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1. Introduction
1.1. Background and prior work

Dedekind sums were first introduced by Dedekind as a way to express the transfor-
mation formula satisfied by the Dedekind 7n-function. The study of Dedekind sums has
shown up in different areas of mathematics including algebraic number theory, combina-
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torial geometry, topology, and mathematical physics. Let h, k be coprime integers with
k > 1. The classical Dedekind sum is defined by

s(hok)= > Bl(%)Bl(%n), 1.1)

n mod k

where B; denotes the first Bernoulli function defined by

_Jz—|z]-3 ifzeR\Z
Bile) = {0 itz €z 42

For more background on the Dedekind #-function and the classical Dedekind sum, we
refer the reader to [A].

Many different generalized versions of the Dedekind sum have appeared in the litera-
ture. In this paper, we continue the study of newform Dedekind sums examined recently
by Stucker, Vennos, and Young in [SVY] and Dillon and Gaston in [DG]; see their in-
troductions for a more thorough historical survey of previous work on these types of
Dedekind sums.

We now summarize the construction of newform Dedekind sums and some of their
basic properties which follow from properties of an associated Eisenstein series (via a
generalized Kronecker limit formula). To this end, we first discuss the Eisenstein series.
Throughout we let x; and x2 be primitive Dirichlet characters modulo ¢; and g2, respec-
tively, with g1, g2 > 1, and satisfying x1x2(—1) = 1. Let ['o(g1¢2) denote the congruence
subgroup of level qqo. For 1 a Dirichlet character modulo g1¢2, and v = (‘: 3), let
¥(7) = $(d).

The newform Eisenstein series E,, , (2, s) associated to x1, x2 may be defined by the
Fourier expansion

Byia(5) = 2V5'Y M (1, )e(n0) K,y 2lnly), (19
n£0
where
Mas(m:5) = xa(smnm) 32 xataxa®)(2) (14)
ab=|n|

This Eisenstein series enjoys a host of pleasant properties, such as:

(1) Tt satisfies the automorphy formula E,, ,(vz,5) = ¥(7)Ey, x.(2,5), for all v €
Lo(q1g2), where 3 = x1X2.

(2) It has analytic continuation to all s € C, with no poles.

(3) It satisfies AEy, y,(z,5) = s(1—s)Ey, v, (2, ), where A is the hyperbolic Laplacian.

(4) Tt is an eigenfunction of all the Hecke operators.
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(5) It is a pseudo-eigenfunction of the Atkin-Lehner operators.

All of these properties may be conveniently found in [Y], for instance.

The reason for the name “newform” Eisenstein series is by perfect analogy with the
corresponding notion for cusp forms.

One should be aware that if ¢ = 1 or g = 1 then there exists an additional constant
term in (1.3), and if ¢; = ¢ = 1 then E,, ,,(z, s) has simple poles at s = 0,1 only. Many
properties of the classical Dedekind sum (1.1) can be deduced from the behavior of the
level 1 Eisenstein series, especially its Laurent expansion around s = 1. The presence
of the pole at s = 1 is something of a nuisance, and it is a pleasant fact that all the
newform Eisenstein series are analytic at s = 1.

Using the evaluation K /»(2my) = 271y~/2¢72" in (1.3), we obtain a decomposition

By x2(2,1) = fxaxa (2) +X2(_1)?ﬁ,ﬁ(z)v (1.5)
where
o A 1 1) orine
fraxa(2) = ; %2”1)62 . (1.6)

Note that fy, v, (2) is holomorphic on H, periodic with period 1, and vanishes as z — icc.
We also observe that the level 1 analog of fy, y,(z) is closely related to logn. One may
define the newform Dedekind sum S, y, as a correction factor to the automorphy of
fx1,x2 (7). Precisely, for v € To(q192), we let

%s M) = Frane(12) = ¥ e e (), L7)

v}

where 7(x) denotes the standard Gauss sum; the factor 6]
simplify various formulas. From the automorphy of E,, ,, and (1.5) we deduce that
the right hand side of (1.7) is both holomorphic and anti-holomorphic, and is hence a
constant function of z; this explains why the left hand side of (1.7) only depends on
~. For simplicity, we may refer to the newform Dedekind sum simply as the Dedekind

is a normalization to

sum.
As observed in [SVY, Section 5], an alternative expression for fy, y, is as an Eich-
ler integral of a weight 2 holomorphic Eisenstein series associated to the characters
X1, X2-
The most important basic property of the Dedekind sum Sy, y, : To(q1g2) — C is
that it is a crossed homomorphism, which we record with the following:

Theorem 1.1 (Crossed homomorphism identity). For all v1,7v2 € T'o(q192), we have

Slexz('\/l'\/Z) =S (m)+ w('Yl)SX),Xz (72)- (1.8)
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This follows directly from (1.7) (see [SVY, Lemma 2.2] for more details).

Remark 1.2. For v € T'1(q1g2), then 9(y) = 1, s0 Sy, s, : T'1(q1g2) — C is a group
homomorphism.

Although (1.7) is useful for establishing many properties of the Dedekind sum, it is
not explicit; the Fourier expansion (1.6) is an infinite sum. Theorem 1.2 from [SVY]
evaluates the Dedekind sum in finite terms, as follows. For v = (i Z) € T'o(q1g2) with
¢>0and x1x2(—1) = 1, we have

Sunt= ¥ Y w1 (2+2). s

j mod ¢n mod q;

Since (1.9) only depends on the first column of vy, we will often write Sy, v, (a, ¢) in place

of Sy1x2()-

It is easy to see from (1.7) that for ¢ = 0 we have Sy, ,,(1,0) = 0, and that
Syixz(—a—¢) = Sy, x.(a,c), which takes care of ¢ < 0. It is also easy to see that
for ¢ > 0, Sy, y.(a,c) is periodic in a modulo c¢; this is obvious from (1.9) but has its
origin from the fact that fy, ,, is periodic with period 1.

The reciprocity formula for the classical Dedekind sum is one of its most interesting
and important features. The following reciprocity formula for Sy, , is proved in [SVY]

via the action of the Fricke involution w = ( q10q2 _01 ):

Theorem 1.3 (Reciprocity formula [SVY]). For v = (cq?qz g) € To(qigz), let v =

d —_
(—qu ac) € To(q1¢2)- If X1, X2 are even, then

Sxaxz (1) = Sxaia (V)- (1.10)

If x1, x2 are odd, then with T(x) denoting the standard Gauss sum, we have

Suuns) = ~Suara )+ (1= v) (TR 20wz,

Our main interest in this paper is to understand the structure of the kernels of the
Dedekind sums. To make our objects of interest more precise, we make the following
definition.

Definition 1.4. Let x; and x2 be non-trivial primitive Dirichlet characters modulo ¢; and
g2, respectively, with ¢;, g2 > 1. Then we denote the kernel associated to x1,x2, by

Ky x: = ker(Sy, x.) = {7 € To(q192) : Sxax= () = 0} -
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We let K | denote Ky, y, T1(q142). Moreover, we define

X1,X2

Kg 4 = ﬂ Ky, xa

X1,X2
x1x2(=1)=1

where x; runs over primitive characters modulo g;, ¢ = 1,2. We similarly let K‘}l o=
Kg,0: NT1(102)-

Using Theorem 1.1, it can be shown that K, y, (resp. K)la,xz) is a subgroup of
To(q192) (resp. T'1(g1g2)). Given any group homomorphism, it is a fundamental ques-
tion to understand its kernel. In this context, there is an additional curiosity which is

that

T€Kwx = fax(r2) =90 ux(?) (1.12)

In words, the elements of K, ,, are precisely those for which f,, , transforms like
an automorphic form. It is well-known that there are no weight 0 holomorphic modu-
lar forms, and the size of Ky, y,\I'0(q1¢2) may, in some loose sense, be interpreted to
measure the failure of f,, , to be modular.

Remark 1.5. One can similarly consider K,, ,, (1T(q142), but since Sy, ,, depends only
on the first column of +, this is essentially the same as K)l(l,m. A more precise statement
is that T'1(q192) = U, F(qqu)(é Il’)‘ and ((1) 11’) is trivially in the kernel of any Dedekind

sum.

The following theorem of Dillon and Gaston [DG] shows that Sy, y, is non-trivial in
a strong sense:

Theorem 1.6 (Strong nontriviality [DG]). For each ¢ > 0 such that qigo|c, there exists
a € Z so that Sy, ,(a,c) #0.

Remark 1.7. One way to interpret this result of Dillon and Gaston is that it shows that
Ky, x, is not “too big” (keeping account of the size of ¢, the lower-left entry of elements
of To(q192))-

Remark 1.8. The Eichler-Shimura isomorphism can be used to show that S, , is non-
trivial, but does not obviously imply the strong non-triviality.

Our first main result shows that K, L}] .q» 18 mot “too small”

Theorem 1.9 (Kernel is strongly nontrivial). For every ¢ € Z, there exzists v =

b
(Cq‘:‘h d) € [(q1g2) such that y € K, .,
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Although Theorem 1.9 shows that the kernel of Dedekind sums is not too small, this
must be balanced against the following:

Proposition 1.10. The index of K}( in T'1(q1qe) is infinite.

1,X2

Next we discuss some relationships between commutator subgroups and kernels of
the newform Dedekind sums. We begin with a general discussion. If G is a group, we
let [G, G] denote its commutator subgroup (i.e., the smallest subgroup of G containing
all commutators zyz~'y~! with z,y € G). It is well-known (and easy to check) that if
¢ : G — H is a group homomorphism, with H abelian, then [G, G| C ker(p). We also
recall that the abelianization of a group, denoted G2 is defined by G** = [G, G]\G. It
is known that the abelianization of SLy(Z) is Z/12Z, which implies that there are no
non-trivial group homomorphisms from SL3(Z) to C. Theorem 1.6 is in sharp contrast
to the level 1 case.

One naturally is led to wonder to what extent the commutator subgroups of I'o(g1¢2),
I'1(q192), etc. account for the kernels of the Dedekind sums. Our second main result shows

that K, ;]m is much larger than the commutator subgroup of I'(g1g2) (cf. Remark 1.5).

Theorem 1.11. We have [I'(q1¢2),'(q1¢2)] K;,,qz'

Remark 1.12. In fact, we show in Proposition 3.1 below that [['(g142),T'(q142)] € I'(¢?¢3).
In contrast, Theorem 1.9 produces elements that are clearly not in I'(g?¢3) (indeed, there
is no restriction on the lower-left entry besides divisibility by ¢1¢2). This explains why

we stated that K ,}lyqz is much larger than the commutator subgroup.

Our final main observation is that there exists a natural Galois action on the Dedekind
sums, which can easily be read off from (1.9). This is discussed in Section 4.

2. Numerical data and proof of Theorem 1.9

We begin this section by presenting some numerical calculations of K, 4,. We let
(a, c) represent the left column of y € T'g(q1¢2). It follows from (1.9) that Sy, y,(a,c) =
Sy1.x2(b,c) where a = bmod c. Therefore, we only need to examine the pairs (a,c)
such that a € {1,...,c— 1}. Using SageMath [SAGE], for all primes 3 < ¢1,¢> < 11, we
computed the elements of Ky, x,, K, ., Kg,,q0 and K with 1 < ¢ < 10g1 g, directly
using the finite sum formula (1.9). Consider the example in Fig. 2.1a where ¢; = ¢ =5
in which we display the elements of K55 for 1 < ¢ < 250. From Fig. 2.1a, Fig. 2.1b,
and other similar graphs, we found the vertical line formed when a = 1 to consistently
appear. We prove this in Corollary 2.7. We also found other lines corresponding to similar
patterns shown in the following propositions.

Proposition 2.1. Let x; and x2 be non-trivial primitive Dirichlet characters modulo ¢;
and qa, respectively, with q1,q2 > 1. Then Sy, y,(1,¢1¢2) = 0.
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(a) K55 (b) K73
Fig. 2.1. K, 4, for 1 < ¢ < 10g1 2.

10y . _ .
Proof. We take v = (.. ;) in Theorem 1.3, s0 7' = ((1) 11 ). Since the lower left entry

of 4" is 0, then Sy, y, (7") = 0 and 1 — () = 0. Therefore, Proposition 2.1 follows from
the reciprocity formula. O

In [DG, Proposition 2.3], Dillon and Gaston pointed out that for ¢ > 1 and gi¢2]c,

SX),Xz(_‘LC) = _Xz(_l)s)ﬂ,xz(av o). (2.1)
Letting ¢ = ¢1¢2 and a = 1 in (2.1), we can use Proposition 2.1, to conclude that
Syix2(q192 — 1,q1g2) = 0. Moreover, using (2.1), one can easily observe that for a
(mod c¢), if Sy, x,(a,c) = 0 then Sy, y,(c — a,c) = 0. This symmetry between the pairs
(a,c) and (c — a,c) can be seen in Fig. 2.1.
Dillon and Gaston [DG, Proposition 2.4] also observed that

Sy1.x2 (@ €) = X2(=1)1(a) Sy, x2 (@, €), (2.2)
where aa =1 mod c.
Proposition 2.2. Suppose that a € Z is so that a®> + 1 = 0 mod ¢, and that ¥(a) =
+1. Then Sy, y,(a,c) = 0. Similarly, if a> = 1 mod ¢, and Y(a) = —xa2(—1), then

Syaxa(a,€) = 0.

Proof. First consider the case where > +1 =0 mod ¢, i.e., a = —@ mod c. Combining
(2.1) and (2.2), we deduce

Syt xz (@5€) = Syy 3o (=T, €) = =X2(=1)Sx,,x, (@, ¢) = —9(a) Sy, x» (@, ).
The case with a> =1 mod c is even simpler, using only (2.2). O

Remark 2.3. Proposition 2.2 is a simple generalization of a well-known result for the
classical Dedekind sum; see [A, Theorem 3.6(c)].
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Example 2.4. From Fig. 2.1a, we see the first occurrence of (a,c) in K55 with a #
+1 mod c is with ¢ = 100, and a = 49,51. We now explain how to prove (without a
computer) that these points are in Ky, y, for x1 and x2 odd. Note that 512 = 492 =1
mod 100. Since 51 =1 mod 25, this means (50 = 1) = 1. If x; and x» are odd, then
Proposition 2.2 implies Sy, ,(50%1,100) = 0, which is the desired claim. This argument
does not work for x; and x» even. We leave it as a problem for the interested reader to
cover this remaining case (one may note that the only even primitive character modulo
5 is the Legendre symbol, so there is only one case left).

Proposition 2.5. If Sy, \,(1 + ndqigo,d*qigo) = 0 for some n,d € Z, then Sy, ,, (1 +
kndq1go, kd*>q1g2) = 0 for all k € Z.

Remark 2.6. Proposition 2.5 can be used to explain some linear patterns visible among
the points in Fig. 2.1. For instance, we have a = 51, ¢ = 100 in K55 visible in Fig. 2.1a,
which corresponds to d = 2, n = 1, in Proposition 2.5. The point a = 101, ¢ = 200 then
corresponds to k = 2 in Proposition 2.5.

Proof. We prove this by considering matrices of the form

_ (1+ndaige  —n’qige \ _ _(nd -n? _
Y= ( d2q1q2 1—ndgigs ) — I+QA, where A= 2 —nd)’ Q= qige.
Note that A% = 0. Using this, one can easily show that v* = I + kQA, for any k € Z. If

v € Ky, ,, then so is +*, which translates to the desired statement. 0O

Corollary 2.7. We have that Sy, y,(1,kq1g2) =0 for all k € Z.
Proof. Apply Propositions 2.1 and 2.5, withn=0andd=1. O

The points (1, ¢) create a vertical line, depicted in Fig. 2.1. Similarly, one can use (2.1)
to conclude that the points (¢ — 1,¢) create a line of slope 1, also depicted in Fig. 2.1.
Now we provide the proof for Theorem 1.9:

Proof. By Corollary 2.7, we have that ( for all choices of x1, X2, so

0) € K.
the result follows immediately. O

1
cq1qz 1 X1,X27

Remark 2.8. Fig. 2.1 indicates that there exist examples of ¢i1,¢2 and ¢ for which the

only element (a,c) € K}, ,, with 0 < a < ¢ is the point exhibited in Corollary 2.7. In

this sense, Corollary 2.7 is sharp.
Now we briefly prove Proposition 1.10:
Proof. By a group isomorphism theorem, we have

K o \[1(0122) ~ Sy, 5. (T1(q102)) € C. (2:3)
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Since every nonzero element of C has infinite order, every nontrivial element of the

quotient group Kala,xz \I'1(q1¢2) also has infinite order. In particular, this proves Propo-

sition 1.10. This argument shows that if v € I'1(g1g2) is such that v* € Kihm for some
integer k> 1, theny € K . O

3. The commutator subgroup: proof of Theorem 1.11

For any prime p, let I'(n; p) denote the principal congruence subgroup of SL,(Z) of
level p. In [LS], Lee and Szczarba show that [['(n; p), I'(n; p)] = I'(n; p?) for n > 3 and all
primes p. In the following proposition, we adapt the proof of Lee and Szczarba to show
a one-sided containment of the commutator subgroup for n = 2 and p not necessarily
prime.

Proposition 3.1. For any Q > 1, then [['(Q),T(Q)] C T'(Q?).

Proof. Define the map ¢ : ['(Q) — Max2(Z/QZ) by ¢(A) = % (mod @), where
M>x2(Z/QZ) is the additive group of 2 x 2 matrices with entries in Z/QZ. It is not
difficult to show ¢ is a group homomorphism. Since Max2(Z/QZ) is abelian, then
[[(Q),T(Q)] C ker(y). We can see that ker(p) = I'(Q?) by the definition of . O

Remark 3.2. The proof of Lee and Szczarba may be easily adapted to additionally show
that the image of ¢ is the subset of Max2(Z/QZ) of trace =0 mod Q.

Proposition 3.1 shows that [I'(g1g2),I'(q192)] € I'(g?¢2). From Proposition 2.5 and
Corollary 2.7, we see that the inclusion is strict, i.e. T'(¢75) & KJ, ., This completes
the proof of Theorem 1.11.

4. The Galois action

We now study the kernels further by comparing K, , for different choices of x1, x2,
with a specified choice of gy, ga. Let ¢, = €2™/™, Fig. 4.1 depicts the elements of K}“,m
with 0 < ¢ < 1100 for the Dedekind sum associated to x; mod 5, the character mapping
2 — 4, and x2 mod 11, which maps 2 — (0. However, we found that Fig. 4.1 also
represents the kernel for other characters, such as the pair x} mod5 : 2 — —i and
Xb mod 11 : 2 + ¢3). This reoccurring pattern of identical kernels was found for other
conductors ¢i1,¢2 as well. To explain this pattern we use Galois theory. For characters
X1, X2 mod ¢ and g, respectively, we let F = Q (C¢(ql), Cd’(‘lz)) = Q({[p(q1),6(q2)]) b the
field extension over Q generated by the ¢(g1)-th and ¢(g)-th primitive roots of unity.
Let

Ded(g1,92) = {Sx1x2 | X1x2(—=1) =1 and x; primitive modulo ¢;,% = 1,2}. (4.1)
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Fig. 4.1. K}

Xixe for x; mod 5 and x» mod 11.

For o € Gal(F/Q), and x a Dirichlet character taking values in F, let x” denote the
character defined by n — o(x(n)). By the definition of the Dedekind sum in (1.9), we
see that Sy, y,(7) lies in F, for all v € T'o(q142), since the values taken by the Bernoulli
function By in (1.9) are rational.

Proposition 4.1. Let F' = Q ((p(q1)> Co(qa)) - Then there exists a natural group action of
Gal(F/Q) on Ded(q1,g2) which we denote as SZ, ., for o € Gal(F/Q).

X1:X2

Proof. We define the natural Galois action by Sy, . (7) := 0(Sx,x. (7)), which by the
definition (1.9) equals Sys vz (), for any v € T9(¢1g2). From this definition it is easy to

see that this is a group action. O

Remark 4.2. If k£ € Z is coprime to ¢(q1)¢(g2), the mapping w — w*, where w is a
primitive root of unity in F, is an automorphism of F'. In fact, all automorphisms in the
Gal(F/Q) can be formed this way.

Corollary 4.3. If two Dedekind sums, Sy, y, and Sy, y,, are in the same orbit of

Ded(q1, g2) under the action of Gal(F/Q), then Sy, x, and Sy, , have the same kernel.

2

Remark 4.4. Corollary 4.3 implies that when studying the kernel of Dedekinds sums
associated to specified ¢1,¢g2, we only need to examine a representative for each orbit,
which leads to a significant efficiency in computation.

Proof. The statement that Sy, ., and Sy, ,, lie in the same orbit simply means that

there exists o € Gal(F/Q) so that x; = x{ and x5 = x§. It is clear that if v € K, y,,
then v € Kyz g also. O

Example 4.5. Considering Fig. 4.1, letting k = 3 we see that

s 1 =5:x102% =8 =-i=x(2)
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o g2 =11:x2(2)° = ¢ = x5(2)-

It then follows that the Dedekind sums associated to the two pairs of characters are in
the same orbit and subsequently have the same kernel, corroborating our corollary.
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