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The scope of human learning and development poses a radical challenge for

cognitive science. We propose that developmental theories can address this

challenge by adopting perspectives from computer science. Many of our best

models treat learning as analogous to computer programming because symbolic

programs provide the most compelling account of sophisticated mental repre-

sentations. We specifically propose that children’s learning is analogous to a

particular style of programming called hacking, making code better along

many dimensions through an open-ended set of goals and activities. By contrast

to existing theories, which depend primarily on local search and simple metrics,

this view highlights the many features of good mental representations and the

multiple complementary processes children use to create them.

Hacking as a Metaphor for Learning in Cognitive Development

Human cognitive development is qualitatively unique. Though humans are born unusually help-

less, they amass an unparalleled cognitive repertoire, including: intuitive theories for domains

like physics and biology, formal theories in mathematics and science, language comprehension

and production, and complex perceptual and motor skills. Children also learn to learn, producing

higher-order knowledge that enriches existing concepts and enhances future learning. Human-

like performance in any one of these domains seems substantially beyond current efforts in arti-

ficial intelligence. Yet, human children essentially acquire these abilities simultaneously and univer-

sally. They may even discover new ideas that radically alter humanity’s understanding of the world.

The foundational fields of cognitive science, including philosophy, psychology, neuroscience, and

computer science, face a radical challenge in explaining the richness of human development.

To help address this challenge, we introduce the child as hacker (see Glossary) as a hypothesis

about the representations, processes, and objectives of distinctively human-like learning. Like the

child as scientist view [1–5], the child as hacker is both a fertile metaphor and a source of concrete

hypotheses about cognitive development. It also suggests a roadmap to what could be a unifying

formal account of major phenomena in development. A key part of the child as hacker is the idea

of learning as programming, which holds that symbolic programs (i.e., code) provide the best

formal knowledge representation we have. Learning therefore becomes a process of creating

new mental programs. We review support for learning as programming and argue that while on

increasingly solid ground as a computational-level theory [6], it remains underspecified. We ex-

tend the idea of learning as programming by drawing inspiration from hacking, an internally

driven approach to programming emphasizing the diverse goals and means humans use to

make code better. Our core claim is that the specific representations, motivations, values, and

techniques of hacking form a rich set of largely untested hypotheses about learning.

Knowledge as Code and Learning as Programming

A critical mass of work throughout cognitive science has converged on the hypothesis that

human learning operates over structured, probabilistic, program-like representations [7–20] (cf.

[21]) (Box 1), a modern formulation of Fodor’s language of thought (LOT) [22] as something like

a programming language. Learning in the LOT consists of forming expressions to encode
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knowledge, for instance, composing primitives like CAUSE, GO, and UP to form LIFT [23]. This

work argues that a compositional mental language is needed to explain systematicity, productiv-

ity, and compositionality in thought [9,22,24]; a probabilistic language capable of maintaining dis-

tributions over structures is needed to explain variation and gradation in thinking [10,11,25,26];

Glossary

Child as hacker: an algorithmic-level

view of cognitive development,

extending the idea of learning as

programming by drawing inspiration

from hacking such that the specific

medium, values, techniques, and

practices of hacking form a rich set of

hypotheses about learning, particularly in

children.

Hacking: making code better along

many dimensions through an open-

ended set of goals and activities.

Learning as programming: a

computational-level view of learning

claiming that the human conceptual

repertoire can be understood as a

mental programming language and

learning as a kind of programming.

Program/code: a particular expression

of a particular computation in some

programming language.

Program induction: learning

programs to explain how observed data

were generated.

Programming language: languages

with a formal syntax, semantics of which

express computations, typically in terms

of instructions that program the behavior

of some machine (e.g., the x86

processor, Turing machines).

Box 1. Programs and the Challenge of Humans’ Broad Algorithmic Knowledge

Table I. A Sampling of Domains Requiring Algorithmic Knowledge

Formalizable as Programs, with Motivating Examples.

Logic First-order, modal, deontic logic

Mathematics Number systems, geometry, calculus

Natural language Morphology, syntax, number grammars

Sense data Audio, images, video, haptics

Computer languages C, Lisp, Haskell, Prolog,

Scientific theories Relativity, game theory, natural selection

Operating procedures Robert’s rules, bylaws, checklists

Games and sports Go, football, 8 queens, juggling, Lego

Norms and mores Class systems, social cliques, taboos

Legal codes Constitutions, contracts, tax law

Religious systems Monastic orders, vows, rites and rituals

Kinship Genealogies, clans/moieties, family trees

Mundane chores Knotting ties, making beds, mowing lawns

Intuitive theories Physics, biology, theory of mind

Domain theories Cooking, lockpicking, architecture

Art Music, dance, origami, color spaces

Humans possess broad algorithmic knowledge, manipulating complex data in structured ways across many domains

(Table I). Symbolic programs (i.e., computer code) form a universal formal representation for algorithmic knowledge

[27,28] and may be the best model of mental representations currently available. Programs can be communicated

in many forms, including not only formal programming languages but a wide variety of forms familiar in all cultures, in-

cluding natural language and symbolic images (Figure I). While there have been many other proposals for modeling

conceptual representations, only programs arguably capture the full breadth and depth of people’s algorithmic abili-

ties [11]. The rapid rise of programs as tools for manipulating information, from obviously symbolic domains like math-

ematics and logic to seemingly nonsymbolic domains like video, audio, and neural processing, further identifies

programs as a capable knowledge representation (e.g., [32]).

Code is expressed according to a formal syntax and its semantics specifies computations, typically as instructions to

some machine (e.g., x86 processor, Turing machine). It can model both declarative (Box 2) and procedural information

(see ‘Hacking Early Arithmetic’) and allow them to interact seamlessly. Code operates at multiple levels, including: in-

dividual symbols, expressions, statements, data structures and functions, libraries, and even entire programming lan-

guages. Each level can interact with the others: libraries can embed one language inside another, statements can

define data structures, and higher-order functions can take functions as arguments and return functions as outputs.

This leads to one of the fundamental insights that makes code so successful. By writing computations as code, they

become data that can be formally manipulated and analyzed [33]. Programming languages thus become programs

that take code as input and return code as output. Because all programming languages are programs, any knowledge

that can be expressed in any program can be integrated into a single formal knowledge representation.

Modeling knowledge as code and learning as programming has worked well for many individual domains (see ‘Knowl-

edge as Code and Learning as Programming’ in main text). We need, however, a general formalization of mental rep-

resentations and how they develop. The child as hacker suggests such an account, emphasizing how information can

be encoded, assessed, and manipulated as code regardless of domain, with the intention of developing formal tools

applicable to broad classes of human learning phenomena.
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Figure I. Several Classes of

Programs Expressed as Symbolic

Images. (A) Blueprints, (B) assembly

instructions, (C) musical notation, (D)

knotting diagrams, (E) juggling patterns,

(F) graphical proofs, and (G) football plays.
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and an expressive language, capable of essentially any computation, is needed to explain the

scope of thought [27,28]. Despite comparative and crosscultural work seeking semantic primi-

tives for mental languages [29], other work suggests that learners add and remove primitives, ef-

fectively building entirely new languages [2,3,30,31].

Learning is then program induction: discovering programs that explain how observed data

were generated [34–36]. The theory thus draws on inductive programming literature stretching

back to the birth of cognitive science [37,38] and includes subsequent developments in recursive

program synthesis [39], structure and heuristic discovery [40,41], meta-programming [42,43],

genetic programming [44,45], and inductive logic programming [36,46]. The approach also

makes use of insights from other formalizations of learning, for example, deep learning [47], con-

nectionism [48], reinforcement learning [49], probabilistic graphical models [50], and production

systems [51]. These can be viewed as exploring specific subclasses of programs or possible im-

plementation theories. The learning as programming approach, however, is importantly different

in providing learners the full expressive power of symbolic programs both theoretically (i.e., Turing

completeness) and practically (i.e., freedom to adopt any formal syntax).

This approach applies broadly to developmental phenomena, including counting [52], concept

learning [13,53], function words [54], kinship [55], theory learning [56,57], lexical acquisition

[23], question answering [15], semantics and pragmatics [25,58,59], recursive reasoning [60], se-

quence transformation [61], sequence prediction [18,62], structure learning [63], action concepts

[64], perceptual understanding [14,65], and causality [66]. These applications build on a tradition

of studying agents who understand the world by inferring computational processes that could

have generated observed data, which is optimal in a certain sense [67,68], and aligns with rational

constructivist models of development [69–72].

While these ideas appear to be on increasingly solid empirical and theoretical ground, much work

remains to formalize them into robust and precise descriptions of children’s learning. Most recent

LOT work has argued that learners seek short (simple) programs explaining observed data, a ver-

sion of Occam’s razor. A bias for simplicity favors generalization over memorization, while a bias for

fit favors representations thatmatch theworld. Mathematically, these two can be balanced in a prin-

cipledway using Bayes’ theoremorminimum description length formalisms to favor simple, explan-

atory programs [13,73], a principled approach [28,74] that fits human data well [13,53,73,75,76].

Bayesian LOT models have often hypothesized that learners stochastically propose candidates

by sampling from a posterior distribution over programs, a process that empirically resembles chil-

dren’s apparently piecemeal, stop–start development [57].

From Programming to Hacking

Though these ideas have been important in formalizing LOT-based learning, views based entirely

on simplicity, fit, and stochastic search are likely to be incomplete. Most real-world problems re-

quiring program-like solutions are complex enough that there is no single metric of utility nor uni-

fied process of development (Figure 1A). Even so, modern computational approaches to learning,

whether standard learning algorithms or more recent LOT models, use far fewer techniques and

values than human programmers. For any task of significance, software engineering means iter-

atively accumulating many changes to code usingmany techniques acrossmany scales (see Fig-

ure S1 in the supplemental information online).

In what follows, we enrich learning as programming with a distinctly human style of programming

called hacking. Today, the term ‘hacking’ has many connotations: nefarious, incompetent, pos-

itive, ethical, and cultural. Rather than directly importing these modern connotations, we draw on
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earlier ideas about hacking from the origins of modern computing culture [77]. Hacking, as used

here, is about exploring the limits of a complex system, starting with whatever is at hand and it-

eratively pushing the system far beyond what initially seemed possible. We thus begin with a no-

tion of hacking as making code better. But the essence of hacking goes deeper. It lies in all the

values that count as ‘better’, all the techniques people use to improve code, and a profound

sense of internal motivation.

The Many Values of Hacking

There are many dimensions along which a hacker might seek to improve her code, making it not

only more accurate, but perhaps faster, clearer, more modular, more memory-efficient, more re-

usable, cleverer, and so on (Table 1). The simplest program is unlikely to be the most general; the

fastest is usually not the easiest to write; the most elegant typically is not the most easily extensi-

ble. Importantly, real-world systems do not focus exclusively on the metrics that have come to the

forefront of current LOT-learning paradigms. They often maintain multiple solutions to the same

problem, tuned for different sets of values. Moreover, effective systems in the real world care

more about managing complexity than about being short, simple, or terse, though these are

sometimes useful tools for managing complexity. Indeed, many foundational ideas in computer

science are less about computation per se and more about managing the inevitable complexity

that arises when putting computation to use [33,78].

The Many Activities of Hacking

To pursue these diverse objectives, hackers have developedmany process-level mechanisms for

improving their representations [78], including adding new functions and data structures,

debugging faulty code, refactoring code, and even inventing new languages (Table 2). Hackers

understand dozens or even hundreds of these mechanisms and their potential impacts on vari-

ous values. Some make small, systematic, and predictable changes, while others are dramatic

and transformative; most are specially tailored to specific kinds of problems. For instance, a

hacker might care about speed and so cache the output of subcomputations in an algorithm.

She might seek modularity and so define data structures that encapsulate information and
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Figure 1. Overview of the Child as Hacker Hypothesis. (A) Code can be changed using many techniques (x-axis) and

assessed according to many values (y-axis). Standard learning models in machine learning and psychology (green region)

tend to focus solely on tuning the parameters of statistical models to improve accuracy. Recent language of thought (LOT)

models (red region) expand this scope, writing functions in program-like representations and evaluating them for

conciseness and, sometimes, efficiency. Yet, the set of values and techniques used by actual hackers (and, by

hypothesis, children; blue region) remains much larger. (B) A comparison of three families of developmental metaphors

discussed in this paper (the child as scientist, the workshop and evolutionary metaphors, and the child as hacker) along

three dimensions: the kinds of knowledge learners acquire, the primary objectives of learning, and the mechanisms used

in learning. See also Figure S1 in the supplemental information online.
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make it accessible only through specific interfaces. Or, she might seek reusable parts and so ab-

stract common computations into named functions. This diversity of techniques makes hacking

different from both common learning algorithms and recent LOT models. Typically, these other

models explore a small set of techniques for improving programs, based on relatively simple

(even dumb) local methods like gradient descent, random sampling, or exhaustive enumeration.

The Intrinsic Motivation of Hacking

Hacking is intrinsically motivated. Though a hacker may often be motivated in part by an extrinsic

goal, she always generates her own goals, choosing specific dimensions she wants to improve,

and pursues them at least as much for the intrinsic reward of better code as for any instrumental pur-

pose. Sometimes, her goal is difficult to assess objectively and so unlikely to arise extrinsically. Other

Table 2. Learners and Hackers Share Similar Techniquesa

Tune parameters Adjust constants in code to optimize an objective function.

Add functions Write new procedures for the codebase, increasing its overall abilities by making new computations available for reuse.

Extract functions Move existing code into its own named procedure to centrally define an already common computation.

Test and debug Execute code to verify that it behaves as expected and fix problems that arise. Accumulating tests over time increases code’s trustworthiness.

Handle errors Recognize and recover from errors rather than failing before completion, thereby increasing robustness.

Profile Observe a program’s resource use as it runs to identify inefficiencies for further scrutiny.

Refactor Restructure code without changing the semantics of the computations performed (e.g.,remove dead code, reorder statements).

Add types Add code explicitly describing a program’s semantics, so syntax better reflects semantics and supports automated reasoning about behavior.

Write libraries Create a collection of related representations and procedures that serve as a toolkit for solving an entire family of problems.

Invent languages Create new languages tuned to particular domains (e.g.,HTML, SQL, ) or approaches to problem solving (e.g.,Prolog, C, Scheme).

aHackers have many techniques for changing and improving code; some are listed here. The child as hacker suggests that the techniques of hackers are a rich source of

hypotheses for understanding the epistemic practices of learners.

Table 1. Learners and Hackers Share Similar Valuesa

Accurate Demonstrates mastery of the problem; inaccurate solutions hardly count as solutions at all

Concise Reduces the chance of implementation errors and the cost to discover and store a solution

Easy Optimizes the effort of producing a solution, enabling the hacker to solve more problems

Fast Produces results quickly, allowing more problems to be solved per unit time

Efficient Respects limits in time, computation, storage space, and programmer energy

Novel Solves a problem unlike previously solved problems, introducing new abilities to the codebase

Useful Solves a problem of high utility

Modular Decomposes a system at its semantic joints; parts can be optimized and reused independently

General Solves many problems with one solution, eliminating the cost of storing distinct solutions

Robust Degrades gracefully, recovers from errors, and accepts many input formats

Minimal Reduces available resources to better understand some limit of the problem space

Elegant Emphasizes symmetry and minimalism common among mature solutions

Portable Avoids idiosyncrasies of the machine on which it was implemented and can be easily shared

Clear Reveals code’s core structure to suggest further improvements; is easier to learn and explain

Clever Solves a problem in an unexpected way

Fun Optimizes for the pleasure of producing a solution

aHackers want to make their code better, and listed here are some features of good code. They are also features of useful

conceptual systems.
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times, her goal can be measured objectively, but she chooses it regardless of, perhaps in opposition

to, external goals (e.g., making code faster, even though outstanding extrinsic requests explicitly tar-

get higher accuracy). Whatever their origins, her choice of goals often appears spontaneous, even

stochastic. Her specific goals and values may change nearly as often as the code itself, constantly

updated in light of recent changes. She is deeply interested in achieving each goal, but she frequently

adopts new goals before reaching her current goal for any number of reasons: getting bored, decid-

ing her progress is ‘good enough’, getting stuck, or pursuing other projects. Rather than randomly

walking from goal to goal, however, she learns to maintain a network of goals: abandoning bad

goals, identifying subgoals, narrowing, broadening, and setting goals aside to revisit later. Even if

she eventually achieves her initial goal, the path she follows may not be the most direct available.

Her goals are thus primarily a means to improve her code rather than ends in themselves.

The fundamental role of intrinsic motivation and active goal management in hacking suggests deep

connections with curiosity and play [79–82], which have also been posited to play central roles in chil-

dren’s active learning. We do not speculate on those connections here except to say that in thinking

about intrinsicmotivation in hacking, we’ve been inspired byChu andSchulz’swork exploring the role

of goals and problem-solving in play [83]. Further understanding of this aspect of both learning and

hacking could be informed by our search for better accounts of play and curiosity.

In short, the components of hacking (diverse values, a toolkit of techniques for changing code,

and deep intrinsic motivation) combine to make hacking both a highly successful and emotionally

engaging approach to programming. The ability to select appropriate values, goals, and changes

to code transforms seemingly stochastic behavior into reliably better code. The combination of

internal motivation, uncertain outcomes, and iterative improvement makes hacking a creative

and rewarding experience.

Hacking Early Arithmetic

It is helpful to look through the hacker’s lens at a concrete example of algorithmic revision from

cognitive development: how preschoolers and early grade-schoolers learn to solve simple addi-

tion problems like 2 + 3. In this section, we demonstrate how the child as hacker can be used to

explain key findings in arithmetic learning as natural consequences of changing code-like repre-

sentations according to hacker-like values and techniques.

We focus on the well-known ‘sum’ to ‘min’ transition [84–89], in which children spontaneously

move from counting out each addend separately and then recounting the entire set (sum strategy)

to counting out the smaller addend starting from the larger addend (min strategy). Small number

addition has been modeled many times [88,90–94], but even as this case is well known, its signif-

icance for understanding learning generally [95] is not appreciated. This domain is notable because

children learn procedures and, in doing so, display many hallmarks of hackers.

Throughout this transition and beyond, children do not discard previous strategies when acquir-

ing new ones but instead maintain multiple strategies [96–99]. The work of Siegler and col-

leagues, in particular, explicitly grapples with the complexity of both the many values that

learners might adopt and the need to select among many strategies for solving the same prob-

lem. They have shown that children appropriately choose different strategies trial-by-trial based

on features like speed, memory demands, and robustness to error [88,95].

Table 3 implements several early addition strategies as code. For the sake of space, we highlight five

strategies (cf. [92,100]). Children acquire the sum strategy through informal interactions with parents

or at the onset of formal education [88,101,102] (sum; Table 3). sum appears optimized for instruction
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and learning. It is simple, uses familiar count routines, requires little rote memorization, and respects

children’s limited working memory. It also computes any sum in the child’s count list, making sum an

accurate and concise strategy for addition. Most recent LOT models would consider the problem

well-solved. sum is slow and repetitive, however, counting every object twice.

Restructuring sum to simultaneously track both counts, updating the sumwhile creating each ad-

dend, counts each object only once and explicitly represents a strong generalization: here, that

the two counts are not coincidental but used for closely connected purposes. The result is

shortcutSum (Table 3): count out each addend, reciting the total count rather than the current ad-

dend count. shortcutSum tracks both counts using a newly implemented function, raiseCount.

Maintaining simultaneous counts increases working memory load and the potential for error

and is, unsurprisingly, a late-developing counting skill sum [103] (cf. [104]). Addition strategies in-

corporating simultaneous counts naturally appear during early grade-school [99] but can be dis-

covered earlier given practice [88].

Many techniques for improving code are sensitive to execution traces recording a program’s

step-by-step behavior. In shortcutSum, for example, the first call to raiseCount is redundant: it

counts out a1, the first addend, to produce y, meaning y is equal to a1. Removing the first

count and replacing y with a1 produces countFromFirst (Table 3). It is on average twice as fast

as shortcutSum while reducing finger and working memory demands. These changes, however,

are not based on code alone; they require sensitivity to the behavior of code via something like an

execution trace. While reported in children and common in theoretical accounts [93,94,105],

there is debate about how frequently countFromFirst appears in practice [88,91].

Table 3. Small Number Addition Algorithmsa

aEach entry lists: code (Algorithm pseudocode); what a child might do and say (Trace); the number of operations (Opera-

tions); how many fingers (or other objects) are needed (Fingers); and how many numbers the child must remember simulta-

neously (Memory). raise(N, hand) holds up N fingers on hand by counting from 1. Y = count(hand, X) counts fingers

held up on hand starting from X to return Y. Y = raiseCount(N, hand, X) combines raise and count, counting from X

while holding up N fingers on hand. Resource counts for retrieval assume a previously seen problem; the values other-

wise grow to accommodate a call to add, a generic adding algorithm that selects a specific addition algorithm appropriate to

the addends. a1 and a2 denote the first and second addend, respectively.
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Changes in a hacker’s basic understanding of a problem provide another source of revisions.

New understanding often comes from playing with code in the manner of ‘bricolage’ [106] rather

than formal instruction. For example, she might notice that addition is commutative, changing the

addend order never affects the final sum. shortcutSum helps explain why: every raised finger in-

crements the sum exactly once. The principle of commutativity is formally introduced as early as

first grade [107], but can be independently discovered earlier [102]. Commutative strategies are

also common before children understand that addition is commutative, suggesting an incomplete

or incorrect understanding of addition [102,104].

These discoveries justify swapping addend order when the first addend is smaller than the sec-

ond. This gives the well-studied min strategy: count out the smaller addend from the larger ad-

dend (min; Table 3). min is perhaps the best attested small number addition strategy, common

from first-grade through adulthood [84–87,89,108] but spontaneously developed earlier given

extensive practice [88]. On average, min removes half the counting necessary for countFromFirst

and further reduces finger and working memory demand. min, however, requires the ability to

rapidly compare numbers, the hacking approach naturally draws on libraries of interacting, and

often simultaneously developing, cognitive abilities.

Finally, a hacker given certain addition problems multiple times might realize that she could save

time by memorizing and retrieving answers after computing them the first time (retrieval; Table 3),

as in dynamic programming algorithms [109]. Indeed, as children age they rely decreasingly on

strategies requiring external cues (e.g., fingers, verbal counting) and increasingly on memorization

[88], a transition humans formally teach [107] and also discover independently [110,111].

Much of what we know about the development of small number addition is thus well-aligned with

the child as hacker, which naturally accommodates and unifies many seemingly disparate phe-

nomena. The child as hacker also suggests several next steps for work on addition and related do-

mains. First, we need models of learning that formalize knowledge as code modified using hacker-

like values, goals, and techniques. Explicitly situating arithmetic learning within the context of the

child as hacker will likely suggest useful and novel hypotheses (e.g., specific hacking techniques

[78] might explain specific chains of strategy introduction; differences in values might explain differ-

ences in performance [88]). Second, mathematical learning extends far beyond small number ad-

dition, including both early sensitivities to number and the development of counting and the later

development of compositional grammars for large numbers, a concept of infinity, more complex

arithmetic, and so on. The child as hacker suggests ways to integrate these phenomena into a gen-

eral account of mathematical development. Third, the child as hacker should also provide paths to

algorithmic theories for qualitatively different kinds of knowledge acquisition (e.g., intuitive theories

of the physical and social world; Box 2).

Hacking and Other Metaphors

The child as hacker builds on several other key developmental metaphors. All these views are

valuable and have significantly improved our understanding of learning. Here, we explain how

the child as hacker extends these accounts, highlighting its potential contributions. See Figure

1B for a summary of the major claims of the views discussed in this paper.

The Child as Scientist

The child as scientist metaphor is one of the strongest influences on the child as hacker. With

roots in the work of Piaget [1] and since extensively developed [2–5, 112], this view emphasizes

how children structure their foundational knowledge in terms of intuitive theories analogous in im-

portant ways to scientific theories [113–116] and build knowledge via epistemic values and
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practices [5,70–72, 117], similar to the ways scientists collect and analyze evidence and modify

theories in response to evidence, constructing theories that are accurate, general, and simple.

The related view of rational constructivism [69] emphasizes the sophisticated mechanisms chil-

dren use in theory-building (Bayesian statistical inference, constructive thinking processes such

as analogy, mental simulation, other forms of ‘learning by thinking’ [118], and active, curiosity-

Box 2. Hacking Theories of Biology: Intuitive and Scientific Accounts of Kinship and Inheritance

While the small number addition example examines procedural learning in mathematics, the child as hacker equally applies

to other domains and kinds of knowledge. Kinship systems (Figure IA) can be seen as logical and declarative intuitive the-

ories of social relatedness, and Mendelian inheritance (Figure IIA) as a probabilistic and causal formal theory of biological

relatedness. A hacker might implement both by compressing a set of observations into more reusable, generalizable,

andmodular code. In both cases, she iteratively improves her program, adding, deleting, and revising code, and occasion-

ally adds entirely new structures simply by defining and using them. Some changes help, others are rejected, and she

eventually produces compact theories of both domains.

In learning kinship, one can frame the task as refactoring a long list of relations about individuals (Figure IB) into rules for

high-level kinship terms (Figure IC) and a small set of basic facts (Figure ID) from which all relations can be easily derived.

Our hacker writes her theory in a logic programming language called Prolog, drawing inferences using deductive proof to

learn, for example, who her uncles are.

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure I. Mapping Kinship to Code. (A) A family tree labeled by three kinship systems (circle = female, colors are

different terms, child generation ignores gender); (B–D) Kinship in Prolog. Prolog expresses computations as Horn

clauses called rules, is true if each term in is true (empty bodies are also true); (B)

initial kinship data; (C) rules for inferring kinship relations, including new primitives , , , and ;

and (D) a small set of rules such that (C) and (D) implies all of (B).

In learning Mendelian inheritance, one can frame the task as refactoring a long list of phenotypes and parentage records

(Figure IIB) into a causal theory of biological inheritance relating phenotypes to genotypes via the three laws of inheritance

(Figure IIC). Because patterns of inheritance are not strictly logical but require distributional reasoning, and because she is

looking for a causal explanation, our hacker implements her theory as a generative model in a probabilistic programming

language called Church [26]. She queries her theory using Church’s built-in tools for conditional inference to learn, for ex-

ample, likely genotypes for and .

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure II. Mapping Mendelian Inheritance to Code. (A) An overview of Mendelian inheritance. (B,C) Mendelian

inheritance in Church. Church expresses computations as parenthesis-delimited trees. (B) A list of individuals

( , , ,…), their parents, and phenotypes ( = yellow; = green; = smooth; = wrinkly). (C) A list of

traits (dominant followed by recessive) and part of a generative theory using Mendel’s laws and a uniform

prior over unknown parents (i.e., draws a pair of alleles uniformly at random).
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driven exploration) and the importance of formalizing thesemechanisms in rational computational

models.

The child as scientist and the child as hacker are best seen not as competitors but as natural

companions, with overlapping but complementary notions of knowledge representation, episte-

mic values and practices, and constraints on learning, which together paint a more complete pic-

ture of cognitive development. The child as scientist emphasizes children’s learning as centrally

focused on building causal models of the world and the conceptual systems (intuitive theories)

supporting these models. It asks questions about how theories are represented, what makes

for good theories, and what mechanisms support theory learning, drawing inspiration from how

scientists have approached these questions and implementing its proposals computationally

as approximations to Bayesian inference over spaces of causal networks, probabilistic first-

order logic, and probabilistic programs [11,56,57,63,66,70,72,117].

The child as hacker extends these ideas with its broader view of what kinds of representations are

worth learning, what values set goals for learning, and what practices are useful for accomplishing

these goals: programsmay go beyond the purely causal, there are many values for good programs

beyond those traditionally used to assess scientific theories (accuracy, generality, simplicity) and

learning draws on many algorithmic-level processes across multiple timescales, not just the sto-

chastic sampling or search mechanisms that have traditionally been used in Bayesian models of

theory learning. This view could enrich both the computational and algorithmic-level claims of

child as scientist models in many specific ways. For example, intuitive theories could benefit from

being formalized as domain-specific libraries or languages for writing generative probabilistic pro-

grams (e.g., Box 2), and the construction of more radically new kinds of concepts could be cap-

tured as the construction of new function and data types, not just new functions or data

structures of existing types. The many values of good code in Table 1 could also have analogs in

the goals that guide children in constructing their intuitive theories, and the processes of improving

code in Table 2 could all have analogs in how children build their intuitive theories; perhaps these

could help formalize some of the mechanisms of analogy, bootstrapping, and explanation-driven

and goal-driven search proposed in the child as scientist and rational constructivism views

[3,5,69,118], which have not been fully captured by previous algorithmic-level learning models.

It is perhaps fitting that scientists recognize highly familiar scientific practices and values in devel-

opment, but in addition to an evocative metaphor, the child as scientist is a fruitful hypothesis. It

has sparked numerous ‘child-as-X’ theories in cognitive psychology, positing specific modes of

scientific thinking as key throughout development. Children can be seen as: linguists determining

the structure of language [119–121], anthropologists systematically studying behavior [122], stat-

isticians inferring latent world structure [123,124], econometricians discovering preferences

[125], and philosophers refining understanding through reflection and analysis [126,127]. We

hope the child as hacker view will further grow this productive tradition. Efforts to formalize the

child as scientist metaphor have also played key roles in its fruitfulness [70–72, 117,128]. Indeed,

many of the LOT models discussed earlier were explicitly developed to formalize aspects of the-

ory learning and the broader scientific process. Formalizing the child as hacker may seem like a

daunting challenge, but this process took decades of sustained interdisciplinary effort for the

child as scientist. A similar long-term investment in computational models for the child as hacker

could prove similarly fruitful.

Resource Rationality and Novelty Search

The idea of resource rationality [129–131] argues that theories must account for cognition as re-

alized in finite computational devices. Time, memory, and energy are limited. Learners can thus
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more quickly find practical hypotheses by evaluating resource use alongside simplicity and fit.

Stanley and colleagues have developed the idea of novelty search [132,133] around the observa-

tion that many learning problems require navigating large hypothesis spaces in finite time. Com-

paring trivially different hypotheses is unlikely to be helpful. They demonstrate for many classes of

problems that agents sensitive to novelty learn more effectively than agents using other

objectives.

Both resource rationality and novelty search are important ways of thinking about objectives in

learning. The child as hacker embraces these insights, but makes claims about learners’ objec-

tives beyond either view. First, it encourages considering both efficiency and novelty, rather

than arguing for either alone. Second, it argues for a radically larger set of possible influences

on the objective function, including engineering and aesthetic concerns and perhaps more

(Table 1). Third, it suggests that learners’ objectives constantly change in complex and as-yet

poorly understood ways, identifying a key area for future research. Rather than searching for

the right human-like objective function, the child as hacker suggests that cognitive scientists

seek to understand an entire space of possible objectives and the ways that learners move be-

tween them.

Workshop and Evolutionary Metaphors

The child as hacker is also closely related to a pair of metaphors from Siegler and colleagues em-

phasizing the dynamics of learning: the workshop metaphor [88] and the evolutionary metaphor

[95]. The workshopmetaphor emphasizes the diversity of knowledge (rawmaterials) and learning

processes (tools) available to children when producing mental representations (products) to meet

the demands of daily life (work orders), and the importance of selecting appropriate materials and

tools for a given product. The evolutionary metaphor recasts these ideas in light of biological evo-

lution, highlighting the essential role of variability, selection, and adaptation in learning. Thesemet-

aphors work together to tell a broader story about learning. Both argue that we maintain multiple

strategies for solving any given problem and adaptively choose among them, learning about their

context-specific usefulness over time. By contrast to ‘staircase’ theories suggesting long periods

of relatively uniform thinking punctuated by brief and dramatic transitions, they suggest that chil-

dren navigate ‘overlapping waves’ as new strategies appear and others fade.

The child as hacker shares much with these metaphors. They all emphasize the importance of

bringing a diverse collection of mental representations to bear during learning, as well as selecting

representations, values, and learning strategies most relevant to the specific task at hand. Each

view also highlights the way knowledge is iteratively revised; the outcomes of learning are them-

selves frequently the raw inputs for future learning. Each makes variability, selection, and adapta-

tion central features of learning.

The mind, however, operates on representations that bear a closer resemblance to software than

hardware, looking more like programs than tables or chairs. We could think of the child as hacker

as updating the workshopmetaphor for the software era and focusing on the tools needed to build

a rich computational model of a richly computational mind: all the ways we have come to represent

knowledge with programs and programming constructs and all the values and activities of hacking

for making programs better, which seem more directly tied to the goals and mechanisms of learn-

ing and more amenable to computational formalization than those of carpentry or metalwork.

The child as hacker may also be better aligned with children’s goal-orientedness during learning.

Evolution is an intentionless process, the primary change mechanisms of which act at random. In

the workshop and evolutionary metaphors, goal schemas can constrain this random search
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process [91] but that is different from directly and deeply guiding it. As with other forms of sto-

chastic search or reinforcement learning, learning under an evolutionary mechanism would thus

require tremendous amounts of computation and time [28]. Children’s learning, by contrast, is re-

markably efficient [134], in part because it is strongly goal-directed [5]. Children’s behavior may

sometimes look random, but there is almost always an underlying goal driving that behavior.

Where the apparent randomness comes from, the evolutionary character, is perhaps a dynami-

cally changing set of goals: initially X, then Y, then Z, then back to X until it is achieved. This dy-

namic is more consistent with the intrinsic nature of goals in hacking, where children’s goals

might then address different values such that each improves representations in different ways.

Externally, without access to those goals or their internal logic, both learning and hacking may

look random, piecemeal, and nonmonotonic, sometimes progressing, sometimes regressing. In-

ternally, however, each is intensely goal-driven, resulting in profound, long-term growth.

In sum, the child as hacker helps to refine and advance the workshop and evolutionary views, by

giving a less metaphorical take on the workshop metaphor and a better fit for the goal-driven

behavior of children than the intentionless randomness of evolution. Moreover, the child as hacker

makes specific suggestions beyond either metaphor, including a strong emphasis on program-

like representations and the specific values and processes that guide how programs get better

(Tables 1 and 2), which we hope can serve as the basis for a new generation of modeling in cog-

nitive development.

Prospects for a Computational Account of Learning

Hacking represents a collection of epistemic values and practices adapted to organizing knowl-

edge using programs, and there is growing evidence that programs are a good model of mental

representations. The child as hacker combines these ideas into a roadmap toward a computa-

tional account of learning and cognitive development. It makes testable claims about a general

class of inductive biases humans ought to have, namely those related to synthesizing, executing,

and analyzing information as programs. It also concretely identifies the representations, objec-

tives, and processes supporting learning with those of human hackers. Finally, it makes a unifying

claim about how these threemight be implemented as code, procedures for assessing code, and

procedures for revising code, respectively.

To explain learning in light of these claims, we must systematically use code as a lens on learning.

Doing so produces testable hypotheses that differ from common alternatives. For instance, the

child as hacker predicts that children frequently change beliefs in the absence of external data.

It predicts that children might learn representations that are less accurate or more complex

than alternatives so long as they win on (e.g., modularity or cleverness). It also predicts that,

while dramatic, global changes are possible, changes to mental representations typically occur

through the accumulation of simple, structured changes, similar to the way code tends to be

refactored.

Both machine learning and psychology would benefit from a united effort to pursue this roadmap in

developing a computational account of human learning. Machine learning would benefit greatly

from the growth of empirical programs in psychology to understand how children hack their own

representations (see Outstanding Questions), how real hackers assess and improve their code in

practice, and how children adopt and pursue goals. Effectively searching large hypothesis spaces

is a fundamental problem in machine learning, so one crucial question for this second program is

how humans effectively search the space of Turing-complete computations. Psychologists and

cognitive scientists would benefit greatly from a sophisticated framework for program induction.

Such a framework would bring together existing knowledge about theoretical computer science,
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programming languages, compilers, program synthesis, and software engineering to provide tools

capturing human-like approaches to solving problems in these domains.

Concluding Remarks

Our goal in introducing the child as hacker has been to offer a path toward answering central chal-

lenges of human learning and cognitive development that both reframes classic questions and

helps us ask new questions. Recent work in cognitive science on constructive thinking [118],

the neuroscience of programming [135], and modeling the development of core domains such

as intuitive physics using game engines [136,137] represents promising complementary steps.

Recent developments in program induction and program synthesis techniques from computer

science are also beginning to operationalize aspects of specific hacking techniques, including

work on backward chaining of goals and subgoals [138–140], neurally guided synthesis

[141,142], iterative refactoring [143–146], incremental programming [147–149], and learning

generative probabilistic models [150,151]. These efforts have the potential to move the child as

hacker beyond just another metaphor, or just a hypothesis, to a working and testable computa-

tional account of cognitive development. But they are just first steps. We look forward to all the

work that remains to be done to understand how it is that children hack their own mental repre-

sentations to build yet-unparalleled tools for thinking.
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How do children move around the

immense space of computationally

expressive hypotheses?

How do humans program? What

techniques do they use? What do

they value in good code? How do

they search the space of programs?

Does the use of many techniques

make search more effective?

How can the discoveries of computer

science best inform models of human

cognition? For example, what remains

to be learned about human cognition

from the study of compilers, type

systems, or databases? How can we

use the vocabulary of programming

and programming languages to more

precisely characterize the represen-
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