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Abstract—Edge computing promises low-latency computation
for delay sensitive applications by processing data close to its
source. Task scheduling in edge computing is however not im-
mune to performance fluctuations as dynamic and unpredictable
nature of network traffic can adversely affect the data transfer
performance between end devices and edge servers. In this
paper, we leverage In-band Network Telemetry (INT) to gather
fine-grained, temporal statistics about network conditions and
incorporate network-awareness into task scheduling for edge
computing. Unlike legacy network monitoring techniques that
collect port-level or flow-level statistics at the order of tens
of seconds, INT offers highly accurate network visibility by
capturing network telemetry at packet-level granularity, thereby
presenting a unique opportunity to detect network congestion
precisely. Our experimental analysis using various workload
types and network congestion scenarios reveal that enhancing
task scheduling of edge computing with high-precision network
telemetry can lead up to 40% reduction in data transfer times and
up to 30% reduction in total task execution times by favoring
edge servers in uncongested (or mildly congested) sections of
network when scheduling tasks.

Index Terms—Scheduling, In-network Telemetry, P4, Edge-
computing

I. INTRODUCTION

Legacy data processing pipelines require edge devices to
offload computation tasks to datacenters, however this cen-
tralized approach has become the source of performance
bottlenecks as increasing numbers of applications started to
demand low latency, localized data processing. Edge com-
puting paradigm aims to address this by placing compute
resources closer to end devices to reduce communication delay
significantly [1], [2]. Edge computing also alleviates network
congestion by minimizing the amount of data that needs to
be carried out over the network. Due to its benefits, edge
computing has been adopted to wide-range of applications
including serverless computing [3], distributed computing [4],
and big data processing [5].

Despite being located closer to end users and devices, edge
computing is not completely immune to network congestion.
In particular, when end devices rely on shared networks
to submit tasks to edge servers, network congestion will
inevitably take place and lead to increased network delay and
degraded transmission rates. For example, a recent initiative by
FABRIC Testbed [6] and ESnet’s High Touch Project [7] aims

to deploy compute servers in the network for scientific edge
computing, which will require edge computing workloads to
share network resources with regular traffic. Therefore, edge
server selection decisions cannot only be done on the basis of
physical closeness as poor network performance can severely
degrade the performance of data transfers between edge
servers and end devices. However, dynamic and unpredictable
nature of network congestion makes it extremely difficult
to accurately measure or predict network conditions at the
time of task scheduling. While traditional network monitoring
practices (e.g., port-level and flow-level statistics) are sufficient
to understand long term behavior of network utilization and
flow performances, their reporting frequency in the order of
tens of seconds falls short to capture transient congestion
events [8], [9]. Simply increasing reporting intervals would
also not suffice since neither port-level statistics nor sampled
flow-level statistics provide the level of precision needed to
understand the severity of network congestion.

In-band Network Telemetry (INT) [10] is a new paradigm
to collect fine-grained telemetry information by adding per-
formance metrics to individual packets as they pass through
network devices. With INT, one can embed several perfor-
mance metrics such as device ID, ingress port ID, queue
length, queue congestion status, and hop latency to individual
packets at switches and routers to gain deep insights into
network condition. Therefore, we leverage INT to detect net-
work congestion events timely and precisely such that delay-
sensitive workload can be scheduled to edge servers located
in uncongested sections of the network. We find that taking
network congestion into account when making task scheduling
decisions lead up to 30% improvement in task completion
times and 40% improvement in transfer times. In summary,
this paper makes following contributions:

• We develop a network monitoring framework that com-
bines INT with active probing to achieve high-precision
visibility while keeping system overhead at minimum.

• We introduce delay and bandwidth estimation technique
based on queue size information.

• We propose a network-aware scheduling algorithm for
edge computing workloads to minimize the impact of
network congestion in task and transfer completion times.



• We run extensive experiments in an emulated network
environment using Mininet to assess the performance of
the network-aware scheduling under various workload
and congestion scenarios.

II. BACKGROUND

In this section, we provide brief details for technologies that
are leveraged in this work to implement network-aware task
scheduler for edge computing.

Programmable data plane: Network devices have two dis-
tinct abstractions known as control plane and data plane. While
control plane manages packet processing and forwarding deci-
sions, data plane is responsible to execute the rules set by the
control plane [11]. Network devices traditionally are equipped
with a fixed set of functionalities (e.g., checksum verification
and packet forwarding) that can be executed when processing
packets, but programmable data plane enables custom actions
to be executed such as embedding device status information
(e.g., device ID and queue length) to packets for high-precision
network monitoring [10].

P4 Programming Language: P4 is a high-level pro-
gramming language for protocol-independent packet proces-
sors [12]. It is used to implement data plane operations
with custom match-action processing pipeline, making packet
processing generic and extendable with ease. Switches that
support data plane programming can be programmed with
P4 to define custom packet processing rules. P4 offers four
programmable blocks as Parser, Ingress Control Flow, Egress
Control Flow, and Deparser. In the Parser stage, the incoming
packets are parsed to extract the protocol information required
at stages ahead. For example, the incoming packets are broken
down into their protocol specific fields such as TCP and UDP.
Ingress Control Flow deals with forwarding decisions to be
made using forwarding tables. Entries in the table are matched
with the packet IP information to assign the correct egress
port information. Also custom action execution is possible at
this stage. Once packets are ready to be transmitted to the
network (i.e., they are at the beginning of the egress queue)
Egress Control Flow allows another round of executions to be
done. In the Deparser stage, the processing and manipulation
of packets is completed, thus packets are reconstructed by the
deparser to be forwarded to the next hop in the network.

In-band Network Telemetry (INT): Port-level and flow-
level statistics have been the primary method of monitoring
in networks. While these solutions help to uncover major
performance problems such as faulty ports or misconfigured
routing tables, they fall short to capture transient events [9]. In-
band Network Telemetry addresses this limitation by allowing
network monitoring to be done at the packet level. It leverages
programmable data plane to capture network telemetry data
(and potentially add to packets) in network devices at line
rate with minimal processing overhead. Fine-granular, real-
time network telemetry data obtained with INT has been used
to implement many functionalities that were not possible pre-
viously including precise performance troubleshooting [13],

Fig. 1: High-level architecture of proposed network-aware
scheduler. It collects INT at packet-level but saves it in
switch/router registers. (1) To gather INT stored in network
device registers, edge servers periodically send probing pack-
ets to the scheduler. (2) The probing packets with INT are
received and processed by the scheduler. (3,4) When an edge
device wants to schedule a task, (5) it first requests a list of
candidate edge servers from the scheduler, then (6) schedules
its task(s) to one or more edge servers.

path tracking [14], and highly-efficient congestion control
algorithm design [15], [16].

III. NETWORK-AWARE TASK SCHEDULER

Figure 1 illustrates the system architecture of the proposed
network-aware task scheduler for edge computing. The task
scheduler is responsible for directing incoming tasks to dis-
tributed edge servers. The task scheduler accepts requests from
edge devices and responds back with IP addresses of candidate
edge servers. The edge devices then can submit their tasks to
edge server(s) directly for processing. As a central command
control, the scheduler is responsible for maintaining network
status information and selecting edge servers that will satisfy
the requirements of tasks while taking network congestion into
account.

A. INT Collection

The scheduler relies on data plane processing to gather
network telemetry at the packet-level granularity. As P4-
enabled devices can execute custom code to process packets
when they arrive (i.e., ingress processing) and leave (i.e.,
egress processing) the device, it allows device statistics to
be added to each packet to capture network telemetry at
high granularity. However, this comes at the cost of increased
overhead since the amount of packet payload reserved for
telemetry data will grow quickly as the number of network
devices that packets go through increases. As an example,
adding only two INT fields to each packet requires 4.2%
packet payload to be dedicated for INT data collection when
packet traverses five switches [15]. The rate will grow quickly



Fig. 2: Data plane processing pipeline.

as the number of INT fields or the number of visited network
devices increases. We therefore save telemetry information at
device registers and update them as packets are processed.
Please note that we do not create a separate register for each
packet, rather we create one register for each INT parameter
and update its value as new packets are observed. To gather
telemetry data stored in network device registers, we schedule
probing packets periodically from edge servers to the scheduler
which will save telemetry data in its payload as it traverses in
the network.

Figure 2 illustrates this process as packets travel through
two network devices. When a network device encounters a
regular packet, it saves current values of telemetry data (e.g.,
queue occupancy) to its registers, then forwards the packet
to its next hop without any modification. On the other hand,
when a network device spots a probing packet, it attaches
the telemetry data saved in its registers to the payload of
the probe packet before forwarding it to the next hop. The
values in device registers are reset to initial value once they
are added to the probe packet. In addition to gathering network
telemetry data, probe packets are also used to measure link
latency. Although latency between network devices is expected
to be relatively stable over time, we use probe packets to
periodically measure it to capture jitter characteristics. To do
so, timestamp information is added to the payload of the probe
packet just before it is pushed out of a network device (i.e., at
the egress processing stage). When the probe packet arrives at
the next hop, the timestamp information is extracted from the
packet payload and used to calculate link latency. Note that
this extraction is done before the packet is enqueued in the
second network device, thus it only measures link latency. The
measured link latency information along with other telemetry
data is then added to the packet payload as it travels to the
scheduler.

As we rely on probe packets to collect telemetry data from
network devices, it is important to make sure at least one probe
packet travels through each network device at regular intervals.
We therefore schedule a probe packet from each edge server
to the scheduler at 100ms intervals. While it is possible that
probe packets may not travel all devices depending on network
topology and edge server distribution in the network, we leave
route selection optimization for probe packets as a future
work and assume that the probe packets visit each device

at least once and gather saved telemetry data. We use UDP
with certain IP header fields set (aka Geneve option [17]) to
create probe packets such that network devices can distinguish
them from regular traffic. Probing packets generate 120Kbps
(10 packets/sec × 1.5KB/packet) network traffic which is a
negligible (e.g., only 1.1% when network bandwidth is 10
Mbps) compared to amount of overhead would be introduced
by padding INT information to each network packet.

B. Network Mapping

The scheduler serves the queries received from end devices
as shown in step 3, 4 in Figure 1 by returning a list of
edge servers that can be used to offload tasks. To do so,
the scheduler dynamically builds the network topology using
telemetry data reported via probe packets. Specifically, it
learns which network devices connected to each other by
checking the order of INT data in probe packets. For example,
if a probe packet contains INT data in S1-S3-S4 order, we can
then deduce that S1 and S3 is connected and so does S3 and
S4. After parsing INT data, the scheduler also learns about the
congestion conditions for each link.

When a query is received from an end device, the scheduler
runs graph traversal to extract paths between the end device
and candidate edge servers such that it can respond back with a
list of edge servers along with expected network performance
(i.e., bandwidth and latency). For instance, if there are two
edge servers E1 and E2 in the system and an edge device
sends a query to the scheduler, the scheduler will calculate
the estimated bandwidth and delay metrics for network path
from the edge device to E1 and to E2 separately, and send
the results back to the edge device to schedule its tasks. The
scheduler can use two options when evaluating the eligibility
of edge servers for given tasks. In the first one, it sorts the
edge servers based on network delay or available bandwidth
depending on task type such that the edge device can select the
edge server at the top of the list (i.e., the one with the lowest
delay or highest available bandwidth) to launch its task(s). In
the second one, the scheduler can respond back with (unsorted)
list of all edge devices along with their bandwidth and latency
information to let edge devices implement a custom selection
algorithm. In the following sections, we present the details of
the first option (i.e., bandwidth or delay-based ranking) as the
second one can easily be extended using the first one.

C. Delay-based Node Ranking

With the help of probe packets, the scheduler keeps track of
transmission delay for each link and queue occupancy for each
network device interface. This two metric is then used to calcu-
late the delay between any two devices in the network. Let us
consider a network consisting of a set of edge nodes E (con-
taining both end devices and edge servers), a set of network
devices N , and a set of links L. Assume two edge nodes en
and em where en, em ∈ E are communicating with each other.
The network packets traverse through arbitrary number of hops
(i.e., network devices such as switches) h1, h2, . . . hk ∈ N and
links l1, l2, . . . lk ∈ L. Then, one-way delay can be calculated



by Delay(en, em) =
∑︁k

i=1 delay(li)+
∑︁k

i=1 delay(hi). Link
delay, li, (i.e., transmission delay) is relatively straightforward
to calculate as we can mark probe packets with egress times-
tamps in one hop and extract it at next hop to measure the time
difference1. Note that Ingress Processing of P4 allows us to
extract the timestamp added by the previous node before the
packet is queued in the device for forwarding, thus link latency
calculation avoids queuing delay. To calculate hop latency, we
rely on queue occupancy as increased queue length typically
results in longer queue wait times. We however find that
taking average of all queue sizes observed during a probing
period leads to inconclusive results. More specifically, even if
a network device is running at full capacity, average queue
latency returns close to zero as many packets observe empty
queue. Therefore, we rely on maximum queue length value to
infer hop latency caused by queuing delay.

Fig. 3: Max queue length (left) and delay experienced by the
packets (right) at different utilization levels.

Figure 3 demonstrates the trend for maximum queue size (in
packets) and hop latency for increased egress port utilization.
In this experiment, we used Iperf to generate fixed-rate traffic
volume between two hosts that are connected via P4-enabled
switch (i.e., BMv2) in Mininet. For example, 10 Mbps fixed
traffic is generated for 50% bandwidth utilization experiment
when a network interface has 20 Mbps transmission rate. The
link delay is defined as 10ms for each link2, so round trip
time is expected to be 40ms when delay caused by the switch
is negligible. Although we did not enforce bandwidth limits
between nodes, we observe that maximum transfer speed is
limited to 20 Mbps due to data plane programming overhead
caused by Mininet3. Our data plane processing code measures
queue length when an Iperf packet is processed by a switch
and saves it to the register of the switch if the value is larger
than all queue length values observed within a probing interval.
We also schedule probe packets in every 100ms to collect
maximum queue length information from the switch and reset
the register value to 0. In order to calculate end-to-end delay,
we run ping in the background which measures round trip
time between the hosts in one-second intervals. We run each

1BMv2 switches used in the experiments are synced using Network Time
Protocol (NTP)

2Although we set link delays to 10ms in the experiments, our analysis with
smaller link delays also return similar results.

3Please note that production switches that support data plane programming
do not experience a similar throughput slowdown when P4 programs execute,
so observed limitations in Mininet experiments are solely because of BMv2
switch implementation.

bandwidth utilization value for 300 seconds and report the
average values for ping and maximum queue length. We
can observe that queue length and end-to-end delay increases
significantly as bandwidth utilization is increased. Specifically,
while maximum queue length is less than 5 packets until link
utilization is below 50%, it increases drastically and becomes
more than 30 packets as the link utilization is increased further.

In regard to network delay, ping returns close to 40ms for
RTT when the switch is at 0% utilization. As the utilization
is gradually increased to 80%, we observe slow but steady
increase RTT as it reaches to 50−60ms. However, when switch
port is at full utilization, the delay increases sharply and hits to
250ms, more than 6x increase compared to the baseline value.
As a result, we can deduce that link utilization has positive
correlation between queue size and network delay. Although
link utilization is not directly provided by INT, we can
exploit the positive relationship between link utilization and
maximum queue size to predict the hop latency. Specifically,
a conversion factor k is introduced to translate observed queue
sizes to hop latency. We observe that the conversion factor of
k = 20ms is sufficient to identify major congestion events in
our experiments, we leave its automation and fine-tuning as a
future work.

Algorithm 1: Ranking algorithm to sort edge servers
based on network delay with respect to edge node.
Result: Set of edge nodes ranked by delay (N)
en = Edge node initiating the query ;
G = Graph representation of the network ;
E(G, en) = Edge nodes reachable from en in G ;
L(en, ei) = Get links between given edge nodes ;
H(en, ei) = Get hops between given edge nodes ;
D(li) = Delay in the link li ;
Q(hi) = Max queue occupancy of hop hi ;
S(A) = Sort the given array A by delay ;
N = [ ] (Array of result nodes initially empty) ;
k = Queue occupancy to latency conversion factor ;
foreach ei ∈ E(G, en) do

totalLinkDelay = 0;
foreach li in L(en, ei) do

totalLinkDelay += D(li);
end
totalHopDelay = 0 ;
foreach hi in H(en, ei) do

totalHopDelay += k ∗Q(hi);
end
∆ = totalLinkDelay + totalHopDelay;
N ⇐ N + [(ei,∆)]

end
N ⇐ S(N) ;
return N ;

Now that we can infer delays between the edge nodes, we
use Algorithm 1 to sort available edge nodes based on latency
from the end device stand point. The algorithm first calculates



Fig. 4: Experimental topology. Node 6 is dedicated as the
scheduler whereas all other nodes are used to schedule tasks
as edge device or execute tasks as edge server.

routes between the end device, en and candidate edge servers,
E. Then, it calculates transmission delay for end-to-end path
by summing up link delay for each individual link in the route.
Finally, it predicts hop latency introduced by each network
device based on maximum observed queue size in the last
probing interval and adds those values to transmission delay
to calculate end-to-end delay.

D. Bandwidth-based Node Ranking

In this ranking method, we leverage the relationship be-
tween the maximum queue utilization and corresponding band-
width utilization as presented in Figure 3 to infer the level
of network utilization. We then estimate available bandwidth
for each link between end device and edge servers. Let us
consider two nodes where en, em ∈ E are communicating with
each other. The packet traverses through links l1, l2 . . . lk ∈ L
each with available bandwidth b1, b2 . . . bk. Then, throughput
of a transfer between these nodes can be estimated to be the
minimum available bandwidth among all the links represented
as throughput(en, em) = min({b1, b2 . . . bk}). The scheduler
estimates transfer throughput for all candidate edge servers
with respect to the end device, then sorts them in descending
order before responding back to end devices with a list.

IV. EXPERIMENT ANALYSIS

The experiments are carried out in Mininet [18], a network
emulator that is capable of emulating large networks. We
used Mininet Cluster to be able to increase the scale of the
experiment by utilizing multiple physical machines. Behav-
ioral Model (BMv2) switch [19] is used to connect nodes,
which is a standard reference P4 software switch capable of
running P4 programs required in our experiments. Four servers
with 32 GB RAM and 4 Core CPU running Ubuntu Server
18.04 were used along with a HP Procurve switch to provide
physical connectivity. Figure 4 illustrates the topology used in
the experiments, where a total of 8 nodes are connected via
12 switches.

In the experiments, Node 6 is designated as the sched-
uler, which is, in addition to responding to the scheduling

request, responsible for handling probing packets to learn
about network congestion. All the other nodes periodically
sends probe packets to gather INT data that is saved in switch
registers. All nodes including the scheduler can submit tasks as
edge device and execute tasks (unless they are the submitter)
as edge server. We compared the INT-based network-aware
scheduler with two alternative scheduling solutions as Nearest
and Random. In the nearest node scheduling, a node always
submits tasks to the closest node to achieve low latency
communication. Since all links have the same 10ms delay,
nodes that are located three hop away are the nearest node for
each other. For example, Node 7 and Node 8 are the nearest
nodes for each other. For the sake of simplicity, we assume
that nearest nodes are calculated ahead of time, so no runtime
network topology mapping is required for this method. In the
random scheduling approach, tasks are scheduled to randomly
selected nodes in the network to achieve load balancing.

Type Data Size (KB) Execution Time (ms)

Very small (VS) 0 - 1000 0 - 2000
Small (S) 1500 - 2500 2500 - 4500
Medium (M) 3000 - 4000 5000 - 7000
Large (L) 4500 - 5500 7500 - 9500

TABLE I. Data size and execution times defined for different
workload sizes used in the experiments.

We simulated two types of workloads as serverless comput-
ing and distributed computing to represent scenarios where
the use of edge computing is beneficial to optimize task
processing. For example, keeping computation close to the
data source has potential to greatly reduce task completion
time for Function-as-a-Service type workloads in which a
significant portion of turnaround time is spent during network
communication. Distributed computing workload represents
application scenarios where multiple tasks are created to
complete a job such as distributed/federated machine learning
training. We configured serverless computing jobs to submit
one task and distributed computing workload jobs to submit
three tasks. These two workloads were experimented on vary-
ing size of data transfers and execution time as shown in
Table I. We injected background traffic to the network using
Iperf to simulate network congestion. At any given time, one
or two Iperf transfers run between randomly selected nodes
for 30s or 60s duration. Thus, different regions of the network
becomes congested during the experiments. Although nodes to
run background traffic and submit tasks are selected randomly,
we used the same order when comparing different scheduling
algorithms to ensure fairness. Each experiment consists of 200
tasks and we present average results for each task type by
taking the average of all tasks in same category as listed in
Table I.

A. Delay-based Ranking

Figure 5 shows the comparison of scheduling algorithms for
serverless computing workload when network-aware schedul-
ing uses delay as a metric when ranking edge servers. We



Fig. 5: Serverless computing workload experiment using
delay-based node ranking for network-aware scheduling: Av-
erage task completion time (left), performance gain (right) for
very small (VS), small (S), medium (M) and large (L) tasks.

Fig. 6: Distributed computing workload experiment using
delay-based ranking for network-aware scheduling: Average
task completion time (left), performance gain (right) for very
small (VS), small (S), medium (M) and large (L) task types.

observe that the performance gain of network-aware sched-
uler over the nearest-node selection strategy ranges between
17 − 31% depending on the task size. The maximum gain is
achieved for very small workload which indicates that latency-
based task scheduling is most helpful when execution time
and data size is small. For distributed computing workload,
three nodes are selected to offload tasks. As can be seen
in Figure 6, network-aware scheduling again outperforms
nearest-node and random selection schemes. The performance
gain over the nearest-node scheduling ranges between 7−13%.
It is important to note that large tasks yields the lowest
performance gain for both types of workloads, which can be
attributed to the fact that network congestion affects smaller
workloads more than it affects larger ones.

B. Bandwidth-based Ranking

We also assessed the performance of gain of network-
aware scheduling for distributed computing workload when
available network bandwidth is used to sort candidate edge
servers. Since distributed computing jobs consist of three tasks,
the scheduler will sort the candidate edge servers based on
available bandwidth between edge devices and edge servers.
Note that even though both latency-based and bandwidth-
based node selection is positively correlated with amount of
traffic on network devices, latency based selection is likely to
select lightly congested nearby nodes over uncongested distant

Fig. 7: Average execution times (left) and performance gain
(right) for data transfers in distributed computing workload
experiment using bandwidth-based ranking for network-aware
scheduling.

Fig. 8: Empirical cumulative distribution function of the
number of tasks executed according to the performance gain
observed in task completion time.
nodes to keep transmission delay as small as possible. On
the other hand, bandwidth-based selection can prefer remote
nodes as long as the available network bandwidth from end
device to remote edge servers is higher compared to nearby
edge servers. Figure 7 presents the performance of scheduling
algorithms in terms of time taken for each workload to transfer
data from end device to edge server. We see that transfer time
can be reduced by 28−40% with the help of bandwidth-based
tasks scheduling. In terms of task completion time, 22− 35%
reduction is observed with the highest reduction observed
for very small workloads4. Although the highest performance
gain is still observed for small tasks, transfer times decreased
considerably (nearly 30%) for large workloads as well.

Figure 8 demonstrates the distribution of performance gain
for task completion compared to nearest-node selection strat-
egy. We observe that 19% of tasks for distributed computing
workload when using bandwidth-based ranking and 38% of
tasks when using delay-based ranking experience zero or
negative gain when network-aware scheduling is employed.
This is mainly because of measurement jitter that causes
the network-aware scheduler to make suboptimal decisions
especially when network is lightly congested. Specifically,
probing packets can detect small queue build up in network
devices even when network congestion is negligible, causing
de-prioritization of nearest nodes. On the other hand, more
than 60% of distributed computing tasks experience 20% or
higher reduction in execution time when using network-aware
scheduling with bandwidth-based ranking. Similar 20% or

4Figures for task completion times are not presented due to space limita-
tions.



higher decrease in task execution time is observed for 40%
and 20% of tasks in serverless and distributed workloads when
using delay-based ranking is used. Even further, 10 − 20%
of all tasks achieves more than 60% smaller execution times
using network-aware scheduling.

C. Impact of Probing Frequency

In this section, we assess the impact of probing frequency
on the performance of network-aware scheduling. Specifically,
we evaluate the interval between probing packets that are used
to gather INT data from switches. Note that this does not affect
how INT is collected at the switches but rather changes how
often the scheduler receives updates from network devices.
Our hypothesis is that higher probing frequency has a better
chance to detect dynamic changes in the network, thereby
paving the way for better performance. We choose five probing
intervals to evaluate as 0.1s (the default value), 5s, 10s, 20s,
and 30s (typical SNMP monitoring interval).

We use distributed workload and run experiments under two
different scenarios. In the first scenario, we use a medium
workload size and injected background traffic, Traffic 1, that
changes less frequently. For the second scenario, we use a
small workload size and inject background traffic, Traffic 2,
that changes more frequently. In Traffic 1 experiments, we
run three Iperf transfers between randomly selected nodes
for 30 seconds followed by 30 second sleep. Transfers started
with 10 seconds gap in between to ensure that the degree of
background changes over time. In Traffic 2 case, we again run
three transfers between randomly selected nodes, but this time
transfer duration is 5 seconds followed by 5 seconds of sleep
to emulate more dynamic background traffic conditions.

Fig. 9: Impact of probing period on average data transfer
time under infrequent (Traffic 1) and frequent (Traffic 2)
background traffic fluctuation scenarios.

The results as given in Figure 9 show that low prob-
ing intervals lead to lower overall transfer times for both
background traffic scenarios, indicating that higher probing
frequency increases the likelihood of capturing the subtle
changes in the network. As an example, while it takes 12.5s
to finish transfers when probing interval is 0.1s, it increases
to over 15s when 30s probing interval is used, over 20%
difference. This outcome further bolsters our motivation to
use In-band Network Telemetry over less frequent and coarse-
grained network measurement approaches such as SNMP and
NetFlow to gather telemetry data.

V. RELATED WORK

Task Scheduling in Edge Computing: Task scheduling
plays a critical role in the performance of edge computing
as suboptimal scheduling decision could cause significant
performance degradation due to increased communication and
computation times. Rashidi et al. [20] proposed an adaptive
neuro-fuzzy inference system to predict the availability of
network and compute resources for task scheduling in edge
computing. Li et al. [21] observed that caching on edge
servers can significantly improve the performance of latency-
sensitive tasks, thus they proposed a cache-aware task schedul-
ing method that increases performance of scheduled tasks in
terms of cache-hit ratio, data locality, task response time, etc.
Jalaparti et al. [22] has proposed Corral that makes use of
characteristics of future workloads to implement scheduling
in clustered environment. Cziva et al. [23] adopted optimal
stopping theory and integer linear programming to perform
latency-optimal allocation of edge resources. Chen et al. [24]
adopted a game theoretic approach for achieving efficient
computation offloading in a distributed manner in mobile-
edge cloud computing environment. Zhao et al. [25] have
introduced a cooperative scheduling scheme between the edge
and internet cloud to improve the quality of service of mobile
cloud computing. Alfakih et al. [26] applied reinforcement
learning to optimize task scheduling in mobile edge computing
for reduced power consumption.

In-band Network Telemetry: In-band Network Telemetry
(INT) allows packet-level network monitoring at line rate.
Typical implementation of INT involves capturing and saving
status of network devices (e.g., ingress/egress queue size) in
packet headers which is then extracted the at the end hosts
(or last P4-capable network device) for analysis. Yuliang et
al. [15] used INT to build High Performance Congestion
Control (HPCC) that improves flow completion times by 95%.
Lim et al. [27] showed that INT can be used to improve
network load balancing by detecting congestion events quickly
and precisely. Pelle et al. [28] proposed telemetry-driven
serverless architecture for latency-sensitive edge computing.
Despite its benefits, collecting INT data comes at the cost of
increased storage cost for network packets since the amount
of space needed to store INT data grows quickly as most
packets travel through many network devices before reaching
to destination. To address this problem, Basat et al. [16]
proposed Probabilistic In-band Network Telemetry (PINT) to
reduce the number of INT fields to store in each packet while
achieving high-accuracy measurements . Vestin et al. [29]
designed a programmable event detector for INT which reports
only selected event information to the monitoring system to
reduce the overhead of INT data collection. Similarly Kim
et al. [30] showed that selectively monitoring a certain ratio
of packets based on the frequency of changes in the network
information can significantly reduce the network overhead and
monitoring engine load.



VI. CONCLUSION AND FUTURE WORK

In-band Network Telemetry (INT) provides a mechanism
to extract high precision network telemetry directly from
the data plane at the line rate. This information provides
crucial insight into network conditions with high accuracy.
In this paper, we propose a network-aware scheduler for
edge computing scheduling that leverages INT to gather high-
precision network telemetry and incorporates it into edge
server selection algorithm. We introduced a novel INT data
collection scheme that requires no INT data to be embedded
to production traffic packets. We rather save and update INT
data in network device registers and periodically collect them
using custom probing packets. The experimental results using
various workload scenarios show that network-aware task
scheduling leads up to 40% reduction in average transfer times
and up to 30% reduction in average task completion times.

As a future work, we will extend the network-aware sched-
uler with compute-aware scheduler to take the availability
of compute nodes into account when choosing edge servers.
We will also consider heterogeneous edge server scenario in
which tasks may have certain hardware (e.g., GPU) or software
(e.g., Keras) requirements that needs to be considered when
scheduling tasks to edge servers. Moreover, we will investigate
the possibility of using network devices to store link utilization
and transmission delay information such that end devices do
not have to communicate to a central controller receive a
response to their scheduling requests.
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