
Opinion

The Child as Hacker

Joshua S. Rule,1,* Joshua B. Tenenbaum,1 and Steven T. Piantadosi2

The scope of human learning and development poses a radical challenge for

cognitive science. We propose that developmental theories can address this

challenge by adopting perspectives from computer science. Many of our best

models treat learning as analogous to computer programming because symbolic

programs provide the most compelling account of sophisticated mental repre-

sentations. We specifically propose that children’s learning is analogous to a

particular style of programming called hacking, making code better along

many dimensions through an open-ended set of goals and activities. By contrast

to existing theories, which depend primarily on local search and simple metrics,

this view highlights the many features of good mental representations and the

multiple complementary processes children use to create them.

Hacking as a Metaphor for Learning in Cognitive Development

Human cognitive development is qualitatively unique. Though humans are born unusually help-

less, they amass an unparalleled cognitive repertoire, including: intuitive theories for domains

like physics and biology, formal theories in mathematics and science, language comprehension

and production, and complex perceptual and motor skills. Children also learn to learn, producing

higher-order knowledge that enriches existing concepts and enhances future learning. Human-

like performance in any one of these domains seems substantially beyond current efforts in arti-

ficial intelligence. Yet, human children essentially acquire these abilities simultaneously and univer-

sally. They may even discover new ideas that radically alter humanity’s understanding of the world.

The foundational fields of cognitive science, including philosophy, psychology, neuroscience, and

computer science, face a radical challenge in explaining the richness of human development.

To help address this challenge, we introduce the child as hacker (see Glossary) as a hypothesis

about the representations, processes, and objectives of distinctively human-like learning. Like the

child as scientist view [1–5], the child as hacker is both a fertile metaphor and a source of concrete

hypotheses about cognitive development. It also suggests a roadmap to what could be a unifying

formal account of major phenomena in development. A key part of the child as hacker is the idea

of learning as programming, which holds that symbolic programs (i.e., code) provide the best

formal knowledge representation we have. Learning therefore becomes a process of creating

new mental programs. We review support for learning as programming and argue that while on

increasingly solid ground as a computational-level theory [6], it remains underspecified. We ex-

tend the idea of learning as programming by drawing inspiration from hacking, an internally

driven approach to programming emphasizing the diverse goals and means humans use to

make code better. Our core claim is that the specific representations, motivations, values, and

techniques of hacking form a rich set of largely untested hypotheses about learning.

Knowledge as Code and Learning as Programming

A critical mass of work throughout cognitive science has converged on the hypothesis that

human learning operates over structured, probabilistic, program-like representations [7–20] (cf.

[21]) (Box 1), a modern formulation of Fodor’s language of thought (LOT) [22] as something like

a programming language. Learning in the LOT consists of forming expressions to encode

Highlights

Programs provide our best general-pur-

pose representations for human knowl-

edge, inference, and planning; human

learning is thus increasingly modeled as

program induction, learning programs

from data.

Many formal models of learning as pro-

gram induction reduce to a stochastic

search for concise descriptions of data.

Actual human programmers and

learners are significantly more complex,

using many processes to optimize com-

plex and frequently changing objectives.

The goals and activities of hacking, mak-

ing code better along many dimensions

through an open-ended and internally

motivated set of goals and activities, are

helping to inspire better models of

human learning and cognitive

development.

1Department of Brain and Cognitive

Sciences, Massachusetts Institute of

Technology, Cambridge, MA, USA
2Department of Psychology, University

of California, Berkeley, Berkeley, CA,

USA

*Correspondence:

rule@mit.edu (J.S. Rule).

Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx https://doi.org/10.1016/j.tics.2020.07.005 1
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Trends in Cognitive Sciences

TICS 2073 No. of Pages 16

https://doi.org/10.1016/j.tics.2020.07.005
https://doi.org/10.1016/j.tics.2020.07.005
https://doi.org/10.1016/j.tics.2020.07.005
https://doi.org/10.1016/j.tics.2020.07.005

knowledge, for instance, composing primitives like CAUSE, GO, and UP to form LIFT [23]. This

work argues that a compositional mental language is needed to explain systematicity, productiv-

ity, and compositionality in thought [9,22,24]; a probabilistic language capable of maintaining dis-

tributions over structures is needed to explain variation and gradation in thinking [10,11,25,26];

Glossary

Child as hacker: an algorithmic-level

view of cognitive development,

extending the idea of learning as

programming by drawing inspiration

from hacking such that the specific

medium, values, techniques, and

practices of hacking form a rich set of

hypotheses about learning, particularly in

children.

Hacking: making code better along

many dimensions through an open-

ended set of goals and activities.

Learning as programming: a

computational-level view of learning

claiming that the human conceptual

repertoire can be understood as a

mental programming language and

learning as a kind of programming.

Program/code: a particular expression

of a particular computation in some

programming language.

Program induction: learning

programs to explain how observed data

were generated.

Programming language: languages

with a formal syntax, semantics of which

express computations, typically in terms

of instructions that program the behavior

of some machine (e.g., the x86

processor, Turing machines).

Box 1. Programs and the Challenge of Humans’ Broad Algorithmic Knowledge

Table I. A Sampling of Domains Requiring Algorithmic Knowledge

Formalizable as Programs, with Motivating Examples.

Logic First-order, modal, deontic logic

Mathematics Number systems, geometry, calculus

Natural language Morphology, syntax, number grammars

Sense data Audio, images, video, haptics

Computer languages C, Lisp, Haskell, Prolog,

Scientific theories Relativity, game theory, natural selection

Operating procedures Robert’s rules, bylaws, checklists

Games and sports Go, football, 8 queens, juggling, Lego

Norms and mores Class systems, social cliques, taboos

Legal codes Constitutions, contracts, tax law

Religious systems Monastic orders, vows, rites and rituals

Kinship Genealogies, clans/moieties, family trees

Mundane chores Knotting ties, making beds, mowing lawns

Intuitive theories Physics, biology, theory of mind

Domain theories Cooking, lockpicking, architecture

Art Music, dance, origami, color spaces

Humans possess broad algorithmic knowledge, manipulating complex data in structured ways across many domains

(Table I). Symbolic programs (i.e., computer code) form a universal formal representation for algorithmic knowledge

[27,28] and may be the best model of mental representations currently available. Programs can be communicated

in many forms, including not only formal programming languages but a wide variety of forms familiar in all cultures, in-

cluding natural language and symbolic images (Figure I). While there have been many other proposals for modeling

conceptual representations, only programs arguably capture the full breadth and depth of people’s algorithmic abili-

ties [11]. The rapid rise of programs as tools for manipulating information, from obviously symbolic domains like math-

ematics and logic to seemingly nonsymbolic domains like video, audio, and neural processing, further identifies

programs as a capable knowledge representation (e.g., [32]).

Code is expressed according to a formal syntax and its semantics specifies computations, typically as instructions to

some machine (e.g., x86 processor, Turing machine). It can model both declarative (Box 2) and procedural information

(see ‘Hacking Early Arithmetic’) and allow them to interact seamlessly. Code operates at multiple levels, including: in-

dividual symbols, expressions, statements, data structures and functions, libraries, and even entire programming lan-

guages. Each level can interact with the others: libraries can embed one language inside another, statements can

define data structures, and higher-order functions can take functions as arguments and return functions as outputs.

This leads to one of the fundamental insights that makes code so successful. By writing computations as code, they

become data that can be formally manipulated and analyzed [33]. Programming languages thus become programs

that take code as input and return code as output. Because all programming languages are programs, any knowledge

that can be expressed in any program can be integrated into a single formal knowledge representation.

Modeling knowledge as code and learning as programming has worked well for many individual domains (see ‘Knowl-

edge as Code and Learning as Programming’ in main text). We need, however, a general formalization of mental rep-

resentations and how they develop. The child as hacker suggests such an account, emphasizing how information can

be encoded, assessed, and manipulated as code regardless of domain, with the intention of developing formal tools

applicable to broad classes of human learning phenomena.

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure I. Several Classes of

Programs Expressed as Symbolic

Images. (A) Blueprints, (B) assembly

instructions, (C) musical notation, (D)

knotting diagrams, (E) juggling patterns,

(F) graphical proofs, and (G) football plays.

Trends in Cognitive Sciences

2 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx

and an expressive language, capable of essentially any computation, is needed to explain the

scope of thought [27,28]. Despite comparative and crosscultural work seeking semantic primi-

tives for mental languages [29], other work suggests that learners add and remove primitives, ef-

fectively building entirely new languages [2,3,30,31].

Learning is then program induction: discovering programs that explain how observed data

were generated [34–36]. The theory thus draws on inductive programming literature stretching

back to the birth of cognitive science [37,38] and includes subsequent developments in recursive

program synthesis [39], structure and heuristic discovery [40,41], meta-programming [42,43],

genetic programming [44,45], and inductive logic programming [36,46]. The approach also

makes use of insights from other formalizations of learning, for example, deep learning [47], con-

nectionism [48], reinforcement learning [49], probabilistic graphical models [50], and production

systems [51]. These can be viewed as exploring specific subclasses of programs or possible im-

plementation theories. The learning as programming approach, however, is importantly different

in providing learners the full expressive power of symbolic programs both theoretically (i.e., Turing

completeness) and practically (i.e., freedom to adopt any formal syntax).

This approach applies broadly to developmental phenomena, including counting [52], concept

learning [13,53], function words [54], kinship [55], theory learning [56,57], lexical acquisition

[23], question answering [15], semantics and pragmatics [25,58,59], recursive reasoning [60], se-

quence transformation [61], sequence prediction [18,62], structure learning [63], action concepts

[64], perceptual understanding [14,65], and causality [66]. These applications build on a tradition

of studying agents who understand the world by inferring computational processes that could

have generated observed data, which is optimal in a certain sense [67,68], and aligns with rational

constructivist models of development [69–72].

While these ideas appear to be on increasingly solid empirical and theoretical ground, much work

remains to formalize them into robust and precise descriptions of children’s learning. Most recent

LOT work has argued that learners seek short (simple) programs explaining observed data, a ver-

sion of Occam’s razor. A bias for simplicity favors generalization over memorization, while a bias for

fit favors representations thatmatch theworld. Mathematically, these two can be balanced in a prin-

cipledway using Bayes’ theoremorminimum description length formalisms to favor simple, explan-

atory programs [13,73], a principled approach [28,74] that fits human data well [13,53,73,75,76].

Bayesian LOT models have often hypothesized that learners stochastically propose candidates

by sampling from a posterior distribution over programs, a process that empirically resembles chil-

dren’s apparently piecemeal, stop–start development [57].

From Programming to Hacking

Though these ideas have been important in formalizing LOT-based learning, views based entirely

on simplicity, fit, and stochastic search are likely to be incomplete. Most real-world problems re-

quiring program-like solutions are complex enough that there is no single metric of utility nor uni-

fied process of development (Figure 1A). Even so, modern computational approaches to learning,

whether standard learning algorithms or more recent LOT models, use far fewer techniques and

values than human programmers. For any task of significance, software engineering means iter-

atively accumulating many changes to code usingmany techniques acrossmany scales (see Fig-

ure S1 in the supplemental information online).

In what follows, we enrich learning as programming with a distinctly human style of programming

called hacking. Today, the term ‘hacking’ has many connotations: nefarious, incompetent, pos-

itive, ethical, and cultural. Rather than directly importing these modern connotations, we draw on

Trends in Cognitive Sciences

Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx 3

earlier ideas about hacking from the origins of modern computing culture [77]. Hacking, as used

here, is about exploring the limits of a complex system, starting with whatever is at hand and it-

eratively pushing the system far beyond what initially seemed possible. We thus begin with a no-

tion of hacking as making code better. But the essence of hacking goes deeper. It lies in all the

values that count as ‘better’, all the techniques people use to improve code, and a profound

sense of internal motivation.

The Many Values of Hacking

There are many dimensions along which a hacker might seek to improve her code, making it not

only more accurate, but perhaps faster, clearer, more modular, more memory-efficient, more re-

usable, cleverer, and so on (Table 1). The simplest program is unlikely to be the most general; the

fastest is usually not the easiest to write; the most elegant typically is not the most easily extensi-

ble. Importantly, real-world systems do not focus exclusively on the metrics that have come to the

forefront of current LOT-learning paradigms. They often maintain multiple solutions to the same

problem, tuned for different sets of values. Moreover, effective systems in the real world care

more about managing complexity than about being short, simple, or terse, though these are

sometimes useful tools for managing complexity. Indeed, many foundational ideas in computer

science are less about computation per se and more about managing the inevitable complexity

that arises when putting computation to use [33,78].

The Many Activities of Hacking

To pursue these diverse objectives, hackers have developedmany process-level mechanisms for

improving their representations [78], including adding new functions and data structures,

debugging faulty code, refactoring code, and even inventing new languages (Table 2). Hackers

understand dozens or even hundreds of these mechanisms and their potential impacts on vari-

ous values. Some make small, systematic, and predictable changes, while others are dramatic

and transformative; most are specially tailored to specific kinds of problems. For instance, a

hacker might care about speed and so cache the output of subcomputations in an algorithm.

She might seek modularity and so define data structures that encapsulate information and

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 1. Overview of the Child as Hacker Hypothesis. (A) Code can be changed using many techniques (x-axis) and

assessed according to many values (y-axis). Standard learning models in machine learning and psychology (green region)

tend to focus solely on tuning the parameters of statistical models to improve accuracy. Recent language of thought (LOT)

models (red region) expand this scope, writing functions in program-like representations and evaluating them for

conciseness and, sometimes, efficiency. Yet, the set of values and techniques used by actual hackers (and, by

hypothesis, children; blue region) remains much larger. (B) A comparison of three families of developmental metaphors

discussed in this paper (the child as scientist, the workshop and evolutionary metaphors, and the child as hacker) along

three dimensions: the kinds of knowledge learners acquire, the primary objectives of learning, and the mechanisms used

in learning. See also Figure S1 in the supplemental information online.

Trends in Cognitive Sciences

4 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx

make it accessible only through specific interfaces. Or, she might seek reusable parts and so ab-

stract common computations into named functions. This diversity of techniques makes hacking

different from both common learning algorithms and recent LOT models. Typically, these other

models explore a small set of techniques for improving programs, based on relatively simple

(even dumb) local methods like gradient descent, random sampling, or exhaustive enumeration.

The Intrinsic Motivation of Hacking

Hacking is intrinsically motivated. Though a hacker may often be motivated in part by an extrinsic

goal, she always generates her own goals, choosing specific dimensions she wants to improve,

and pursues them at least as much for the intrinsic reward of better code as for any instrumental pur-

pose. Sometimes, her goal is difficult to assess objectively and so unlikely to arise extrinsically. Other

Table 2. Learners and Hackers Share Similar Techniquesa

Tune parameters Adjust constants in code to optimize an objective function.

Add functions Write new procedures for the codebase, increasing its overall abilities by making new computations available for reuse.

Extract functions Move existing code into its own named procedure to centrally define an already common computation.

Test and debug Execute code to verify that it behaves as expected and fix problems that arise. Accumulating tests over time increases code’s trustworthiness.

Handle errors Recognize and recover from errors rather than failing before completion, thereby increasing robustness.

Profile Observe a program’s resource use as it runs to identify inefficiencies for further scrutiny.

Refactor Restructure code without changing the semantics of the computations performed (e.g.,remove dead code, reorder statements).

Add types Add code explicitly describing a program’s semantics, so syntax better reflects semantics and supports automated reasoning about behavior.

Write libraries Create a collection of related representations and procedures that serve as a toolkit for solving an entire family of problems.

Invent languages Create new languages tuned to particular domains (e.g.,HTML, SQL,) or approaches to problem solving (e.g.,Prolog, C, Scheme).

aHackers have many techniques for changing and improving code; some are listed here. The child as hacker suggests that the techniques of hackers are a rich source of

hypotheses for understanding the epistemic practices of learners.

Table 1. Learners and Hackers Share Similar Valuesa

Accurate Demonstrates mastery of the problem; inaccurate solutions hardly count as solutions at all

Concise Reduces the chance of implementation errors and the cost to discover and store a solution

Easy Optimizes the effort of producing a solution, enabling the hacker to solve more problems

Fast Produces results quickly, allowing more problems to be solved per unit time

Efficient Respects limits in time, computation, storage space, and programmer energy

Novel Solves a problem unlike previously solved problems, introducing new abilities to the codebase

Useful Solves a problem of high utility

Modular Decomposes a system at its semantic joints; parts can be optimized and reused independently

General Solves many problems with one solution, eliminating the cost of storing distinct solutions

Robust Degrades gracefully, recovers from errors, and accepts many input formats

Minimal Reduces available resources to better understand some limit of the problem space

Elegant Emphasizes symmetry and minimalism common among mature solutions

Portable Avoids idiosyncrasies of the machine on which it was implemented and can be easily shared

Clear Reveals code’s core structure to suggest further improvements; is easier to learn and explain

Clever Solves a problem in an unexpected way

Fun Optimizes for the pleasure of producing a solution

aHackers want to make their code better, and listed here are some features of good code. They are also features of useful

conceptual systems.

Trends in Cognitive Sciences

Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx 5

times, her goal can be measured objectively, but she chooses it regardless of, perhaps in opposition

to, external goals (e.g., making code faster, even though outstanding extrinsic requests explicitly tar-

get higher accuracy). Whatever their origins, her choice of goals often appears spontaneous, even

stochastic. Her specific goals and values may change nearly as often as the code itself, constantly

updated in light of recent changes. She is deeply interested in achieving each goal, but she frequently

adopts new goals before reaching her current goal for any number of reasons: getting bored, decid-

ing her progress is ‘good enough’, getting stuck, or pursuing other projects. Rather than randomly

walking from goal to goal, however, she learns to maintain a network of goals: abandoning bad

goals, identifying subgoals, narrowing, broadening, and setting goals aside to revisit later. Even if

she eventually achieves her initial goal, the path she follows may not be the most direct available.

Her goals are thus primarily a means to improve her code rather than ends in themselves.

The fundamental role of intrinsic motivation and active goal management in hacking suggests deep

connections with curiosity and play [79–82], which have also been posited to play central roles in chil-

dren’s active learning. We do not speculate on those connections here except to say that in thinking

about intrinsicmotivation in hacking, we’ve been inspired byChu andSchulz’swork exploring the role

of goals and problem-solving in play [83]. Further understanding of this aspect of both learning and

hacking could be informed by our search for better accounts of play and curiosity.

In short, the components of hacking (diverse values, a toolkit of techniques for changing code,

and deep intrinsic motivation) combine to make hacking both a highly successful and emotionally

engaging approach to programming. The ability to select appropriate values, goals, and changes

to code transforms seemingly stochastic behavior into reliably better code. The combination of

internal motivation, uncertain outcomes, and iterative improvement makes hacking a creative

and rewarding experience.

Hacking Early Arithmetic

It is helpful to look through the hacker’s lens at a concrete example of algorithmic revision from

cognitive development: how preschoolers and early grade-schoolers learn to solve simple addi-

tion problems like 2 + 3. In this section, we demonstrate how the child as hacker can be used to

explain key findings in arithmetic learning as natural consequences of changing code-like repre-

sentations according to hacker-like values and techniques.

We focus on the well-known ‘sum’ to ‘min’ transition [84–89], in which children spontaneously

move from counting out each addend separately and then recounting the entire set (sum strategy)

to counting out the smaller addend starting from the larger addend (min strategy). Small number

addition has been modeled many times [88,90–94], but even as this case is well known, its signif-

icance for understanding learning generally [95] is not appreciated. This domain is notable because

children learn procedures and, in doing so, display many hallmarks of hackers.

Throughout this transition and beyond, children do not discard previous strategies when acquir-

ing new ones but instead maintain multiple strategies [96–99]. The work of Siegler and col-

leagues, in particular, explicitly grapples with the complexity of both the many values that

learners might adopt and the need to select among many strategies for solving the same prob-

lem. They have shown that children appropriately choose different strategies trial-by-trial based

on features like speed, memory demands, and robustness to error [88,95].

Table 3 implements several early addition strategies as code. For the sake of space, we highlight five

strategies (cf. [92,100]). Children acquire the sum strategy through informal interactions with parents

or at the onset of formal education [88,101,102] (sum; Table 3). sum appears optimized for instruction

Trends in Cognitive Sciences

6 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx

and learning. It is simple, uses familiar count routines, requires little rote memorization, and respects

children’s limited working memory. It also computes any sum in the child’s count list, making sum an

accurate and concise strategy for addition. Most recent LOT models would consider the problem

well-solved. sum is slow and repetitive, however, counting every object twice.

Restructuring sum to simultaneously track both counts, updating the sumwhile creating each ad-

dend, counts each object only once and explicitly represents a strong generalization: here, that

the two counts are not coincidental but used for closely connected purposes. The result is

shortcutSum (Table 3): count out each addend, reciting the total count rather than the current ad-

dend count. shortcutSum tracks both counts using a newly implemented function, raiseCount.

Maintaining simultaneous counts increases working memory load and the potential for error

and is, unsurprisingly, a late-developing counting skill sum [103] (cf. [104]). Addition strategies in-

corporating simultaneous counts naturally appear during early grade-school [99] but can be dis-

covered earlier given practice [88].

Many techniques for improving code are sensitive to execution traces recording a program’s

step-by-step behavior. In shortcutSum, for example, the first call to raiseCount is redundant: it

counts out a1, the first addend, to produce y, meaning y is equal to a1. Removing the first

count and replacing y with a1 produces countFromFirst (Table 3). It is on average twice as fast

as shortcutSum while reducing finger and working memory demands. These changes, however,

are not based on code alone; they require sensitivity to the behavior of code via something like an

execution trace. While reported in children and common in theoretical accounts [93,94,105],

there is debate about how frequently countFromFirst appears in practice [88,91].

Table 3. Small Number Addition Algorithmsa

aEach entry lists: code (Algorithm pseudocode); what a child might do and say (Trace); the number of operations (Opera-

tions); how many fingers (or other objects) are needed (Fingers); and how many numbers the child must remember simulta-

neously (Memory). raise(N, hand) holds up N fingers on hand by counting from 1. Y = count(hand, X) counts fingers

held up on hand starting from X to return Y. Y = raiseCount(N, hand, X) combines raise and count, counting from X

while holding up N fingers on hand. Resource counts for retrieval assume a previously seen problem; the values other-

wise grow to accommodate a call to add, a generic adding algorithm that selects a specific addition algorithm appropriate to

the addends. a1 and a2 denote the first and second addend, respectively.

Trends in Cognitive Sciences

Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx 7

Changes in a hacker’s basic understanding of a problem provide another source of revisions.

New understanding often comes from playing with code in the manner of ‘bricolage’ [106] rather

than formal instruction. For example, she might notice that addition is commutative, changing the

addend order never affects the final sum. shortcutSum helps explain why: every raised finger in-

crements the sum exactly once. The principle of commutativity is formally introduced as early as

first grade [107], but can be independently discovered earlier [102]. Commutative strategies are

also common before children understand that addition is commutative, suggesting an incomplete

or incorrect understanding of addition [102,104].

These discoveries justify swapping addend order when the first addend is smaller than the sec-

ond. This gives the well-studied min strategy: count out the smaller addend from the larger ad-

dend (min; Table 3). min is perhaps the best attested small number addition strategy, common

from first-grade through adulthood [84–87,89,108] but spontaneously developed earlier given

extensive practice [88]. On average, min removes half the counting necessary for countFromFirst

and further reduces finger and working memory demand. min, however, requires the ability to

rapidly compare numbers, the hacking approach naturally draws on libraries of interacting, and

often simultaneously developing, cognitive abilities.

Finally, a hacker given certain addition problems multiple times might realize that she could save

time by memorizing and retrieving answers after computing them the first time (retrieval; Table 3),

as in dynamic programming algorithms [109]. Indeed, as children age they rely decreasingly on

strategies requiring external cues (e.g., fingers, verbal counting) and increasingly on memorization

[88], a transition humans formally teach [107] and also discover independently [110,111].

Much of what we know about the development of small number addition is thus well-aligned with

the child as hacker, which naturally accommodates and unifies many seemingly disparate phe-

nomena. The child as hacker also suggests several next steps for work on addition and related do-

mains. First, we need models of learning that formalize knowledge as code modified using hacker-

like values, goals, and techniques. Explicitly situating arithmetic learning within the context of the

child as hacker will likely suggest useful and novel hypotheses (e.g., specific hacking techniques

[78] might explain specific chains of strategy introduction; differences in values might explain differ-

ences in performance [88]). Second, mathematical learning extends far beyond small number ad-

dition, including both early sensitivities to number and the development of counting and the later

development of compositional grammars for large numbers, a concept of infinity, more complex

arithmetic, and so on. The child as hacker suggests ways to integrate these phenomena into a gen-

eral account of mathematical development. Third, the child as hacker should also provide paths to

algorithmic theories for qualitatively different kinds of knowledge acquisition (e.g., intuitive theories

of the physical and social world; Box 2).

Hacking and Other Metaphors

The child as hacker builds on several other key developmental metaphors. All these views are

valuable and have significantly improved our understanding of learning. Here, we explain how

the child as hacker extends these accounts, highlighting its potential contributions. See Figure

1B for a summary of the major claims of the views discussed in this paper.

The Child as Scientist

The child as scientist metaphor is one of the strongest influences on the child as hacker. With

roots in the work of Piaget [1] and since extensively developed [2–5, 112], this view emphasizes

how children structure their foundational knowledge in terms of intuitive theories analogous in im-

portant ways to scientific theories [113–116] and build knowledge via epistemic values and

Trends in Cognitive Sciences

8 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx

practices [5,70–72, 117], similar to the ways scientists collect and analyze evidence and modify

theories in response to evidence, constructing theories that are accurate, general, and simple.

The related view of rational constructivism [69] emphasizes the sophisticated mechanisms chil-

dren use in theory-building (Bayesian statistical inference, constructive thinking processes such

as analogy, mental simulation, other forms of ‘learning by thinking’ [118], and active, curiosity-

Box 2. Hacking Theories of Biology: Intuitive and Scientific Accounts of Kinship and Inheritance

While the small number addition example examines procedural learning in mathematics, the child as hacker equally applies

to other domains and kinds of knowledge. Kinship systems (Figure IA) can be seen as logical and declarative intuitive the-

ories of social relatedness, and Mendelian inheritance (Figure IIA) as a probabilistic and causal formal theory of biological

relatedness. A hacker might implement both by compressing a set of observations into more reusable, generalizable,

andmodular code. In both cases, she iteratively improves her program, adding, deleting, and revising code, and occasion-

ally adds entirely new structures simply by defining and using them. Some changes help, others are rejected, and she

eventually produces compact theories of both domains.

In learning kinship, one can frame the task as refactoring a long list of relations about individuals (Figure IB) into rules for

high-level kinship terms (Figure IC) and a small set of basic facts (Figure ID) from which all relations can be easily derived.

Our hacker writes her theory in a logic programming language called Prolog, drawing inferences using deductive proof to

learn, for example, who her uncles are.

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure I. Mapping Kinship to Code. (A) A family tree labeled by three kinship systems (circle = female, colors are

different terms, child generation ignores gender); (B–D) Kinship in Prolog. Prolog expresses computations as Horn

clauses called rules, is true if each term in is true (empty bodies are also true); (B)

initial kinship data; (C) rules for inferring kinship relations, including new primitives , , , and ;

and (D) a small set of rules such that (C) and (D) implies all of (B).

In learning Mendelian inheritance, one can frame the task as refactoring a long list of phenotypes and parentage records

(Figure IIB) into a causal theory of biological inheritance relating phenotypes to genotypes via the three laws of inheritance

(Figure IIC). Because patterns of inheritance are not strictly logical but require distributional reasoning, and because she is

looking for a causal explanation, our hacker implements her theory as a generative model in a probabilistic programming

language called Church [26]. She queries her theory using Church’s built-in tools for conditional inference to learn, for ex-

ample, likely genotypes for and .

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure II. Mapping Mendelian Inheritance to Code. (A) An overview of Mendelian inheritance. (B,C) Mendelian

inheritance in Church. Church expresses computations as parenthesis-delimited trees. (B) A list of individuals

(, , ,…), their parents, and phenotypes (= yellow; = green; = smooth; = wrinkly). (C) A list of

traits (dominant followed by recessive) and part of a generative theory using Mendel’s laws and a uniform

prior over unknown parents (i.e., draws a pair of alleles uniformly at random).

Trends in Cognitive Sciences

Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx 9

driven exploration) and the importance of formalizing thesemechanisms in rational computational

models.

The child as scientist and the child as hacker are best seen not as competitors but as natural

companions, with overlapping but complementary notions of knowledge representation, episte-

mic values and practices, and constraints on learning, which together paint a more complete pic-

ture of cognitive development. The child as scientist emphasizes children’s learning as centrally

focused on building causal models of the world and the conceptual systems (intuitive theories)

supporting these models. It asks questions about how theories are represented, what makes

for good theories, and what mechanisms support theory learning, drawing inspiration from how

scientists have approached these questions and implementing its proposals computationally

as approximations to Bayesian inference over spaces of causal networks, probabilistic first-

order logic, and probabilistic programs [11,56,57,63,66,70,72,117].

The child as hacker extends these ideas with its broader view of what kinds of representations are

worth learning, what values set goals for learning, and what practices are useful for accomplishing

these goals: programsmay go beyond the purely causal, there are many values for good programs

beyond those traditionally used to assess scientific theories (accuracy, generality, simplicity) and

learning draws on many algorithmic-level processes across multiple timescales, not just the sto-

chastic sampling or search mechanisms that have traditionally been used in Bayesian models of

theory learning. This view could enrich both the computational and algorithmic-level claims of

child as scientist models in many specific ways. For example, intuitive theories could benefit from

being formalized as domain-specific libraries or languages for writing generative probabilistic pro-

grams (e.g., Box 2), and the construction of more radically new kinds of concepts could be cap-

tured as the construction of new function and data types, not just new functions or data

structures of existing types. The many values of good code in Table 1 could also have analogs in

the goals that guide children in constructing their intuitive theories, and the processes of improving

code in Table 2 could all have analogs in how children build their intuitive theories; perhaps these

could help formalize some of the mechanisms of analogy, bootstrapping, and explanation-driven

and goal-driven search proposed in the child as scientist and rational constructivism views

[3,5,69,118], which have not been fully captured by previous algorithmic-level learning models.

It is perhaps fitting that scientists recognize highly familiar scientific practices and values in devel-

opment, but in addition to an evocative metaphor, the child as scientist is a fruitful hypothesis. It

has sparked numerous ‘child-as-X’ theories in cognitive psychology, positing specific modes of

scientific thinking as key throughout development. Children can be seen as: linguists determining

the structure of language [119–121], anthropologists systematically studying behavior [122], stat-

isticians inferring latent world structure [123,124], econometricians discovering preferences

[125], and philosophers refining understanding through reflection and analysis [126,127]. We

hope the child as hacker view will further grow this productive tradition. Efforts to formalize the

child as scientist metaphor have also played key roles in its fruitfulness [70–72, 117,128]. Indeed,

many of the LOT models discussed earlier were explicitly developed to formalize aspects of the-

ory learning and the broader scientific process. Formalizing the child as hacker may seem like a

daunting challenge, but this process took decades of sustained interdisciplinary effort for the

child as scientist. A similar long-term investment in computational models for the child as hacker

could prove similarly fruitful.

Resource Rationality and Novelty Search

The idea of resource rationality [129–131] argues that theories must account for cognition as re-

alized in finite computational devices. Time, memory, and energy are limited. Learners can thus

Trends in Cognitive Sciences

10 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx

more quickly find practical hypotheses by evaluating resource use alongside simplicity and fit.

Stanley and colleagues have developed the idea of novelty search [132,133] around the observa-

tion that many learning problems require navigating large hypothesis spaces in finite time. Com-

paring trivially different hypotheses is unlikely to be helpful. They demonstrate for many classes of

problems that agents sensitive to novelty learn more effectively than agents using other

objectives.

Both resource rationality and novelty search are important ways of thinking about objectives in

learning. The child as hacker embraces these insights, but makes claims about learners’ objec-

tives beyond either view. First, it encourages considering both efficiency and novelty, rather

than arguing for either alone. Second, it argues for a radically larger set of possible influences

on the objective function, including engineering and aesthetic concerns and perhaps more

(Table 1). Third, it suggests that learners’ objectives constantly change in complex and as-yet

poorly understood ways, identifying a key area for future research. Rather than searching for

the right human-like objective function, the child as hacker suggests that cognitive scientists

seek to understand an entire space of possible objectives and the ways that learners move be-

tween them.

Workshop and Evolutionary Metaphors

The child as hacker is also closely related to a pair of metaphors from Siegler and colleagues em-

phasizing the dynamics of learning: the workshop metaphor [88] and the evolutionary metaphor

[95]. The workshopmetaphor emphasizes the diversity of knowledge (rawmaterials) and learning

processes (tools) available to children when producing mental representations (products) to meet

the demands of daily life (work orders), and the importance of selecting appropriate materials and

tools for a given product. The evolutionary metaphor recasts these ideas in light of biological evo-

lution, highlighting the essential role of variability, selection, and adaptation in learning. Thesemet-

aphors work together to tell a broader story about learning. Both argue that we maintain multiple

strategies for solving any given problem and adaptively choose among them, learning about their

context-specific usefulness over time. By contrast to ‘staircase’ theories suggesting long periods

of relatively uniform thinking punctuated by brief and dramatic transitions, they suggest that chil-

dren navigate ‘overlapping waves’ as new strategies appear and others fade.

The child as hacker shares much with these metaphors. They all emphasize the importance of

bringing a diverse collection of mental representations to bear during learning, as well as selecting

representations, values, and learning strategies most relevant to the specific task at hand. Each

view also highlights the way knowledge is iteratively revised; the outcomes of learning are them-

selves frequently the raw inputs for future learning. Each makes variability, selection, and adapta-

tion central features of learning.

The mind, however, operates on representations that bear a closer resemblance to software than

hardware, looking more like programs than tables or chairs. We could think of the child as hacker

as updating the workshopmetaphor for the software era and focusing on the tools needed to build

a rich computational model of a richly computational mind: all the ways we have come to represent

knowledge with programs and programming constructs and all the values and activities of hacking

for making programs better, which seem more directly tied to the goals and mechanisms of learn-

ing and more amenable to computational formalization than those of carpentry or metalwork.

The child as hacker may also be better aligned with children’s goal-orientedness during learning.

Evolution is an intentionless process, the primary change mechanisms of which act at random. In

the workshop and evolutionary metaphors, goal schemas can constrain this random search

Trends in Cognitive Sciences

Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx 11

process [91] but that is different from directly and deeply guiding it. As with other forms of sto-

chastic search or reinforcement learning, learning under an evolutionary mechanism would thus

require tremendous amounts of computation and time [28]. Children’s learning, by contrast, is re-

markably efficient [134], in part because it is strongly goal-directed [5]. Children’s behavior may

sometimes look random, but there is almost always an underlying goal driving that behavior.

Where the apparent randomness comes from, the evolutionary character, is perhaps a dynami-

cally changing set of goals: initially X, then Y, then Z, then back to X until it is achieved. This dy-

namic is more consistent with the intrinsic nature of goals in hacking, where children’s goals

might then address different values such that each improves representations in different ways.

Externally, without access to those goals or their internal logic, both learning and hacking may

look random, piecemeal, and nonmonotonic, sometimes progressing, sometimes regressing. In-

ternally, however, each is intensely goal-driven, resulting in profound, long-term growth.

In sum, the child as hacker helps to refine and advance the workshop and evolutionary views, by

giving a less metaphorical take on the workshop metaphor and a better fit for the goal-driven

behavior of children than the intentionless randomness of evolution. Moreover, the child as hacker

makes specific suggestions beyond either metaphor, including a strong emphasis on program-

like representations and the specific values and processes that guide how programs get better

(Tables 1 and 2), which we hope can serve as the basis for a new generation of modeling in cog-

nitive development.

Prospects for a Computational Account of Learning

Hacking represents a collection of epistemic values and practices adapted to organizing knowl-

edge using programs, and there is growing evidence that programs are a good model of mental

representations. The child as hacker combines these ideas into a roadmap toward a computa-

tional account of learning and cognitive development. It makes testable claims about a general

class of inductive biases humans ought to have, namely those related to synthesizing, executing,

and analyzing information as programs. It also concretely identifies the representations, objec-

tives, and processes supporting learning with those of human hackers. Finally, it makes a unifying

claim about how these threemight be implemented as code, procedures for assessing code, and

procedures for revising code, respectively.

To explain learning in light of these claims, we must systematically use code as a lens on learning.

Doing so produces testable hypotheses that differ from common alternatives. For instance, the

child as hacker predicts that children frequently change beliefs in the absence of external data.

It predicts that children might learn representations that are less accurate or more complex

than alternatives so long as they win on (e.g., modularity or cleverness). It also predicts that,

while dramatic, global changes are possible, changes to mental representations typically occur

through the accumulation of simple, structured changes, similar to the way code tends to be

refactored.

Both machine learning and psychology would benefit from a united effort to pursue this roadmap in

developing a computational account of human learning. Machine learning would benefit greatly

from the growth of empirical programs in psychology to understand how children hack their own

representations (see Outstanding Questions), how real hackers assess and improve their code in

practice, and how children adopt and pursue goals. Effectively searching large hypothesis spaces

is a fundamental problem in machine learning, so one crucial question for this second program is

how humans effectively search the space of Turing-complete computations. Psychologists and

cognitive scientists would benefit greatly from a sophisticated framework for program induction.

Such a framework would bring together existing knowledge about theoretical computer science,

Trends in Cognitive Sciences

12 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx

programming languages, compilers, program synthesis, and software engineering to provide tools

capturing human-like approaches to solving problems in these domains.

Concluding Remarks

Our goal in introducing the child as hacker has been to offer a path toward answering central chal-

lenges of human learning and cognitive development that both reframes classic questions and

helps us ask new questions. Recent work in cognitive science on constructive thinking [118],

the neuroscience of programming [135], and modeling the development of core domains such

as intuitive physics using game engines [136,137] represents promising complementary steps.

Recent developments in program induction and program synthesis techniques from computer

science are also beginning to operationalize aspects of specific hacking techniques, including

work on backward chaining of goals and subgoals [138–140], neurally guided synthesis

[141,142], iterative refactoring [143–146], incremental programming [147–149], and learning

generative probabilistic models [150,151]. These efforts have the potential to move the child as

hacker beyond just another metaphor, or just a hypothesis, to a working and testable computa-

tional account of cognitive development. But they are just first steps. We look forward to all the

work that remains to be done to understand how it is that children hack their own mental repre-

sentations to build yet-unparalleled tools for thinking.

Acknowledgments

We thank the anonymous reviewers for their helpful comments. This work was supported by grants 1760874 and 2000759

from the National Science Foundation (NSF), Division of Research on Learning (S.T.P.), award 1R01HD085996 from the Eunice

Kennedy Shriver National Institute of Child Health & Human Development (NICHD) at the National Institutes of Health (S.T.P.),

grants 1122374 & 1745302 from the NSF Graduate Research Fellowship (J.S.R.), grant N00014-18-1-2847 from the Office of

Naval Research (J.B.T. & J.S.R.), STC award CCF-1231216 for the Center for Minds, Brains and Machines (CBMM) from the

NSF (J.B.T. & J.S.R.), award No. FA9550-19-1-0269 from the Air Force Office of Scientific Research (J.B.T. & J.S.R.), and

Siegel Family Endowment. The hand images in Table 3 are freely provided by SVG Repo (https://svgrepo.com). The im-

ages in Figure IA in Box 1 and Figure IA in Box 2 come fromWikimedia Commons (https://commons.wikimedia.org/) and

Flickr (https://www.flickr.com).

Supplementary data
Supplemental information associated with this article can be found online at https://doi.org/10.1016/j.tics.2020.07.005.

References
1. Piaget, J. (1955) The Child’s Construction of Reality,

Routledge & Kegan Paul

2. Carey, S. (1985) Conceptual Change in Childhood, MIT

Press

3. Carey, S. (2009) The Origin of Concepts, Oxford University Press

4. Gopnik, A. (2012) Scientific thinking in young children: theoret-

ical advances, empirical research, and policy implications. Sci-

ence 337, 1623–1627

5. Schulz, L. (2012) The origins of inquiry: inductive inference and

exploration in early childhood. Trends Cogn. Sci. 16, 382–389

6. Marr, D. (1982) Vision, W.H. Freeman

7. Chater, N. and Oaksford, M. (2013) Programs as causal

models: Speculations on mental programs and mental repre-

sentation. Cogn. Sci. 37, 1171–1191

8. Zylberberg, A. et al. (2011) The human Turing machine: a neu-

ral framework for mental programs. Trends Cogn. Sci. 15,

293–300

9. Calvo, P. and Symons, J. (2014) The Architecture of Cognition:

Rethinking Fodor and Pylyshyn’s Systematicity Challenge, MIT

Press

10. Lake, B. et al. (2017) Building machines that learn and think like

people. Behav. Brain Sci. 40, 253

11. Goodman, N. et al. (2015) Concepts in a probabilistic language

of thought. In The Conceptual Mind: New Directions in the

Study of Concepts (Margolis, E. and Laurence, S., eds),

pp. 623–654, MIT Press

12. Piantadosi, S. and Jacobs, R. (2016) Four problems solved by

the probabilistic language of thought. Curr. Dir. Psychol. Sci.

25, 54–59

13. Goodman, N. et al. (2008) A rational analysis of rule-based

concept learning. Cogn. Sci. 32, 108–154

14. Depeweg, S. et al. (2018) Solving Bongard problems with a vi-

sual language and pragmatic reasoning. arXiv Published online

April 12, 2018 https://arxiv.org/abs/1804.04452

15. Rothe, A. et al. (2017) Question asking as program generation.

In Advances in Neural Information Processing Systems,

pp. 1046–1055, Curran Associates

16. Erdogan, G. et al. (2015) From sensory signals to modality-

independent conceptual representations: a probabilistic

language of thought approach. PLoS Comput. Biol.

e1004610

17. Yildirim, I. and Jacobs, R.A. (2015) Learning multisensory rep-

resentations for auditory-visual transfer of sequence category

knowledge: a probabilistic language of thought approach.

Psychon. Bull. Rev. 22, 673–686

18. Amalric, M. et al. (2017) The language of geometry: Fast

comprehension of geometrical primitives and rules in

human adults and preschoolers. PLoS Comput. Biol. 13,

e1005273

19. Romano, S. et al. (2018) Bayesian validation of grammar

productions for the language of thought. PLoS One 13],

e0200420

Outstanding Questions

How might traditional accounts of

cognitive development be usefully

reinterpreted through the lens of

hacking? How can core knowledge

be mapped to an initial codebase?

How can domain-specific knowledge

be modeled as code libraries? What

chains of revisions develop these

libraries? How do libraries interact

with each other? Which hacking

techniques are attested in children

and when do they appear? Which

values? How can individual learning

episodes be interpreted as improving

code?

What are children’s algorithmic

abilities? How do they learn in the

absence of new data? What aspects

of learning are data-insensitive? How

do they extract information from richly

structured data? What kinds of

nonlocal transformations do we see?

Do children ever find more complex

theories before finding simpler ones?

How do children move around the

immense space of computationally

expressive hypotheses?

How do humans program? What

techniques do they use? What do

they value in good code? How do

they search the space of programs?

Does the use of many techniques

make search more effective?

How can the discoveries of computer

science best inform models of human

cognition? For example, what remains

to be learned about human cognition

from the study of compilers, type

systems, or databases? How can we

use the vocabulary of programming

and programming languages to more

precisely characterize the represen-

tational resources supporting human

cognition? Are things like variable

binding, symbolic pattern matching, or

continuations cognitively primitive? If

so, are they generally available or used

only for specific domains? How does

the mind integrate symbolic/discrete

and statistical/continuous information

during learning?

What kinds of goals do children have in

learning? What improvements do they

inspire? How do they move around

the space of goals? What data

structures does this movement

suggest for goal management?

Trends in Cognitive Sciences

Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx 13

https://svgrepo.com
https://commons.wikimedia.org/
https://www.flickr.com
doi:10.1016/j.tics.2020.07.005
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0005
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0005
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0010
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0010
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0015
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0020
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0020
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0020
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0025
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0025
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0030
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0035
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0035
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0035
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0040
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0040
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0040
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0045
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0045
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0045
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0050
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0050
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0055
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0055
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0055
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0055
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0060
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0060
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0060
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0065
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0065
https://arxiv.org/abs/1804.04452
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0075
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0075
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0075
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0080
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0080
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0080
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0080
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0085
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0085
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0085
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0085
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0090
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0090
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0090
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0090
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0095
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0095
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0095

20. Wang, L. et al. (2019) Representation of spatial sequences

using nested rules in human prefrontal cortex. NeuroImage

186, 245–255

21. Lupyan, G. and Bergen, B. (2016) How language programs the

mind. Top. Cogn. Sci. 8, 408–424

22. Fodor, J. (1975) The Language of Thought, Harvard University

Press

23. Siskind, J. (1996) A computational study of cross-situational

techniques for learning word-to-meaning mappings. Cognition

61, 31–91

24. Fodor, J. and Pylyshyn, Z. (1988) Connectionism and cognitive

architecture: A critical analysis, connections and symbols.

Cognition 28, 3–71

25. Goodman, N.D. and Lassiter, D. (2015) Probabilistic semantics

and pragmatics: Uncertainty in language and thought. In The

Handbook of Contemporary Semantic Theory (2nd) (Lappin,

S. and Fox, C., eds), Wiley-Blackwell

26. Goodman, N. et al. (2008) Church: a language for generative

models. In Proceedings of the 24th Conference Conference

on Uncertainty in Artificial Intelligence (McAllester, D. and

Myllymaki, P., eds), AUAI Press

27. Turing, A.M. (1936) On computable numbers, with an applica-

tion to the Entscheidungsproblem. Proc. Lond. Math. Soc. 2,

230–265

28. Baum, E.B. (2004) What Is Thought?, MIT Press

29. Wierzbicka, A. (1996) Semantics: Primes and Universals, Ox-

ford University Press

30. Barner, D. and Baron, A.S. (2016) Core Knowledge and Con-

ceptual Change, Oxford University Press

31. Gopnik, A. (1983) Conceptual and semantic change in scien-

tists and children: why there are no semantic universals. Lin-

guistics 21, 163–180

32. Andreessen, M. (2011) Why software is eating the world. Wall

Street J. 20, C2

33. Abelson, H. and Sussman, G. (1996) Structure and Interpreta-

tion of Computer Programs, MIT Press

34. Flener, P. and Schmid, U. (2008) An introduction to inductive

programming. AI Rev. 29, 45–62

35. Gulwani, S. et al. (2017) Program synthesis. Found. Trends

Program. Lang. 4, 1–119

36. Muggleton, S. and De Raedt, L. (1994) Inductive logic program-

ming: theory and methods. J. Log. Program. 19, 629–679

37. Newell, A. et al. (1958) Elements of a theory of human problem

solving. Psychol. Rev. 65, 151

38. Newell, A. et al. (1959) Report on a general problem solving

program. In IFIP Congress (256), pp. 64, Pittsburgh, PA

39. Smith, D.R. (1984) The synthesis of LISP programs from exam-

ples: a survey. In Automatic program construction techniques

(Biermann, A.W. and Guiho, G. and Kodratoff, Y., eds),

pp. 307–324, Macmillan

40. Lenat, D. (1976) AM: An artificial intelligence approach to dis-

covery in mathematics, Doctoral thesis, Stanford University

41. Lenat, D.B. (1983) EURISKO: a program that learns new heu-

ristics and domain concepts: the nature of heuristics III: pro-

gram design and results. Artif. Intell. 21, 61–98

42. Sussman, G.J. (1973) A computational model of skill acquisi-

tion, Doctoral thesis, Massaschusetts Institute of Technology

43. Schmidhuber, J. (1987) Evolutionary principles in self-referen-

tial learning, or on learning how to learn: the meta-meta-...

hook, Doctoral thesis, Technische Universität München

44. Holland, J. (1975) Adaptation in Natural and Artificial Systems:

An Introductory Analysis with Application to Biology, University

of Michigan Press

45. Koza, J.R. (1989) Hierarchical genetic algorithms operating on

populations of computer programs. In Proceedings of the In-

ternational Joint Conference on Artifical Intelligence (89),

pp. 768–774

46. Shapiro, E.Y. (1983) Algorithmic Program Debugging, MIT Press

47. LeCun, Y. et al. (2015) Deep learning. Nature 521, 436–444

48. Rumelhart, D.E. et al. (1987) Parallel Distributed Processing,

MIT Press

49. Sutton, R.S. and Barto, A.G. (2018) Reinforcement Learning,

MIT Press

50. Koller, D. and Friedman, N. (2009) Probabilistic Graphical

Models: Principles and Techniques, MIT Press

51. Lovett, M.C. and Anderson, J.R. (2005) Thinking as a produc-

tion system. In The Oxford Handbook of Thinking and Reason-

ing (Holyoak, K.J. and Morrison, R.G., eds), pp. 401–429,

Cambridge University Press

52. Piantadosi, S. et al. (2012) Bootstrapping in a language of

thought: A formal model of numerical concept learning. Cogni-

tion 123, 199–217

53. Piantadosi, S. et al. (2016) The logical primitives of thought:

Empirical foundations for compositional cognitive models.

Psychol. Rev. 123, 392–424

54. Piantadosi, S.T. (2011) Learning and the language of thought,

Doctoral thesis, Massachusetts Institute of Technology

55. Mollica, F. and Piantadosi, S. (2019) Logical word learning: the

case of kinship. Published online May 15, 2019. https://doi.

org/10.31234/osf.io/a7tnb

56. Kemp, C. et al. (2010) A probabilistic model of theory forma-

tion. Cognition 114, 165–196

57. Ullman, T. et al. (2012) Theory learning as stochastic search in

the language of thought. Cogn. Dev. 27, 455–480

58. Goodman, N.D. and Frank, M.C. (2016) Pragmatic language

interpretation as probabilistic inference. Trends Cogn. Sci.

20, 818–829

59. Frank, M. and Goodman, N. (2012) Predicting pragmatic rea-

soning in language games. Science 336, 998

60. Lake, B.M. and Piantadosi, S.T. (2020) People infer recursive

visual concepts from just a few examples. Comput. Brain

Behav. 3, 54–65

61. Rule, J. et al. (2018) Learning list concepts through

program induction. In Proceedings of the 40th Annual

Conference of the Cognitive Science Society, Cognitive

Science Society

62. Cheyette, S. and Piantadosi, S. (2017) Knowledge transfer in a

probabilistic language of thought. In Proceedings of the 39th

Annual Conference of the Cognitive Science Society, Cognitive

Science Society

63. Kemp, C. and Tenenbaum, J.B. (2008) The discovery of struc-

tural form. Proc. Natl. Acad. Sci. 105, 10687–10692

64. Lake, B. et al. (2015) Human-level concept learning

through probabilistic program induction. Science 350,

1332–1338

65. Overlan, M. et al. (2017) Learning abstract visual concepts via

probabilistic program induction in a language of thought. Cog-

nition 168, 320–334

66. Goodman, N.D. et al. (2011) Learning a theory of causality.

Psychol. Rev. 118, 110–119

67. Solomonoff, R.J. (1964) A formal theory of inductive inference,

Part I. Inf. Control. 7, 1–22

68. Hutter, M. (2005) Universal Artificial Intelligence, Springer

69. Xu, F. (2019) Towards a rational constructivist theory of cogni-

tive development. Psychol. Rev. 126, 841–864

70. Gopnik, A. and Wellman, H.M. (2012) Reconstructing

constructivism: causal models, Bayesian learning

mechanisms, and the theory theory. Psychol. Bull. 138,

1085–1108

71. Xu, F. and Griffiths, T.L. (2011) Probabilistic models of cogni-

tive development: towards a rational constructivist approach

to the study of learning and development. Cognition 120,

299–301

72. Gopnik, A. and Tenenbaum, J.B. (2007) Bayesian networks,

Bayesian learning and cognitive development. Dev. Sci. 10,

281–287

73. Feldman, J. (2000) Minimization of Boolean complexity in

human concept learning. Nature 407, 630–633

74. Chater, N. and Vitányi, P. (2003) Simplicity: a unifying principle

in cognitive science? Trends in Cogn. Sci. 7, 19–22

75. Tenenbaum, J.B. (1999) Bayesian modeling of human concept

learning. In Advances in Neural Information Processing Sys-

tems, pp. 59–68, MIT Press

76. Tenenbaum, J.B. (2000) Rules and similarity in concept learn-

ing. In Advances in Neural Information Processing Systems

(12), pp. 59–65, MIT Press

77. Levy, S. (1984) Hackers: Heroes of the Computer Revolution,

Anchor/Doubleday

78. Fowler, M. (2018) Refactoring: Improving the Design of Existing

Code, Addison-Wesley Professional

Trends in Cognitive Sciences

14 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx

http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0100
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0100
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0100
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0105
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0105
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0110
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0110
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0115
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0115
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0115
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0120
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0120
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0120
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0125
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0125
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0125
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0125
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0130
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0130
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0130
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0130
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0135
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0135
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0135
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0140
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0145
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0145
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0150
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0150
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0155
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0155
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0155
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0160
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0160
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0165
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0165
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0170
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0170
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0175
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0175
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0180
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0180
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0185
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0185
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0190
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0190
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0195
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0195
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0195
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0195
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf1000
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf1000
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0205
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0205
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0205
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf1005
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf1005
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf1010
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf1010
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf1010
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0220
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0220
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0220
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0225
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0225
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0225
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0225
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0230
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0235
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0240
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0240
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0245
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0245
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0250
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0250
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0255
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0255
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0255
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0255
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0260
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0260
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0260
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0265
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0265
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0265
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf3000
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf3000
https://doi.org/10.31234/osf.io/a7tnb
https://doi.org/10.31234/osf.io/a7tnb
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0280
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0280
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0285
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0285
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0290
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0290
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0290
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0295
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0295
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0300
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0300
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0300
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0305
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0305
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0305
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0305
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0310
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0310
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0310
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0310
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0315
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0315
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0320
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0320
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0320
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0325
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0325
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0325
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0330
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0330
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0335
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0335
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0340
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0345
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0345
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0350
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0350
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0350
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0350
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0355
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0355
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0355
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0355
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0360
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0360
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0360
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0365
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0365
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0370
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0370
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0375
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0375
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0375
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0380
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0380
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0380
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0385
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0385
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0390
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0390

79. Oudeyer, P.Y. (2018) Computational theories of curiosity-

driven learning. In The New Science of Curiosity (Gordon, G.,

ed.), Nova Science Publishers

80. Gottlieb, J. et al. (2013) Information-seeking, curiosity, and at-

tention: computational and neural mechanisms. Trends in

Cogn. Sci. 17, 585–593

81. Kidd, C. and Hayden, B.Y. (2015) The psychology and neuro-

science of curiosity. Neuron 88, 449–460

82. Haber, N. et al. (2018) Learning to play with intrinsically-moti-

vated, self-aware agents. In Advances in Neural Information

Processing Systems (31), pp. 8388–8399

83. Chu, J. and Schulz, L. (2020) Exploratory play, rational action,

and efficient search. In Proceedings of the 42nd Annual Con-

ference of the Cognitive Science Society, Cognitive Science

Society

84. Ashcraft, M.H. (1982) The development of mental arithmetic: a

chronometric approach. Dev. Rev. 2, 213–236

85. Ashcraft, M.H. (1987) Children’s knowledge of simple arith-

metic: a developmental model and simulation. In Formal

Methods in Developmental Psychology (Bisanz, J. and

Brainerd, C. and Kail, R., eds), pp. 302–338, Springer

86. Groen, G. and Resnick, L.B. (1977) Can preschool children in-

vent addition algorithms? J. Educ. Psychol. 69, 645–652

87. Kaye, D.B. et al. (1986) Emergence of information-retrieval

strategies in numerical cognition: a developmental study.

Cogn. Instr. 3, 127–150

88. Siegler, R. and Jenkins, E. (1989) How Children Discover New

Strategies, Erlbaum

89. Svenson, O. (1975) Analysis of time required by children for

simple additions. Acta Psychol. 39, 289–301

90. Siegler, R. and Shrager, J. (1984) Strategy choices in addition

and subtraction: how do children know what to do? In Origins

of Cognitive Skills (Sophian, C., ed.), pp. 229–293, Lawrence

Erlbaum Associates

91. Shrager, J. and Siegler, R. (1998) SCADS: A model of chil-

dren’s strategy choices and strategy discoveries. Psychol.

Sci. 9, 405–410

92. Jones, R.M. and Van Lehn, K. (1994) Acquisition of children’s

addition strategies: A model of impasse-free, knowledge-level

learning. Mach. Learn. 16, 11–36

93. Neches, R. (1987) Learning through incremental refinement of

procedures. In Production System Models of Learning and De-

velopment (Klahr, D. and Langley, P. and Neches, R., eds),

pp. 163–219, MIT Press

94. Resnick, L.B. and Neches, R. (1984) Factors affecting individ-

ual differences in learning ability. In Advances in the Psychology

of Human Intelligence (2) (Sternberg, R.J., ed.), pp. 275–323,

Lawrence Erlbaum Associates

95. Siegler, R.S. (1996) Emerging Minds, Oxford Univesity Press

96. Baroody, A.J. (1984) The case of Felicia: a young child’s strat-

egies for reducing memory demand during mental addition.

Cogn. Instr. 1, 109–116

97. Carpenter, T.P. and Moser, J.M. (1984) The acquisition of ad-

dition and subtraction concepts in grades one through three.

J. Res. Math. Educ. 15, 179–202

98. Geary, D.C. and Burlingham-Dubree, M. (1989) External valida-

tion of the strategy choice model for addition. J. Exp. Child

Psychol. 47, 175–192

99. Goldman, S.R. et al. (1989) Individual differences in extended

practice functions and solution strategies for basic addition

facts. J. Educ. Psychol. 81, 481–496

100. Siegler, R. and Shipley, C. (1995) Variation, selection, and cog-

nitive change. In Developing Cognitive Competence: New Ap-

proaches to Process Modeling (Simon, T.J. and Halford, G.

S., eds), pp. 31–76, Psychology Press

101. Saxe, G.B. et al. (1987) Social processes in early number devel-

opment. Monogr. Soc. Res. Child Dev. 52 i

102. Baroody, A.J. and Gannon, K.E. (1984) The development of

the commutativity principle and economical addition strategies.

Cogn. Instr. 1, 321–339

103. Fuson, K.C. et al. (1982) The acquisition and elaboration of the

number word sequence. In Children’s Logical and Mathemati-

cal Cognition (Brainerd, C.J., ed.), pp. 33–92, Springer-Verlag

104. Steffe, L. et al. (1983) Children’s Counting Types: Philosophy,

Theory, and Applications, Praeger

105. Secada, W.G. et al. (1983) The transition from counting-all to

counting-on in addition. J. Res. Math. Educ. 14, 47–57

106. Turkle, S. and Papert, S. (1992) Epistemological pluralism and

the revaluation of the concrete. J. Math. Behav. 11, 3–33

107. National Governors Association Center for Best Practices,

Council of Chief State School Officers (2010) Common Core

State Standards Mathematics, NGA

108. Groen, G. and Parkman, J. (1972) A chronometric analysis of

simple addition. Psychol. Rev. 79, 329–343

109. Cormen, T. et al. (2009) Introduction to Algorithms, MIT Press

110. Saxe, G.B. (1988) The mathematics of child street vendors.

Child Dev. 59, 1415–1425

111. Saxe, G.B. (1988) Candy selling and math learning. Educ. Res.

17, 14–21

112. Gopnik, A. (1996) The scientist as child. Philos. Sci. 63,

485–514

113. Murphy, G.L. and Medin, D.L. (1985) The role of theories in

conceptual coherence. Psychol. Rev. 92, 289–316

114. Gopnik, A. and Meltzoff, A. (1997) Words, Thoughts, and The-

ories, MIT Press

115. Wellman, H.M. and Gelman, S.A. (1992) Cognitive develop-

ment: foundational theories of core domains. Annu. Rev.

Psychol. 43, 337–375

116. Wellman, H.M. and Gelman, S.A. (1998) Knowledge acquisition

in foundational domains. In Handbook of child psychology: Vol.

2. Cognition, perception, and language (Damon, W., ed.),

pp. 523–573, John Wiley & Sons Inc

117. Gopnik, A. et al. (2004) A theory of causal learning in children:

causal maps and Bayes nets. Psychol. Rev. 111, 1–30

118. Lombrozo, T. (2019) “Learning by thinking” in science and in

everyday life. In (Levy, A. and Godfrey-Smith, P., eds),

pp. 230–249, Oxford University Press

119. Gleitman, L.R. et al. (1977) The emergence of the child as

grammarian. In Topics in Cognitive Development (Appel, M.H.

and Goldberg, L.S., eds), pp. 91–117, Springer

120. Karmiloff-Smith, A. (1992) Beyond Modularity. A Developmen-

tal Perspective on Cognitive Science, MIT Press

121. Labov, W. (1989) The child as linguistic historian. Lang. Var.

Chang. 1, 85–97

122. Harris, P.L. (2012) The child as anthropologist. Infancia y

Aprendizaje 35, 259–277

123. Gigerenzer, G. and Murray, D.J. (1987) Cognition as Intuitive

Statistics, Psychology Press

124. Peterson, C.R. and Beach, L.R. (1967) Man as an intuitive stat-

istician. Psychol. Bull. 68, 29–46

125. Lucas, C.G. et al. (2014) The child as econometrician: a rational

model of preference understanding in children. PLoS One 9

e92160

126. Kohlberg, L. (1968) The child as a moral philosopher. Psychol.

Today 2, 25–30

127. Selman, R.L. (1981) The child as a friendship philosopher. In

The Development of Children’s Friendships (Asher, S.R. and

Gottman, J.M., eds), pp. 242–272, Cambridge University

Press

128. Gopnik, A. and Schulz, L. (2004) Mechanisms of theory forma-

tion in young children. Trends Cogn. Sci. 8, 371–377

129. Lieder, F. and Griffiths, T.L. (2020) Resource-rational analysis:

understanding human cognition as the optimal use of limited

computational resources. Behav. Brain Sci. 43 e1

130. Griffiths, T.L. et al. (2015) Rational use of cognitive resources:

levels of analysis between the computational and the algorith-

mic. Top. Cogn. Sci. 7, 217–229

131. Lewis, R.L. et al. (2014) Computational rationality: linking mech-

anism and behavior through bounded utility maximization. Top.

Cogn. Sci. 6, 279–311

132. Lehman, J. and Stanley, K.O. (2011) Novelty search and the

problem with objectives. In Genetic Programming Theory and

Practice IX, pp. 37–56, Springer

133. Lehman, J. and Stanley, K.O. (2011) Abandoning objectives:

Evolution through the search for novelty alone. Evol. Comput.

19, 189–223

134. Tenenbaum, J.B. et al. (2011) How to grow a mind: statistics,

structure, and abstraction. Science 331, 1279–1285

135. Fedorenko, E. et al. (2019) The language of programming: a

cognitive perspective. Trends Cogn. Sci. 23, 525–528

Trends in Cognitive Sciences

Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx 15

http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0395
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0395
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0395
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0400
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0400
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0400
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0405
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0405
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0410
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0410
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0410
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0415
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0415
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0415
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0415
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0420
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0420
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0425
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0425
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0425
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0425
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0430
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0430
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0435
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0435
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0435
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0440
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0440
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0445
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0445
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0450
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0450
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0450
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0450
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0455
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0455
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0455
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0460
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0460
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0460
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0465
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0465
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0465
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0465
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0470
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0470
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0470
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0470
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0475
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0480
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0480
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0480
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0485
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0485
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0485
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0490
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0490
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0490
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0495
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0495
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0495
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0500
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0500
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0500
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0500
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0505
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0505
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0510
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0510
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0510
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0515
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0515
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0515
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0520
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0520
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0525
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0525
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0530
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0530
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0535
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0535
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0535
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0540
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0540
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0545
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0550
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0550
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0555
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0555
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0560
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0560
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0565
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0565
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0570
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0570
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0575
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0575
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0575
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0580
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0580
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0580
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0580
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0585
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0585
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0590
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0590
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0590
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0595
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0595
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0595
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0600
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0600
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0605
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0605
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0610
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0610
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0615
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0615
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0620
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0620
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0625
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0625
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0625
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0630
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0630
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0635
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0635
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0635
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0635
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0640
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0640
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0645
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0645
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0645
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0650
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0650
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0650
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0655
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0655
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0655
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0660
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0660
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0660
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0665
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0665
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0665
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0670
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0670
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0675
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0675

136. Ullman, T.D. et al. (2017) Mind games: game engines as an

architecture for intuitive physics. Trends Cogn. Sci. 21,

649–665

137. Smith, K. et al. (2019) Modeling expectation violation in intuitive

physics with coarse probabilistic object representations. In Ad-

vances in Neural Information Processing Systems (32),

pp. 8983–8993

138. Osera, P.-M. and Zdancewic, S. (2015) Type-and-example-di-

rected program synthesis. ACM SIGPLAN Not. 50, 619–630

139. Polikarpova, N. et al. (2016) Program synthesis from polymor-

phic refinement types. ACM SIGPLAN Not. 51, 522–538

140. Polozov, O. and Gulwani, S. (2015) FlashMeta: a framework for

inductive program synthesis. In Proceedings of the 2015 ACM

SIGPLAN International Conference onObject-Oriented Program-

ming, Systems, Languages, and Applications, pp. 107–126

141. Balog, M. et al. (2017) Deepcoder: learning to write programs.

In Procedeedings of the Fifth International Conference on

Learning Representations

142. Devlin, J. et al. (2017) RobustFill: neural program learning under

noisy I/O. In Proceedings of the 34th International Conference

on Machine Learning

143. Dechter, E. et al. (2013) Bootstrap Learning via Modular Con-

cept Discovery. In Proceedings of the 23rd International Joint

Conference on Artificial Intelligence, pp. 1302–1309

144. Ellis, K. et al. (2018) Learning libraries of subroutines for

neurally–guided Bayesian program induction. In Ad-

vances in Neural Information Processing Systems (31),

pp. 7816–7826

145. Lin, D. et al. (2014) Bias reformulation for one-shot function in-

duction. In Proceedings of the 21st European Conference on

Artificial Intelligence, pp. 525–530, IOS Press

146. Cropper, A. et al. (2020) Learning higher-order logic programs.

Mach. Learn. 109, 1289–1322

147. Solar-Lezama, A. (2008) Program synthesis by sketching, Doc-

toral thesis, University of California, Berkeley

148. Nye, M. et al. (2019) Learning to infer program sketches. In Pro-

ceedings of the 36th International Conference on Machine

Learning, pp. 4861–4870

149. Ellis, K. et al. (2019) Write, execute, assess: program synthesis

with a REPL. In Advances in Neural Information Processing

Systems, pp. 9165–9174

150. Hewitt, L.B. et al. (2020) Learning to infer program sketches. In

Proceedings of the 36th Conference Conference on Uncer-

tainty in Artificial Intelligence

151. Ellis, K. et al. (2020) DreamCoder: growing generalizable, inter-

pretable knowledge with wake-sleep Bayesian program learn-

ing. arXiv Published online June 15, 2020 https://arxiv.org/

abs/2006.08381

Trends in Cognitive Sciences

16 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx

http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0680
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0680
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0680
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0685
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0685
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0685
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0685
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0690
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0690
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0695
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0695
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0700
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0700
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0700
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0700
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0705
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0705
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0705
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0710
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0710
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0710
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0715
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0715
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0715
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0720
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0720
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0720
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0720
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0725
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0725
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0725
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0730
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0730
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf2020
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf2020
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0740
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0740
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0740
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0745
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0745
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0745
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0750
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0750
http://refhub.elsevier.com/S1364-6613(20)30174-1/rf0750
https://arxiv.org/abs/2006.08381
https://arxiv.org/abs/2006.08381

	The Child as Hacker
	Hacking as a Metaphor for Learning in Cognitive Development
	Knowledge as Code and Learning as Programming
	From Programming to Hacking
	The Many Values of Hacking
	The Many Activities of Hacking
	The Intrinsic Motivation of Hacking

	Hacking Early Arithmetic
	Hacking and Other Metaphors
	The Child as Scientist
	Resource Rationality and Novelty Search
	Workshop and Evolutionary Metaphors

	Prospects for a Computational Account of Learning
	Concluding Remarks
	Acknowledgments
	Supplementary data
	References

