2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS) | 978-1-7281-8643-6/21/$31.00 ©2021 IEEE | DOI: 10.1109/ISPASS51385.2021.00031

2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

Real-Time Characterization of Data Access Correlations

Bryan Harris, Michael Marzullo, and Nihat Altiparmak
Computer Science & Engineering Department
University of Louisville
{bryan.harris.1,michael.marzullo,nihat.altiparmak } @louisville.edu

Abstract—Efficient and accurate detection of data access
correlations can provide various storage system optimizations.
However, existing offline detection techniques are costly in
terms of computation and memory, and they rely on previously
recorded disk I/O traces, thus wasting additional storage space
and causing further I/0. Moreover, due to their offline nature,
they are inadequate for allowing automatic optimizations. In
this paper, we propose a real-time data access characterization
framework that eliminates the drawbacks of offline analysis
with a slight compromise in accuracy. The proposed framework
continuously monitors I/O requests and forms correlations by
applying single-pass data analysis techniques and maintaining a
synopsis data structure to efficiently characterize access behavior
in various dimensions including spatial locality, temporal locality,
and frequency. Our evaluation using synthetic and real world
storage workloads indicates that the proposed framework can
detect over 90% of data access correlations in real-time, using
limited memory. The proposed framework is crucial for enabling
future self-optimizing storage systems that can automatically
react to I/O bottlenecks.

Index Terms—data access correlations; online i/o analysis; self-
optimizing storage systems

I. INTRODUCTION

Modern applications have ever increasing demands for
data storage, retrieval, and analysis that require predictable
and continuously high disk I/O performance. Recent inno-
vations in storage hardware resulted in low-latency Solid-
State Drives (SSDs). Nevertheless, even the fastest secondary
storage devices are still a few orders of magnitude slower than
DRAM [1], and storage performance bottlenecks continue to
be one of the major threats limiting the scalability of today’s
data intensive applications [2]-[4]. In addition to their slower
performance compared to primary storage, due to their shared
nature, dynamic workload intensity behavior, and the limita-
tions of their internal physics, secondary storage devices are
also highly unpredictable in their performance. For instance,
garbage collection operation due to the physical limitations
of flash storage is a notorious contributor of unpredictability
in SSDs [5]. Another example is large scale shared storage
systems, such as those used in cloud infrastructures, enterprise
data centers, and scientific clusters, where unpredictability
arises due to complex data access patterns [6].

Efficient and accurate data access characterization in real-
time has the potential to eliminate unpredictable and in-
consistent I/O performance, and ultimately generate self-
optimizing storage systems. Traditionally, there is significant
responsibility on application programmers to write file I/O
accesses efficiently. They must consider file sizes, unbuffered
versus buffered I/0, synchronous versus asynchronous with

978-1-7281-8643-6/21/$31.00 ©2021 IEEE
DOI 10.1109/ISPASS51385.2021.00031

139

callbacks, all using a variety of supported interface libraries.
However, even the most diligent application programmer
cannot account for all interactions between applications and
accesses throughout the storage stack. I/O patterns of many
applications are known to be dynamic as their data access
behaviors change over time [7]. In addition, multiple I/O
intensive instances interacting and simultaneously accessing
the same storage system increases the unpredictability of
access patterns. Therefore, optimization of storage systems
for “assumed” data access patterns of individual applications
is no longer helpful, especially in dynamic and multi-tenant
environments, where the storage system is shared by multiple
applications, containers, virtual machines, etc., that can inter-
act with each other at the storage level.

Data access correlations characterize both how individual
applications access data and how multiple applications interact
with each other at the I/O request level. In block storage,
such correlations can be represented as file system blocks,
by correlating data blocks that are frequently accessed to-
gether. Using data access correlations, it is possible to detect
sequential patterns represented by adjacent blocks and random
patterns that are commonly formed as a result of semantic
relationships that are harder to infer. Characterizing data
access behavior in real-time requires accurate and efficient data
analysis techniques. Existing methods use off-the-shelf data
mining algorithms that are costly in computation and memory,
and operate in offline manner by relying on recorded disk
I/O traces. This offline behavior prevents timely reaction to
I/0O bottlenecks, causes additional disk I/O for writing/reading
trace files, and wastes storage space to store trace files.

In this work, we propose an online data access charac-
terization framework that continuously monitors I/O requests
and detects data access correlations from the block layer in
real time, without relying on recorded disk I/O traces. These
access correlations can be used to inform various optimiza-
tion scenarios, leading to self-optimizing systems, which are
beyond the scope of this paper, but some suitable applications
are discussed in Section V. Our characterization framework
maintains a synopsis data structure by applying “single pass”
data analysis techniques to efficiently characterize data access
behavior in various dimensions, including spatial locality (se-
quentiality), frequency, and temporal locality (recency). Once
data access correlations are detected, they can enable various
automatic storage system optimizations including but not lim-
ited to caching, prefetching, data placement, energy efficiency,
garbage collection, I/O scheduling, and wear-leveling.

Authorized licensed use limited to: University of Louisville. Downloaded on May 07,2021 at 21:16:14 UTC from IEEE Xplore. Restrictions apply.

wdev Trace Heat Map src2 Trace Heat Map

’H 1”1)7}:!11?}!711!;!711 [URRIS IR T

Starting block number (thousands)

Request number (millions) , Request number (milions)
(a) web server (wdev) (b) version control (src2)

rsrch Trace Heat Map

Request number (millions)
(c) research proj. (rsrch)

stg Trace Heat Map
100 e
1400

1200

hm Trace Heat Map

1000
800
600
400
200 1§

1! HH‘ I
I m
i

I ’JJ(‘

0 05 1 15 2 25 3 35 4 45

Request number (millions)
(e) HW monitor (hm)

0o 05 1

. Request number (millions)
(d) staging server (stg)

Fig. 1: Storage heat maps of enterprise servers from Microsoft

II. BACKGROUND AND RELATED WORK

In this Section, we first provide background information on
data access correlation and frequent itemset mining, and then
discuss the related work on existing frequent itemset mining
techniques and correlation based storage system optimizations.

A. Background

Data access correlations derive from disk I/O requests that
are frequently performed together, or within a very short time
interval [8]. Such correlations are commonly encountered in
storage workloads and it is possible to observe them in pub-
licly available storage traces. Figure 1 shows storage heat maps
of various enterprise servers from Microsoft [9], where the hor-
izontal axis indicates the request sequence and the vertical axis
shows the starting block in the block numberspace. Vertical
patterns indicate data access correlations, and their horizontal
repetition motivates the use of these correlations in storage
system optimizations. Google also reveals the existence of data
access correlations in their workloads and optimizes Spanner
by co-locating correlated directories [10].

In block storage where disk I/O requests are represented as
sets of file system blocks, access correlations can be charac-
terized as intra-request and inter-request block correlations.
While intra-request block correlations commonly exist among
adjacent blocks of the same I/O request, indicating sequential
access patterns, inter-request block correlations are formed
between blocks of different I/O requests handled by the storage
system at approximately the same time. Inter-request block
correlations are especially more difficult to infer and detect in
the block layer as they are commonly formed as a result of
higher level semantic relationships, such as an inode block
and its associated data blocks being correlated, blocks for
a web server request being correlated with the blocks of a
database table that it interacts with, or inter-tenant data access
correlations in multi-tenant shared storage scenarios.

Figure 2 illustrates an example in which two requests occur
within a brief amount of time (what we refer to as the
transaction window), the first request for four blocks (100-
103) and the second for three blocks (200-202). Within each,
every possible unique pairing of blocks forms an intra-request
block correlation. In addition, each block in the first request
is correlated with every block of the second request, forming
inter-request block correlations, as they are part of the same
transaction. The number of both types of block correlations is
quadratic on the sizes of the two requests; there are (Z) unique

140

time

f P
transaction window

requested blocks

oy 100 200 300 |
a3 101 201
ég 102 202
3 103 inter—request
block correlations
requested extents extent correlation
[100+4 [——] 200+3 | [300+1 |

Fig. 2: Block based and extent based correlations

intra-request block correlations for a request of n adjacent
blocks and nm unique inter-request block correlations for
two requests of sizes n and m. The total number of inter-
request block correlations becomes more complex (higher
order polynomial) if three or more requests occur together in
a transaction. As well as the correlations themselves, various
additional information can also be extracted from storage
workloads such as correlation strengths (frequency) and types
(R/W), which can lead to better optimizations.

Data access correlations can be detected using frequent
itemset mining (FIM) techniques. The original motivation of
FIM was the need to analyze supermarket customer behavior in
order to discover which products were purchased together and
with what frequency. Guided by this information, marketers
can place trivially correlated products (i.e. gin and tonic)
and more importantly nontrivially correlated products (i.e.
the myth of beer and diaper correlation [11]) next to each
other on the shelves in order to boost sales, as the customer
serendipitously picks up another item. FIM algorithms take
a series of transactions as input, and output associated items
with a frequency greater than a specified minimum support.

B. Related Work

Within the domain of FIM, there are offline and stream
based algorithms [12], where many can be categorized as
variants apriori [13], eclat [14], and fp-growth [15]. apriori
performs a scan of the transactions to first filter all items
that are not frequent and then finds the associated items
from the filtered input, which generally provides faster results
for the storage workloads that we investigated, but causes
prohibitively high memory consumption. eclat uses a depth-
first search of intersecting transactions, which reduces the
memory consumption but significantly increases the running

Authorized licensed use limited to: University of Louisville. Downloaded on May 07,2021 at 21:16:14 UTC from IEEE Xplore. Restrictions apply.

time. And fp-growth is a tree based algorithm that provides
a resource trade-off between apriori and eclat. As a result,
the running time or memory usage (or both) of these offline
FIM algorithms end up being unpractical for storage workload
analysis. In addition, since they rely on previously stored
traces, they waste storage space and cause additional disk
I/O in order to store and retrieve the traces. Finally, due to
their offline nature, they can only provide a delayed analysis
and optimization opportunity. Nevertheless, offline algorithms
establish a baseline for accuracy comparison.

Stream based FIM algorithms were explored more recently
to apply association rule mining techniques to continuous data.
A popular stream based FIM algorithm is estDec+ [16], which
implements a Compressible Prefix (CP) tree to dynamically ac-
cept items from a stream source. This tree structure adapts its
performance to a configured memory size. The CP-tree merges
and splits nodes to efficiently use the allocated memory space
for the tree. The estDec+ algorithm’s accuracy is determined
by the proportion of the allocated memory of the tree versus
the size and throughput of the input stream. However, based
on our experimentation using modern storage devices and real
workloads, the performance of stream based FIM algorithms
including estDec+ is not adequate to handle the pace of disk
I/O streams with a reasonable accuracy. This is mainly due
to the focus of stream based FIM algorithms to generate
frequent itemsets of maximum size rather than only pairs of
items. Frequent pairs alone is sufficient for identifying data
access correlations, therefore our proposed technique focuses
on frequent pairs rather than maximum itemsets.

FIM was first applied to the storage domain in C-Miner [8],
which is an offline mining algorithm that finds correlated data
blocks from sources such as file systems or databases. A “gap”
measurement is defined in C-Miner to limit the maximum
distance between frequent subsequences. This creates a sliding
window in which C-Miner processes items, which limits its
spatial locality. In addition, temporal locality is not consid-
ered for the generated block association rules. In addition
to C-Miner, two additional follow-up work also proposed
offline data access correlation techniques, specifically using
vectorized representation of file access [17] and deep learning
methods [18]. However, similar to C-Miner, these are also
offline techniques and suffer from the same insufficiencies of
offline access characterization such as relying on previously
stored workload traces and preventing timely optimizations.

Data access correlations from offline analysis were used in
various storage system optimizations, such as caching [19],
[20], prefetching [17], [21], data placement [4], [22], and
energy-efficiency [23]. The wide optimization potential of data
access correlations motivates us to develop an efficient and
accurate real-time characterization framework enabling faster
reaction to I/O bottlenecks and concept drifts in data access.

III. REAL-TIME DATA ACCESS CHARACTERIZATION

In this section, we present our proposed real-time data
access characterization framework. Our framework is fun-
damentally platform independent; all that is required of the

141

| Application
File R/W (bytes) user space

kernel space i S
| File system monitoring

ransaction
Block /0 (blocks) l transactions

Online

Block layer :
analysis

blktrace

Block I/O (blocks) l correlations

Automatic
optimization

Device driver

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Disk I/0 (sectors)

hardware

Storage device

Fig. 3: Overview of the proposed framework

operating system is access to listen for block level I/O requests.
‘We have chosen Linux and its blktrace tool for our evaluation,
but similar tools, such as perfinon for Windows, can also
monitor storage I/O requests for other operating systems.

Our proposed framework is illustrated in Figure 3. The
existing storage stack appears on the left and the proposed
modules on the right. Our monitoring module groups 1/O
requests from the block layer into “transactions,” or sets of
requests that occur together, to be processed by the online
analysis module. This analysis module collects information
about data access correlations from the transactions. These
correlations are then to inform an automatic optimization mod-
ule, which is application specific and beyond the scope of this
work; however, we provide insights on possible optimization
scenarios as part of our discussion in Section V.

A. Block vs. Extent Correlations

Considering every possible pairing of individual blocks is
too complex to be practical for real-time analysis. In the
block layer, rather than list individual block numbers, I/O
requests are specified as one or many adjacent blocks, given
as a starting block number and size—what we refer to as an
extent. In addition to block based data access correlations,
it is also possible to form extent based correlations, which
simplifies both the expression of requests and the consideration
of correlations. In our example shown in Fig. 2, we have
two requested extents in the same transaction forming only
one extent correlation, 100+4 and 200+3, which is much
simpler than the numerous block correlations. We can infer the
(3) + (g) = 9 intra-request and 4 x 3 = 12 inter-request block
correlations from this one extent correlation. Even though the
number of extent correlations is also quadratic on the number
of extents requested together, (]g) for N extents in the same
transaction, expressing requests as extents prevents the number
of pairing from exploding into higher order polynomials, as
with block based correlations. Limiting the complexity of each
transaction of correlated requests is important for scalability
and real-time processing, and it is more consistent with the
native form of how requests are made in the block layer.

Authorized licensed use limited to: University of Louisville. Downloaded on May 07,2021 at 21:16:14 UTC from IEEE Xplore. Restrictions apply.

Due to their reduced complexity, we propose extent based
correlations instead of block based correlations, which leads
to improved performance in real-time analysis. However, it is
also important that considering only extent based correlations
approximates the accuracy of entire block based correlations
as it may cause a potential loss of overlooking some block
correlations if requested extents are not requested repeatedly
using the exact same shape (starting block and size). For
example in Fig. 2, extent correlation 100+4 and 20043 would
be counted separately from another potential extent correlation
of 10143 and 201+2, which would potentially undercount the
frequency of resulting block correlation between 101 and 201.
Based on our analysis using real world Microsoft workloads
shown in Figure 1, extents of same shape repeat themselves
with very high frequency and therefore, this potential under-
counting issue does not cause a significant accuracy loss while
providing a significant performance improvement. At the end,
we are interested in only frequently correlated data rather than
all possible pairings of requested blocks.

B. Transaction Window

A “transaction” is a set of items (extents) that are coincident
in time, or requested within a brief window of time such
that they are considered correlated. Items that appear together
in multiple transactions are frequent correlations. The size
of this transaction window, or length of time, may be static
or dynamic. For example, we can approximate I/O requests
handled by the storage subsystem around the same time by
simply using a static window duration of time ¢. However, this
t may need to be adjusted over time depending on workload
changes and storage system performance, which is affected
by various factors such as the media type, operating system,
server workload, etc. Rather than use of a static value, we
propose to monitor the performance of the storage subsystem
and adjust the transaction window accordingly, depending on
the average access latency of the I/O requests.

In our evaluation framework, we used a transaction window
size of double the average I/O latency, which provides a
good performance experimentally and can easily be adjusted
as needed. Using such a dynamic transaction window allows
adjustment of the transaction window over time depending
on workload and performance changes. The Linux kernel
already maintains similar information for use in its recently
implemented hybrid polling technique [24].

C. Real-Time Monitoring

The Linux kernel supports a tracing tool called blktrace
that reports kernel block layer events to user space. The
block layer, shown in Figure 3, lies below the application and
file system layers. Applications send read or write requests
to the kernel where the virtual file system (VES) and file
system translate them into block I/O requests. The block layer
implements performance enhancements such as I/O scheduling
and request merging before translating block I/O requests into
physical sectors to be submitted to the storage device driver,
and eventually the storage device controller itself.

142

The blktrace tool can be difficult for an average user or
system administrator to use, as it provides numerous features
and detailed information from multiple collection points in
the block layer. It is typically used for creating a trace for
offline analysis. This blktrace information is in a custom
binary format that includes timestamp, event type, process ID
that made the request, starting block number, and size of the
request in bytes. This binary output is typically converted into
a human readable text format using another tool, blkparse. The
proposed real-time monitoring module uses the blktrace API
to interpret trace events and gathers them into transactions,
without using blkparse and thus reducing runtime overhead.

The real-time monitoring module launches and configures
blktrace to listen for “issue” events from the block layer
for a specific storage device. It groups issued requests into
transactions based on their timestamps and the desired trans-
action window, and then passes these transactions to the
online analysis module. For the purposes of our evaluation, the
monitor filters events by process ID (PID) and process group
ID so that only events generated by our workload processes
are measured. Whether or not to filter events by PID may
depend on the needs of the optimization desired.

D. Online Analysis

An online data access characterization technique needs to
provide accurate results in a computationally efficient manner
with limited memory usage. However, frequent itemset mining
based techniques suffer from either excessive computation or
excessive memory usage as they tend to perform more than
what is required for access correlations. Instead, our design
is inspired from fundamental cache replacement methods in
order to achieve efficient results with minimal loss of accuracy.
Various cache replacement techniques have been proposed in
the literature [25]-[31]. Among these, Adaptive Replacement
Cache (ARC) [31] seems to be the most suitable approach to
be utilized for detecting data access correlations in real-time
as it allows dynamic adaption to changing workloads while
considering item frequency.

Inspired by ARC, our proposed online analysis module
performs a single-pass data access characterization on received
transactions by maintaining a synopsis data structure that
incorporates spatial locality (sequentiality), frequency, and
temporal locality (recency), where sequentiality is incorporated
with the use of extent correlations, promotion from one tier
to the next is performed based on frequency, and recency is
incorporated based on an LRU-based eviction approach. Since
we are “caching” only the metadata of requests and not the
actual data stored on the storage devices, we refer to our
synopsis data structure as a table rather than a cache.

Similar to ARC, we use a two-tier design where the first tier
stores items seen infrequently (once) and items are promoted
to the second tier upon a cache hit in the first. However, unlike
ARC, rather than use an adaptive size scaling against a ghost
cache, we use a fixed size. We also use two tables; the first
“item table” stores individual extents and second ‘“correlation
table” stores pairs of extents seen together in transactions. Also

Authorized licensed use limited to: University of Louisville. Downloaded on May 07,2021 at 21:16:14 UTC from IEEE Xplore. Restrictions apply.

unlike ARC, rather than move evicted entries to a ghost cache,
pairs in the correlation table are demoted to the end, making
them next in line for eviction by LRU.

Item table (extents)

add | 4,,,,,,,%tally
|
T1 eviction
(infrequent) ol
T2) eviction
(frequent) e
most least
recent Jeast
Correlation table (pairs of extents)
add ... tally
|
[T T
(infrequent) ot
demotion
‘ ‘ ‘ ‘ ‘ ‘ ‘ }eviclion
(frequent) P

Fig. 4: Online analysis schematic

1) Proposed Synopsis Data Structure: The proposed online
analysis module consists of two separate two-tier tables, as
illustrated in Figure 4. The first table, item table, stores indi-
vidual extents while the second table, correlation table, stores
pairs of extents occurring together in a transaction. For each
table, the first tier T1 maintains values seen “infrequently”
while T2 maintains entries seen “frequently.” An entry of each
tier maintains an extent and a frequency counter or tally. Both
tiers use an LRU approach; on each lookup hit, the entry is
moved to the front of the queue and its frequency counter is
incremented. On each miss, an entry is evicted from the least
recently used position to make space at the front of the queue
for the new entry. An entry is promoted from T1 to T2 if
its counter reaches a given threshold. In order to reduce the
relevancy of an entry without immediate eviction, we demote
it to the end, marking it next for eviction. As a result, this two-
tier design achieves a balance between recency and frequency.

2) Cost Analysis and Optimization: While processing a
transaction, online analysis module inserts each extent in a
transaction to the item table, while also inserting every unique
extent pair within that transaction to the correlation table.
Since frequent correlations must involve frequent extents,
when an extent is evicted from the item table, we also demote
it in the correlation table. For IV extents in a transaction, there
are (7)) combinations of pairs, requiring ©(N?) additions to
the correlation table. This provides a challenge for an algo-
rithm operating on a linear stream of transactions. However,
in order to limit the number of operations at this stage, the
monitoring module has a configurable limit to the size of a
transaction. If a transaction exceeds this limit, the monitor
will simply place additional items into a new transaction. This
causes a potential loss in detection of frequent correlations, but
helps to ensure stable stream processing. For our evaluation,

we used a limit of eight I/O requests per transaction. In
addition, not every request necessarily needs to be sent from
monitoring to analysis module. We noticed that for some of our
real world traces (wdev in particular), the same request was
repeated more than once in a transaction window. Allowing
repeated requests in a transaction can possibly distort the
correlation frequencies, so there is a need for deduplication
of requests in a transaction. This deduplication can easily be
performed in O(N?) time for N items per transaction and
does not add to the complexity of processing a transaction.

1V. EVALUATION

In this section, we evaluate the performance of the pro-
posed real-time data access characterization framework by
comparing its efficiency and accuracy against existing offline
techniques using synthetic and real world storage workloads.

A. Experimental Setup

For realistic experimentation, we replay synthetic and real
world storage workloads on real hardware, with monitoring
and analysis performed in the background in real-time. Our
test system is a Dell PowerEdge R230 server with an Intel
Xeon CPU E3-1230 v5 (3.40GHz) and 64 GB RAM. We
replayed workloads with fio (the “Flexible I/O Tester”) [32]
on a Samsung 960 EVO SSD (500 GB).

For the proposed real-time characterization, while we re-
played workloads while monitoring and analyzing in real-time,
existing offline techniques stored the monitoring data to disk
and performed offline analysis after the replaying of the trace,
similar to how they would work in practice. As an offline
analysis technique, we used Frequent Itemset Mining (FIM),
specifically Borgelt’s eclat, apriori and fp-growth implemen-
tations [33]. These three algorithms demonstrate a range of
time-space tradeoffs.

B. Workloads

In order to test how well our proposed technique detects
correlations, we use a range of both synthetic and real world
workloads. While synthetic workloads provide us full control
over the generated data access correlations, knowing what
and what not to detect, real world workloads allow us to
test the proposed framework using realistic storage workloads
including real data access correlations and arrival patterns.

1) Synthetic workloads: Data access correlations are highly
dependent on I/O request workload. In order to understand
how our online analysis handles access correlations, we exam-
ine its performance using three traces constructed with specific
properties and known inter- and intra-request correlations of
increasing complexity:
one-to-one — a single block requested with another non-

contiguous single block. This smallest case models two
variables or small data records that are associated at the
application level, for which access of one occurs with access
of the other.

one-to-many — a single block correlated with a range of
contiguous blocks. A single block (512 B) is accessed when-
ever a range of blocks, chosen at random from 512 B to

143

Authorized licensed use limited to: University of Louisville. Downloaded on May 07,2021 at 21:16:14 UTC from IEEE Xplore. Restrictions apply.

1 MB, is accessed. One example of such a case is accessing
the contents of a small file together with its inode.

many-to-many — contiguous blocks correlated with other
contiguous blocks. The sizes of extents are chosen at random
from 512 B to 1 MB. One example of this case may be a
web server and associated database, in which an access to a
file for a specific web resource is correlated with an access
to a database table on disk.

In each of these three synthetic workloads, there are four con-
structed inter-request correlations of the specific type. These
are ranked in popularity using a Zipf-like distribution [34],
in which its probability of occurring is inversely proportional
to its rank. With four correlations, the probability of each
is 48%, 24%, 16%, and 12%. The arrival times of these
correlated events are chosen at random such that the time
between requests (interarrival time) follows an exponential
distribution with mean 200 ms, which is large so that two sets
of constructed correlations will not merge into the same trans-
action. In order to challenge the algorithm, we have inserted
noise of random requests following an average interarrival
time of 100 ms, ranging in size from 512 B to 8 KB. This
noise introduces extents into transactions at random, therefore
contributing to infrequent and “false” correlations.

2) Real world workloads: In addition to the synthetic
workloads, we also evaluate our framework using five pub-
licly available real world storage workloads provided by
Microsoft [9]. These workloads include week-long block level
I/O requests of various enterprise and production servers
running at Microsoft Research Cambridge, including a web
server (wdev), a version control server (src2), a research
projects server (rsrch), a staging server (stg), and a hardware
monitoring server (hm). These traces are widely used [35]—-[37]
and include a mix of applications with various I/O patterns as
shown in Figure 1. Further statistics related to these traces,
including total data amount accessed, unique data amount
accessed, and the percentage of requests that have interarrival
time of less than 100 us are provided in Table I.

TABLE I: Microsoft workload statistics

Total Data Unique data Interarrival

Workload accessed accessed % < 100us
wdey test web server 11.3GB 0.53 GB 78.4%
src2 version control 1099 GB 264 GB 71.2%
rsrch research projects 131 GB 097 GB 77.4%
stg staging server 1079 GB 839 GB 65.9%
hm hardware monitor 39.2 GB 2.42 GB 67.0%
average: 433 GB 7.58 GB 73.5%

Each Microsoft trace is composed of multiple disk IDs.
In order to create the original workload on our single disk
test system, for each Microsoft trace, we replayed the trace
of the disk with the greatest number of requests directly on
our test device (Samsung 960 EVO SSD) using original block
numbers. Since these traces were recorded using HDDs with
significantly greater access latencies than our NVMe SSD test
device, for fair evaluation, we accelerated the traces according

to their relative access latency, as shown in Table II. For this
purpose, we first calculate the average latency as reported
in the trace (second column). For a relative performance
comparison of the device recorded in the trace and of our test
device, we replayed the trace 10 times with fio as synchronous
requests, ignoring trace timestamps (using the replay_no_stall
option). We recorded the average read latency of our test
device (third column) across the 10 replays. Since writes may
be cached and reported as complete before actually writing
in the device internally, we use only the read latency as a
metric of its performance. Comparing the average latency
recorded in the trace to our average replayed latency yields our
replay speedup (fourth column), which we use to accelerate
the request arrival rate in our evaluation. Therefore, the actual
arrival rate of the requests in our evaluation is 61.2 to 473
times faster that the original interarrival rate reported in
Table I, which forces the proposed framework even further.

TABLE II: Replay speedup of Microsoft traces

Mean trace Mean measured Replay
Workload latency latency speedup
wdey 3.65ms 48.00 ps 76.0%
src2 3.88 ms 63.35 s 61.2x
rsrch 3.02ms 31.79 s 94.9x
stg 18.94 ms 40.06 ps 473 %
hm 13.86 ms 63.84 s 217

Transactions generated by our real-time monitoring module
are both stored for offline analysis and also passed to the online
analysis module in real-time. Using the offline FIM analysis
data, we were able to examine properties of the workloads,
transactions, and correlations discovered.

C. Experimental Results

1) Offline Characterization of Real World Workloads: On-
line characterization of real world storage workloads is crucial
for achieving self-optimizing storage systems that can adjust
themselves for their workloads. Most of this analysis should
be performed in real-time, as in our proposed framework, so
that the performance adjustments can be performed in a timely
manner. However, it is also useful to perform some offline
analysis and gain insights about the general characteristics of
the workloads, which we use to design our proposed real-time
characterization framework.

Figure 5 shows the cumulative distribution function (CDF)
of extent correlations mined from the real world traces using
offline FIM. The vertical axis shows the fraction of extent
correlations counted by the number of unique extent pairs
(solid line) and weighted by frequency (dashed line). The
horizontal axis is the correlation frequency, or how often
each extent correlation occurs in the transactions generated by
the monitoring module. In all workloads, the solid lines rise
quickly for small support (minimum correlation frequency)
values, indicating that the majority of unique extent pairs
are infrequent. For example, in the three traces on the left
(wdev, src2, and rsrch), we can see that three quarters of the

144

Authorized licensed use limited to: University of Louisville. Downloaded on May 07,2021 at 21:16:14 UTC from IEEE Xplore. Restrictions apply.

by unique pairs

irs

by unique pairs

-
=)
S
X
-
1)
1)
X

100%

irs

by unique pairs by unique pairs by unique pairs

75% - 75% -

50% - by frequency

50% -

Fraction of extent pairs
Fraction of extent pairs

Fraction of extent pa!

100%

-
o
S
X

75% - l_:_y_fr_e_c&lin_c;: 75% - by frequency
byfrequency & s0-17 8 sog-| —mem=mTTTTTT

50% - 50% -

Fraction of extent pairs

Fraction of extent pal

o~
25% - | 25% - 25% - 25% - 25% -
0% 0% 0% —+ T T T 1 0% —+ T T T 1 0%
1 5 10 15 20 1 5 10 15 20 1 5 10 15 20 1 5 10 15 20 1 5 10 15 20
Correlation frequency (support) Correlation frequency (support) Correlation frequency (support) Correlation frequency (support) Correlation frequency (support)
(a) wdev (b) src2 (c) rsrch (d) stg (e) hm

Fig. 5: Cumulative distribution of extent correlations by frequency

unique extent pairs occur only once (support 1). Since we are
interested only in frequent correlations, this shows us that the
number of extent pairs that must be stored by our synopsis
data structure is actually significantly smaller as we should
ignore this large majority of infrequent pairs. Despite their
greater number, infrequent pairs contribute little to the total
requests because of their low frequency. The solid line rises
quickly, indicating that few pairs are frequent, and the dashed
line rises slowly, indicating that the remaining frequent pairs
represent a greater portion of the total trace, indicating a Zipf-
like distribution [34]. This means that by raising the supported
frequency even a little, we can significantly reduce the nec-
essary size of the synopsis data structure while maintaining a
valuable representation of extent correlations.

Using offline characterization, we can also gain insights into
optimal conditions of the relationship between table size and
hit rate. If we could record only one extent pair, then the
most frequent pair would give us the greatest percentage of
total frequencies, and the best possible hit rate. If we sort
all extent pairs in decreasing order by their frequency, then
the sum of frequencies for the n most frequent pairs is the
optimal fraction of overall total frequency possible for any n
pairs. Figure 6 plots this number n of unique pairs against
the sum of frequencies of these n most frequent pairs for our
real world traces. This relates the size of a correlation table to
its optimal frequency, and inversely, the minimum table size
necessary to represent any given fraction of total frequency.
Looking at Fig. 6, it is possible to represent roughly 40% of
all extent correlations for all traces using a small table size.
On the other hand, roughly half a million entries is enough
to represent all extent correlations in wdev, src2, or rsrch.
Therefore in our evaluation, we use correlation table sizes of
powers of two from 16K through 4M, as this size should be
enough to capture all traces.

We found using equal sizes for T1 and T2 to be appropri-
ate for our framework; however, their ratio can be adjusted
dynamically for specific applications. One important issue is
that in order to process through a sufficient amount of noise of
infrequent requests and collect valuable frequent information,
the synopsis data structure needs to have a sufficiently large
T1. Therefore, respecting to minimum fixed sizes for the T1
and T2 tables is important in a dynamic resizing technique,
which would otherwise end up favoring T2.

One entry of both T1 and T2 for the item table contains
an item and a frequency counter. Using a 64-bit block ID

&)

2 oMm- -2M

§ 1.5M - -1.5M

5 1M- - 1M

S 512k - 512K

§ 1- . : : . -1
0% 20% 40% 60% 80% 100%

Fraction of extent pairs by frequency

Fig. 6: Table size necessary to support real world traces

and 32-bit length, an extent is represented using 12 bytes.
With a 32-bit frequency counter, one entry in the item table
is therefore 16 bytes. A single correlation table entry contains
two items and a counter, or 28 bytes. Since we used the same
number of entries C' in both T1 and T2, the size of our item
table is 32C bytes and the size of our correlation table is
56C bytes, or 88C' bytes for the total synopsis data structure.
This is 1.44 MB for C = 16 K and 369 MB for C =4 M.

2) Online Characterization of Synthetic Workloads: Fig-
ure 7 illustrates the synthetic traces and their correlations. The
left column is a heat map of the block layer trace captured
using the monitoring module. The second column shows every
pair (support 1) of distinct blocks that occur together in the
same transaction, representing every correlation that occurs
at least once. For every pair of single blocks A and B that
appear in the same transaction, points (A, B) and (B, A) are
plotted. An extent is multiple consecutive blocks, such as
{A; A+ 1, A+ 2}; these appear as squares on the diagonal
line from lower left to upper right. The larger the square, the
larger the extent. Rectangles away from the diagonal are two
discontinuous extents requested in the same transaction, the
width is the size of one extent and the height is the size of the
other. An extent correlated with one discontinuous block (a
one-to-many correlation) appears as a horizontal or vertical
line. Background noise and occasional coincidence creates
reflections and ripples throughout the plot.

In order to inform a possible automatic optimization module
of the most valuable opportunities for performance improve-
ment, the goal of online analysis is to extract only the frequent
correlated pairs of blocks. Therefore, the third column of
Fig. 7 shows the result of offline frequent itemset mining using
eclat [33] with support 10, indicating minimum correlation
frequency. The circles highlight single points (one-to-one

145

Authorized licensed use limited to: University of Louisville. Downloaded on May 07,2021 at 21:16:14 UTC from IEEE Xplore. Restrictions apply.

Trace Offline Offline Online
(support 1) (support 10) (support 10)
20K 20K yd
o
5% 15K s
k1 ¥ e
£ 10 2 10K L
* KT
. o /
5]9‘ 15 20 25 30 35 4 10K 20K 10K 20K 10K 20K
Time (5) Block Block Block
(a) One-to-one
20¢ -
15K
I WIEI R ey 1] I . N
« e . = =
T O RO L 1m L
5 10 15 20 30 35 o 10K 20K O 10K 20K O 10K 20K
Time (s) Block Block Block
(b) One-to-many
20k . 20K =
W O LW T ey 4 L u [} u
e -t ow
£ 10k o
LMD 0OV OO O EOEOAN 0 IO 0 - I B
sl ﬂu T Y () sK L9
o T 15 EEE R 20€ 0 10K 20K

(c) Many-to-many

Fig. 7: Visualizations of offline and online analyses

correlations) for emphasis. The rightmost column of Figure 7
illustrates the results of our online analysis module for the
three synthetic workloads. Now, when we compare the third
and the fourth columns, it is clear from the figures that the
proposed online framework captures a majority of important
data access correlations by visually yielding a very similar
shape with offline.

3) Online Characterization of Real World Workloads: The
five real world workloads are far more sophisticated than our
four synthetic workloads. They use a larger number space, they
contain more correlations than the four we constructed for our
synthetic traces, and rather than artificial random noise, they
have all the background requests of a natural system. Unlike
offline analysis, our online analysis can be performed while
the workload is running and without storing a block level trace,
thus requiring no additional wall time or storage on disk.

Figure 8 illustrates correlations for the real world traces.
The left and middle columns show offline FIM data of every
pair of blocks requested together (support 1) and only those
occurring five or more times (support 5), respectively. The
right column shows the extent correlations from our proposed
online analysis module that also occur at least five times. We
selected support 5 for real workloads since this is past
the “knee” of the unique pairs curve for all traces (solid line,
Fig. 5), which yields a sufficiently high fraction by frequency.
As it is clear from Fig. 8, the patterns are visually recognizably
similar for offline and online analysis.

By removing infrequently correlated pairs, not only are
there noticeably fewer unique correlations visible, but their
patterns and structure can change; consider for example hm
(Fig. 8e): there are many pairs correlated with blocks around
number 5M that appear at least once (at left) but not at
least five times (middle). Blocks in this region are requested
frequently, but appear in transactions with other blocks only

146

Offline
(support 1)

Offline
(support 5)

Online
(support 5)

Block
Block
Block

(a) wdev

20M
Block

10M 30M 10M 20M

Block

30M

Block
Block
Block

(b) src2

20M
Block

10M 30M

Block
Block
Block

(c) rsrch

0M 20M

Block

30M 0M 20M

Block

30M

200M

150M

Block
Block.
Block.

100M

(d) stg

50M

50M 100M 150M 200M 50M 100M 150M 200M

Block

50M 100M 150M 200M
Block

= o b
»

Block

(e) hm

20m
Block

20M
Block

Fig. 8: Offline and online analysis of Microsoft traces

by coincidence. By refining correlated pairs to only those that
appear frequently we remove such noise. We can see visually
from Figure 8 that the correlated pairs for the online analysis
are similar to the offline analysis.

Offline FIM data provides the frequencies of all extent cor-
relations. The similarity of this complete list to the contents of
the online analysis synopsis tables gives the percentage of all
extent correlations captured by online analysis. Figure 9 shows
the percentage captured relative to the optimal percentage
possible for the same number of entries (optimal shown in
Fig. 6). Notice how, in general, the quality is low for a small
table size and increases as the table size increases, eventually
reaching 100% when the table is large enough to store every
pair. The stg trace has the largest number space (an order of
magnitude larger than the others) and the majority of extent
pairs are infrequent. For stg, a very small correlation table
(16-32 K entries) cannot keep enough entries that represent a
majority of the correlations, since those pairs that eventually
do become frequent and worth keeping are evicted by LRU
and replaced with less valuable ones. For traces with a long
tail of infrequent correlations, such as stg and hm (see figure

Authorized licensed use limited to: University of Louisville. Downloaded on May 07,2021 at 21:16:14 UTC from IEEE Xplore. Restrictions apply.

around table size of 2M), the analysis performs poorly versus
the optimal solution.

— 100%
£
L2 80%-
go
‘5‘3 60% - —— wdev —— stg
J>'<15 src2 = hm
Weo 40%-
o = rsrch
1 1 1 1 1 1 1 1 1
16K 32K 64K 128K 256K 512K 1M 2M 4M

Correlation table size (number of entries)

Fig. 9: Representability of extent correlations versus optimal

4) Overhead cost: The overhead cost of monitoring is
minimal, since blktrace only exposes block layer events to
userspace, which are delimited into transactions by the moni-
toring module. The overhead of the analysis module is O(N?)
for N requests per transaction (see Sec. III-D2); however, this
is controllable by enforcing a limit on transaction size (in our
evaluation we use a limit of N = 8). Memory usage is also
controllable by adjusting the synopsis table size of the analysis
module. In Sec. IV-C3 and Fig. 9 we examine the trade off of
table size versus accuracy with real world workloads.

5) Concept Drift: Data access patterns may change over
time, as different applications take dominance of the storage
system at different times, resulting in a change, or drift, in
concept. Since online analysis techniques need to have a
memory limit, they should also be capable of “forgetting” old
patterns and adapting to newer patterns over time. In order
to illustrate how our proposed method handles this concept
drift, we replay parts of two different traces (wdev and hm)
representing two different access patterns or “concepts” to the
storage system as a single workload. First, we play the first
100 K requests of wdev, then the first 100 K requests of hm
followed by the second 100 K requests of wdev, as illustrated
in Figure 10. Suppose that the hm requests in the middle
represents only a temporary drift in concept. If we were to
perform an offline analysis, correlations from this temporary
concept would appear in the analysis. However, since our
online analysis has a limited knowledge (in Fig. 10 we used
a correlation table of size C' = 32 K entries), we remember
only the most significant concept at the end (right).

The lower portion of the figure shows the correlations stored
in the synopsis structure at three points in time: at the end of
the first wdev section, after the inserted ~m requests, and after
more wdev requests. This allows our online analysis to adapt
dynamically to changes in data access patterns. The pattern
of wdev forming at the beginning is replaced by the pattern
of hm in the middle, which begins to fade after more wdev
requests. The correlation table size (32 K entries) is too small
to store both patterns. If we were to instead completely switch
to hm, the wdev correlations would eventually be forgotten.

147

hm (first 100K requests)
>
wdev (first 100K requests)

wdev (second 100K requests)
>

Block

1
i
10M

° Pad|

10M

20M
Block

30M 0 20M

Block

30M

Fig. 10: Learning new concepts and forgetting old ones

V. DISCUSSION: AUTOMATIC OPTIMIZATION

Automatic storage system optimizations informed by the
proposed workload characterization framework can take many
forms based on application and environment, including but not
limited to caching, prefetching, data placement, energy effi-
ciency, garbage collection, I/O scheduling, and wear-leveling.
Our ultimate goal in this work is to provide an efficient
and accurate real-time data access characterization framework
that is general enough to be applied to various optimization
scenarios to achieve self-optimizing storage systems that are
predictable, can continuously provide high I/O performance,
can automatically react to I/O bottlenecks, and adapt to con-
cept drifts in real time. In this section, we briefly discuss two
automatic optimization scenarios that our proposed real-time
data access characterization framework can enable, leading to
a new generation of self-optimizing SSDs.

Existing SSDs are equipped with a vendor-specific Flash
Translation Layer (FTL) implemented on the device as propri-
ety firmware, which is mainly responsible for data placement
and garbage collection. This “closed” design inhibits the
device to be managed and controlled by the host operating
system. In the past few years, host controllable SSDs (open-
channel [38], [39], multi-stream [40], [41], zoned namespaces
(ZNS) SSDs [42], etc.) together with their kernel support [43]
have emerged as important technological enablers. Our pro-
posed framework can be integrated into the host system and
allow automatic optimizations in new generation SSDs, which
could dynamically eliminate existing shortcomings of SSD
performance, such as the notorious unpredictable performance
issue due to heavy internal data movement of garbage collec-
tion or ill-mapped data layout, which consequently cause large
tail-latencies [44]-[46].

1) Automatic Garbage Collection Optimization in Multi-
Stream SSDs: Multi-stream SSDs (MS-SSD) recently intro-
duced by Samsung have the aim of controlling data place-
ment on the device for decreased Write Amplification Factor
(WAF) [40], [41], the ratio of writes on the device to writes

Authorized licensed use limited to: University of Louisville. Downloaded on May 07,2021 at 21:16:14 UTC from IEEE Xplore. Restrictions apply.

by the host. Log structured designs used in modern SSDs
cause new writes to be written to a single append point, even
though their death times (the time a page is discarded or
overwritten by the host [47]) may significantly differ and later
cause heavy data movement during garbage collection. MS-
SSDs accept write requests from multiple append points (open
erase blocks), each called a separate stream, so that pages
with similar death times can be grouped together. Data with
the same stream ID is guaranteed by the device to be written
together to a physically related NAND flash block, i.c. Erase
Unit (EU). Using the provided multi-stream interface, the host
can perform garbage collection optimization and reduce the
WAF, which would improve performance and predictability.

Garbage collection optimization can be performed by pre-
dicting the death times of write requests and placing the data
with similar death times in the same Erase Unit (EU) so that
the number of valid pages in victim EUs are minimized during
garbage collection. In this way, the WAF will be reduced, and
consequently device endurance and predictability will also be
improved. Death time prediction can be performed with the
following assumption:

If two or more data chunks were frequently written
together in the past, then there is a high chance that
their death times will be similar.

This prediction can continuously be performed using the
proposed access characterization framework in real time,
which can pass correlated writes to the garbage collection
optimization module for EU determination. Correlations in this
case indicates write extents that are predicted to have similar
death times. Therefore, they should be placed in the same EU.

In addition to SSDs, the proposed framework can also allow
similar optimizations to be performed in new generation HDDs
based on Shingled/Interlaced Magnetic Recording (SMR/IMR)
technologies [48], which have similar complexities as SSDs
such as write amplification and garbage collection.

2) Automatic Parallel 1/0 Optimization in Open-Channel
SSDs: Similar to MS-SSDs, Open-Channel SSDs (OC-SSD)
are a new class of solid-state drives that expose their internal
parallelism to the host system and allow the host to manage
the devices’ internals [38], [39], [49], as opposed to the
traditional “closed” designs currently applied in most modern
SSDs. OC-SSDs do not have a traditional firmware Flash
Translation Layer (FTL) implemented on the device; instead
they leave the management of generic FTL functions such as
data placement and garbage collection to be implemented in
the host. This design allows the host to perform workload-
aware data placement decisions, which paves the way for
automatic optimization of SSDs for dynamic and multi-tenant
workloads, and efficient timing and execution of garbage
collection for improved performance and predictability. The
SSD device controller implements the remaining device man-
agement responsibilities including media-centric metadata and
error handling. OC-SSD’s internal structure is divided into a
set of Parallel Units (PU), where accesses are fully indepen-
dent of each other. Linux kernel 4.12 and later fully supports
OC-SSDs that follow the NVMe specification, by providing

148

a Physical Block Device (pblk) layer that implements the
basic FTL functionality including mapping logical addresses
onto physical addresses (4 KB granularity), guaranteeing the
integrity and recovery of the mapping table in case of a
crash, handling errors, and maintaining valid page counts per
physical block (EU) to be used during garbage collection
operations [43]. This subsystem allows a compatible block I/O
target device to be controlled by the host and I/O commands
to be issued to specific PUs. Several OC-SSD devices were
recently announced or made available [38], including CNEX
Labs OC-SSD, EMC Dragon Fire Board OC-SSD, LiteOn
AD2 OC-SSD, and Radian Memory Systems RMS-325 OC-
SSD [50]. In addition to garbage collection, another possible
automatic optimization would be to reorganize data that is
frequently accessed together to separate parallel units within
the OC-SSD in order to improve performance through I/O
parallelism.

Initial data placement in SSDs is commonly performed
using RAID-0 like striping mechanisms over the Parallel Units
(PU) of the device so that internal parallelism can be efficiently
exploited [51]-[54]. However, RAID-0 like striping is only
effective for large sequential accesses. In addition, due to
dynamic logical-to-physical mapping (out-of-place updates)
applied in modern SSDs, data layout changes over time and
the initial striping may end up being largely skewed and
inefficient, even for sequential I/O. Previous work indicates
that an ill-mapped data layout can cause up to 4.2x higher
latency for parallel accesses on an SSD [55].

Parallel I/O optimization can be performed with the follow-
ing assumption:

If two or more data chunks were frequently read

together in the past, then there is a high chance that

they will be read together in the near future.
This assumption considers all three important I/O charac-
teristics: spatial locality, frequency, and recency. Using the
proposed access characterization framework, it is possible to
detect extent correlations in real- time and place correlated
read extents into different Parallel Units (PU) automatically
for improved internal parallelism.

VI. CONCLUSION

In this work, we propose an online storage workload
characterization framework to find data access correlations in
real time. Our proposed technique maintains a synopsis data
structure using a limited memory footprint, and applies single
pass data analysis techniques to efficiently characterize data
access correlations by considering sequentiality, frequency,
and recency. Once efficiently and accurately determined, data
access correlations can inform various storage system opti-
mization including caching, prefetching, data placement, en-
ergy efficiency, garbage collection, I/O scheduling, and wear-
leveling, and enable self-optimizing storage systems.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. National
Science Foundation (NSF) under grants CNS-1657296 and
OIA-1849213.

Authorized licensed use limited to: University of Louisville. Downloaded on May 07,2021 at 21:16:14 UTC from IEEE Xplore. Restrictions apply.

[1]

[2

—

[3]

[4

flnari

[5

—_

[6

[

[7

—

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

B. Harris and N. Altiparmak, “Ultra-low latency ssds’ impact on
overall energy efficiency,” in 12th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage "20). USENIX Association,
Jul. 2020.
https://www.usenix.org/conference/hotstorage20/presentation/harris

D. Singh and C. K. Reddy, “A survey on platforms for big data
analytics,” Journal of big data, vol. 2, no. 1, p. 8, 2015.

H. M. Makrani, H. Sayadi, S. Manoj, S. Raftirad, and H. Homayoun,
“Compressive sensing on storage data: An effective solution to
alleviate I/0 bottleneck in data- intensive workloads,” in 2018 IEEE
29th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), 2018, pp. 1-8.

E. Tomes, E. N. Rush, and N. Altiparmak, “Towards adaptive parallel
storage systems,” IEEE Transactions on Computers, vol. 67, no. 12,
pp. 1840-1848, 2018.

M. Bjgrling, J. Gonzalez, and P. Bonnet, “Lightnvm: The linux
open-channel SSD subsystem,” in /5th USENIX Conference on File
and Storage Technologies (FAST ’17). Santa Clara, CA: USENIX
Association, Feb. 2017, pp. 359-374. https://www.usenix.org/
conference/fast17/technical-sessions/presentation/bjorling

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” SIGMETRICS
Perform. Eval. Rev., vol. 40, no. 1, pp. 53-64, Jun. 2012.
http://doi.acm.org/10.1145/2318857.2254766

A. Miranda and T. Cortes, “Analyzing long-term access locality to find
ways to improve distributed storage systems,” in 20th Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing, Feb 2012, pp. 544-553.

Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou, “C-miner: Mining
block correlations in storage systems,” in Proceedings of the 3rd
USENIX Conference on File and Storage Technologies, ser. FAST *04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 173-186.
http://dl.acm.org/citation.cfm?id=1096673.1096695

D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” Trans. Storage,
vol. 4, no. 3, pp. 10:1-10:23, Nov. 2008.
http://doi.acm.org/10.1145/1416944.1416949

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh,

S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,

D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,

C. Taylor, R. Wang, and D. Woodford, “Spanner: Google’s
globally-distributed database,” in Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI'12. Berkeley, CA, USA: USENIX Association, 2012, pp.
251-264. http://dl.acm.org/citation.cfm?id=2387880.2387905

M. Whitehorn, “The parable of the beer and diapers: Never let the
facts get in the way of a good story,”
https://www.theregister.com/2006/08/15/beer_diapers/, Aug 2006, the
Register.

C. Borgelt, “Frequent item set mining,” WIREs Data Mining Knowl.
Discov., vol. 2, p. 437456, Nov. 2012.
http://onlinelibrary.wiley.com/doi/10.1002/widm.1074/abstract

R. Agrawal, T. Imielifiski, and A. Swami, “Mining association rules
between sets of items in large databases,” in SIGMOD 93, ser.
SIGMOD °93. New York, NY, USA: ACM, 1993, pp. 207-216.
http://doi.acm.org/10.1145/170035.170072

M. J. Zaki, “Scalable algorithms for association mining,” IEEE Trans.
on Knowl. and Data Eng., vol. 12, no. 3, pp. 372-390, 2000.

J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” in SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD
international conference on Management of data. New York, NY,
USA: ACM, 2000, pp. 1-12.

S. J. Shin, D. S. Lee, and W. S. Lee, “CP-tree: An adaptive synopsis
structure for compressing frequent itemsets over online data streams,”
Information Sciences, vol. 278, pp. 559 — 576, 2014.
http://www.sciencedirect.com/science/article/pii/S002002551400365X
P. Xia, D. Feng, H. Jiang, L. Tian, and F. Wang, “Farmer: A novel
approach to file access correlation mining and evaluation reference
model for optimizing peta-scale file system performance,” in
Proceedings of the 17th International Symposium on High
Performance Distributed Computing, ser. HPDC *08. New York, NY,

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

(32]
[33]

[34]

[35]

149

USA: Association for Computing Machinery, 2008, p. 185196.
https://doi.org/10.1145/1383422.1383445

D. Dai, F. Bao, J. Zhou, X. Shi, and Y. Chen, “Vectorizing disk blocks
for efficient storage systems via deep learning,” International Journal
of Parallel Computing, Apr. 2018.

Z. Li, Z. Chen, and Y. Zhou, “Mining block correlations to improve
storage performance,” ACM Trans. Storage, vol. 1, no. 2, p. 213245,
May 2005. https://doi.org/10.1145/1063786.1063790

S. Lee, Y. Won, and S. Hong, “Mining-based file caching in a hybrid
storage system,” J. Inf. Sci. Eng., vol. 30, pp. 1733-1754, 2014.

G. Soundararajan, M. Mihailescu, and C. Amza, “Context-aware
prefetching at the storage server,” in USENIX 2008 Annual Technical
Conference, ser. ATC *08. USA: USENIX Association, 2008, p.
377390.

E. N. Rush, B. Harris, N. Altiparmak, and A. c. Tosun, “Dynamic data
layout optimization for high performance parallel 1/0,” in 23rd IEEE
International Conference on High Performance Computing, Data, and
Analytics (HiPC 2016), Hyderabad, India, December 2016.

Y. Deng, J. Cai, W. Jiang, and X. Qin, “Employing dual-block
correlations to reduce the energy consumption of disk drives,”
Computing, vol. 99, no. 3, p. 235253, Mar. 2017.
https://doi.org/10.1007/s00607-016-0488-7

D. L. Moal, “T/o latency optimization with polling,”
https://events.static.linuxfound.org/sites/events/files/slides/
lemoal-nvme-polling-vault-2017-final_0.pdf, Mar 2016.

A. V. Aho, P. J. Denning, and J. D. Ullman, “Principles of optimal
page replacement,” J. ACM, vol. 18, pp. 80-93, 1971.

P. J. Denning, “Working sets past and present,” IEEE Transactions on
Software Engineering, vol. SE-6, no. 1, pp. 64-84, 1980.

J. T. Robinson and M. V. Devarakonda, “Data cache management
using frequency-based replacement,” SIGMETRICS Perform. Eval.
Rev., vol. 18, no. 1, p. 134142, Apr. 1990.
https://doi.org/10.1145/98460.98523

E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The Iru-k page
replacement algorithm for database disk buffering,” in Proceedings of
the 1993 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’93. New York, NY, USA: Association for
Computing Machinery, 1993, p. 297306.
https://doi.org/10.1145/170035.170081

T. Johnson and D. Shasha, “2Q: A low overhead high performance
buffer management replacement algorithm,” in Proceedings of the 20th
International Conference on Very Large Data Bases, ser. VLDB ’94.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1994,
pp. 439-450. http://dl.acm.org/citation.cfm?id=645920.672996

S. Jiang and X. Zhang, “Lirs: An efficient low inter-reference recency
set replacement policy to improve buffer cache performance,” in
Proceedings of the 2002 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS °02. New York, NY, USA: Association for Computing
Machinery, 2002, p. 3142. https://doi.org/10.1145/511334.511340

N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead
replacement cache,” in Proceedings of the 2nd USENIX Conference on
File and Storage Technologies, ser. FAST’03. Berkeley, CA, USA:
USENIX Association, 2003, pp. 115-130.
http://dl.acm.org/citation.cfm?id=1090694.1090708

J. Axboe, Flexible 1/O Tester, https://github.com/axboe/fio.

C. Borgelt, “Efficient implementations of apriori and eclat,” in Proc.
Ist IEEE ICDM Workshop on Frequent Item Set Mining
Implementations (FIMI 2003, Melbourne, FL). CEUR Workshop
Proceedings 90, 2003, p. 90.

L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker, “Web
caching and zipf-like distributions: evidence and implications,” in
IEEE INFOCOM °99. Conference on Computer Communications.
Proceedings. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. The Future is Now (Cat.
No0.99CH36320), vol. 1, 1999, pp. 126-134 vol.1.

D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and

A. Rowstron, “Migrating server storage to ssds: Analysis of tradeoffs,”
in Proceedings of the 4th ACM European Conference on Computer
Systems, ser. EuroSys "09. New York, NY, USA: ACM, 2009, pp.
145-158. http://doi.acm.org/10.1145/1519065.1519081

T. Xie and Y. Sun, “Dynamic data reallocation in hybrid disk arrays,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 21,

no. 9, pp. 1330-1341, Sept 2010.

Authorized licensed use limited to: University of Louisville. Downloaded on May 07,2021 at 21:16:14 UTC from IEEE Xplore. Restrictions apply.

[37] A. Miranda and T. Cortes, “Craid: Online raid upgrades using dynamic
hot data reorganization,” in Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST '14). Santa
Clara, CA: USENIX, 2014, pp. 133-146. https://www.usenix.org/
conference/fast14/technical-sessions/presentation/miranda

[38] “Open-channel solid state drives.” http://lightnvm.io/, 2017.

[39] “The openssd project.” http://openssd.io/, 2017.

[40] J.-U. Kang, J. Hyun, H. Maeng, and S. Cho, “The multi-streamed
solid-state drive,” in 6th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 14). Philadelphia, PA: USENIX
Association, 2014. https://www.usenix.org/conference/hotstorage14/
workshop-program/presentation/kang

[41] J. Yang, R. Pandurangan, C. Choi, and V. Balakrishnan, “Autostream:
Automatic stream management for multi-streamed ssds,” in
Proceedings of the 10th ACM International Systems and Storage
Conference, ser. SYSTOR *17. New York, NY, USA: ACM, 2017,
pp. 3:1-3:11. http://doi.acm.org/10.1145/3078468.3078469

[42] “Zoned namespaces (ZNS) SSDs,”
https://zonedstorage.io/introduction/zns/.

[43] M. Bjgrling, J. Gonzalez, and P. Bonnet, “Lightnvm: The linux
open-channel SSD subsystem,” in /5th USENIX Conference on File
and Storage Technologies (FAST 17). Santa Clara, CA: USENIX
Association, 2017, pp. 359-374. https://www.usenix.org/conference/
fastl7/technical-sessions/presentation/bjorling

[44] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic
characteristics and system implications of flash memory based solid
state drives,” in Proceedings of the Eleventh International Joint
Conference on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS ’09. New York, NY, USA: ACM, 2009, pp. 181-192.
http://doi.acm.org/10.1145/1555349.1555371

[45] M. Bjgrling and J. Gonzalez, “Multi-tenant i/o isolation with
open-channel ssds,” in Nonvolatile Memory Workshop (NVMW ’17),
2017.

[46] J. Huang, A. Badam, L. Caulfield, S. Nath, S. Sengupta, B. Sharma,
and M. K. Qureshi, “Flashblox: Achieving both performance isolation
and uniform lifetime for virtualized ssds,” in 15th USENIX Conference
on File and Storage Technologies (FAST ’17). Santa Clara, CA:
USENIX Association, 2017, pp. 375-390. https://www.usenix.org/
conference/fast17/technical-sessions/presentation/huang

[47] J. He, S. Kannan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“The unwritten contract of solid state drives,” in Proceedings of the
Twelfth European Conference on Computer Systems, ser. EuroSys *17.
New York, NY, USA: ACM, 2017, pp. 127-144.
http://doi.acm.org/10.1145/3064176.3064187

[48] F. Wu, B. Zhang, Z. Cao, H. Wen, B. Li, J. Diehl, G. Wang, and D. H.
Du, “Data management design for interlaced magnetic recording,” in
10th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 18). Boston, MA: USENIX Association, Jul. 2018.
https://www.usenix.org/conference/hotstorage 1 8/presentation/wu

[49] “Open-channel solid state drives specification, revision 2.0,”
http://lightnvm.io/docs/OCSSD-2_0-20180129.pdf, january 29, 2018.

[50] “Radian memory rms-325 datasheet,”
http://www.radianmemory.com/edge- card-ssd-rms-325/.

[51] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy, “Design tradeoffs for ssd performance,” in USENIX
2008 Annual Technical Conference, ser. ATC '08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 57-70.
http://dl.acm.org/citation.cfm?id=1404014.1404019

[52] C. Dirik and B. Jacob, “The performance of pc solid-state disks (ssds)
as a function of bandwidth, concurrency, device architecture, and
system organization,” SIGARCH Comput. Archit. News, vol. 37, no. 3,
pp. 279-289, Jun. 2009. http://doi.acm.org/10.1145/1555815.1555790

[53] M. Jung and M. Kandemir, “An evaluation of different page allocation
strategies on high-speed ssds,” in Proceedings of the 4th USENIX
Conference on Hot Topics in Storage and File Systems, ser.
HotStorage’12. Berkeley, CA, USA: USENIX Association, 2012, pp.
9-9. http://dl.acm.org/citation.cfm?id=2342806.2342815

[54] M. Jung, “Exploring parallel data access methods in emerging
non-volatile memory systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 3, pp. 746-759, March 2017.

[55] F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed data
processing,” in 2011 IEEE 17th International Symposium on High
Performance Computer Architecture, Feb 2011, pp. 266-277.

150

Authorized licensed use limited to: University of Louisville. Downloaded on May 07,2021 at 21:16:14 UTC from IEEE Xplore. Restrictions apply.

