Real-Time Wireless Physical Layer Encryption

Brandon Z. Katz, Cem Sahin, and Kapil R. Dandekar

Drexel Wireless Systems Lab, Department of Electrical and Computer Engineering,
Drexel University, Philadelphia, PA, 19104, USA
Emails: {bzk23, cs486, krd26}@drexel.edu

Abstract—In today’s world where inexpensive, hobbyist grade
devices can be used to infiltrate 802.11 networks, wireless security
must be re-examined from the ground up. Current security
schemes rely on pre-shared keys or some form of centralized
key server. Both use cases are vulnerable to ‘“cheap” man-
in-the-middle and brute-force attacks as well as user error.
Recently, physical (PHY) layer techniques have been proposed
for the generation of encryption keys on the fly without the use
of vulnerable key sharing. While these PHY layer techniques
have been demonstrated to work in controlled settings with
offline processing, little work has been done to integrate them
into existing wireless standards. In this work, we present an
integration of PHY layer channel state-based encryption key
generation into a real-time 802.11 compliant software-defined
radio. Our implementation samples application layer traffic to
determine channel state information and produces keys for use
in encrypting packets. Experimental results indicate that our
system successfully samples application layer traffic to generate
encryption keys in real-time.

Index Terms—Data security, cryptography, encryption, chan-
nel estimation, IEEE 802.11 standards

I. INTRODUCTION

The modern exchange of information over wireless net-
works poses security challenges never dreamed of by early
wireless pioneers. Wired Equivalent Privacy (WEP), the se-
curity standard introduced with 802.11 in 1997, was broken
within four years [1]. Today, vulnerabilities in the replacement
for WEP, WiFi Protected Access (WPA, WPA2), can be easily
exploited using hobbyist tools such as the WiFi Pineapple,
an open source 802.11 penetration tester, which costs less
than $100 [2]. The WiFi Pineapple incorporates a multitude
of free software in order to gain access to 802.11 networks. In
addition, the device is extensible with room for new attacks
against standards that have not yet been written.

One major commonality between existing encryption
schemes is the use of pre-shared keys. While pre-shared keys
can be strengthened through the use of longer and more
random keys, they are susceptible to man-in-the-middle and
eavesdropping-style attacks. In schemes such as WPA2, where
the user has input to the key generation process, networks also
become vulnerable to simple brute-force-style attacks due to
weak passphrases. Despite our best data security efforts, we
also often encounter unsecured wireless networks in public
places.

One potential solution to the stated attacks, and even the
public network problem, is to move security down to the
physical layer of radio networks. Multiple algorithms have

been proposed for the generation of symmetric encryption keys
through the physical (PHY) layer using channel estimates [3],
[4]. These algorithms allow two radios to form an encrypted
session over an unencrypted channel while precluding eves-
dropping and man-in-the-middle attacks. In addition, they can
be used to defeat brute force attacks by continually changing
encryption keys in a random fashion. Multiple key metrics
are of utmost importance to these algorithms. The first metric
is secret bit (s-bit) generation rate or the speed at which
encryption bits are produced by the algorithm. This metric
is an important consideration as it impacts how quickly keys
can be generated at the beginning of a session and also how
quickly they can be refreshed. The second major metric is s-
bit error rate or how often corresponding bits on opposite ends
of the channel fail to match. The error rate must be kept to a
minimum as any one bit error means the entire key must be
discarded, wasting time and resources.

Current algorithms used for extracting keys from wireless
channels differ in their method of using the same channel state
information. In [3], the peak magnitude of the channel impulse
response is taken from each OFDM probe for use in a level-
crossing algorithm to generate bits. This method has not only
a very low s-bit error rate, but also a low s-bit generation
rate (on the order of 1 secret bit per second). In addition,
the tested level-crossing algorithm requires information to be
sent over an unencrypted channel in order to generate the
final key. In [4], OFDM channel estimates are compared
by subcarrier index, thereby comparing many narrowband
channels instead of one wideband channel from each probe.
While this method has a very high s-bit generation rate (on the
order of 1,000 secret bits per second) and does not require the
transmission of algorithm data over an unencrypted link, it has
a relatively high error rate. One major commonality between
these demonstrated algorithms is the use of dedicated channel
probes. These probing packets require specific coordination
and also take up channel capacity.

As of now, these algorithms have been evaluated and shown
to work only on experimental testbeds in controlled environ-
ments with offline processing [3], [4]. They have not been put
to use in real-time, standards-compliant radio networks. In this
paper, we present a real-time, standards-compliant system for
channel-based encryption, along with initial testing results. In
addition, we show that it is possible to use application (APP)
layer traffic to sample wireless channels quickly enough to use
for key generation as opposed to dedicated channel probes as

978-1-5090-1199-5/16/$31.00 ©2016 IEEE

Authorized licensed use limited to: Drexel University. Downloaded on May 07,2021 at 20:23:26 UTC from IEEE Xplore. Restrictions apply.

have been used in the past [3], [4].

We organize our paper as follows. In Section II, we describe
a technique of generating encryption keys on the PHY layer.
Section III lays out our framework for using APP layer traffic
to sample the wireless channel, followed by how we propose
incorporating the sampling technique and key generation al-
gorithm into a real-time radio. In Section IV, we discuss our
preliminary experimental setup and results. Finally, Section V
contains possible future work, followed by our conclusions in
Section VI.

II. PHY LAYER KEY GENERATION ALGORITHM

Our integrated technique is based on the level-crossing
algorithm described in [3] and is designed with the 802.11-
2012 standard in mind. This base algorithm was selected as
it has been thoroughly vetted and is well known. In addition,
we decided that it is best to start with a focus on low s-bit
error rate, as this algorithm exhibits.

Here, we summarize how the algorithm presented in [3]
works. First, a probing phase is entered where the channel
between two radios is sampled using probing packets. These
probes are assembled at both ends of the link and once enough
probes are exchanged, each node independently filters the
estimated channel to reduce the presence of fast-fading. After
filtering, the nodes compute the standard deviation of the
channel to use as a threshold to determine if the sample at
each time index is a 1, 0, or should not be considered as a
bit. Next, a window is applied to the parsed bits, and a bit is
considered to be present at both radios if there is a run of N
same bits in a row. Finally, one radio sends the indices where
it believes there is a bit to the other radio, and the other radio
replies with a list of indices that it agrees contain a useful bit.
Any eavesdropper would only have information about what
samples are being used as bits, but not what bit the samples
were parsed to. As the wireless channel is reciprocal only
between the two cooperating radios, the eavesdropper would
not parse the same bits, therefor leaving them with a useless
key.

III. REAL-TIME SYSTEM

A. Interrupt-Based Sampling

While current algorithms rely on dedicated probing packets
[3], [4], our implementation utilizes 802.11 preamble infor-
mation from APP layer traffic. The bursty and asymmetric
nature of application layer traffic presents a challenge to two
radios sampling the channel symmetrically, as it cannot be
assumed that each received packet directly corresponds to
a packet at the other participating radio. This asymmetry is
overcome through the use of an internal timer interrupt on
each radio such that there is an interrupt approximately once
per channel coherence time interval. The coherence time is
dependent on the environment and may range from tens to
hundreds of milliseconds [5]. The interrupt can be viewed as a
request for a packet sample. Once an interrupt occurs, the next
received packet transmitted from a participating radio is used
in the channel estimation process. All other packets should

LW

t= 1 4

LILOC]

7 9

. 5
Time

Interrupt
D Non-sampled Packet

Interrupt Duration
Initialized

‘ Sample Interrupt
.Sampled Packet

Fig. 1: Illustration of APP layer traffic sampling using
interrupts

be disregarded for the purpose of sampling the channel, but
should continue through the typical MAC pipeline. It should
be noted that if the interval between received packets on any
participating station is greater than the approximate channel
coherence time, the channel sampling process should be put
on hold as the packets used for channel estimation may not
be correlated.

An illustration of the packet sampling mechanism is shown
in Fig. 1. In this diagram, the received packets at a partic-
ipating radio are shown over time. Note that the diagram
is not to scale. In reality, the duration of a transmitted
packet (on the order of microseconds) is much smaller than
a sample window (on the order of milliseconds). To gather
approximately symmetric samples, the process depicted in Fig.
1 should run on each participating receiver.

It is worth noting that in a multi-radio system, the sample
request interrupt at each receiver will not occur at the exact
same time. To fix this, the timer interrupt should be roughly
synchronized across the network when the process begins.
Sample requests will still not be at the exact same times due
to imperfect synchronizing and timer interrupt variance, but
they should occur within one channel coherence time window
which is fast enough to generate correlated channel estimates.

B. Online Key Generation

Now that we have established a framework for sampling
APP layer traffic, we can use the technique to integrate the
key generation algorithm into the MAC layer of a radio with
minimal overhead. First, when two radios decide to generate
a key, the interrupt timer must be set on both receivers. In
order to make sure the interrupts occur close together in time,
a synchronization handshake is introduced. Using 802.11 as an
example, a packet is sent by an access point (AP) or station
(STA) to signal that it would like to generate a key. A return
packet is sent either declining to enter into key generation, or
accepting while also serving as a signal to start the interrupt
timer.

Next, during periods with a bidirectional stream of APP
layer packets, both the AP and STA collect packet samples.
Once a predetermined number of packets are collected, the
AP and STA suspend collection. As samples are collected,
their preambles are used to generate channel state informa-
tion. The samples are then processed following the algorithm

Authorized licensed use limited to: Drexel University. Downloaded on May 07,2021 at 20:23:26 UTC from IEEE Xplore. Restrictions apply.

summarized in Section II between received packets to maintain
MAC performance. Two more packets need to be introduced
to accommodate the index transmission called for in the
algorithm.

Once a key is established, the key can be continually
changed by generating new bits to add to the end of the
existing key. While not exactly the same, this key modification
operation may be reminiscent of the key changing described
in the 802.11i-2004 amendment as part of the Temporal
Key Integrity Protocol (TKIP) [6]. Key mismatches can be
determined through the sending of known packets, such as
management frames. If the keys at each radio turn out to be
mismatched, the process can be started over or the key can
be reverted. If bidirectional traffic is not maintained, the radio
with a sample underflow should signal the other to suspend
key generation.

Algorithm 1 shows a pseudocode implementation of our
online key generation process. The pseudocode does not
include signaling packets, but assumes that the process begins
as soon as the radio is turned on.

IV. EXPERIMENTAL EVALUATION

A. Setup

The procedures described in Section III were integrated
into the Wireless Open-Access Research Platform (WARP)
802.11 reference implementation on WARPv3 boards [7] for
verification and testing. Primary testing was carried out using
two nodes, an AP and an STA. All processing was performed
on the WARP hardware, either on the FPGA directly or on
a MicroBlaze softcore. The two nodes were set up approxi-
mately ten feet apart in a research lab with mostly office space.
Experimentation was carried out over the air on both congested
as well as unoccupied channels. Standard 2.4 GHz monopole
antennas were used so as to resemble a typical consumer
wireless network. APP layer traffic was generated using both
ping commands and file transfers between host PCs attached
to the AP and STA. For the purpose of this test, the sampling
period used was 80 ms. In order to facilitate sampling, APP
layer data was sent at a rate such that packets were sent much
faster than once per coherence time, nominally 12 Mbps.

Keys were generated using a window over the channel state
information derived from the preamble of the 802.11 packets.
Groups of 80 packets were considered at a time. This grouping
allowed full keys to be generated even if a bit error occurred
during one segment of the process. If one segment of the
key was discovered to be mismatched through the reception
of a non-decodable test packet, the key was reverted by a
segment and the process continued. In addition to practicality,
this operation mirrors the possible use case of changing a key
over time. Success was measured by bit error rate as well as
raw bit generation speed.

Standards compliance was spot-checked though the use of
a commercial WiFi device. A mobile phone was attached to
the modified AP and the internet was accessed in various
configurations. Spot-checking occurred while key generation

Algorithm 1 Real-Time Sampling Algorithm

1: global pktSample > / keep track of if a sample is
needed and how many are needed

2: global numSamples > / keep track of how many
samples have been collected

3: static maxz NumSamples > / number of samples needed
to generate a key

5: procedure ONSAMPLEINTERRUPT
pktSample++ > / increment number of samples
needed
7: end procedure

9: procedure MACHIGHPKTRX(packet)
10: if packetlsGood && pktSample > 0 then

11: if pktSample > 2 then

12: suspend sample collection

13: else if numSamples > maxNumSamples then

14: parse key from stored samples using level
crossing algorithm

15: else

16: store channel sample from packet

17: pktSample— > update need for a new sample

18: end if

19: end if

20: proceed with standard mac packet processing

21: end procedure

22:

23: procedure MAIN
> / Initialize transmit and receive along with
standard MAC processing

24: init samplelInterrupt > / Initialize the interrupt
timer

25: while 1 do

26: > / Wait for packet TX or RX

27: end while

28: end procedure

was in progress with the modified STA as well as while the
modified STA was not connected to the modified AP.

B. Results and Discussion

Initial testing results are summarized in Table I below.

Table I: Summary of experimental results using modified
WARP system

Experiment duration 20 min
Interrupt timer 80 msec
Average s-bit rate 0.63 s-bits/sec
Average bit-error rate 6.7%

Overall, the channel-based key generator added into the
WARP 802.11 reference implementation generated symmetric
bits with a secret bit rate of 0.63 s-bits/sec and with an average
bit error rate of 6.7%. While this error rate seems low, a single

Authorized licensed use limited to: Drexel University. Downloaded on May 07,2021 at 20:23:26 UTC from IEEE Xplore. Restrictions apply.

bit mismatch renders the entire key segment useless. As a
result, the overall segment mismatch rate was close to 33.3%
with the average segment containing five bits generated from
80 packet samples. This statistic means that for a complete
key of 128 bits, 35 key segments had to be generated on
average with 10 of the segments discarded due to the presence
of a bit error. While the bit generation rate of this system
is lower than research implementations [8], [9], we believe
that this is acceptable as this algorithm can continually run,
without introducing the overhead needed for dedicated probing
packets, so long as sufficient APP layer traffic is moving across
the network.

Some processing overhead was introduced to the WARP
802.11 MAC as a result of running the algorithm. Round-trip
latency for APP layer traffic was increased from an average
of 0.85 ms to 1.21 ms, representing a 42.4% increase. This
increase can be largely attributed to the processing necessary to
extract keys from the channel state information. The algorithm
was run on the same MicroBlaze processing core used for
MAC High functions on the WARP 802.11 reference as
opposed to an isolated processing environment. No change in
effective data throughput was observed after the introduction
of the key extraction algorithm to the WARP 802.11 reference.

C. Augmentation of Existing Encryption Techniques

In the current implementation, this technique seems to be
best suited for augmenting WPA2 or similar processes. A
sample use case could involve starting with a passphrase and
then using this algorithm to change the key over time in a
random fashion. This process can be equated to using the
WPA?2 passphrase as a means of authentication and initial
encryption, and then shifting the encryption responsibilities
over to the physical layer security algorithm. This technique
also has potential to augment standards like HTTPS in unse-
cured networks. Even in places where the 802.11 network is
unsecured, this method can be used to secure individual user
connections and can generate enough bits to make keys from
scratch. A slower key generation rate could be traded for lower
bit error rate to ensure fully symmetric keys are generated on
the first try.

V. FUTURE WORK

While this system has shown that it is possible to gen-
erate PHY layer encryption keys in a standards-compliant
environment using application layer traffic, more work has to
be performed to determine the optimal sampling speed and
algorithm confidence parameters. Future work may include an
automatic gain control style system to determine the optimal
packet sample rate for the given channel. This feature may
include the incorporation of real-time channel coherence time
estimation similar to what is discussed in [10]. Future system
testing will need to be conducted in a variety of measured and
emulated environments to quantify key error rates and

randomness in different situations.

VI. CONCLUSION

In this work, we presented our technique for interrupt-based
sampling and a framework for integrating a channel-based key
generation scheme into an 802.11 reference design. Through
experimentation, we demonstrated that it is possible to use
regular APP layer traffic as a means of sampling wireless
channels quickly enough to generate symmetric keys based
on the channel state information. Verification was conducted
using WARP software-defined radios over real air channels.
Overall, we were able to establish key generation rates and
key error rates that are promising for future research and
commercial expansion.

VII. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under grant numbers CNS-1228847 and
CNS-1422964.

REFERENCES

[11 S. R. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the Key
Scheduling Algorithm of RC4,” in Revised Papers from the Sth Annual
International Workshop on Selected Areas in Cryptography, ser. SAC
’01. London, UK, UK: Springer-Verlag, 2001, pp. 1-24. [Online].
Available: http://dl.acm.org/citation.cfm?id=646557.694759

[2] “WiFi Pineapple.” [Online]. Available: https://www.wifipineapple.com

[3] S. Mathur, W. Trappe, N. Mandayam, C. Ye, and A. Reznik,
“Radio-telepathy: Extracting a Secret Key from an Unauthenticated
Wireless Channel,” in Proceedings of the 14th ACM International
Conference on Mobile Computing and Networking, ser. MobiCom ’08.
New York, NY, USA: ACM, 2008, pp. 128-139. [Online]. Available:
http://doi.acm.org/10.1145/1409944.1409960

[4] C. Sahin, B. Katz, and K. R. Dandekar, “Secure and Robust Symmetric
Key Generation using Physical Layer Techniques under Various Wireless
Environments,” in Radio and Wireless Symposium (RWS), 2016 IEEE,
Jan 2016.

[5] H. MacLeod, C. Loadman, and Z. Chen, “Experimental studies of the
2.4-GHz ISM wireless indoor channel,” in Communication Networks and
Services Research Conference, 2005. Proceedings of the 3rd Annual,
May 2005, pp. 63-68.

[6] “IEEE Standard for information technology-Telecommunications and
information exchange between systems-Local and metropolitan area
networks-Specific requirements-Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications: Amendment
6: Medium Access Control (MAC) Security Enhancements,” IEEE Std
802.11i-2004, pp. 1-190, July 2004.

[71 “WARP project.” [Online]. Available: http://warpproject.org

[8] S. Jana, S. N. Premnath, M. Clark, S. K. Kasera, N. Patwari,
and S. V. Krishnamurthy, “On the Effectiveness of Secret Key
Extraction from Wireless Signal Strength in Real Environments,”
in Proceedings of the 15th Annual International Conference on
Mobile Computing and Networking, ser. MobiCom ’09. New
York, NY, USA: ACM, 2009, pp. 321-332. [Online]. Available:
http://doi.acm.org/10.1145/1614320.1614356

[91 M. Wilhelm, I. Martinovic, and J. Schmitt, “On key agreement in
wireless sensor networks based on radio transmission properties,” in
Secure Network Protocols, 2009. NPSec 2009. 5th IEEE Workshop on,
Oct 2009, pp. 37-42.

[10] T. Yucek, R. Tannious, and H. Arslan, “Doppler spread estimation
for wireless OFDM systems,” in Advances in Wired and Wireless
Communication, 2005 IEEE/Sarnoff Symposium on, April 2005, pp.
233-236.

Authorized licensed use limited to: Drexel University. Downloaded on May 07,2021 at 20:23:26 UTC from IEEE Xplore. Restrictions apply.

