
Real-Time Wireless Physical Layer Encryption

Brandon Z. Katz, Cem Sahin, and Kapil R. Dandekar

Drexel Wireless Systems Lab, Department of Electrical and Computer Engineering,
Drexel University, Philadelphia, PA, 19104, USA

Emails: {bzk23, cs486, krd26}@drexel.edu

Abstract—In today’s world where inexpensive, hobbyist grade
devices can be used to infiltrate 802.11 networks, wireless security
must be re-examined from the ground up. Current security
schemes rely on pre-shared keys or some form of centralized
key server. Both use cases are vulnerable to “cheap” man-
in-the-middle and brute-force attacks as well as user error.
Recently, physical (PHY) layer techniques have been proposed
for the generation of encryption keys on the fly without the use
of vulnerable key sharing. While these PHY layer techniques
have been demonstrated to work in controlled settings with
offline processing, little work has been done to integrate them
into existing wireless standards. In this work, we present an
integration of PHY layer channel state-based encryption key
generation into a real-time 802.11 compliant software-defined
radio. Our implementation samples application layer traffic to
determine channel state information and produces keys for use
in encrypting packets. Experimental results indicate that our
system successfully samples application layer traffic to generate
encryption keys in real-time.

Index Terms—Data security, cryptography, encryption, chan-
nel estimation, IEEE 802.11 standards

I. INTRODUCTION

The modern exchange of information over wireless net-

works poses security challenges never dreamed of by early

wireless pioneers. Wired Equivalent Privacy (WEP), the se-

curity standard introduced with 802.11 in 1997, was broken

within four years [1]. Today, vulnerabilities in the replacement

for WEP, WiFi Protected Access (WPA, WPA2), can be easily

exploited using hobbyist tools such as the WiFi Pineapple,

an open source 802.11 penetration tester, which costs less

than $100 [2]. The WiFi Pineapple incorporates a multitude

of free software in order to gain access to 802.11 networks. In

addition, the device is extensible with room for new attacks

against standards that have not yet been written.

One major commonality between existing encryption

schemes is the use of pre-shared keys. While pre-shared keys

can be strengthened through the use of longer and more

random keys, they are susceptible to man-in-the-middle and

eavesdropping-style attacks. In schemes such as WPA2, where

the user has input to the key generation process, networks also

become vulnerable to simple brute-force-style attacks due to

weak passphrases. Despite our best data security efforts, we

also often encounter unsecured wireless networks in public

places.

One potential solution to the stated attacks, and even the

public network problem, is to move security down to the

physical layer of radio networks. Multiple algorithms have

been proposed for the generation of symmetric encryption keys

through the physical (PHY) layer using channel estimates [3],

[4]. These algorithms allow two radios to form an encrypted

session over an unencrypted channel while precluding eves-

dropping and man-in-the-middle attacks. In addition, they can

be used to defeat brute force attacks by continually changing

encryption keys in a random fashion. Multiple key metrics

are of utmost importance to these algorithms. The first metric

is secret bit (s-bit) generation rate or the speed at which

encryption bits are produced by the algorithm. This metric

is an important consideration as it impacts how quickly keys

can be generated at the beginning of a session and also how

quickly they can be refreshed. The second major metric is s-

bit error rate or how often corresponding bits on opposite ends

of the channel fail to match. The error rate must be kept to a

minimum as any one bit error means the entire key must be

discarded, wasting time and resources.

Current algorithms used for extracting keys from wireless

channels differ in their method of using the same channel state

information. In [3], the peak magnitude of the channel impulse

response is taken from each OFDM probe for use in a level-

crossing algorithm to generate bits. This method has not only

a very low s-bit error rate, but also a low s-bit generation

rate (on the order of 1 secret bit per second). In addition,

the tested level-crossing algorithm requires information to be

sent over an unencrypted channel in order to generate the

final key. In [4], OFDM channel estimates are compared

by subcarrier index, thereby comparing many narrowband

channels instead of one wideband channel from each probe.

While this method has a very high s-bit generation rate (on the

order of 1,000 secret bits per second) and does not require the

transmission of algorithm data over an unencrypted link, it has

a relatively high error rate. One major commonality between

these demonstrated algorithms is the use of dedicated channel

probes. These probing packets require specific coordination

and also take up channel capacity.

As of now, these algorithms have been evaluated and shown

to work only on experimental testbeds in controlled environ-

ments with offline processing [3], [4]. They have not been put

to use in real-time, standards-compliant radio networks. In this

paper, we present a real-time, standards-compliant system for

channel-based encryption, along with initial testing results. In

addition, we show that it is possible to use application (APP)

layer traffic to sample wireless channels quickly enough to use

for key generation as opposed to dedicated channel probes as

Authorized licensed use limited to: Drexel University. Downloaded on May 07,2021 at 20:23:26 UTC from IEEE Xplore. Restrictions apply.

have been used in the past [3], [4].

We organize our paper as follows. In Section II, we describe

a technique of generating encryption keys on the PHY layer.

Section III lays out our framework for using APP layer traffic

to sample the wireless channel, followed by how we propose

incorporating the sampling technique and key generation al-

gorithm into a real-time radio. In Section IV, we discuss our

preliminary experimental setup and results. Finally, Section V

contains possible future work, followed by our conclusions in

Section VI.

II. PHY LAYER KEY GENERATION ALGORITHM

Our integrated technique is based on the level-crossing

algorithm described in [3] and is designed with the 802.11-

2012 standard in mind. This base algorithm was selected as

it has been thoroughly vetted and is well known. In addition,

we decided that it is best to start with a focus on low s-bit

error rate, as this algorithm exhibits.

Here, we summarize how the algorithm presented in [3]

works. First, a probing phase is entered where the channel

between two radios is sampled using probing packets. These

probes are assembled at both ends of the link and once enough

probes are exchanged, each node independently filters the

estimated channel to reduce the presence of fast-fading. After

filtering, the nodes compute the standard deviation of the

channel to use as a threshold to determine if the sample at

each time index is a 1, 0, or should not be considered as a

bit. Next, a window is applied to the parsed bits, and a bit is

considered to be present at both radios if there is a run of N

same bits in a row. Finally, one radio sends the indices where

it believes there is a bit to the other radio, and the other radio

replies with a list of indices that it agrees contain a useful bit.

Any eavesdropper would only have information about what

samples are being used as bits, but not what bit the samples

were parsed to. As the wireless channel is reciprocal only

between the two cooperating radios, the eavesdropper would

not parse the same bits, therefor leaving them with a useless

key.

III. REAL-TIME SYSTEM

A. Interrupt-Based Sampling

While current algorithms rely on dedicated probing packets

[3], [4], our implementation utilizes 802.11 preamble infor-

mation from APP layer traffic. The bursty and asymmetric

nature of application layer traffic presents a challenge to two

radios sampling the channel symmetrically, as it cannot be

assumed that each received packet directly corresponds to

a packet at the other participating radio. This asymmetry is

overcome through the use of an internal timer interrupt on

each radio such that there is an interrupt approximately once

per channel coherence time interval. The coherence time is

dependent on the environment and may range from tens to

hundreds of milliseconds [5]. The interrupt can be viewed as a

request for a packet sample. Once an interrupt occurs, the next

received packet transmitted from a participating radio is used

in the channel estimation process. All other packets should

RX

Interrupt
Duration

Time
t = 0

Non-sampled Packet

Sampled Packet
Sample Interrupt

1 2 3 4 65 7 8 9

Interrupt
Initialized

Fig. 1: Illustration of APP layer traffic sampling using

interrupts

be disregarded for the purpose of sampling the channel, but

should continue through the typical MAC pipeline. It should

be noted that if the interval between received packets on any

participating station is greater than the approximate channel

coherence time, the channel sampling process should be put

on hold as the packets used for channel estimation may not

be correlated.

An illustration of the packet sampling mechanism is shown

in Fig. 1. In this diagram, the received packets at a partic-

ipating radio are shown over time. Note that the diagram

is not to scale. In reality, the duration of a transmitted

packet (on the order of microseconds) is much smaller than

a sample window (on the order of milliseconds). To gather

approximately symmetric samples, the process depicted in Fig.

1 should run on each participating receiver.

It is worth noting that in a multi-radio system, the sample

request interrupt at each receiver will not occur at the exact

same time. To fix this, the timer interrupt should be roughly

synchronized across the network when the process begins.

Sample requests will still not be at the exact same times due

to imperfect synchronizing and timer interrupt variance, but

they should occur within one channel coherence time window

which is fast enough to generate correlated channel estimates.

B. Online Key Generation

Now that we have established a framework for sampling

APP layer traffic, we can use the technique to integrate the

key generation algorithm into the MAC layer of a radio with

minimal overhead. First, when two radios decide to generate

a key, the interrupt timer must be set on both receivers. In

order to make sure the interrupts occur close together in time,

a synchronization handshake is introduced. Using 802.11 as an

example, a packet is sent by an access point (AP) or station

(STA) to signal that it would like to generate a key. A return

packet is sent either declining to enter into key generation, or

accepting while also serving as a signal to start the interrupt

timer.

Next, during periods with a bidirectional stream of APP

layer packets, both the AP and STA collect packet samples.

Once a predetermined number of packets are collected, the

AP and STA suspend collection. As samples are collected,

their preambles are used to generate channel state informa-

tion. The samples are then processed following the algorithm

Authorized licensed use limited to: Drexel University. Downloaded on May 07,2021 at 20:23:26 UTC from IEEE Xplore. Restrictions apply.

summarized in Section II between received packets to maintain

MAC performance. Two more packets need to be introduced

to accommodate the index transmission called for in the

algorithm.

Once a key is established, the key can be continually

changed by generating new bits to add to the end of the

existing key. While not exactly the same, this key modification

operation may be reminiscent of the key changing described

in the 802.11i-2004 amendment as part of the Temporal

Key Integrity Protocol (TKIP) [6]. Key mismatches can be

determined through the sending of known packets, such as

management frames. If the keys at each radio turn out to be

mismatched, the process can be started over or the key can

be reverted. If bidirectional traffic is not maintained, the radio

with a sample underflow should signal the other to suspend

key generation.

Algorithm 1 shows a pseudocode implementation of our

online key generation process. The pseudocode does not

include signaling packets, but assumes that the process begins

as soon as the radio is turned on.

IV. EXPERIMENTAL EVALUATION

A. Setup

The procedures described in Section III were integrated

into the Wireless Open-Access Research Platform (WARP)

802.11 reference implementation on WARPv3 boards [7] for

verification and testing. Primary testing was carried out using

two nodes, an AP and an STA. All processing was performed

on the WARP hardware, either on the FPGA directly or on

a MicroBlaze softcore. The two nodes were set up approxi-

mately ten feet apart in a research lab with mostly office space.

Experimentation was carried out over the air on both congested

as well as unoccupied channels. Standard 2.4 GHz monopole

antennas were used so as to resemble a typical consumer

wireless network. APP layer traffic was generated using both

ping commands and file transfers between host PCs attached

to the AP and STA. For the purpose of this test, the sampling

period used was 80 ms. In order to facilitate sampling, APP

layer data was sent at a rate such that packets were sent much

faster than once per coherence time, nominally 12 Mbps.

Keys were generated using a window over the channel state

information derived from the preamble of the 802.11 packets.

Groups of 80 packets were considered at a time. This grouping

allowed full keys to be generated even if a bit error occurred

during one segment of the process. If one segment of the

key was discovered to be mismatched through the reception

of a non-decodable test packet, the key was reverted by a

segment and the process continued. In addition to practicality,

this operation mirrors the possible use case of changing a key

over time. Success was measured by bit error rate as well as

raw bit generation speed.

Standards compliance was spot-checked though the use of

a commercial WiFi device. A mobile phone was attached to

the modified AP and the internet was accessed in various

configurations. Spot-checking occurred while key generation

Algorithm 1 Real-Time Sampling Algorithm

1: global pktSample � / keep track of if a sample is

needed and how many are needed

2: global numSamples � / keep track of how many

samples have been collected

3: static maxNumSamples � / number of samples needed

to generate a key

4:

5: procedure ONSAMPLEINTERRUPT

6: pktSample++ � / increment number of samples

needed

7: end procedure

8:

9: procedure MACHIGHPKTRX(packet)

10: if packetIsGood && pktSample > 0 then

11: if pktSample > 2 then

12: suspend sample collection

13: else if numSamples > maxNumSamples then

14: parse key from stored samples using level

crossing algorithm

15: else

16: store channel sample from packet

17: pktSample– � update need for a new sample

18: end if

19: end if

20: proceed with standard mac packet processing

21: end procedure

22:

23: procedure MAIN

� / Initialize transmit and receive along with

standard MAC processing

24: init sampleInterrupt � / Initialize the interrupt

timer

25: while 1 do

26: � / Wait for packet TX or RX

27: end while

28: end procedure

was in progress with the modified STA as well as while the

modified STA was not connected to the modified AP.

B. Results and Discussion

Initial testing results are summarized in Table I below.

Table I: Summary of experimental results using modified

WARP system

Experiment duration 20 min
Interrupt timer 80 msec

Average s-bit rate 0.63 s-bits/sec
Average bit-error rate 6.7%

Overall, the channel-based key generator added into the

WARP 802.11 reference implementation generated symmetric

bits with a secret bit rate of 0.63 s-bits/sec and with an average

bit error rate of 6.7%. While this error rate seems low, a single

Authorized licensed use limited to: Drexel University. Downloaded on May 07,2021 at 20:23:26 UTC from IEEE Xplore. Restrictions apply.

bit mismatch renders the entire key segment useless. As a

result, the overall segment mismatch rate was close to 33.3%

with the average segment containing five bits generated from

80 packet samples. This statistic means that for a complete

key of 128 bits, 35 key segments had to be generated on

average with 10 of the segments discarded due to the presence

of a bit error. While the bit generation rate of this system

is lower than research implementations [8], [9], we believe

that this is acceptable as this algorithm can continually run,

without introducing the overhead needed for dedicated probing

packets, so long as sufficient APP layer traffic is moving across

the network.

Some processing overhead was introduced to the WARP

802.11 MAC as a result of running the algorithm. Round-trip

latency for APP layer traffic was increased from an average

of 0.85 ms to 1.21 ms, representing a 42.4% increase. This

increase can be largely attributed to the processing necessary to

extract keys from the channel state information. The algorithm

was run on the same MicroBlaze processing core used for

MAC High functions on the WARP 802.11 reference as

opposed to an isolated processing environment. No change in

effective data throughput was observed after the introduction

of the key extraction algorithm to the WARP 802.11 reference.

C. Augmentation of Existing Encryption Techniques

In the current implementation, this technique seems to be

best suited for augmenting WPA2 or similar processes. A

sample use case could involve starting with a passphrase and

then using this algorithm to change the key over time in a

random fashion. This process can be equated to using the

WPA2 passphrase as a means of authentication and initial

encryption, and then shifting the encryption responsibilities

over to the physical layer security algorithm. This technique

also has potential to augment standards like HTTPS in unse-

cured networks. Even in places where the 802.11 network is

unsecured, this method can be used to secure individual user

connections and can generate enough bits to make keys from

scratch. A slower key generation rate could be traded for lower

bit error rate to ensure fully symmetric keys are generated on

the first try.

V. FUTURE WORK

While this system has shown that it is possible to gen-

erate PHY layer encryption keys in a standards-compliant

environment using application layer traffic, more work has to

be performed to determine the optimal sampling speed and

algorithm confidence parameters. Future work may include an

automatic gain control style system to determine the optimal

packet sample rate for the given channel. This feature may

include the incorporation of real-time channel coherence time

estimation similar to what is discussed in [10]. Future system

testing will need to be conducted in a variety of measured and

emulated environments to quantify key error rates and

randomness in different situations.

VI. CONCLUSION

In this work, we presented our technique for interrupt-based

sampling and a framework for integrating a channel-based key

generation scheme into an 802.11 reference design. Through

experimentation, we demonstrated that it is possible to use

regular APP layer traffic as a means of sampling wireless

channels quickly enough to generate symmetric keys based

on the channel state information. Verification was conducted

using WARP software-defined radios over real air channels.

Overall, we were able to establish key generation rates and

key error rates that are promising for future research and

commercial expansion.

VII. ACKNOWLEDGMENTS

This material is based upon work supported by the National

Science Foundation under grant numbers CNS-1228847 and

CNS-1422964.

REFERENCES

[1] S. R. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the Key
Scheduling Algorithm of RC4,” in Revised Papers from the 8th Annual

International Workshop on Selected Areas in Cryptography, ser. SAC
’01. London, UK, UK: Springer-Verlag, 2001, pp. 1–24. [Online].
Available: http://dl.acm.org/citation.cfm?id=646557.694759

[2] “WiFi Pineapple.” [Online]. Available: https://www.wifipineapple.com
[3] S. Mathur, W. Trappe, N. Mandayam, C. Ye, and A. Reznik,

“Radio-telepathy: Extracting a Secret Key from an Unauthenticated
Wireless Channel,” in Proceedings of the 14th ACM International

Conference on Mobile Computing and Networking, ser. MobiCom ’08.
New York, NY, USA: ACM, 2008, pp. 128–139. [Online]. Available:
http://doi.acm.org/10.1145/1409944.1409960

[4] C. Sahin, B. Katz, and K. R. Dandekar, “Secure and Robust Symmetric
Key Generation using Physical Layer Techniques under Various Wireless
Environments,” in Radio and Wireless Symposium (RWS), 2016 IEEE,
Jan 2016.

[5] H. MacLeod, C. Loadman, and Z. Chen, “Experimental studies of the
2.4-GHz ISM wireless indoor channel,” in Communication Networks and

Services Research Conference, 2005. Proceedings of the 3rd Annual,
May 2005, pp. 63–68.

[6] “IEEE Standard for information technology-Telecommunications and
information exchange between systems-Local and metropolitan area
networks-Specific requirements-Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications: Amendment
6: Medium Access Control (MAC) Security Enhancements,” IEEE Std

802.11i-2004, pp. 1–190, July 2004.
[7] “WARP project.” [Online]. Available: http://warpproject.org
[8] S. Jana, S. N. Premnath, M. Clark, S. K. Kasera, N. Patwari,

and S. V. Krishnamurthy, “On the Effectiveness of Secret Key
Extraction from Wireless Signal Strength in Real Environments,”
in Proceedings of the 15th Annual International Conference on

Mobile Computing and Networking, ser. MobiCom ’09. New
York, NY, USA: ACM, 2009, pp. 321–332. [Online]. Available:
http://doi.acm.org/10.1145/1614320.1614356

[9] M. Wilhelm, I. Martinovic, and J. Schmitt, “On key agreement in
wireless sensor networks based on radio transmission properties,” in
Secure Network Protocols, 2009. NPSec 2009. 5th IEEE Workshop on,
Oct 2009, pp. 37–42.

[10] T. Yucek, R. Tannious, and H. Arslan, “Doppler spread estimation
for wireless OFDM systems,” in Advances in Wired and Wireless

Communication, 2005 IEEE/Sarnoff Symposium on, April 2005, pp.
233–236.

Authorized licensed use limited to: Drexel University. Downloaded on May 07,2021 at 20:23:26 UTC from IEEE Xplore. Restrictions apply.

