7.3 (necessary condition for the stability property). Assume the stability property

holds: There exist C and \delta > 0 such that for any L \in N, h \in \scrM L, any X = \scrA P (h) + e, with
\| e\| \leq \delta , any L\ast \in N, and any h\ast \in \scrM L\ast 

such that

\| \scrA P (h\ast ) - X\| 2 \leq \| e\| ,

we have

d2(\langle h\ast \rangle , \langle h\rangle ) \leq C min

\biggl( 
\| P (h)\| 

1
K
 - 1

\infty , \| P (h\ast )\| 
1
K
 - 1

\infty 

\biggr) 
\| e\| .

Then Ker (\scrA ) satisfies the deep-NSP with respect to the collection of models \scrM with con-
stants

(\gamma , \rho ) = (CS
K - 1

2

\surd 
K \sigma max, \delta ),

where \sigma max is the spectral radius of \scrA .
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edges of depth 3 2 1

leaves

R
N

R
N

R
N

R
N

R
N root r

Figure 1. Example of the considered convolutional linear network. To every edge is attached a convolution
kernel. The network does not involve nonlinearities or sampling.

The first part of the proof was inspired by and is similar to the proof of the analogous
converse statement in [25]. The second part simply uses Theorem 4.5. The theorem is proved
in the supplementary material (subsection SM1.11) and in [61].

The sharpness of the known results whenK = 2 is usually argued by comparing the number
of samples necessary for the recovery and the information theoretic limit of the problem. As
far as the authors know, the above theorem is therefore new even when K = 2.

As is usually the case with the Null Space Property or Restricted Isometry Property,
it will often be difficult or impossible to establish that a particular operator \scrA satisfies the
deep-NSP with respect to the collection of models \scrM . To find favorable cases, we need to
consider random operators \scrA such that the distribution of \scrA enables one to establish that the
deep-NSP holds with high probability, when in the right configurations (see the bibliography
in section 2, whose references contain many examples of such arguments). The most common
distribution for the analogue of \scrA includes operators/matrices whose coefficients are Gaussian
or Bernoulli. Collections of models inducing sparsity, nonnegativity, low rank constraints,
etc., are the most studied. In this regard, the fact that there exists a low complexity test
guaranteeing that the networks considered in section 8 can be stably recovered is an exception.

8. Application to convolutional linear network. We consider a convolutional linear net-
work as depicted in Figure 1. The network typically aims at performing a linear analysis
or synthesis of a signal living in R

N . The considered convolutional linear network is defined
from a rooted directed acyclic graph \scrG (\scrE ,\scrN ) composed of nodes \scrN and edges \scrE . Each edge
connects two nodes. The root of the graph is denoted by r, and the set containing all its
leaves is denoted by \scrF . We denote by \scrP the set of all paths connecting the leaves and the
root. We assume, without loss of generality, that the length of any path between any leaf and
the root is independent of the considered leaf and equal to some constant K \geq 0. We also
assume that, for any edge e \in \scrE , the number of edges separating e and the root is the same
for all paths between e and r. It is called the depth of e. We also say that e belongs to the
layer k. For any k \in [K], we denote by \scrE (k) the set containing all the edges of depth k.

Moreover, to any edge e is attached a convolution kernel of support \scrS e \subset [N ]. We assume
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(without loss of generality) that
\sum 

e\in \scrE (k) | \scrS e| is independent of k (| \scrS e| denotes the cardinality
of \scrS e). We take

S =
\sum 

e\in \scrE (1)
| \scrS e| .

For any edge e, we consider the mapping \scrT e : RS  - \rightarrow R
N that maps any h \in R

S into the
convolution kernel he, attached to the edge e, whose support is \scrS e. It simply writes at the
right location (i.e., those in \scrS e) the entries of h defining the kernel on the edge e.

At each layer k, the convolutional linear network computes, for all e \in \scrE (k), the convo-
lution between the signal at the origin of e; then it attaches to any ending node the sum of
all the convolutions arriving at that node. Examples of such convolutional linear networks
include wavelets, wavelet packets [62], or the fast transforms optimized in [20, 21]. It is clear
that the operation performed at any layer depends linearly on the parameters h \in R

S and
that its results serve as inputs for the next layer. The convolutional linear network therefore
depends on parameters h \in R

S\times K and takes the form

X = M1(h1) \cdot \cdot \cdot MK(hK),

where the operators Mk satisfy (1.2).
This section aims at identifying conditions such that any unknown parameters h \in R

S\times K

can be identified or stably recovered from X = M1(h1) \cdot \cdot \cdot MK(hK) (possibly corrupted by an
error).

In order to do so, we introduce some notation. We apply the convolutional linear network
to an input x \in R

N | \scrF | , where x is the concatenation of the signals xf \in R
N for f \in \scrF .

Therefore, X is the (horizontal) concatenation of | \scrF | matrices Xf \in R
N\times N such that

(8.1) Xx =
\sum 

f\in \scrF 
Xfxf \forall x \in R

N | \scrF | .

Consider the convolutional linear network defined by h \in R
S\times K as well as f \in \scrF and n \in [N ].

The column of X corresponding to the entry n in the leaf f is the translation by n of

(8.2)
\sum 

p\in \scrP (f)

\scrT p(h) ,

where \scrP (f) contains all the paths of \scrP starting from the leaf f and

\scrT p(h) = \scrT e1(h1) \ast \cdot \cdot \cdot \ast \scrT eK (hK), with p = (e1, . . . , eK),

is the composition of convolutions along the path p.
For any k \in [K], define the mapping ek : [S]  - \rightarrow \scrE (k), which provides for any i \in [S]

the unique edge of \scrE (k) such that the ith entry of h \in R
S contributes to \scrT ek(i)(h). For any

i \in [S]K , let pi = (e1(i1), . . . , eK(iK)) and

I =
\bigl\{ 
i \in [S]K | pi \in \scrP 

\bigr\} 
.

The latter contains all the indices corresponding to a valid path in the network. For any set
of parameters h \in R

S\times K and any path p \in \scrP , we also let hp denote the restriction of h to
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its indices contributing to the kernels on the path p. We let ✶ \in R
S denote a vector of size S

with all its entries equal to 1. For any edge e, ✶e \in R
S consists of zeros except for the entries

corresponding to the edge e, which are equal to 1. For any p = (e1, . . . , eK) \in \scrP , the support
of M1(✶

e1) \cdot \cdot \cdot MK(✶eK ) is denoted by Supp (p).
Finally, by Corollary 5.2 there exists a unique mapping

\scrA : RSK  - \rightarrow R
N\times N | \scrF | 

such that

\scrA P (h) = M1(h1) \cdot \cdot \cdot MK(hK) \forall h \in R
S\times K ,

where P is the Segre embedding defined in (4.1).

Definition 8.1. We say the topology of the network is sufficiently scattered if and only if
all the entries of M1(✶) \cdot \cdot \cdot MK(✶) belong to \{ 0, 1\} .

The following statements will show that having a sufficiently scattered topology is a nec-
essary and sufficient condition for the stability of the optimal parameters. Before going into
this, we illustrate the scattering property with a simple example.

Consider a simple composition of two convolutions (K = 2 and | \scrP | = 1). At first, we
make an assumption on the supports \scrS e, imposing that the supports of both kernels are in
\{ 1, 2, 3\} . The topology is obviously not sufficiently scattered. Indeed, some of the entries of
the convolution kernel corresponding to the matrix M1(✶)M2(✶) are equal to 2.

Now consider an assumption on the network topology imposing \{ 1, 2, 3\} for the support
of the first kernel and \{ 1, 10\} for the second. When we observe the convolution of two kernels
having such supports, we see two replicas of the first kernel; the amplitudes of the replicas
depend on the second kernel, and both kernels are identifiable. In this last example, the
network topology is sufficiently scattered.

The scattering condition can easily be computed using Algorithm 8.1. Indeed, when
applying the network to a Dirac in the leaf f , using (8.1), we obtain the convolution kernel
of Xf . We can then easily test if Xf only contains 0’s and 1’s. The numerical complexity
of Algorithm 8.1 is essentially the cost for applying | \scrF | times the network. It is usually low.
Notice that a network is sufficiently scattered if and only if, for all leaves f \in \scrF , the sub-
networks originating at f are sufficiently scattered. The scattering of these subnetworks is
independent. The fact that the convolution kernels, for the different leaves, overlap does not
affect the scattering property.

Finally, besides the known examples in blind-deconvolution (i.e., when K = 2 and | \scrP | = 1)
[2, 9], there are (truly deep) convolutional linear networks satisfying the condition of the first
statement of Proposition 8.2. For instance, the convolutional linear network corresponding
to the undecimated Haar (wavelet)11 transform is a tree and for any of its leaves f \in \scrF ,
| \scrP (f)| = 1. Moreover, the support of the kernel living on the edge e, of depth k, on this path
is \{ 0, 2k\} . It is therefore not difficult to check that the first condition of Proposition 8.2 holds.

11Undecimated means computed with the “Algorithme à trous”[62, sections 5.5.2 and 6.3.2]. The Haar
wavelet is described in [62, section 7.2.2, p. 247, and Example 7.7, p. 235].
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Algorithm 8.1. Algorithm testing if the topology of the convolutional network leads to the
stability guarantee.

Input: The network topology.
Ouput: Boolean output = “true” if the topology is sufficiently scattered; “false” otherwise.

output = true
For each f \in \scrF do

Build x: a Dirac positioned at the leaf f
Apply the network to x in order to compute y = M1(✶) \cdot \cdot \cdot MK(✶)x
If some of the entries of y are outside \{ 0, 1\} , then set output = false

end For each

Proposition 8.2 (necessary condition of identifiability of convolutional linear network).
\bullet Either the topology of the network is sufficiently scattered and then

1. for any distinct p and p\prime \in \scrP , Supp (p) \cap Supp (p\prime ) = \emptyset ;
2. Ker (\scrA ) = \{ T \in R

SK | \forall i \in I, Ti = 0\} ;
\bullet or the topology of the network is not sufficiently scattered and then R

S\times K is not iden-
tifiable.

The proposition is proved in the supplementary material and in [61].

Proposition 8.3. If | \scrP | = 1 and the topology of the network is sufficiently scattered, then
Ker (\scrA ) = \{ 0\} and Ker (\scrA ) satisfies the deep-NSP with respect to any model collection \scrM 
with constant (\gamma , \rho ) = (1,+\infty ). Moreover, we have \sigma min =

\surd 
N .

The proposition is proved in the supplementary material and in [61].
In what follows, we establish stability results for a convolutional linear network estimator.

In order to do so, we consider a convolutional linear network of known structure \scrG (\scrE ,\scrN ) and
(\scrS e)e\in \scrE . We consider parameters h \in R

S\times K and h\ast \in R
S\times K such that

(8.3) \| M1(h1) \cdot \cdot \cdot MK(hK) - X\| \leq \delta 

and

(8.4) \| M1(h
\ast 
1) \cdot \cdot \cdot MK(h\ast 

K) - X\| \leq \eta .

We say that two networks sharing the same structure and defined by h and g \in R
S\times K are

equivalent if and only if

\forall p \in \scrP , \exists (\lambda e)e\in p \in R
p, such that

\prod 

e\in p
\lambda e = 1 and \forall e \in p, \scrT e(g) = \lambda e\scrT e(h).

The equivalence class of h \in R
S\times K is denoted by \{ h\} . For any p \in [1,+\infty ], we define

\delta p(\{ h\} , \{ g\} ) =

\left( 
 \sum 

p\in \scrP 
dp(\langle hp\rangle , \langle gp\rangle )p

\right) 
 

1
p

,
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where we recall that hp (resp., gp) denotes the restriction of h (resp., g) to the path p and dp
is defined in Definition 4.1. Since dp is a metric, it follows that \delta p is a metric between network
classes.

We summarize the results concerning convolutional networks in the following theorem.

Theorem 8.4 (necessary and sufficient condition of stable recovery of convolutional linear net-
work). If Algorithm 8.1 returns “false,” the network topology is not sufficiently scattered and
the network is not identifiable.

If Algorithm 8.1 returns “true,” if h and h\ast satisfy (8.3) and (8.4), and
\bullet if all the edges support a significant convolution kernel, there exists \varepsilon > 0 such that,
for all e \in \scrE , \| \scrT e(h)\| \infty \geq \varepsilon ;

\bullet if the “signal-to-noise ratio” is sufficient, \delta + \eta \leq 
\surd 
NεK

2 ,
then the networks defined by h\ast and h are close to each other,

\delta p(\{ h\ast \} , \{ h\} ) \leq 7(KS\prime )
1
p \varepsilon 1 - K \delta + \eta \surd 

N
,

where S\prime = maxe\in \scrE | \scrS e| is the size of the largest convolution kernel.

The theorem is proved in the supplementary material (subsection SM1.14) and in [61].

9. Conclusion and perspectives. In this paper, we have established necessary and suffi-
cient conditions for the identifiability and stable recovery of deep structured linear networks.
They rely on the lifting of the problem in a tensor space. The technique is called tensorial
lifting. The main results are proved using compressed sensing techniques and properties of
the Segre embedding (the embedding that maps the parameters in the tensor space). The
general results are then specialized to establish necessary and sufficient conditions for the
stable recovery of a convolutional linear network of any depth K \geq 1.

Among the most salient perspectives, we mention the possibility to study deep feed-forward
ReLU networks. For such a network, the action of ReLU is different for every sample; this
leads to a different operator \scrA for every sample; and all the different \scrA ’s sense (linearly) the
same rank 1 tensor. We can concatenate these operators to form a unique sensing operator.
For instance, when modeling the action of ReLU as a Bernouilli variable applied to every
path of the network, we expect to obtain sample complexity bounds (for instance) under the
favorable hypothesis that an oracle has given us the action of ReLU.

A natural perspective of this work is also to study compressed networks (see [7]) when the
compression preserves the expressivity of the network.

Finally, the model considered in this paper approximately solves polynomial equations:
\scrA P (h) \sim X. The structure of the polynomials is induced by the operators Mk (i.e., the
network topology) and is very particular and restrictive. For instance, we only consider
homogeneous polynomials in P (h). Extending this work to larger families of polynomials as
well as limits of polynomials seems natural.
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