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Abstract—Signal processing of time-series properties of Radio
Frequency Identification (RFID) tags and novel work in textile
knitted antennas for garment devices have enabled real-time
detection of motion-based artifacts through unobtrusive, wireless,
wearable devices. Capturing the Received Signal Strength Indica-
tor (RSSI) as a time-series signal, we classify whether the subject
is breathing or not, estimate the rate at which the subject is
breathing, and classify whether the tag is moving in a linear, non-
stretched fashion. We improve upon previous efforts to classify
subject state from RSSI signals by eliminating the need to train
the classifier with both breathing and non-breathing sample data
(which is biologically infeasible). To test our approach, we use
a programmable breathing infant mannequin yielding accurate
detection of cessation of respiratory activity within 5 seconds,
and a maximum root-mean-square error of 7 per minute when
computing the respiratory rate.

I. INTRODUCTION

Sleep Apnea Syndrome is defined as a reduction of res-
piratory motion by 95% over a period of 10 seconds, and
is a more severe form of hypopnea in which respiration
movements decrease below half of their normal values [1].
Many patients who suffer from a sleep disorder such as sleep
apnea are unlikely to consult with their physician [2] and may
be unaware of their disorder, motivating a mobile continuous
monitoring approach; sleep apnea has been associated with an
increased risk of heart disease [3].

Our inter-disciplinary team of researchers has developed
a smart-fabric wearable device called the “Bellyband” that
utilizes conductive thread and an Radio Frequency Identifi-
cation (RFID) tag to wirelessly monitor motion-based state
of a subject, such as respiratory activity [4]. As the subject
breathes, the chest-wall and abdomen stretch outward, causing
the conductive yarns of the garment to elongate and retract.
A remote RFID interrogator continuously and wirelessly polls
the Received Signal Strength Indicator (RSSI) of the RFID
tag, yielding a time-series signal that is monitored to detect
changes in subject state, respiratory rate, and other properties.
Because the RFID tag is passive, the chip is energized by the
wireless RFID interrogation signal and no battery or wire is
required to power the chip on the garment device. As shown
in Figure 1, the RSSI changes in an oscillatory pattern during

respiration activity, and in a possibly-oscillatory pattern during
other motion activities.

Fig. 1: RSSI data fluctuates in a sinusoidal pattern during
respiratory motion as the Bellyband elongates and retracts
during chest wall motion, while non-oscillatory motion affects
the RSSI in a non-oscillatory pattern during movement of the
entire Bellyband relative to the interrogator.

The passive, powerless RFID signal presents uncertainty
that is exacerbated by any non-respiratory “ambient” motion
introduced by the subject. As a result, statistical modelling
is required to make probabilistic inference about the state of
the subject. This is necessary because the primary measure
from the Bellyband under consideration, the RSSI, is not
linearly separable between breathing and non-breathing states
on its own because of the noise artifacts observed in the data.
Additionally, the machine learning algorithms require large
quantities of training samples to classify whether or not the
subject is breathing, and it is infeasible to collect data while
the subject is known to be in an anomalous state such as non-
breathing (especially if the subject is an infant).

In this paper, we apply filtering, signal processing, statistical
analysis, and machine learning approaches to detect cessation
of respiration within 5 seconds, estimate respiration rate and
a change in respiration rate to half its normal value within
10 seconds, and determine when non-respiratory motion of
the subject (which may interfere with these respiratory state
classifications) has taken place.

The rest of this paper is organized as follows: in Sections II
and III we describe the related efforts to and background of
our problem; our approach is detailed in Section IV, including
the conductive knit-antenna and fabric design (Section IV-A),
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respiration cessation detection (Section IV-B), respiratory rate
estimation (Section IV-C), and ambient motion detection (Sec-
tion IV-D). Our results are summarized in Section V, and we
conclude in Section VI.

II. RELATED WORK

With the advent of wearable technology, there has been
great interest in smart textiles that can enable real-time,
continuous monitoring. Such technology has the potential to
open up new avenues for improved healthcare and wellness.
They provide the possibility to continuously monitor vital
signs, allowing medical practitioners to administer preventative
treatments to patients who may be at risk of serious illness.
Other potential application areas for smart textile devices also
include enhancing first responder safety [5].

Textile antenna based technology face several impediments
from mass market penetration. First, the physical flexibility of
textile antennas pose reliability issues for wireless communica-
tion protocols. Second, the lack of mass production techniques
have made them cost prohibitive for commercialization [6].
Most smart textile systems rely on the integration of powered
transceivers with conventional fabric to attain smart function-
ality. This results in devices that are bulky, uncomfortable and
power hungry. These drawbacks make contemporary garment
systems unreliable for long term patient monitoring.

A passive RFID based sleep monitoring system called
NightCare has been described in [7]. This system uses flexible
tags integrated in clothing and conventional tags placed on
beds and surrounding areas. A real-time software engine uses
readings from these tags to determine motion, accidental falls,
long-term absence and interaction with nearby objects. An
alarm is generated in the event of an emergency such as a
fall. The software can also generate reports and statistics on
sleep positions which can be used in the diagnosis of sleep
related disorders such as apnea and bedsores, but does not
provide real-time respiration or heart rate information.

Alternative wireless health monitoring systems have been
proposed that alleviate the need for any device to be placed
on the human body. One such system is Vital-Radio, which
uses wireless signals to monitor respiration and heartbeats
[8]. Vital-Radio transmits a low-power wireless signal and
measures the time it takes to reflect back to the device.
Respiration and heartbeats cause variations in the reflection
time, which is used by the system to extract rates. While this
system enables convenient vital sign monitoring in a home
environment, it is not practical for hospital use since it cannot
guarantee privacy for all individuals within wireless range of
the system and requires 1.5 meter separation between patients.

Our current smart textile system uses passive UHF RFID
chips integrated into textile antennas composed of conductive
and non-conductive fabrics. The RFID chip is inductively
coupled with a co-planar micro-strip fabric antenna and is
placed in a small knitted pocket in the center of the antenna.
Passive UHF RFID does not require a dedicated power source
and can be powered by an interrogating UHF RFID reader.
Deformation of our textile antenna, known as Bellyband,

results in a variation of it’s backscatter power (RSSI) [9]. This
variation in RSSI is detected by the RFID reader and can be
used to infer actuation of the Bellyband.

III. BACKGROUND

Apnea is defined as a cessation in respiratory activity for a
period of 10 seconds or more. In this effort, we aim to detect
a reduction in respiratory movement and rate more quickly, so
that the result can be generalized to Sleep Apnea Syndrome
symptom detection and other non-respiratory motion-based
monitoring applications. Therefore, we consider time-series
properties of RFID interrogations such as RSSI over short time
periods called “windows”, i.e., 0.2 to 1.0 second per window,
to facilitate real-time signal processing.

To interrogate the RFID-based Bellyband, an Impinj Speed-
way R420 RFID interrogator is used. The Impinj Speedway
communicates using the Low Level Reader Protocol (LLRP)
over a TCP/IP network connection. Utilizing an RFID tag
RSSI value as a time-series signal that can be correlated
to respiratory depth, frequency, and rate, is a challenge be-
cause the RFID interrogator must “channel hop” between
50 frequencies (“channels”) within the 902-928MHz (UHF)
band utilized by RFID applications in the United States. The
interrogator must spend no more than 0.4 seconds in a 20-
second period interrogating on any one frequency per Federal
Communications Commission (FCC) regulations [10].

The backscatter power received by a RFID reader from a
tag can be mathematically modeled by Equation 1 [11].

PRx,reader = PTx,readerG
2
readerG

2
tag

( λ

4× π × r

)4

R (1)

where PRx,reader is the backscatter power received by the
reader, PTx,reader is the reader transmit power (30 dBm), Gtag
and Greader are the RFID tag and reader gain, respectively,
λ is the wavelength of the interrogation wave, r is the
distance between the reader and tag, and R is the backscatter
transmission loss.

It is evident from the equation that variation in λ (due to
channel hopping) can cause minor fluctuations in PRx,reader,
which can then affect RSSI readings. This, along with varia-
tions in antenna properties due to physical deformation, result
in frequent changes to the measured RSSI. This can be seen
in Figure 2 as the square-waves of approximate magnitude
1 dBm modulating the RSSI time-series plot, varying every
200 milliseconds. In order to filter out noise artifacts from
the signal, and to capture a significant portion of respiratory
motion in the signal, a window greater than 200 milliseconds
is needed for processing; therefore, it is necessary to consider
signals spanning multiple frequency channels in the same
signal processing algorithm, even though the change in inter-
rogation frequency changes the signal as a noise artifact. To
account for this, the RSSI signals observed during a period in
which the RFID interrogator is focused on a single frequency
are separated by the RFID tag observed and called a “channel
burst”. Then, each RSSI data point x is replaced with x− x̄,
where x̄ is the mean RSSI of the channel burst containing data
point x, normalizing the RSSI by the “channel burst mean.”
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We collect the RSSI as well as other properties from the
RFID interrogator, including the Doppler shift, phase, and
RFID frequency. These properties are useful for detecting
“ambient” motion of the RFID tag, that is, motion unrelated
to the stretching behavior of the textile being monitored.
According to the Impinj documentation [12], the Doppler shift
is observed over a single tag, rather than as a phase difference
between two tags, in order to avoid inconsistencies due to
channel hopping. The use of a single tag sacrifices frequency
estimation accuracy [13]; we utilize two successive RFID
interrogations using the same channel, antenna, and RFID
tag and compute the tag velocity from the phase difference
according to Equation 2 [13]:

v =
c ∗ (φ2 − φ1)

f ∗ (t2 − t1)
(2)

where c is the speed of light in a vacuum, φ is the measured
phase of a tag interrogation, t is the time of that interroga-
tion, and f is the frequency in the 900MHz band that the
interrogator used to make that interrogation.

IV. APPROACH

A. Antenna Manufacturing: Knit Structure and Yarn Selection

The bellyband is knitted on an SSG-122SV Shima Seiki
knitting machine using Shima Seiki’s SDS-ONE APEX3 pro-
prietary design system. The antenna is knit with conductive
and nonconductive threads. The antenna arms are knitted with
silver-coated nylon yarn and the nonconductive slot is knitted
with blends of viscose and polyamide. A thin Printed Circuit
Board (PCB) with a soldered RFID chip is inserted into the
pocket during the knitting process. During stretching of the
antenna, we faced coupling issues between the RFID chip and
the textile antenna arms. To improve the inductive connection
between the antenna and the chip, we knitted the conductive
yarns into the pocket using tuck stitches, stitches elongated in
the wale (lengthwise) direction.

B. Respiration Cessation Classification

Detection of the cessation of respiration activity is an
important application of the Bellyband sensor. Signals from the
sensor need to be classified as breathing or non-breathing in
real time in order to make the Bellyband a reliable biomedical
monitoring device. Here, we design a classifier using statistical
analysis of features of RSSI time-series data to detect cessation
of respiration using the Bellyband.

1) Machine Learning Classification: In our previous
work [14], a Support Vector Machine (SVM) was constructed
around training data and then applied to subsequent samples to
determine the respiratory state of the subject. This introduced
some challenges: first, it was biologically infeasible to train
the classifier on both breathing and non-breathing data, since
non-breathing training samples would require an infant to
voluntarily stop breathing activity; second, to attain an error
rate upper-bound of 0.01% with 95% confidence requires
5 hours of interrogation samples [15] [16] [17]. A One-
Class SVM exists to classify novelty data trained only against

“normal” (i.e., breathing) class data points, but this classifier
works by forming a boundary around the training data and
classifying novelty data as any such points that fall outside
of that bound. For respiratory analysis, a One-Class SVM
classifies “unusually” deep breathing as novelty data as well
as a cessation of respiration.

Using the Bellyband sensor, the cessation of breathing can
be detected by using an SVM. Signals collected from the
Bellyband can be provided to an SVM whose training class
is determined a priori. Chest wall motion due to respiration
will result in actuation of the Bellyband sensor. Therefore,
the cessation of breathing can be determined by detecting
non-actuation. Actuation and non-actuation can be two classes
that can be classified by a SVM. However, this would require
a SVM to be trained on non-actuation, thereby requiring a
patient to cease respiration for part of the training period.
This is not viable for infant applications, and requires a novel
approach to training set generation or a One-Class Support
Vector Machine. These approaches have yielded classification
accuracy between 70% and 94% in prior efforts.

2) Statistical Testing for Classification: If a classifier is
used that avoids requiring large quantities of training samples,
and single-class anomaly detection machine learning algo-
rithms, we can attain more predictable and consistent clas-
sification accuracy results. The Short-Time Fourier Transform
(STFT) yields magnitudes representing change in amplitude
of the RSSI signal over various frequencies for each of the
short-time windows in use. This multi-dimensional array of
FFT magnitudes is known as the spectrogram of the signal. We
compute the mean of the power spectral density magnitudes
to determine the average amplitude deviation per unit of
frequency of the signal as a sample data point. The first
N samples are reserved as training data, and a t-test [18]
(Equation 3) is applied to subsequent samples to determine the
likelihood that they were drawn from the same distribution as
the training samples.

t =
s− µ√

σ2

n

(3)

where s is the sample (the mean RSSI over the past Ts second
window), µ and σ2 are the mean and variance, respectively,
of all samples collected during the training period, and n is
the number of training samples collected.

If we are less than 95% confident (p < 0.05) that the sample
is drawn from the same distribution as the training samples,
the null hypothesis that the sample is drawn from the same
distribution is rejected. As with the One-Class SVM, this could
mean that the subject is no longer breathing, or that the subject
is breathing more deeply than during training. If the mean of
the sample is less than the mean of the training samples, we
conclude that the null hypothesis was rejected because the
subject is experiencing more shallow breathing than during
training, or no respiratory activity at all.
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C. Respiration Rate Estimation

While detecting the cessation of respiration can alert pa-
tients to potentially dangerous conditions, respiration rate can
be used for analysis of respiration patterns over time. Changes
in respiration can be used to detect potential respiratory
illnesses, such as Sleep Apnea Syndrome, and appropriate
treatments can be administered in a timely manner.

Estimating the rate of oscillation of the time-series signal is
a challenge because a finer estimate of the state is required than
for binary state classification (i.e., breathing or non-breathing)
at a given point in time. However, for respiration rates up
to 60 ∗ T−1

s per minute, where Ts is the window period
used in state classification (i.e., 0.5 seconds), we can use the
classification obtained in Section IV-B to inform respiration
rate. If we determine that respiration was the detected class
for N out of the past M windows of size Ts seconds, then
the respiration rate is 60 ∗ 1

2 ∗
N

M∗Ts
. The additional factor

of 1
2 is used because detection of respiratory motion in a

particular window is a detection of the motion required to
inhale or exhale; that is, the N observed actuating windows
accounts for twice the number of full respirations. These
averages are then estimated using a Kalman filter [19] and
averaged over the past k seconds to provide a smooth estimator
of respiration rate. A Kalman filter is used because there is
some uncertainty inherent in the sensor measurements due
to the wireless medium and the known RSSI variance of 1
provided by the Impinj RFID interrogator being used. The
subsequent averaging of instantaneous rates is to account for
the inaccuracy that results from extrapolating a rate over a 1
minute period by taking only a few seconds’ worth of samples.
For smoothing, we inspect such samples over a longer period
of time and gradually update the estimate with new data via
long-term averaging (using a 6-second window).

D. Real-Time Motion Detection

We used the spectral power spectrogram resulting from the
STFT described in Section IV-B over windows of RSSI signals
to classify respiratory activity and rate. Since the STFT is
used to determine periodic oscillations in the data, such as
that exhibited by the inhale-exhale motion of respiration, the
spectrogram is not applicable to detecting ambient (i.e., non-
respiratory) motion as the RSSI reduces when the subject
moves backwards and increases when the subject moves
in the forward direction. Oscillation is not assured in non-
respiratory motion; accordingly, the Fisher Discriminant Ratio
(FDR) indicated low separability of spectral power. Instead, we
observe the change in channel-normalized RSSI over time by
computing its slope over small time windows. As the subject
moves away from the antenna, the received power reduces
and thus, the value of RSSI decreases. RSSI is correlated to
“backward” or “forward” motion.

For motion classification, we first use the method of local
regression to smoothen the RSSI data: specifically, Locally-
Weighted Scatter Plot Smoother (LOESS). The smoothing
process is considered local because each smoothed value is
determined by neighboring data points defined within the

span. Here, local regression is used to filter out respiratory
oscillations from less-fine ambient movements. Using the span,
a regression weight function is defined for the data points
withing that span via Equation 4:

wi =

(
1−

∣∣∣∣x− xid(x)

∣∣∣∣3
)3

(4)

Here, x is the predictor value associated with the response
value to be smoothed, xi are the nearest neighbors of x as
defined by the span, and d(x) is the distance along the abscissa
from x to the most distant predictor value within the span. In
our case, we used the span of 50% so as to flatten out the
oscillations in normalized RSSI due to breathing.

To compute the slope of change in RSSI, we consider
windows of length two seconds up to time N over the intervals
[k, k+ 2],∀k ∈ [0, N − 2). For each window, we consider the
first and the last value of RSSI and calculate its slope using
the equation of slope of the line over time: slope = ∆RSSI

∆t .
As we are smoothing the data using the method of local

regression, as described above, if we inhale to an exhale in
the next window the data is flat so we do not get a sudden
changes in slope, as shown in Figure 2.

Fig. 2: Using local regression, the time-series data is smoothed
over small windows by performing regression weighting
against near-neighbors of the data, filtering the backwards and
forwards motion of the mannequin from the oscillatory pattern
exhibited by respiratory motion.

In case of sudden movements, due to smoothing more points
are classified as a movement thus, another method was devel-
oped to separately detect a sudden movement. This method
calculates the average of normalized RSSI data over each
of the two seconds windows. Then, each of those averages
are compared with the average of the previous window. If it
remains within the threshold we consider the movement to
be of a continuous form otherwise, we flag it as a sudden
movement in that particular window.
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V. RESULTS

A. Cessation Classification

In our experiment, a Laerdal SimBaby programmable infant
mannequin [20] was programmed to breathe at a rate of 31
per minute for 1 minute, then stop breathing for 1 minute,
alternating between these states for a period of time. Subse-
quently, the mannequin was programmed to breathe at a rate
of 31 per minute for 1 minute, then at a rate of 15 per minute
for 1 minute, then stop breathing for one minute, then at a
rate of 15 for 1 minute, and finally at a rate of 31 again for
1 minute. The interrogator was positioned approximately 1-
3 feet from the mannequin, oriented above, astride, or at the
feet. The STFT considered non-overlapping windows of 0.5
seconds in size and a training window period of 20 seconds,
yielding a sample population size of 40 for the t-test.

Lack of respiratory activity is not necessarily sleep apnea;
recall that apnea is defined as a cessation in respiratory motion
for a period of 10 seconds or more. Moreover, a detected cessa-
tion in respiratory activity by a Short-Time Fourier Transform
merely indicates that no respiratory activity occurred during
that short-time window. This could be caused by the natural
pause that occurs between respirations or between inhale and
exhale. In order to better generalize our approach to other
biomedical detection applications, we measured a cessation
of respiration as cessation detected by our approach for M
consecutive short-time windows, where M is defined to be
greater than the number of short-time windows within the
maximum respiratory period programmed to the SimBaby.
In this experiment, the minimum rate was 15 respirations
per minute, or a maximum period of 4 seconds between
respirations. Since the STFT short-time window Ts was chosen
to be 0.5 seconds, and the maximum period Tmax is 4 seconds,
M = Tmax

Ts
= 8 consecutive window periods was chosen.

Cessation was detected within 4 seconds when oscillating
between a respiratory rate of 31 and 0, and within 5 seconds
when oscillating between a respiratory rate of 31 to 15 to 0,
with no false positives or false negatives in either case.

B. Rate Detection

Because we are able to classify respiratory state (i.e., breath-
ing or non-breathing) using short time windows (Ts = 0.5),
these results are suitable for estimating respiratory rate by
observing when the subject was observed to be stretching
the band either during a particular inhale or exhale motion,
and interpolating over a one-minute period to obtain the rate.
Using the same experimental data collected in Section IV-B,
we estimated the rate during breathing periods to be 33 and
28 respirations per minute after eliminating the 6-second tran-
sition period between breathing periods, when the SimBaby
was programmed to breathe at 31 per minute, as shown in
Figure 3a, and estimated breathing rates of 38, 18, 18, and
31 respirations per minute for the breathing periods shown in
Figure 3b, when the ground truths from the SimBaby were set
at 31, 15, 15, and 31, respectively. These results correspond to
root-mean-squared errors of 4 and 7 per minute, respectively

(the errors are 9 and 8, respectively, if the 6-second transition
period is used in the error calculation).

C. Ambient Motion
In this experiment, we collected 10 seconds of data with the

band moving away from the antenna, followed by 10 seconds
in which the band moves towards the antenna. The slopes
are calculated and utilized along with the doppler frequency
and the velocity by phase difference (Equation 2) to train a
neural network for classification. To measure the separability
of statistical features such as the RSSI, doppler and velocity
between the “forward” and “backward” motion classes, the
FDR was applied to several statistical features of the windows,
and predicted the RSSI, doppler and velocity to be separable
and therefore good candidates for our classification analysis.

We obtained ≈86% motion classification accuracy using
Neural network for classification and 95%-98% using the
slope and threshold approach. For sudden movements, using
the average method, we had 100% accuracy in detecting the
instant at which the movement had occurred.

VI. CONCLUSION AND FUTURE WORK

In this paper, we normalized RFID signal strength (RSSI)
data by frequency and calculated the tag velocity in order to
utilize the signal for respiratory analysis. The resulting time-
series data was filtered and signal processed to determine the
mean power spectral density, derived from the amplitude of
the oscillatory behavior observed in the signal during short
time windows. This was correlated to respiratory activity by
applying a t-test to compare the power spectral density to
those collected during a brief training period in which the
subject was breathing normally. This yielded highly accurate
classification results, and the short time windows of the STFT
were conducive to utilizing respiratory classification results
to estimate the respiratory rate as well. These results were
collected well within the time period to needed to detect apnea
and hypopnea. Finally, we used the RSSI slope over time to
observe “ambient” motion artifacts.

As future work, we plan to expand on the respiratory
classifier to detect respiratory depth, i.e., a change from normal
to shallow respiratory activity. Additionally, we will study the
respiration rate estimator in more detail by using a sliding
window classifier that could detect changes in respiratory state
with finer granularity in time, rather than during discretized
time windows. We will study the generalization of our ambient
motion detection approach to rotational and lateral motion
artifacts, and we will use data fusion to utilize these clas-
sification sensors to inform one another in real-time to reduce
classification and estimation uncertainty. Finally, we will use
readings obtained from the Bellyband to compute antenna
characteristics such as gain and return loss over a frequency
range in order to develop an accurate mathematical model for
the observed RSSI fluctuations.
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(a) Stretching at 31, 0, 31, 0 per minute for 1 minute each (b) Stretching at 31, 15, 0, 15, 31 per minute for 1 minute each

Fig. 3: Rate estimation over time for two experimental runs, computed as the number of actuation classifications made in the
past k = 6 seconds extrapolated to a one-minute rate. Note that the plots begin after 20 seconds because the first 20 seconds
of data are reserved for training the classifier used in computing the rates.
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