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The Child as Hacker

Joshua S. Rule,* Joshua B. Tenenbaum,' and Steven T. Piantadosi®

The scope of human learning and development poses a radical challenge for
cognitive science. We propose that developmental theories can address this
challenge by adopting perspectives from computer science. Many of our best
models treat learning as analogous to computer programming because symbolic
programs provide the most compelling account of sophisticated mental repre-
sentations. We specifically propose that children’s learning is analogous to a
particular style of programming called hacking, making code better along
many dimensions through an open-ended set of goals and activities. By contrast
to existing theories, which depend primarily on local search and simple metrics,
this view highlights the many features of good mental representations and the
multiple complementary processes children use to create them.

Hacking as a Metaphor for Learning in Cognitive Development

Human cognitive development is qualitatively unique. Though humans are born unusually help-
less, they amass an unparalleled cognitive repertoire, including: intuitive theories for domains
like physics and biology, formal theories in mathematics and science, language comprehension
and production, and complex perceptual and motor skills. Children also learn to learn, producing
higher-order knowledge that enriches existing concepts and enhances future learning. Human-
like performance in any one of these domains seems substantially beyond current efforts in arti-
ficial intelligence. Yet, human children essentially acquire these abilities simultaneously and univer-
sally. They may even discover new ideas that radically alter humanity’s understanding of the world.
The foundational fields of cognitive science, including philosophy, psychology, neuroscience, and
computer science, face a radical challenge in explaining the richness of human development.

To help address this challenge, we introduce the child as hacker (see Glossary) as a hypothesis
about the representations, processes, and objectives of distinctively human-like learning. Like the
child as scientist view [1-5], the child as hacker is both a fertile metaphor and a source of concrete
hypotheses about cognitive development. It also suggests a roadmap to what could be a unifying
formal account of major phenomena in development. A key part of the child as hacker is the idea
of learning as programming, which holds that symbolic programs (i.e., code) provide the best
formal knowledge representation we have. Learning therefore becomes a process of creating
new mental programs. We review support for learning as programming and argue that while on
increasingly solid ground as a computational-level theory [6], it remains underspecified. We ex-
tend the idea of learning as programming by drawing inspiration from hacking, an internally
driven approach to programming emphasizing the diverse goals and means humans use to
make code better. Our core claim is that the specific representations, motivations, values, and
techniques of hacking form a rich set of largely untested hypotheses about learning.

Knowledge as Code and Learning as Programming

A critical mass of work throughout cognitive science has converged on the hypothesis that
human learning operates over structured, probabilistic, program-like representations [7-20] (cf.
[21]) (Box 1), a modern formulation of Fodor’s language of thought (LOT) [22] as something like
a programming language. Learning in the LOT consists of forming expressions to encode
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Box 1. Programs and the Challenge of Humans’ Broad Algorithmic Knowledge

Table I. A Sampling of Domains Requiring Algorithmic Knowledge

Formalizable as Programs, with Motivating Examples.
Logic First-order, modal, deontic logic

Mathematics Number systems, geometry, calculus

Natural language Morphology, syntax, number grammars

Sense data Audio, images, video, haptics

C, Lisp, Haskell, Prolog, IXTEX

Relativity, game theory, natural selection

Computer languages
Scientific theories
Operating procedures Robert’s rules, bylaws, checklists
Games and sports Go, football, 8 queens, juggling, Lego
Norms and mores Class systems, social cliques, taboos

Legal codes Constitutions, contracts, tax law

Religious systems Monastic orders, vows, rites and rituals
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Kinship Genealogies, clans/moieties, family trees
Figure |. Several Classes of
Programs Expressed as Symbolic
Images. (A) Blueprints, (B) assembly
instructions, (C) musical notation, (D)
knotting diagrams, (E) juggling pattermns,
(F) graphical proofs, and (G) football plays.

Mundane chores Knotting ties, making beds, mowing lawns

Intuitive theories Physics, biology, theory of mind

Domain theories Cooking, lockpicking, architecture

Art Music, dance, origami, color spaces

Humans possess broad algorithmic knowledge, manipulating complex data in structured ways across many domains
(Table I). Symbolic programs (i.e., computer code) form a universal formal representation for algorithmic knowledge
[27,28] and may be the best model of mental representations currently available. Programs can be communicated
in many forms, including not only formal programming languages but a wide variety of forms familiar in all cultures, in-
cluding natural language and symbolic images (Figure I). While there have been many other proposals for modeling
conceptual representations, only programs arguably capture the full breadth and depth of people’s algorithmic abili-
ties [11]. The rapid rise of programs as tools for manipulating information, from obviously symbolic domains like math-
ematics and logic to seemingly nonsymbolic domains like video, audio, and neural processing, further identifies
programs as a capable knowledge representation (e.g., [32]).

Code is expressed according to a formal syntax and its semantics specifies computations, typically as instructions to
some machine (e.g., x86 processor, Turing machine). It can model both declarative (Box 2) and procedural information
(see ‘Hacking Early Arithmetic’) and allow them to interact seamlessly. Code operates at multiple levels, including: in-
dividual symbols, expressions, statements, data structures and functions, libraries, and even entire programming lan-
guages. Each level can interact with the others: libraries can embed one language inside another, statements can
define data structures, and higher-order functions can take functions as arguments and return functions as outputs.
This leads to one of the fundamental insights that makes code so successful. By writing computations as code, they
become data that can be formally manipulated and analyzed [33]. Programming languages thus become programs
that take code as input and return code as output. Because all programming languages are programs, any knowledge
that can be expressed in any program can be integrated into a single formal knowledge representation.

Modeling knowledge as code and learning as programming has worked well for many individual domains (see ‘Knowl-
edge as Code and Learning as Programming’ in main text). We need, however, a general formalization of mental rep-
resentations and how they develop. The child as hacker suggests such an account, emphasizing how information can
be encoded, assessed, and manipulated as code regardless of domain, with the intention of developing formal tools
applicable to broad classes of human learning phenomena.

knowledge, for instance, composing primitives like CAUSE, GO, and UP to form LIFT [23]. This
work argues that a compositional mental language is needed to explain systematicity, productiv-
ity, and compositionality in thought [9,22,24]; a probabilistic language capable of maintaining dis-
tributions over structures is needed to explain variation and gradation in thinking [10,11,25,26];
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Glossary

Child as hacker: an algorithmic-level
view of cognitive development,
extending the idea of learning as
programming by drawing inspiration
from hacking such that the specific
medium, values, techniques, and
practices of hacking form a rich set of
hypotheses about learning, particularly in
children.

Hacking: making code better along
many dimensions through an open-
ended set of goals and activities.
Learning as programming: a
computational-level view of leaming
claiming that the human conceptual
repertoire can be understood as a
mental programming language and
learning as a kind of programming.
Program/code: a particular expression
of a particular computation in some
programming language.

Program induction: learing
programs to explain how observed data
were generated.

Programming language: languages
with a formal syntax, semantics of which
express computations, typically in terms
of instructions that program the behavior
of some machine (e.g., the x86
processor, Turing machines).



and an expressive language, capable of essentially any computation, is needed to explain the
scope of thought [27,28]. Despite comparative and crosscultural work seeking semantic primi-
tives for mental languages [29], other work suggests that learners add and remove primitives, ef-
fectively building entirely new languages [2,3,30,31].

Learning is then program induction: discovering programs that explain how observed data
were generated [34—36]. The theory thus draws on inductive programming literature stretching
back to the birth of cognitive science [37,38] and includes subsequent developments in recursive
program synthesis [39], structure and heuristic discovery [40,41], meta-programming [42,43],
genetic programming [44,45], and inductive logic programming [36,46]. The approach also
makes use of insights from other formalizations of learning, for example, deep learning [47], con-
nectionism [48], reinforcement learning [49], probabilistic graphical models [50], and production
systems [51]. These can be viewed as exploring specific subclasses of programs or possible im-
plementation theories. The learning as programming approach, however, is importantly different
in providing learners the full expressive power of symbolic programs both theoretically (i.e., Turing
completeness) and practically (i.e., freedom to adopt any formal syntax).

This approach applies broadly to developmental phenomena, including counting [52], concept
learning [13,53], function words [54], kinship [55], theory learning [56,57], lexical acquisition
[23], question answering [15], semantics and pragmatics [25,58,59], recursive reasoning [60], se-
quence transformation [61], sequence prediction [18,62], structure learning [63], action concepts
[64], perceptual understanding [14,65], and causality [66]. These applications build on a tradition
of studying agents who understand the world by inferring computational processes that could
have generated observed data, which is optimal in a certain sense [67,68], and aligns with rational
constructivist models of development [69-72].

While these ideas appear to be on increasingly solid empirical and theoretical ground, much work
remains to formalize them into robust and precise descriptions of children’s learning. Most recent
LOT work has argued that learners seek short (simple) programs explaining observed data, a ver-
sion of Occam’s razor. A bias for simplicity favors generalization over memorization, while a bias for
fit favors representations that match the world. Mathematically, these two can be balanced in a prin-
cipled way using Bayes’ theorem or minimum description length formalisms to favor simple, explan-
atory programs [13,73], a principled approach [28,74] that fits human data well [13,53,73,75,76].
Bayesian LOT models have often hypothesized that learners stochastically propose candidates
by sampling from a posterior distribution over programs, a process that empirically resembles chil-
dren’s apparently piecemeal, stop—start development [57].

From Programming to Hacking

Though these ideas have been important in formalizing LOT-based learning, views based entirely
on simplicity, fit, and stochastic search are likely to be incomplete. Most real-world problems re-
quiring program-like solutions are complex enough that there is no single metric of utility nor uni-
fied process of development (Figure 1A). Even so, modern computational approaches to learning,
whether standard learning algorithms or more recent LOT models, use far fewer techniques and
values than human programmers. For any task of significance, software engineering means iter-
atively accumulating many changes to code using many techniques across many scales (see Fig-
ure S1 in the supplemental information online).

In what follows, we enrich learning as programming with a distinctly human style of programming
called hacking. Today, the term ‘hacking’ has many connotations: nefarious, incompetent, pos-
itive, ethical, and cultural. Rather than directly importing these modern connotations, we draw on
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Figure 1. Overview of the Child as Hacker Hypothesis. (A) Code can be changed using many techniques (x-axis) and
assessed according to many values (y-axis). Standard learning models in machine learning and psychology (green region)
tend to focus solely on tuning the parameters of statistical models to improve accuracy. Recent language of thought (LOT)
models (red region) expand this scope, writing functions in program-like representations and evaluating them for
conciseness and, sometimes, efficiency. Yet, the set of values and techniques used by actual hackers (and, by
hypothesis, children; blue region) remains much larger. (B) A comparison of three families of developmental metaphors
discussed in this paper (the child as scientist, the workshop and evolutionary metaphors, and the child as hacker) along
three dimensions: the kinds of knowledge learners acquire, the primary objectives of learning, and the mechanisms used
in learning. See also Figure S1 in the supplemental information online.

earlier ideas about hacking from the origins of modern computing culture [77]. Hacking, as used
here, is about exploring the limits of a complex system, starting with whatever is at hand and it-
eratively pushing the system far beyond what initially seemed possible. We thus begin with a no-
tion of hacking as making code better. But the essence of hacking goes deeper. It lies in all the
values that count as ‘better’, all the techniques people use to improve code, and a profound
sense of internal motivation.

The Many Values of Hacking

There are many dimensions along which a hacker might seek to improve her code, making it not
only more accurate, but perhaps faster, clearer, more modular, more memory-efficient, more re-
usable, cleverer, and so on (Table 1). The simplest program is unlikely to be the most general; the
fastest is usually not the easiest to write; the most elegant typically is not the most easily extensi-
ble. Importantly, real-world systems do not focus exclusively on the metrics that have come to the
forefront of current LOT-learning paradigms. They often maintain multiple solutions to the same
problem, tuned for different sets of values. Moreover, effective systems in the real world care
more about managing complexity than about being short, simple, or terse, though these are
sometimes useful tools for managing complexity. Indeed, many foundational ideas in computer
science are less about computation per se and more about managing the inevitable complexity
that arises when putting computation to use [33,78].

The Many Activities of Hacking

To pursue these diverse objectives, hackers have developed many process-level mechanisms for
improving their representations [78], including adding new functions and data structures,
debugging faulty code, refactoring code, and even inventing new languages (Table 2). Hackers
understand dozens or even hundreds of these mechanisms and their potential impacts on vari-
ous values. Some make small, systematic, and predictable changes, while others are dramatic
and transformative; most are specially tailored to specific kinds of problems. For instance, a
hacker might care about speed and so cache the output of subcomputations in an algorithm.
She might seek modularity and so define data structures that encapsulate information and

4 Trendsin Cognitive Sciences, Month 2020, Vol. xx, No. xx

Cell

REVIEWS



Cell

REVIEWS

Table 1. Learners and Hackers Share Similar Values®
Accurate Demonstrates mastery of the problem; inaccurate solutions hardly count as solutions at all
Concise Reduces the chance of implementation errors and the cost to discover and store a solution
Easy Optimizes the effort of producing a solution, enabling the hacker to solve more problems
Fast Produces results quickly, allowing more problems to be solved per unit time
Efficient Respects limits in time, computation, storage space, and programmer energy
Novel Solves a problem unlike previously solved problems, introducing new abilities to the codebase
Useful Solves a problem of high utility

Modular Decomposes a system at its semantic joints; parts can be optimized and reused independently

General Solves many problems with one solution, eliminating the cost of storing distinct solutions
Robust Degrades gracefully, recovers from errors, and accepts many input formats

Minimal Reduces available resources to better understand some limit of the problem space
Elegant Emphasizes symmetry and minimalism common among mature solutions

Portable Avoids idiosyncrasies of the machine on which it was implemented and can be easily shared

Clear Reveals code’s core structure to suggest further improvements; is easier to learn and explain
Clever Solves a problem in an unexpected way
Fun Optimizes for the pleasure of producing a solution

®Hackers want to make their code better, and listed here are some features of good code. They are also features of useful
conceptual systems.

make it accessible only through specific interfaces. Or, she might seek reusable parts and so ab-
stract common computations into named functions. This diversity of techniques makes hacking
different from both common learning algorithms and recent LOT models. Typically, these other
models explore a small set of techniques for improving programs, based on relatively simple
(even dumb) local methods like gradient descent, random sampling, or exhaustive enumeration.

The Intrinsic Motivation of Hacking

Hacking is intrinsically motivated. Though a hacker may often be motivated in part by an extrinsic
goal, she always generates her own goals, choosing specific dimensions she wants to improve,
and pursues them at least as much for the intrinsic reward of better code as for any instrumental pur-
pose. Sometimes, her goal is difficult to assess objectively and so unlikely to arise extrinsically. Other

Table 2. Learners and Hackers Share Similar Techniques®
Tune parameters Adjust constants in code to optimize an objective function.
Add functions Write new procedures for the codebase, increasing its overall abilities by making new computations available for reuse.
Extract functions Move existing code into its own named procedure to centrally define an already common computation.

Test and debug Execute code to verify that it behaves as expected and fix problems that arise. Accumulating tests over time increases code’s trustworthiness.

Handle errors Recognize and recover from errors rather than failing before completion, thereby increasing robustness.

Profile Observe a program’s resource use as it runs to identify inefficiencies for further scrutiny.

Refactor Restructure code without changing the semantics of the computations performed (e.g.,remove dead code, reorder statements).

Add types Add code explicitly describing a program’s semantics, so syntax better reflects semantics and supports automated reasoning about behavior.
Write libraries Create a collection of related representations and procedures that serve as a toolkit for solving an entire family of problems.

Invent languages Create new languages tuned to particular domains (e.g.,HTML, SQL, E*’IEX) or approaches to problem solving (e.g.,Prolog, C, Scheme).

@Hackers have many techniques for changing and improving code; some are listed here. The child as hacker suggests that the techniques of hackers are a rich source of
hypotheses for understanding the epistemic practices of learners.
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times, her goal can be measured objectively, but she chooses it regardless of, perhaps in opposition
to, external goals (e.g., making code faster, even though outstanding extrinsic requests explicitly tar-
get higher accuracy). Whatever their origins, her choice of goals often appears spontaneous, even
stochastic. Her specific goals and values may change nearly as often as the code itself, constantly
updated in light of recent changes. She is deeply interested in achieving each goal, but she frequently
adopts new goals before reaching her current goal for any number of reasons: getting bored, decid-
ing her progress is ‘good enough’, getting stuck, or pursuing other projects. Rather than randomly
walking from goal to goal, however, she learns to maintain a network of goals: abandoning bad
goals, identifying subgoals, narrowing, broadening, and setting goals aside to revisit later. Even if
she eventually achieves her initial goal, the path she follows may not be the most direct available.
Her goals are thus primarily a means to improve her code rather than ends in themselves.

The fundamental role of intrinsic motivation and active goal management in hacking suggests deep
connections with curiosity and play [79-82], which have also been posited to play central roles in chil-
dren’s active learning. We do not speculate on those connections here except to say that in thinking
about intrinsic motivation in hacking, we’ve been inspired by Chu and Schulz’s work exploring the role
of goals and problem-solving in play [83]. Further understanding of this aspect of both learning and
hacking could be informed by our search for better accounts of play and curiosity.

In short, the components of hacking (diverse values, a toolkit of techniques for changing code,
and deep intrinsic motivation) combine to make hacking both a highly successful and emotionally
engaging approach to programming. The ability to select appropriate values, goals, and changes
to code transforms seemingly stochastic behavior into reliably better code. The combination of
internal motivation, uncertain outcomes, and iterative improvement makes hacking a creative
and rewarding experience.

Hacking Early Arithmetic

It is helpful to look through the hacker’s lens at a concrete example of algorithmic revision from
cognitive development: how preschoolers and early grade-schoolers learn to solve simple addi-
tion problems like 2 + 3. In this section, we demonstrate how the child as hacker can be used to
explain key findings in arithmetic learning as natural consequences of changing code-like repre-
sentations according to hacker-like values and techniques.

We focus on the well-known ‘sum’ to ‘min’ transition [84-89], in which children spontaneously
move from counting out each addend separately and then recounting the entire set (sum strategy)
to counting out the smaller addend starting from the larger addend (min strategy). Small number
addition has been modeled many times [88,90-94], but even as this case is well known, its signif-
icance for understanding learning generally [95] is not appreciated. This domain is notable because
children learn procedures and, in doing so, display many hallmarks of hackers.

Throughout this transition and beyond, children do not discard previous strategies when acquir-
ing new ones but instead maintain multiple strategies [96-99]. The work of Siegler and col-
leagues, in particular, explicitly grapples with the complexity of both the many values that
learners might adopt and the need to select among many strategies for solving the same prob-
lem. They have shown that children appropriately choose different strategies trial-by-trial based
on features like speed, memory demands, and robustness to error [88,95].

Table 3 implements several early addition strategies as code. For the sake of space, we highlight five
strategies (cf. [92,100]). Children acquire the sum strategy through informal interactions with parents

or at the onset of formal education [88,101,102] (sum; Table 3). sum appears optimized for instruction
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Table 3. Small Number Addition Algorithms®

Resources

Algorithm Pseudocode Trace (2+5) Operations Fingers Memory

def sum(al,a2):
raise(al, LeftHand)
raise(a2, RightHand)
y = count(LeftHand, @) 2(a1 +a2) +1 a1+ az 1
sum = count(RightHand, y) 7!
return sum

12345. ..
34567 ...

o
[CR™)

def shortcutSum(al, a2): 12 34567 ...
y = raiseCount(al, LeftHand, @)
sum = raiseCount(a2, RightHand, y) 71 ar+az+1 a1+ az 2
return sum :

def countFromFirst(al, a2): 2 34567...

sum = raiseCount(a2, LeftHand, al) az +1 a2 2
return sum 7!

def min(al, a2):
if a1l > a2:
return countFromFirst(a2, al) min(a1, az2) + 1 min(ai,az) 2
else 7!
return countFromFirst(al, a2)

@
=Y
4

def retrieval(al,a2):
if (al, a2) not in seen:
seen[(al, a2)] = add(al, a2) 7 2 0 [0, 00)
return seen[(al, a2)]

@Each entry lists: code (Algorithm pseudocode); what a child might do and say (Trace); the number of operations (Opera-
tions); how many fingers (or other objects) are needed (Fingers); and how many numbers the child must remember simulta-
neously (Memory). raise (N, hand) holds up N fingers on hand by counting from 1. ¥ = count (hand, X) counts fingers
held up on hand starting from x toreturn Y. Y = raiseCount (N, hand, X) combines raise and count, counting from x
while holding up N fingers on hand. Resource counts for retrieval assume a previously seen problem; the values other-
wise grow to accommodate a call to add, a generic adding algorithm that selects a specific addition algorithm appropriate to
the addends. a1 and a, denote the first and second addend, respectively.

and learning. It is simple, uses familiar count routines, requires little rote memorization, and respects
children’s limited working memory. It also computes any sum in the child’s count list, making sum an
accurate and concise strategy for addition. Most recent LOT models would consider the problem
well-solved. sum is slow and repetitive, however, counting every object twice.

Restructuring sum to simultaneously track both counts, updating the sum while creating each ad-
dend, counts each object only once and explicitly represents a strong generalization: here, that
the two counts are not coincidental but used for closely connected purposes. The result is
shortcutSum (Table 3): count out each addend, reciting the total count rather than the current ad-
dend count. shortcutSum tracks both counts using a newly implemented function, raiseCount.
Maintaining simultaneous counts increases working memory load and the potential for error
and is, unsurprisingly, a late-developing counting skill sum [103] (cf. [104]). Addition strategies in-
corporating simultaneous counts naturally appear during early grade-school [99] but can be dis-
covered earlier given practice [88].

Many techniques for improving code are sensitive to execution traces recording a program’s
step-by-step behavior. In shortcutSum, for example, the first call to raiseCount is redundant: it
counts out al, the first addend, to produce y, meaning y is equal to a1. Removing the first
count and replacing y with a1 produces countFrompFirst (Table 3). It is on average twice as fast
as shortcutSum while reducing finger and working memory demands. These changes, however,
are not based on code alone; they require sensitivity to the behavior of code via something like an
execution trace. While reported in children and common in theoretical accounts [93,94,105],
there is debate about how frequently countFromFirst appears in practice [88,91].
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Changes in a hacker’s basic understanding of a problem provide another source of revisions.
New understanding often comes from playing with code in the manner of ‘bricolage’ [106] rather
than formal instruction. For example, she might notice that addition is commutative, changing the
addend order never affects the final sum. shortcutSum helps explain why: every raised finger in-
crements the sum exactly once. The principle of commutativity is formally introduced as early as
first grade [107], but can be independently discovered earlier [102]. Commutative strategies are
also common before children understand that addition is commutative, suggesting an incomplete
or incorrect understanding of addition [102,104].

These discoveries justify swapping addend order when the first addend is smaller than the sec-
ond. This gives the well-studied min strategy: count out the smaller addend from the larger ad-
dend (min; Table 3). min is perhaps the best attested small number addition strategy, common
from first-grade through adulthood [84-87,89,108] but spontaneously developed earlier given
extensive practice [88]. On average, min removes half the counting necessary for countFromFirst
and further reduces finger and working memory demand. min, however, requires the ability to
rapidly compare numbers, the hacking approach naturally draws on libraries of interacting, and
often simultaneously developing, cognitive abilities.

Finally, a hacker given certain addition problems multiple times might realize that she could save
time by memorizing and retrieving answers after computing them the first time (retrieval; Table 3),
as in dynamic programming algorithms [109]. Indeed, as children age they rely decreasingly on
strategies requiring external cues (e.qg., fingers, verbal counting) and increasingly on memorization
[88], a transition humans formally teach [107] and also discover independently [110,111].

Much of what we know about the development of small number addition is thus well-aligned with
the child as hacker, which naturally accommodates and unifies many seemingly disparate phe-
nomena. The child as hacker also suggests several next steps for work on addition and related do-
mains. First, we need models of learning that formalize knowledge as code modified using hacker-
like values, goals, and techniques. Explicitly situating arithmetic learning within the context of the
child as hacker will likely suggest useful and novel hypotheses (e.g., specific hacking techniques
[78] might explain specific chains of strategy introduction; differences in values might explain differ-
ences in performance [88]). Second, mathematical learning extends far beyond small number ad-
dition, including both early sensitivities to number and the development of counting and the later
development of compositional grammars for large numbers, a concept of infinity, more complex
arithmetic, and so on. The child as hacker suggests ways to integrate these phenomena into a gen-
eral account of mathematical development. Third, the child as hacker should also provide paths to
algorithmic theories for qualitatively different kinds of knowledge acquisition (e.g., intuitive theories
of the physical and social world; Box 2).

Hacking and Other Metaphors

The child as hacker builds on several other key developmental metaphors. All these views are
valuable and have significantly improved our understanding of learning. Here, we explain how
the child as hacker extends these accounts, highlighting its potential contributions. See Figure
1B for a summary of the major claims of the views discussed in this paper.

The Child as Scientist

The child as scientist metaphor is one of the strongest influences on the child as hacker. With
roots in the work of Piaget [1] and since extensively developed [2-5, 112], this view emphasizes
how children structure their foundational knowledge in terms of intuitive theories analogous in im-
portant ways to scientific theories [113-116] and build knowledge via epistemic values and

8 Trendsin Cognitive Sciences, Month 2020, Vol. xx, No. xx

Cell

REVIEWS



Box 2. Hacking Theories of Biology: Intuitive and Scientific Accounts of Kinship and Inheritance

While the small number addition example examines procedural learning in mathematics, the child as hacker equally applies
to other domains and kinds of knowledge. Kinship systems (Figure I1A) can be seen as logical and declarative intuitive the-
ories of social relatedness, and Mendelian inheritance (Figure IIA) as a probabilistic and causal formal theory of biological
relatedness. A hacker might implement both by compressing a set of observations into more reusable, generalizable,
and modular code. In both cases, she iteratively improves her program, adding, deleting, and revising code, and occasion-
ally adds entirely new structures simply by defining and using them. Some changes help, others are rejected, and she
eventually produces compact theories of both domains.

In learning kinship, one can frame the task as refactoring a long list of relations about individuals (Figure IB) into rules for
high-level kinship terms (Figure IC) and a small set of basic facts (Figure ID) from which all relations can be easily derived.
Our hacker writes her theory in a logic programming language called Prolog, drawing inferences using deductive proof to
learn, for example, who her uncles are.

é E :x i é lives(jim, chicago). father(X, Y) :- parent(X, Y), male(X). parent(jim, hacker).
mother(jenny, ben). mother(X, Y) :- parent(Y, Y), female(X). parent(jenny, ben).
eye_color(dan, blue). husband(X, Y) :- male(X), spouse(X, Y). female(hacker).

é E =x ; i father(jim, hacker). sister(X, Y) :- male(ben).
x parent(P, X), parent(P, Y),

uncle(dan, ben). male(jim).
'r,_‘ B fashionable(may). female(X). Fgmale@:enny)t
T T o aunt(may, hacker). %o lives(jim, chicago).
t % ... % ...
(4) (B) (© (D)
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Figure I. Mapping Kinship to Code. (A) A family tree labeled by three kinship systems (circle = female, colors are
different terms, child generation ignores gender); (B-D) Kinship in Prolog. Prolog expresses computations as Horn
clauses called rules, Head :- Body. Head is true if each term in Body is true (empty bodies are also true); (B)
initial kinship data; (C) rules for inferring kinship relations, including new primitives parent, spouse, male, andfemale;
and (D) a small set of rules such that (C) and (D) implies all of (B).

In learning Mendelian inheritance, one can frame the task as refactoring a long list of phenotypes and parentage records
(Figure 1IB) into a causal theory of biological inheritance relating phenotypes to genotypes via the three laws of inheritance
(Figure I1C). Because patterns of inheritance are not strictly logical but require distributional reasoning, and because she is
looking for a causal explanation, our hacker implements her theory as a generative model in a probabilistic programming
language called Church [26]. She queries her theory using Church’s built-in tools for conditional inference to learn, for ex-
ample, likely genotypes for aland a2.

Meiosis (def data (def traits (list (pair YW GN) (pair SM WR)))
DDy '((al NA NA (YW WR)) (def (prior) (repeat (len traits) random-gene))
- = (a2 NA NA (GN SM)) (def (breed genotypel genotype2)
T ! I l (b1 a1l a2 (YW SM)) (map pair (segregation genotypel) (segregation genotype2)))
o~ ‘/.f - \ A= Yy ¢ (b2 al a2 (YW sM)) (def (genotype id) (if (eq? id 'NA)
e/ \Sp b S AW \C gt/ /o (c1 b1 b2 (YW WR)) (prior)
o | eney, o7 | e | v (c2 b1 b2 (GN SM)) (breed (genotype (parentl id)) (genotype (parent2 id))))
‘ng’w ety [ aser | ‘%W RY (c3 b1 b2 (YW SM)) (def (phenotype genotype) (map dominance genotype traits))
e e i B 14 (c4 b1 b2 (GN WR)) (def (segregation parent) (map separation parent))
= | o | eor | Bz | (c5 b1 b2 (YW SM)) (def (separation gene) (uniform-draw gene))
‘(s.-r_;i ‘(b{y \tvyj . (def (dominance gene trait)
D)) (if (dominant? gene) (dominant trait) (recessive trait)))
(A (B) (©
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Figure Il. Mapping Mendelian Inheritance to Code. (A) An overview of Mendelian inheritance. (B,C) Mendelian
inheritance in Church. Church expresses computations as parenthesis-delimited trees. (B) A list of individuals
(al, a2, bl...), their parents, and phenotypes (YW= yellow; GN= green;SM= smooth; WR= wrinkly). (C) A list of
traits (dominant followed by recessive) and part of a generative theory using Mendel’s laws and a uniform
prior over unknown parents (i.e.,random-gene draws a pair of alleles uniformly at random).

practices [5,70-72, 117], similar to the ways scientists collect and analyze evidence and modify
theories in response to evidence, constructing theories that are accurate, general, and simple.
The related view of rational constructivism [69] emphasizes the sophisticated mechanisms chil-
dren use in theory-building (Bayesian statistical inference, constructive thinking processes such
as analogy, mental simulation, other forms of ‘learning by thinking’ [118], and active, curiosity-
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driven exploration) and the importance of formalizing these mechanisms in rational computational
models.

The child as scientist and the child as hacker are best seen not as competitors but as natural
companions, with overlapping but complementary notions of knowledge representation, episte-
mic values and practices, and constraints on learning, which together paint a more complete pic-
ture of cognitive development. The child as scientist emphasizes children’s learning as centrally
focused on building causal models of the world and the conceptual systems (intuitive theories)
supporting these models. It asks questions about how theories are represented, what makes
for good theories, and what mechanisms support theory learning, drawing inspiration from how
scientists have approached these questions and implementing its proposals computationally
as approximations to Bayesian inference over spaces of causal networks, probabilistic first-
order logic, and probabilistic programs [11,56,57,63,66,70,72,117].

The child as hacker extends these ideas with its broader view of what kinds of representations are
worth learing, what values set goals for learning, and what practices are useful for accomplishing
these goals: programs may go beyond the purely causal, there are many values for good programs
beyond those traditionally used to assess scientific theories (accuracy, generality, simplicity) and
learning draws on many algorithmic-level processes across multiple timescales, not just the sto-
chastic sampling or search mechanisms that have traditionally been used in Bayesian models of
theory learning. This view could enrich both the computational and algorithmic-level claims of
child as scientist models in many specific ways. For example, intuitive theories could benefit from
being formalized as domain-specific libraries or languages for writing generative probabilistic pro-
grams (e.g., Box 2), and the construction of more radically new kinds of concepts could be cap-
tured as the construction of new function and data types, not just new functions or data
structures of existing types. The many values of good code in Table 1 could also have analogs in
the goals that guide children in constructing their intuitive theories, and the processes of improving
code in Table 2 could all have analogs in how children build their intuitive theories; perhaps these
could help formalize some of the mechanisms of analogy, bootstrapping, and explanation-driven
and goal-driven search proposed in the child as scientist and rational constructivism views
[3,5,69,118], which have not been fully captured by previous algorithmic-level learning models.

It is perhaps fitting that scientists recognize highly familiar scientific practices and values in devel-
opment, but in addition to an evocative metaphor, the child as scientist is a fruitful hypothesis. It
has sparked numerous ‘child-as-X’ theories in cognitive psychology, positing specific modes of
scientific thinking as key throughout development. Children can be seen as: linguists determining
the structure of language [119-121], anthropologists systematically studying behavior [122], stat-
isticians inferring latent world structure [123,124], econometricians discovering preferences
[125], and philosophers refining understanding through reflection and analysis [126,127]. We
hope the child as hacker view will further grow this productive tradition. Efforts to formalize the
child as scientist metaphor have also played key roles in its fruitfulness [70-72, 117,128]. Indeed,
many of the LOT models discussed earlier were explicitly developed to formalize aspects of the-
ory learning and the broader scientific process. Formalizing the child as hacker may seem like a
daunting challenge, but this process took decades of sustained interdisciplinary effort for the
child as scientist. A similar long-term investment in computational models for the child as hacker
could prove similarly fruitful.

Resource Rationality and Novelty Search
The idea of resource rationality [129-131] argues that theories must account for cognition as re-
alized in finite computational devices. Time, memory, and energy are limited. Learners can thus
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more quickly find practical hypotheses by evaluating resource use alongside simplicity and fit.
Stanley and colleagues have developed the idea of novelty search [132,133] around the observa-
tion that many learning problems require navigating large hypothesis spaces in finite time. Com-
paring trivially different hypotheses is unlikely to be helpful. They demonstrate for many classes of
problems that agents sensitive to novelty learn more effectively than agents using other
objectives.

Both resource rationality and novelty search are important ways of thinking about objectives in
learning. The child as hacker embraces these insights, but makes claims about learners’ objec-
tives beyond either view. First, it encourages considering both efficiency and novelty, rather
than arguing for either alone. Second, it argues for a radically larger set of possible influences
on the objective function, including engineering and aesthetic concerns and perhaps more
(Table 1). Third, it suggests that learners’ objectives constantly change in complex and as-yet
poorly understood ways, identifying a key area for future research. Rather than searching for
the right human-like objective function, the child as hacker suggests that cognitive scientists
seek to understand an entire space of possible objectives and the ways that learners move be-
tween them.

Workshop and Evolutionary Metaphors

The child as hacker is also closely related to a pair of metaphors from Siegler and colleagues em-
phasizing the dynamics of learning: the workshop metaphor [88] and the evolutionary metaphor
[95]. The workshop metaphor emphasizes the diversity of knowledge (raw materials) and learning
processes (tools) available to children when producing mental representations (products) to meet
the demands of daily life (work orders), and the importance of selecting appropriate materials and
tools for a given product. The evolutionary metaphor recasts these ideas in light of biological evo-
lution, highlighting the essential role of variability, selection, and adaptation in learning. These met-
aphors work together to tell a broader story about learning. Both argue that we maintain multiple
strategies for solving any given problem and adaptively choose among them, learning about their
context-specific usefulness over time. By contrast to ‘staircase’ theories suggesting long periods
of relatively uniform thinking punctuated by brief and dramatic transitions, they suggest that chil-
dren navigate ‘overlapping waves’ as new strategies appear and others fade.

The child as hacker shares much with these metaphors. They all emphasize the importance of
bringing a diverse collection of mental representations to bear during learning, as well as selecting
representations, values, and learning strategies most relevant to the specific task at hand. Each
view also highlights the way knowledge is iteratively revised; the outcomes of learning are them-
selves frequently the raw inputs for future learning. Each makes variability, selection, and adapta-
tion central features of learning.

The mind, however, operates on representations that bear a closer resemblance to software than
hardware, looking more like programs than tables or chairs. We could think of the child as hacker
as updating the workshop metaphor for the software era and focusing on the tools needed to build
a rich computational model of a richly computational mind: all the ways we have come to represent
knowledge with programs and programming constructs and all the values and activities of hacking
for making programs better, which seem more directly tied to the goals and mechanisms of learn-
ing and more amenable to computational formalization than those of carpentry or metalwork.

The child as hacker may also be better aligned with children’s goal-orientedness during learning.
Evolution is an intentionless process, the primary change mechanisms of which act at random. In
the workshop and evolutionary metaphors, goal schemas can constrain this random search
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process [91] but that is different from directly and deeply guiding it. As with other forms of sto-
chastic search or reinforcement learning, learning under an evolutionary mechanism would thus
require tremendous amounts of computation and time [28]. Children’s learning, by contrast, is re-
markably efficient [134], in part because it is strongly goal-directed [5]. Children’s behavior may
sometimes look random, but there is almost always an underlying goal driving that behavior.
Where the apparent randomness comes from, the evolutionary character, is perhaps a dynami-
cally changing set of goals: initially X, then Y, then Z, then back to X until it is achieved. This dy-
namic is more consistent with the intrinsic nature of goals in hacking, where children’s goals
might then address different values such that each improves representations in different ways.
Externally, without access to those goals or their internal logic, both learning and hacking may
look random, piecemeal, and nonmonotonic, sometimes progressing, sometimes regressing. In-
ternally, however, each is intensely goal-driven, resulting in profound, long-term growth.

In sum, the child as hacker helps to refine and advance the workshop and evolutionary views, by
giving a less metaphorical take on the workshop metaphor and a better fit for the goal-driven
behavior of children than the intentionless randomness of evolution. Moreover, the child as hacker
makes specific suggestions beyond either metaphor, including a strong emphasis on program-
like representations and the specific values and processes that guide how programs get better
(Tables 1 and 2), which we hope can serve as the basis for a new generation of modeling in cog-
nitive development.

Prospects for a Computational Account of Learning

Hacking represents a collection of epistemic values and practices adapted to organizing knowl-
edge using programs, and there is growing evidence that programs are a good model of mental
representations. The child as hacker combines these ideas into a roadmap toward a computa-
tional account of learning and cognitive development. It makes testable claims about a general
class of inductive biases humans ought to have, namely those related to synthesizing, executing,
and analyzing information as programs. It also concretely identifies the representations, objec-
tives, and processes supporting learning with those of human hackers. Finally, it makes a unifying
claim about how these three might be implemented as code, procedures for assessing code, and
procedures for revising code, respectively.

To explain learning in light of these claims, we must systematically use code as a lens on learning.
Doing so produces testable hypotheses that differ from common alternatives. For instance, the
child as hacker predicts that children frequently change beliefs in the absence of external data.
It predicts that children might learn representations that are less accurate or more complex
than alternatives so long as they win on (e.g., modularity or cleverness). It also predicts that,
while dramatic, global changes are possible, changes to mental representations typically occur
through the accumulation of simple, structured changes, similar to the way code tends to be
refactored.

Both machine learning and psychology would benefit from a united effort to pursue this roadmap in
developing a computational account of human learning. Machine learning would benefit greatly
from the growth of empirical programs in psychology to understand how children hack their own
representations (see Outstanding Questions), how real hackers assess and improve their code in
practice, and how children adopt and pursue goals. Effectively searching large hypothesis spaces
is a fundamental problem in machine learning, so one crucial question for this second program is
how humans effectively search the space of Turing-complete computations. Psychologists and
cognitive scientists would benefit greatly from a sophisticated framework for program induction.
Such a framework would bring together existing knowledge about theoretical computer science,
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programming languages, compilers, program synthesis, and software engineering to provide tools
capturing human-like approaches to solving problems in these domains.

Concluding Remarks

Our goal inintroducing the child as hacker has been to offer a path toward answering central chal-
lenges of human learning and cognitive development that both reframes classic questions and
helps us ask new questions. Recent work in cognitive science on constructive thinking [118],
the neuroscience of programming [135], and modeling the development of core domains such
as intuitive physics using game engines [136,137] represents promising complementary steps.
Recent developments in program induction and program synthesis techniques from computer
science are also beginning to operationalize aspects of specific hacking techniques, including
work on backward chaining of goals and subgoals [138-140], neurally guided synthesis
[141,142], iterative refactoring [143-146], incremental programming [147-149], and learning
generative probabilistic models [150,151]. These efforts have the potential to move the child as
hacker beyond just another metaphor, or just a hypothesis, to a working and testable computa-
tional account of cognitive development. But they are just first steps. We look forward to all the
work that remains to be done to understand how it is that children hack their own mental repre-
sentations to build yet-unparalleled tools for thinking.

Acknowledgments

We thank the anonymous reviewers for their helpful comments. This work was supported by grants 1760874 and 2000759
from the National Science Foundation (NSF), Division of Research on Learning (S.T.P.), award 1RO1HD085996 from the Eunice
Kennedy Shriver National Institute of Child Health & Human Development (NICHD) at the National Institutes of Health (S.T.P.),
grants 1122374 & 1745302 from the NSF Graduate Research Fellowship (J.S.R.), grant NOO014-18-1-2847 from the Office of
Naval Research (J.B.T. & J.S.R.), STC award CCF-1231216 for the Center for Minds, Brains and Machines (CBMM) from the
NSF (J.B.T. & J.S.R.), award No. FA9550-19-1-0269 from the Air Force Office of Scientific Research (J.B.T. & J.S.R.), and
Siegel Family Endowment. The hand images in Table 3 are freely provided by SVG Repo (https://svgrepo.com). The im-
ages in Figure IAin Box 1 and Figure IA in Box 2 come from Wikimedia Commons (https://commons.wikimedia.org/) and
Flickr (https://www.flickr.com).

Supplementary data
Supplemental information associated with this article can be found online at https://doi.org/10.1016/j.tics.2020.07.005.

References

1. Piaget, J. (1955) The Child’s Construction of Reality, 12.  Piantadosi, S. and Jacobs, R. (2016) Four problems solved by

Routledge & Kegan Paul

the probabilistic language of thought. Curr. Dir. Psychol. Sci.

2. Carey, S. (1985) Conceptual Change in Childhood, MIT 25, 54-59
Press 13.  Goodman, N. et al. (2008) A rational analysis of rule-based
3. Carey, S. (2009) The Origin of Concepts, Oxford University Press concept learning. Cogn. Sci. 32, 108-154
4. Gopnik, A. (2012) Scientific thinking in young children: theoret- 14.  Depeweg, S. et al. (2018) Solving Bongard problems with a vi-
ical advances, empirical research, and policy implications. Sci- sual language and pragmatic reasoning. arXiv Published online
ence 337, 1623-1627 April 12, 2018 https://arxiv.org/abs/1804.04452
5. Schulz, L. (2012) The origins of inquiry: inductive inference and 15.  Rothe, A. et al. (2017) Question asking as program generation.
exploration in early childhood. Trends Cogn. Sci. 16, 382-389 In Advances in Neural Information Processing Systems,
6. Marr, D. (1982) Vision, W.H. Freeman pp. 1046-1055, Curran Associates
7. Chater, N. and Oaksford, M. (2013) Programs as causal 16. Erdogan, G. et al. (2015) From sensory signals to modality-
models: Speculations on mental programs and mental repre- independent conceptual representations: a probabilistic
sentation. Cogn. Sci. 37, 1171-1191 language of thought approach. PLoS Comput. Biol.
8. Zylberberg, A. et al. (2011) The human Turing machine: a neu- e1004610
ral framework for mental programs. Trends Cogn. Sci. 15, 17.  Yildirim, I. and Jacobs, R.A. (2015) Learning multisensory rep-
293-300 resentations for auditory-visual transfer of sequence category
9. Calvo, P. and Symons, J. (2014) The Architecture of Cognition: knowledge: a probabilistic language of thought approach.
Rethinking Fodor and Pylyshyn’s Systematicity Challenge, MIT Psychon. Bull. Rev. 22, 673-686
Press 18.  Amalric, M. et al. (2017) The language of geometry: Fast
10. Lake, B. et al. (2017) Building machines that learn and think like comprehension of geometrical primitives and rules in
people. Behav. Brain Sci. 40, 253 human adults and preschoolers. PLoS Comput. Biol. 13,
11. Goodman, N. et al. (2015) Concepts in a probabilistic language e1005273
of thought. In The Conceptual Mind: New Directions in the 19.  Romano, S. et al. (2018) Bayesian validation of grammar

Study of Concepts (Margolis, E. and Laurence, S., eds),
pp. 623-654, MIT Press

productions for the language of thought. PLoS One 13],
0200420

Cell

REVIEWS

Outstanding Questions

How might traditional accounts of
cognitive development be usefully
reinterpreted through the lens of
hacking? How can core knowledge
be mapped to an initial codebase?
How can domain-specific knowledge
be modeled as code libraries? What
chains of revisions develop these
libraries? How do libraries interact
with each other? Which hacking
techniques are attested in children
and when do they appear? Which
values? How can individual learning
episodes be interpreted as improving
code?

What are children’s algorithmic
abilities? How do they learn in the
absence of new data? What aspects
of learning are data-insensitive? How
do they extract information from richly
structured data? What kinds of
nonlocal transformations do we see?
Do children ever find more complex
theories before finding simpler ones?
How do children move around the
immense space of computationally
expressive hypotheses?

How do humans program? What
techniques do they use? What do
they value in good code? How do
they search the space of programs?
Does the use of many techniques
make search more effective?

How can the discoveries of computer
science best inform models of human
cognition? For example, what remains
to be learned about human cognition
from the study of compilers, type
systems, or databases? How can we
use the vocabulary of programming
and programming languages to more
precisely characterize the represen-
tational resources supporting human
cognition? Are things like variable
binding, symbolic pattern matching, or
continuations cognitively primitive? If
so, are they generally available or used
only for specific domains? How does
the mind integrate symbolic/discrete
and statistical/continuous information
during learning?

What kinds of goals do children have in
learning? What improvements do they
inspire? How do they move around
the space of goals? What data
structures does this movement
suggest for goal management?
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