

1

Graphene oxide nanocomposite hydrogel beads for removal of selenium in contaminated water

4

5 *Pasan Chinthana Bandara, [†]Jem Valerie D. Perez, [†]Enrico Tapire Nadres, [†]Raj Gopal*

6 *Nannapaneni, [†]Konrad J. Krakowiak[†] and Debora Frigi Rodrigues^{†,*}*

7

⁸ [†]Department of Civil and Environmental Engineering, University of Houston, Houston, TX

9 77204-4003. Email: dfrigirodrigues@uh.edu

10

11

12

13

14

15 **ABSTRACT**

16 Selenium in water is becoming of increasing risk to human exposure, because only recently
17 serious health effects have been associated to their presence in water resources. The present
18 study investigated the development and optimization of the composition of graphene oxide
19 polymeric nanocomposite hydrogel beads using response surface methodology. The use of
20 polymers such as chitosan and polyethyleneimine, which are rich in amine and alcoholic
21 functional groups, provided enhanced removal of anionic selenium species from the water.
22 Experimentally validated polymeric beads were used to perform batch adsorptions of selenium
23 under different conditions such as pH, bead dosage, and diverse selenium concentrations to
24 investigate their potential use, adsorption kinetics, and selenium removal mechanisms. Acidic
25 conditions were found to best remove negatively charged selenium ions from aqueous solutions
26 via -OH, -COOH, and amine functional groups present in the beads. The adsorption kinetic
27 mechanism was better described by the pseudo-second order adsorption kinetic, indicating that
28 the beads remove selenium via chemisorption mechanisms. The isotherm studies showed an
29 adsorption capacity of 1.62 mg/g based on the Langmuir isotherms at 25 °C. Regeneration
30 studies showed loss of available adsorption sites after the first desorption treatment with different
31 concentrations of NaOH and HCl. The mathematically optimized nanocomposite was further
32 used to treat selenium spiked in real environmental water samples, which confirmed that the best
33 removal of selenium occurs in acidic conditions.

34 Keywords - Selenium, response surface methodology, hydrogel beads, nanocomposites,
35 graphene oxide

36

37 **1. INTRODUCTION**

38 In recent studies, graphene oxide (GO) has shown a great potential for incorporation in
39 polymeric materials to develop a more stable, efficient, and effective, multi-functional class of
40 polymer nanocomposites for various water related applications.¹⁻⁵ This advancement has several
41 advantages rather than using a singular material, such as enhanced adsorption capacity, widened
42 selectivity of contaminants and more importantly, the increased potential for large-scale
43 fabrication.⁶⁻⁷ The main goal of this investigation was to optimize the composition of chitosan-
44 polyethyleneimine-graphene oxide (CS-PEI-GO) hydrogel beads for enhanced removal of
45 selenium through surface adsorption mechanisms.

46 Chitosan (CS) is an abundant biopolymer produced from chitin, which is obtained from
47 the shells of shrimp. Its composition can be expressed as poly(b-1-4)-2-amino-2-deoxy-D-
48 glucopyranose, with the repeating unit including glucosamine subunits and amine functional
49 groups.⁸ CS has attracted much attention as it is known to possess efficient adsorption
50 capabilities due to the presence of amino and hydroxyl functional groups.⁹⁻¹¹ These amine groups
51 can uptake negatively charged ions via electrostatic attractions.^{1, 11} Chitosan is hydrophilic and
52 dissolves in slightly acidic solutions (pH<6.5). At pH values below 6.5, amine functional groups
53 get protonated easily to accompany metal removal. However, CS itself lacks structural strength;
54 therefore, making it unsuitable to be used as it is in water related applications. Therefore, CS is
55 often incorporated with matrices of other materials, such as GO, other polymers or crosslinking
56 agents, which assist in providing structural stability.^{1,12} CS has shown to remove heavy metals
57 such as chromium, copper, and lead in previous studies.^{1, 8, 10, 13-14}

58 Polyethyleneimine (PEI) is a synthetic polycation, which is formed using polymerization
59 of iminoethylene monomers. PEI is a rich source of primary, secondary and tertiary amines, low
60 in toxicity and odorless, which paves the way for its wide applications. In this study, PEI is used
61 as subordinate polymeric material alongside with CS as the crosslinking process to prepare the
62 polymer beads consumes some of the amine groups found on CS, hence reducing its adsorption
63 capacity. PEI not only accounts for the loss of amine groups during the crosslinking process, but
64 also brings in enhanced removal capacities.¹⁵⁻¹⁷

65 In this work, beads containing CS-PEI-GO were developed to be employed in batch or in
66 packed bed columns for water treatment approaches. The selection of the amount of each
67 polymer and nanomaterial in the composition of the nanocomposite beads was mathematically
68 modelled using the Box-Behnken Design (BBD) within the response surface methodology. In the
69 present investigation, BBD was employed due to its flexibility in providing better and sufficient
70 understanding about a system that has limited number of independent factors and a single
71 response factor.¹ The beads produced were investigated for the removal of Selenium.

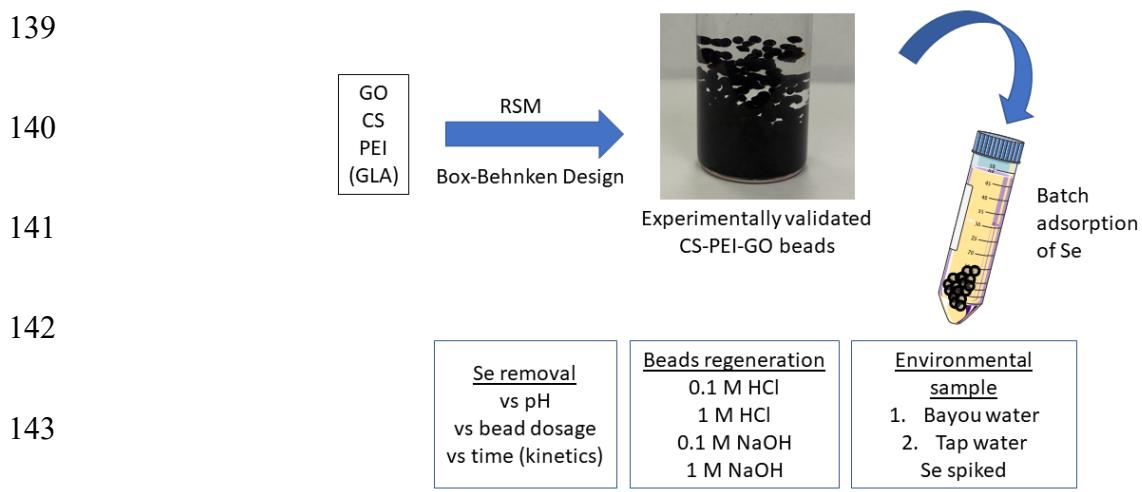
72 In the last decades, increasing interest has been growing for addressing selenium (Se)
73 contamination. Selenium exists naturally in soils in various polymorphs. Selenate, Se(VI), is the
74 most soluble of them all, followed by selenite, Se(IV).¹⁸⁻²⁰ Apart from being a natural
75 contaminant like arsenic, there are studies showing excessive selenium concentrations measured
76 in close proximity to oil-gas wells.^{18, 21-22} Several studies from places over the globe, such as
77 lower Arkansas river valley in Colorado, USA²³, San Joaquin Valley in California,
78 USA,(Biogeo) Amman Zarqa basin in Jordan²⁴, northern Italy²⁵⁻²⁶, southwestern Nigeria²³ and
79 Hokkaido, Japan²⁷⁻²⁸ suggest that industrial activities, such as mining, road development

80 projects, and petrochemical processes have a strong impact on exceeding safety levels of Se in
81 water bodies.^{18, 22, 27-31}

82 Selenium is regulated under the national drinking water standards, at maximum
83 contaminant level (MCL) and maximum contaminant level goal (MCLG) values of 0.05 ppm, for
84 being known to cause hair or fingernail loss, numbness in fingers or toes and circulatory
85 problems.²⁹ It has also been associated with reproductive irregularities, juvenile mortalities,
86 physical impairments in aquatic species, and livestock.^{18, 32-35} EPA identifies petroleum and
87 metal refineries, as well as leaching out of natural deposits, as major sources of increasing
88 selenium contamination. However, chronic effects of selenium on human health has been an
89 understudied field.^{21, 33, 35-36} Initial studies have shown that selenium can be a potential human
90 carcinogenic and present teratogenic species, however very few studies have investigated the
91 removal of such contaminant though the literature describes the adsorbents such as metal-
92 organic framework-based materials, magnetite-based nanomaterials, carbonaceous nanomaterials
93 and polymer-based nanomaterials for selenium adsorption from contaminated waters.³⁷⁻⁴¹
94 Therefore, approaches to remove such emerging contaminant is still in great need, which led us
95 to develop a novel polymer nanocomposite bead for the removal of selenium. In this work, we
96 investigated a novel approach to remove selenium from water using graphene oxide-based
97 nanocomposite hydrogel beads as recent studies shows the potential of such assemblies for water
98 related applications such as water treatment and contaminant removal.^{1, 42-46}

99 **2. EXPERIMENTAL SECTION**

100 **2.1 Materials and methods.** The following chemical grade reagents were used in the synthesis
101 and processing: graphite (<45µm), chitosan (low molecular weight), polyethyleneimine (50%


102 (wt/wt%) in water, avg. MW 750,000), glutaraldehyde (25% (wt/wt%) in water), selenous acid
103 (H_2SeO_3 , 97.0% assay) for Se solutions, sodium hydroxide (NaOH, ACS reagent, \geq 97% assay,
104 pellets), nitric acid (HNO_3 , ACS reagent, 70% assay), and hydrochloric acid (HCl, ACS reagent,
105 37% assay). They were all purchased from Sigma Aldrich. The modified Hummer's method was
106 employed to synthesize GO used in the processing of the bead.^{1, 47} The details on GO
107 characterization can be found in our previous publication.⁴⁸ All the solutions were prepared using
108 deionized (DI) water unless specified otherwise.⁴⁹

109 **2.2 Preparation of working solutions.** For the synthesis of the CS-PEI-GO mixtures, stock
110 solutions of 4% CS solution was prepared by dissolving 4 g of CS in 96 g of 2% HCl prepared in
111 DI water. A concentration of 30% PEI was prepared by dissolving 60 g of 50% PEI in 40 g of
112 2% HCl, and 5000 ppm GO was prepared in DI water and sonicated for 15 min. Different
113 working mixtures, as described in the ESI table S1, were prepared by using these stock solutions.
114 A stock solution of 500 ppm concentration of Se(IV) was prepared using H_2SeO_3 in DI water to
115 be used for the batch adsorption at the desired concentrations as described below. For the
116 dynamic contact experiments involved in the optimization step, the pH of selenium solutions was
117 not adjusted. For the kinetic experiments, pH was adjusted to the optimum pH identified in the
118 section 2.8 described below.

119 **2.3 Experimental design using RSM.** The statistical design software Design Expert 11.0 from
120 Stat-Ease Inc. (Minneapolis, USA) was used to develop the mixture design. In this design, four
121 variables (X_i), namely PEI composition (X_1), GO composition (X_2), and GLA composition (X_3)
122 were used as independent factors to create 15 design points based on a single response variable
123 (Y_i): Se % removal (Y_1) using a three-level Box-Behnken Design.¹ Independent experimental
124 variables and their factor levels are provided in the electronic supporting information (ESI) table

125 S1. The selection of the independent variables were pre-determined based on preliminary, studies
126 which demonstrated successful and efficient synthesis of the beads.^{1, 48}

127 **2.4 Preparation of nanocomposite beads.** Overall summary of the preparation and
128 characterization is presented in Figure 1. CS-PEI-GO beads were prepared according to
129 compositions described in ESI table S2. Required weights of CS, GO and PEI stock solutions
130 were mixed in glass vials overnight. The homogenized CS-PEI-GO solution was placed in a 10
131 mL syringe with 23G needle and fixed to a syringe pump with a 1 mL/min feed rate and dropped
132 onto a 1.5 M NaOH solution. The NaOH solution was stirred at 150 rpm to avoid the aggregation
133 of beads. At the end of this step, beads were separated from the NaOH solution, and washed with
134 DI water to remove basicity. The washing continued several times until the pH of the washings
135 became neutral. Next, the beads were cross-linked for 30 min with the required concentration of
136 GLA solution for each design point as mentioned in ESI table S1. Beads were washed again with
137 DI water to remove excess GLA. Finally, they were stored in DI water until used for the batch
138 adsorption and characterization.

Figure 1: Preparation and characterization of Graphene oxide nanocomposite hydrogel beads, as well as analyzes performed on the beads.

145 **2.5 Selenium removal experiments.** Batch adsorption of 20 mL aliquots of 10 ppm Se solutions
146 with 0.5 g of beads was carried out at 25 °C temperature for 24 h. Batches were shaken at 150
147 rpm to allow maximum contact between beads and the solution and to avoid settling down of the
148 beads. After the adsorption reached equilibrium, the supernatant was collected and filtered with
149 0.2 µm polyethersulfone (PES) syringe filters (25 cm diameter) to remove any leftover beads.
150 Samples were diluted in 2% nitric acid and analysed with Thermo Scientific icap RQ inductively
151 coupled plasma mass spectrometry (ICP-MS) to quantify the selenium concentration in the
152 samples. The eq 1 was used to calculate the percentage Se removal.

$$\% \text{ Se Removal} = \frac{\text{Initial conc.} - \text{Final conc.}}{\text{Initial conc.}} \times 100\% \quad (1)$$

153
154 **2.6 Modelling analysis for composition optimization of the beads.** The Design Expert
155 software 11.0 was used to carry out the modelling analysis for percentage Se removals.
156 Experimental data were fitted into a general quadratic equation,

$$Y_i = \beta_0 + \sum_{i=1}^n \beta_i x_i + \sum_{i=1}^{n-1} \sum_{j=i+1}^n \beta_{ij} x_i x_j + \sum_{i=1}^n \beta_{ii} x_i^2 \quad (2)$$

158 where β_0 , β_i , β_{ij} , and β_{ii} are the coefficients for offset, linear effect, interaction effect, and
159 quadratic effect, respectively. Analysis of variance (ANOVA) technique was used to assess the
160 significance of each model term and overall models, which was later subjected to statistical
161 analysis, surface analysis, and numerical optimization in order to identify an optimized solution
162 for the bead composition. The final CS-PEI-GO bead composition was synthesized based on the
163 suggested optimum concentrations for each component as determined by the model. Then, the Se

164 removal experiments were performed in order to experimentally validate the suggested optimum
165 solution from the RSM model. Beads containing CS only, CS-PEI only and CS-GO only beads
166 were used as negative controls for the validation experiments. CS, PEI and GO concentrations in
167 the negative controls were the same as the mathematically optimized solution from RSM. GLA
168 concentration was used to crosslink all the negative control beads in a similar fashion as the CS-
169 PEI-GO optimum composite. Experimentally validated beads were characterized and further
170 analyzed for their removal trends, adsorption kinetics, and regeneration.

171 **2.7 Characterization of mathematically optimized beads.** Successful synthesis and functional
172 properties of optimized and validated beads were investigated using scanning electron
173 microscopy (SEM), X-ray powder diffraction (XRD), attenuated total reflectance - infrared
174 (ATR-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Bead samples were freeze
175 dried for 12 h and grounded prior to ATR-IR and XPS analyses, using a FreeZone Plus 4.5 Liter
176 cascade benchtop freeze-drier system at a collector temperature of -84 °C. Freeze-dried beads
177 were attached to carbon double tape and coated with a thin gold layer using a Desk V sputter
178 (Denton Vacuum) prior to the SEM analysis. A Jeol JSM-6010LA (Jeol, Peabody, MA)
179 analytical scanning electron microscope was used to obtain the SEM images of the coated beads.
180 The X-ray diffraction pattern of CS-PEI-GO was obtained using a Rigaku MiniFlex600 benchtop
181 X-ray diffractometer with Cu source. Micromeritics 3Flex Brunauer–Emmett–Teller (BET)
182 instrument was used to obtain N₂ adsorption/desorption isotherms on the freeze-dried beads.
183 Prior to the measurements, all samples were degassed under vacuum at 120 °C for 5 h. Obtained
184 data were used to estimate BET⁵⁰ specific surface area (SSA) and Barrett-Joyner-Halenda
185 (BJH)⁵¹ pore size distribution. ATR-IR samples were collected using a Nicolet iS10 Mid Infrared
186 FTIR Spectrometer (Thermo Fisher Scientific, USA) under air as the background. Omnic 8

187 Software (Thermo Fisher Scientific, USA) was employed to process the acquired raw spectra and
188 prominent peaks were identified. XPS spectra were acquired using a PHI 5700 X-ray
189 photoelectron spectrometer as low- and high-resolution scans were done at pass energies of 23.5
190 and 187.8 eV respectively. Raw spectra were further processed using the MultiPak V7.0.1
191 (ULVAC-PHI, Inc.) and Origin Pro8.5 (OriginLab, Northampton, MA) packages.

192 **2.8 Role of pH and bead dosage on Selenium removal.** Optimized beads were used to perform
193 adsorption experiments by varying pH to identify the removal trends. Se solutions containing 10
194 ppm concentrations had the pH adjusted by adding 0.1 M HCl and 0.1 M NaOH to obtain Se
195 solutions with pH ranging from 3 to 8. Masses of the beads before and after the adsorption were
196 measured to assess the stability and recovery of the beads when exposed to the selected pH
197 ranges. An optimum pH was selected, based on significant Se removals to perform adsorption
198 experiments with varying bead dosage from 20 to 40 g/L. Treated samples were analysed with
199 ICP-MS and used to calculate the percentage removals and adsorption capacity. The best pH and
200 bead dosage based on the higher removal and adsorption capacity were used to carry out the
201 subsequent experiments.

202 Furthermore, the zeta potential of the beads over various pH values was investigated to
203 understand the potential Se removal mechanisms via electrostatic attractions. Firstly, 100 mg of
204 freeze-dried optimized CS-PEI-GO beads were ground into a fine powder and dispersed in 100
205 ml of DI water. Then the suspension was bath-sonicated for 6 h and stirred for 16 h at 150 rpm.
206 The suspension was allowed to settle for 16 h, after which, the supernatant containing suspended
207 bead particles was collected and then divided into several vials. The pH of each vial was adjusted
208 to pH 3-12 using 0.1 M HCl or NaOH and analysed using a Malvern ZEN 5600 Zetasizer.

209 Polystyrene vials with the refractive index of 1.59 was used in this analysis. All the experiments
210 were done at the room temperature of 22 °C.

211 **2.9 Kinetics of Se removal using the optimized beads.** To understand the adsorption kinetics of
212 the optimized CS-PEI-GO beads, adsorption measurements were carried out at 25 °C. These
213 studies were performed with initial Se concentrations of 2, 10 and 20 ppm. Samples were
214 collected at time intervals from 0 to 24 hours. Pseudo-first order and pseudo-second order
215 models were evaluated to fit the obtained adsorption data to understand its characteristics.
216 Pseudo-first order model is expressed in a linear form as,

217
$$\ln(q_t - q_e) = \ln(q_e) - k_1 t \quad (3)$$

218 where q_e and q_t are the amount of Se adsorbed per mass of adsorbent at equilibrium and at any
219 time – t respectively, and k_1 is the first order rate constant.⁵²⁻⁵³ Plots of $\ln(q_e-q_t)$ vs time were
220 developed for each data set.

221 The slope and intercept were used to evaluate theoretical values of q_t and k_1 . Similarly, pseudo-
222 second order kinetic model is expressed in a linear form as,

223
$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{k_2} \quad (4)$$

224 where k_2 is the second order rate constant.⁵³⁻⁵⁵ Plots of t/q_t vs time were developed for each
225 adsorption data set and the slope and intercept were used to evaluate theoretical values of q_t and
226 k_2 . The kinetic model best describing the adsorption data was determined based on the goodness
227 of fit, R^2 . The agreement of theoretical and experimental q_e values was determined based on two
228 tailed t-test at $\alpha=0.05$.

229 **2.10 Adsorption isotherm studies for Se removal using the optimized beads.** Adsorption
230 isotherms corresponding to the initial Se concentrations of 5 to 250 ppm at 25 °C were obtained
231 for the CS-PEI-GO beads. Similarly, adsorption experiments were done at 150 rpm for 24 hours
232 and the initial pH of the samples and bead dosage were adjusted based on earlier findings.
233 Obtained data were tested against the non-linear forms of Langmuir and Freundlich isotherm
234 models, which are described below.

235 The non-linear form of Langmuir isotherm model is given by,

236 where, b (L/g) is the Langmuir equilibrium constant and Q_m is the monolayer saturation

$$Q_e = \frac{Q_m b C_e}{1 + b C_e} \quad (5)$$

237 capacity.^{53, 55} Also, the linear form of the Freundlich isotherm model is given by,

$$Q_e = K_F C_e^{1/n} \quad (6)$$

239 where, K_F (L/g) is the Freundlich constant and $1/n$ is the sorption intensity.^{53, 55-56}

240 **2.11 Regeneration of optimized beads.** Regeneration of the beads was determined using the
241 following desorption agents: 0.1 M HCl, 1 M HCl, 0.1 M NaOH, 1 M NaOH. First, the beads
242 were used to perform adsorption experiment for 24 h at 25 °C with 10 ppm Se. Afterwards, used
243 CS-PEI-GO beads were separated from the supernatant and were thoroughly washed with DI
244 water in order to remove excess Se that did not get adsorbed. Then, the washed beads were
245 added to 20 mL aliquots of different desorption agents and allowed to desorb at 150 rpm for 24 h
246 at 25 °C. Treated beads were separated from the supernatant, and thoroughly washed with DI
247 water to remove unused desorption agents. For the beads treated with HCl solutions, an
248 additional treatment with 10 mL of 0.1 M NaOH for 45 min was performed in the beads in order

249 to deprotonate the amine groups on the surface. Later, they were washed thoroughly with excess
250 DI water until the pH of the water was neutral. Washed beads were cyclically reused. In total, 4
251 cycles of adsorption-desorption experiments were done. Samples were collected at the end of
252 each adsorption or desorption cycle and % adsorption and % desorption were calculated using
253 the eq 7 and 8 respectively.

254
$$\% \text{ Adsorption} = \frac{C_i - C_e}{C_i} \times 100 \quad (7)$$

255
$$\% \text{ Desorption} = \frac{C_d}{C_i - C_e} \times 100\% \quad (8)$$

256 Here, C_i , C_e , and C_d are the measured concentrations of selenium in the supernatant before the
257 adsorption, after the adsorption, and after the desorption, respectively.

258 **2.12 Application of beads with environmental samples spiked with Se.** Bayou water and tap
259 water samples were collected, characterized, and spiked with 10 ppm Se for adsorption
260 experiments to understand the behaviour of the beads, when applied in a real environmental
261 water with different chemistries. Bayou water sample was collected from the Brays Bayou
262 Greenway Trail, Houston, TX at the coordinates of 29.702314, -95.404883. The tap water
263 sample was collected from the drinking water fountain in the Engineering Building 2, at the
264 University of Houston, Houston TX. Both samples were collected in the spring when weather
265 conditions were normal and free of overnight rains. Conductivity of the bayou water sample was
266 700 $\mu\text{s}/\text{cm}$ with turbidity of 5.1 NTU and a pH of 7.4. Conductivity of the tap water sample was
267 370 $\mu\text{s}/\text{cm}$ with turbidity of 0.3 NTU and a pH of 7.8. None of the samples contained detectable
268 amounts of Se. The water samples were adjusted to the optimum pH for Se removal as
269 determined earlier.

270 **3. RESULTS AND DISCUSSION**

271 **3.1 Mathematical optimization of the model.** The hydrogel bead composition was optimized
272 using the Design expert software. The mixture design was prepared using the concentrations
273 suggested by BBD. This method provides adequate flexibility to investigate the behavior of the
274 three-factor system.¹ The design can be thought as a cube of which vertices, middle points of the
275 edges and center point of the cube represent different combinations of the bead composition.¹
276 Obtained results from the batch adsorptions were fitted into the eq 2 to develop the initial model
277 in the form of the quadratic equation. The resulting 2nd order equation for Se removal is
278 presented as follows.

279
$$Y_i = 61 + 3.0X_1 + 2.5X_2 + 5.5X_3 - 1.8X_1X_2 - 2.0X_1X_3 + 0.5X_2X_3 + 8.5X_1^2 + 2.2X_2^2 - 2.0X_3^2 \quad (9)$$

280 ANOVA technique was employed to investigate the significance of each term in the
281 unmodified model equation, based on the *p*-values. The original quadratic model gave an *F*-
282 value of 6.43 and a *p*-value of 0.03 indicating that the model was significant. The model showed
283 a *R*² of 0.92, which indicates the agreement between the actual and predicted responses as shown
284 in the ESI figure S1a with no outliers present.^{1, 57} As shown in the ESI figure S1b the residuals
285 were distributed within a very narrow range, indicating that there were no outliers present,
286 compared to the set limit of ± 3 standard deviations as indicated by the red horizontal lines. In
287 summary, the diagnostic analysis showed that the obtained model is adequate for predicting Se
288 removals effectively.

289 To improve the model, the non-significant terms were excluded from the original model
290 by employing the backward calculation method. In this method, terms with *p*-values > 0.05 were
291 removed from the model until a better-modified model equation was obtained. The new model is

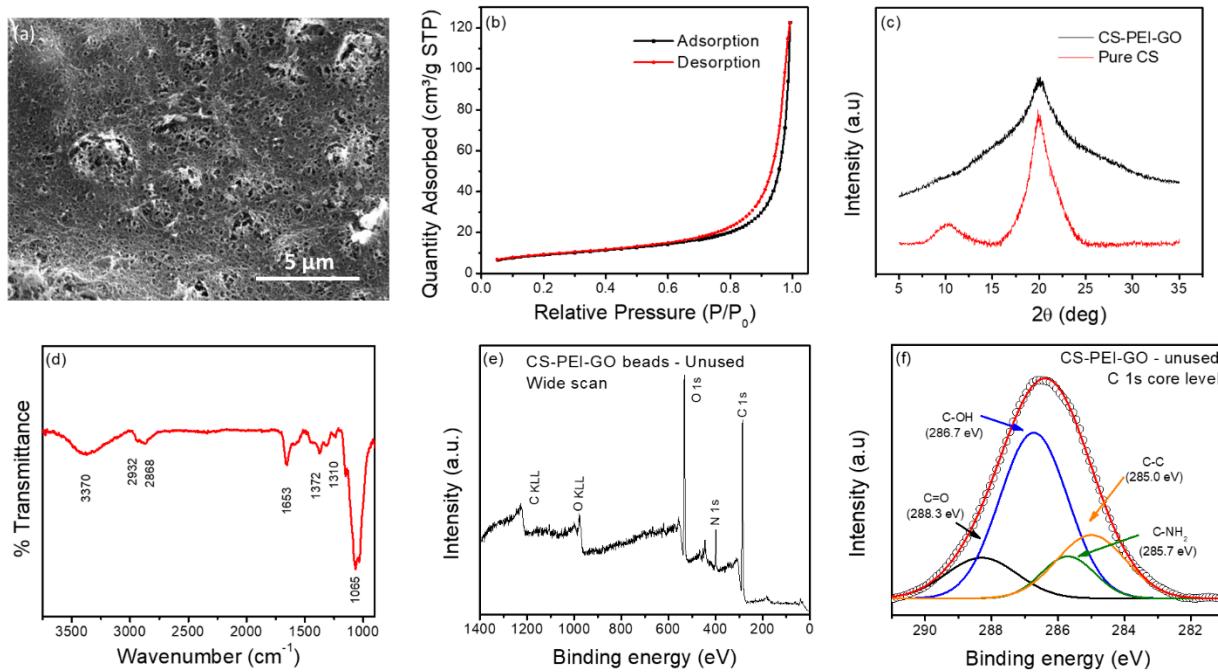
292 given by the eq 10. Surface plots were used for the additional analysis of the model parameters
293 as shown in ESI figure S2. They provide a platform to investigate the individual and combined
294 effects of independent variables on the Se removal.

295
$$Y_i = 61 + 3.0X_1 + 2.5X_2 + 5.5X_3 - 8.5X_1^2 \quad (10)$$

296 Figure S2 illustrates three surface plots for combinations of two independent variables for
297 % Se removals; while the third independent variable is fixed at the highest level. In summary, the
298 highest removals of Se was recorded in the region where all factors were at their highest range.
299 This indicates that all the three independent factors did show a positive influence on the Se
300 removal.

301 **3.2 Experimental validation of mathematically optimized beads.** An optimized solution for
302 the amounts of GO, PEI and GLA were selected based on the desirability function, which was
303 used as the objective function of the optimization as follows.

304
$$d_i(\text{desirability}) = \frac{(\text{calculated } y_i - \text{minimum } y_i)}{(\text{maximum } y_i - \text{minimum } y_i)} \quad (11)$$


305 As the goal for the numerical optimization, Se removal was subjected to maximization. The
306 obtained solution with the highest desirability function was selected for the experimental
307 validation. Based on the optimization, the optimum bead composition for maximum Se removals
308 of $81 \pm 4\%$ was predicted to be 1500 ppm GO, 2.0% PEI crosslinked with 2.5% GLA. These
309 concentrations were used to synthesize beads as mentioned in the section 2.4, and Se removals
310 were quantified. Control beads containing CS only, CS-PEI only and CS-GO only were also
311 tested. ESI figure S3 shows the comparison of the optimized CS-PEI-GO beads experimentally
312 and determined by the model for Se removals, along with the control beads.

313 Two tailed t-test at $\alpha=0.05$ was performed to determine the statistical significance of the
314 results obtained. Calculated p value of 0.36 indicated that there is no significant difference
315 between the actual and the model predicted Se removals. Furthermore, the removal with CS-PEI-
316 GO beads were tested with four different batches of beads and compared to the predicted
317 removal. The results showed reproducibility of the bead preparation. Calculated p values of
318 0.0001 for the removals from CS-PEI-GO and CS-PEI only beads showed that the inclusion of
319 GO into beads presented a statistically significant enhancement of the Se removal. This
320 observation was further confirmed by the calculated p value of 0.0001 for the removals obtained
321 with CS-GO and CS beads compared to CS-PEI-GO, indicating a significant difference in the
322 obtained Se removals. Inclusion of GO showed enhanced selenium removals, which can be
323 understood as GO is a rich source of functional groups such as -OH and -COOH, which can be
324 protonated in acidic conditions leading to electrostatic attractions with the negatively charged Se
325 species present in the solution as well as the higher surface area provided for contaminant
326 adsorption.⁵⁸⁻⁵⁹

327 Following successful experimental validation, the beads were characterized and further
328 analyzed for trends in Se removal.

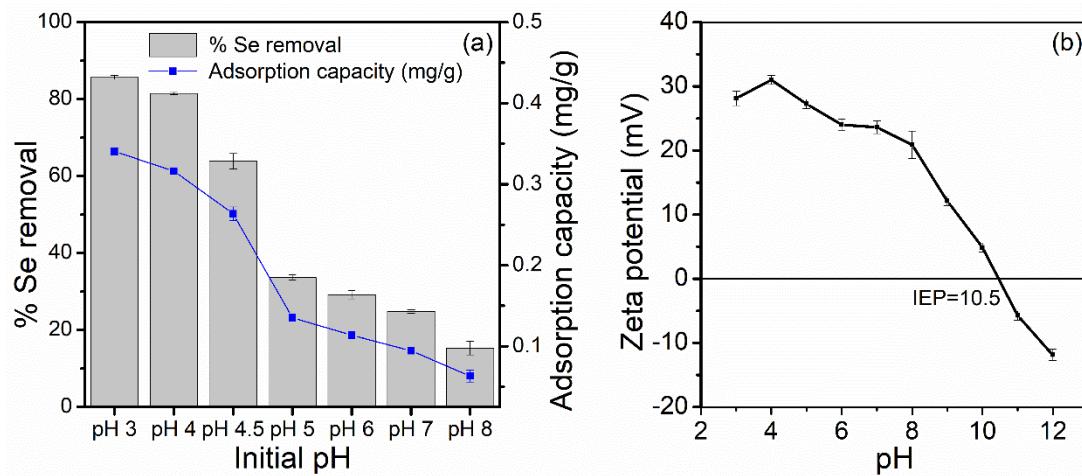
329

330 3.3 Characterization of optimized beads.

Figure 2. Detailed characterization of the optimized CS-PEI-GO nanocomposite beads: (a) SEM image showing the rough and porous surface of the CS-PEI-GO beads, (b) N_2 adsorption–desorption isotherms for optimized CS-PEI-GO beads, (c) XRD patterns of CS-PEI-GO and pure CS, (d) ATR-IR spectra of the CS-PEI-GO beads, XPS spectra showing (e) wide scan and (f) deconvolution of C1s core level.

331

332 The detailed characteristics of the optimized CS-PEI-GO beads are shown in the ESI
 333 figure S4a and figure 2. The SEM images of the beads showed the existence of a well-defined
 334 porous structure in the beads as given by figure 2a. N_2 adsorption–desorption isotherms obtained
 335 for CS-PEI-GO beads are shown in the figure 2b. Based on the IUPAC classification, the
 336 isotherm shape represents a type IV isotherm indicating the presence of a mesoporous structure
 337 with pore sizes between 2 and 50 nm.⁶⁰ BET standard plot was constructed for the p/p_0 range
 338 from 0.05 to 0.30 (ESI figure S4b). Based on the intercept and the slope, the estimated value of
 339 interaction constant was 101 and the monolayer adsorption capacity was estimated to be 3.24×10^7


340 ⁴ mol/g. BET specific surface area was calculated as 32 m²/g indicating the inclusion of GO
341 resulted in increased specific surface as compared to that of pure chitosan; therefore creating
342 more sites for Se adsorption.⁶¹⁻⁶³ The pore size distributions obtained based on the adsorption and
343 desorption isotherms are shown in the ESI figure S4c indicating availability of mesopores as
344 confirmed by the average BJH adsorption and desorption pore diameters of 27 nm and 25 nm.

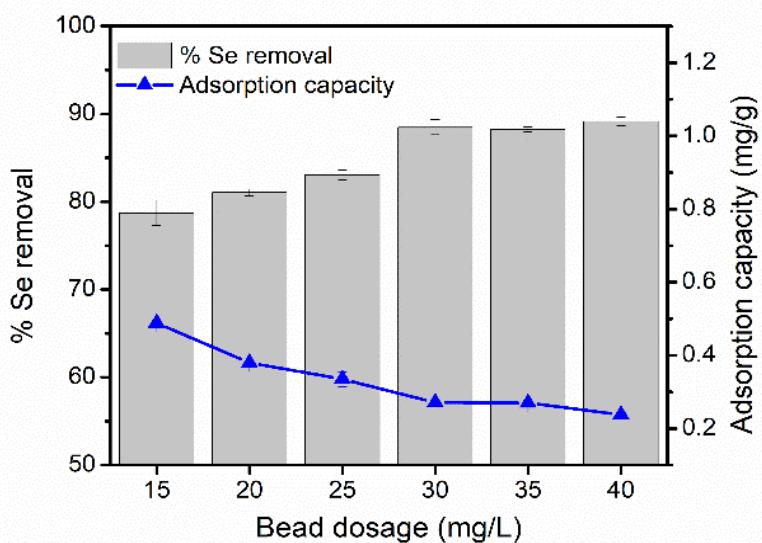
345 As shown in the figure 2c, XRD patterns of CS-PEI-GO exhibited the peak at $2\theta =$
346 20.03°. This peak was broader compared to the XRD pattern of pure CS, which showed two
347 peaks located at $2\theta = 10.33^\circ$ and 20.07° , indicating the decrease in crystallinity.⁶⁴⁻⁶⁵ Interactions
348 that took place between the various functional groups of CS-PEI-GO bead surface during the
349 bead synthesis resulted in change of crystallinity¹ due to the expansion of the polymer network.
350 Such expansion has shown to enhance the adsorption ability of the nanocomposites.^{13, 66}

351 The ATR-IR spectra for the CS-PEI-GO beads (figure 2d) showed clear peaks at 1065,
352 1310, 1372, 1653, 2868, 2932 and a broad peak at 3370 cm⁻¹. The peak at 1050 cm⁻¹ was
353 assigned to C-N bonds originated from the PEI⁶⁷ and the peak at 1310 cm⁻¹ was assigned to -CH₂
354 which originated from CS and PEI.^{16, 21} The peak at 1372 cm⁻¹ can be assigned to the C-N
355 stretching vibrations from PEI and CS. In the results, it appeared that the signals from the
356 primary amine groups may have overlapped with the peak at 1372 cm⁻¹.^{1, 68} Next, the peak at
357 1653 cm⁻¹ can be attributed to the carbonyl stretch of -NHCO- group, which originated from the
358 crosslinking of amine groups with GLA.^{1, 68} Two peaks at 2868 and 2932 cm⁻¹ were attributed to
359 the stretching vibrations from CH₂ and CH₃.⁶⁸ The broad peak at 3030-3600 cm⁻¹ can be assigned
360 to the OH from GO and CS or to the amine groups from CS and PEI.^{1, 68} In the wide scan of the
361 XPS of unused CS-PEI-GO beads (figure 2e), three major peaks can be identified at the binding
362 energies of 286, 399 and 533 eV, which are attributed to C 1s, N 1s, and O 1s.^{1, 13} The high-


363 resolution scan of the C1s core level of the CS-PEI-GO beads (figure 2f) showed the availability
 364 of -C-OH bonds and C=O with peaks at 286.7 and 288.3 eV, mainly resulting from the
 365 successful inclusion of GO.⁶⁹⁻⁷¹ Also, the peak at 285.7 eV assigned to C-NH₂ originated from
 366 the CS and PEI.^{1, 13} Therefore, the characterization of the CS-PEI-GO beads indicated the
 367 presence of functional groups that are useful in adsorption of negatively charged particles, such
 368 as the selenium species used in the experiments in this study.

369 **3.4 Selenium removal with pH and dosage.** The trends of % Se removal and respective
 370 adsorption capacity of the beads with initial pH of 3 to 8 at 10 ppm Se solution are illustrated in
 371 figure 3a.

Figure 3. (a) Percentage Se removal and adsorption capacity (mg/g) with the initial pH of the Se solution and (b) zeta potential of the beads with varying pH indicating the favorable adsorption of negatively charged Se species in lower pH values.


372 The pH of the solution played a significant role in the removal of selenium. The % Se
373 removal showed a significant drop with increasing pH values. On the other hand, increasing
374 acidity also showed much better removals suggesting that acidic conditions are more suitable for
375 Se uptake with the CS-PEI-GO beads. This can be understood as the dissolved selenious acid
376 equilibrates in the solution as it dissociates to form HSeO_3^- and H^+ making the solution acidic.

378 According to the above-mentioned dissociations, between pH 3.5 and 9.0, the HSeO_3^- ion
379 becomes more dominant as the ionic strength of the solution is high; therefore when the beads
380 are introduced to the Se solution, functional groups such as -OH and -COOH become protonated
381 leading to electrostatic attractions with the negatively charged Se species present in the
382 solution.⁵⁸⁻⁵⁹ The CS-PEI-GO nanocomposite beads have been previously shown to remove
383 Cr(VI) and Cu(II) in acidic conditions where electrostatic attractions are meant to be the main
384 mechanism of metal uptake.¹ Similarly, earlier studies have shown much better Se removals at
385 lower pH values with carbonaceous and non-carbonaceous materials indicating that Se removals
386 are typically favored by acidic conditions.^{55-56, 58} When the ionic selenium species concentration
387 in the solution get reduced due to the adsorption, pH increases as the equilibrium shift towards
388 the left in eq 12, resulting in decreasing ionic strength. Furthermore resulting OH^- competes with
389 the anionic selenium species for adsorption sites on the nanocomposite reducing the adsorption
390 efficiency.⁷²⁻⁷⁴ Based on the removals, pH 4 was selected to perform the subsequent experiments.

391 Zeta potential analysis of the optimized CS-PEI-GO beads over the pH range of 3-12
392 showed positive surface charge density of the adsorbent as shown in the figure 3b. Positive zeta

393 potencies were observed over a wide pH range, from acidic pH to the isoelectric point (IEP) of
394 10.5, indicating favorable conditions for formation of electrostatic attractions with anionic
395 species. The observed IEP is above the IEP of chitosan and agrees with the earlier studies that
396 has shown increments in IEP following the inclusion of PEI due to the large number of amine
397 groups present.⁷⁵⁻⁷⁶

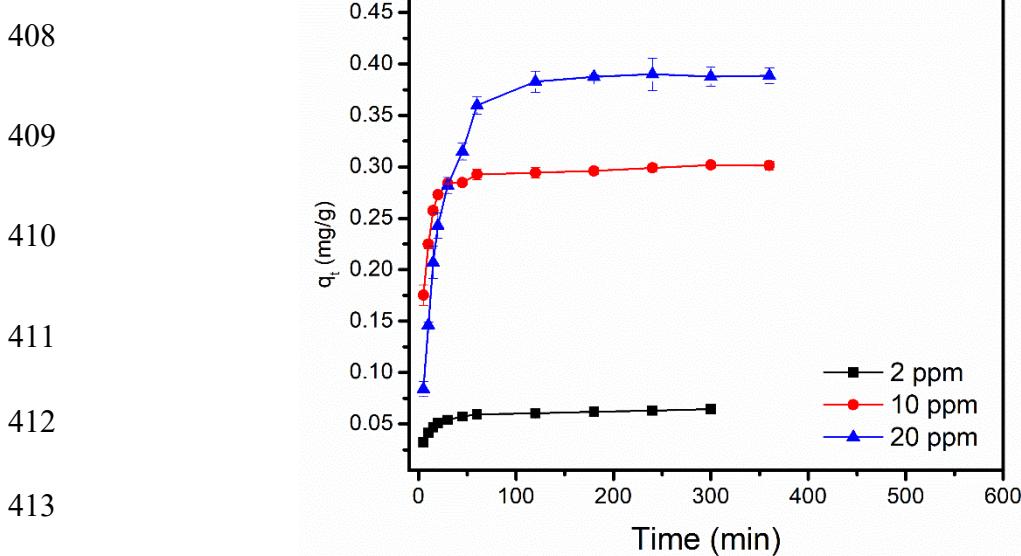


Figure 4. Percentage Se removal and adsorption capacity (mg/g) with bead dosage show a plateau in the percentage removals beyond 30 g/L bead dosage. This dosage was selected as the optimum dosage for the subsequent experiments.

398 The figure 4 shows the % Se removal with bead dosage. Bead dosages from 20- 40 g/L
399 were tested to identify the trends and bead dosage for the following experiments. A significant
400 increment in the % Se removal was shown with the increased bead dosage of 30g/L. Se removals
401 reached a plateau afterward, as suggested by the obtained *p*-values of 0.64 and 0.10 with the two
402 tailed *t*-test at $\alpha=0.05$ for the removals obtained with 30 g/L-35 g/L and 35g/L-40 g/L bead
403 dosages, respectively. The increasing bead dosage allowed increasing availability of the
404 functional groups for more adsorption; however, beyond the dosage of 30g/L the Se uptake did

405 not increase significantly. Therefore, the dosage of 30g/L was selected as the most suitable
406 dosage for the next experiments.

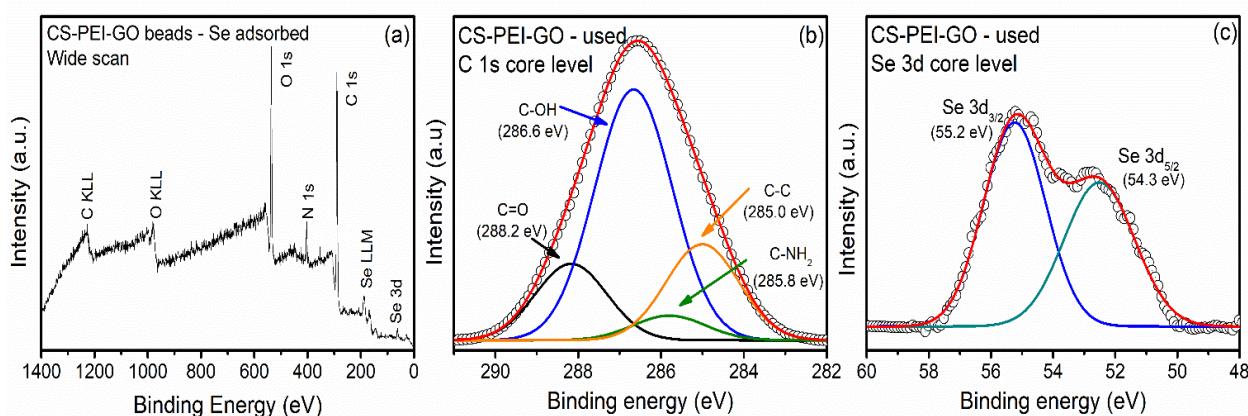
407

Figure 5. Variation of adsorption capacity (mg/g) with time. The adsorption reached equilibrium for $t>120$, $t>180$ and $t>240$ min for 2, 10 and 20 ppm, respectively.

414 **3.5 Kinetics of Se removal using the mathematically optimized beads.** Figure 5 shows the
415 variation of the adsorption capacity with adsorption time for the initial Se concentrations of 2, 10
416 and 20 ppm. These experiments were carried out at 25 °C with the initial pH of 4 and bead
417 dosage of 30 g/L. Samples were taken out at smaller time intervals until 90 minutes, where the
418 highest adsorption rates were recorded for all three concentrations. Based on the graphs shown in
419 Fig. 5, the adsorption reached the equilibrium for $t>120$, $t>180$ and $t>240$ min for 2, 10 and 20
420 ppm respectively, showing less than 2% difference of adsorption capacity compared to the
421 subsequent sampling points. These data were further studied with two kinetic models: pseudo-
422 first order and pseudo-second order, in order to gain a better understanding of the adsorption

423 process and possible adsorption mechanism. The linear forms of the pseudo-first order and
424 pseudo-second order were used as previously described in the literature.⁵²⁻⁵⁴ The linear fitting of
425 the data is shown in ESI figure S5. The linear fitting was used to obtain the adsorption kinetics
426 parameters and results are summarized in table 1. Here the experimental adsorption capacity,

Table 1. Kinetic parameters from the adsorption kinetics models


Se conc., ppm	q _{e,exp} (mg/g)	Pseudo-first order			Pseudo-second order		
		k ₁ (min ⁻¹)	q _{e,cal} (mg/g)	R ²	k ₂ (g·mg ⁻¹ min ⁻¹)	q _{e,exp} (mg/g)	R ²
2	0.063±0.003	0.039±0.002	0.032±0.003	0.959	3.0±0.5	0.0638±0.0004	0.999
10	0.300±0.002	0.02±0.01	0.08±0.01	0.966	1.0±0.3	0.30±0.01	0.999
20	0.40±0.01	0.024±0.002	0.329±0.002	0.995	0.10±0.01	0.439±0.002	0.995

427 q_{e,exp} and kinetic parameters are the average results of the experimental data. The best linear fits
428 are shown in figure S5.

429
430 The goodness of fit values close to unity indicates the pseudo-second order kinetic
431 describes the adsorption process better. For the 20 ppm Se, the R² values were very close,
432 however further justification of selection of a kinetic model can be done by comparing the
433 experimental and calculated values for the adsorption capacity. Based on the calculated *p-values*
434 of the two tailed t-test at $\alpha=0.05$ for the experimental and calculated adsorption capacity,
435 suitability of the pseudo-second order kinetic model was further justified. For the pseudo-first
436 order kinetic model, *p-values* of < 0.0001 were obtained for all 2, 10 and 20 ppm, indicating that
437 the calculated adsorption capacities are significantly different from the experimental values. The
438 obtained *p-values* of 0.67 and 1.00 for 2 and 10 ppm, respectively, for the pseudo-second order
439 kinetic model demonstrated agreement with the experimental values. However, for 20 ppm, the

440 calculated p value was <0.0001, indicating that the experimental value was significantly different
 441 from the calculated values with the pseudo-second order kinetic model. On the other hand, the
 442 calculated and experimental values were much closer for the pseudo-second order kinetic model
 443 than the pseudo-first order kinetic model. Based on the characteristics of the pseudo-second
 444 order kinetics model, it can be postulated that the rate-limiting step of the Se adsorption by CS-
 445 PEI-GO beads is a chemisorption process that involves strong chemical interaction between the
 446 Se species and the active sites on CS-PEI-GO beads.^{52, 54, 77} It is possible that the Se species
 447 attached to the protonated -OH, -NH₂ and -COOH functional groups go through further
 448 complexations, making the adsorption process irreversible as indicated by the best fit with the
 449 pseudo-second order model.⁵³⁻⁵⁴

450 As evident from the XPS spectra of the used CS-PEI-GO beads given in figure 6.
 451 Selenium was successfully adsorbed by the beads generating a peak at 52 eV binding energy,
 452 which can be attributed to the Se 3d core level. The deconvolution of the C1s core level suggests
 453 that the -C-OH group were oxidized during the adsorption process indicating the existence of the
 454 redox reaction happening at the adsorption sites. Even though the binding of selenium oxyanion

Figure 6. XPS spectra of spent CS-PEI-GO nanocomposite beads showing (a) wide scan (b) deconvolution of C1s core level suggests that the -C-OH group were oxidized during the adsorption process indicating the existence of the redox reaction happening at the adsorption sites, and (c) deconvolution of Se 3d core level shows successful adsorption by the beads.

455 species is a debatable topic to date, the obtained results suggest the adsorbed selenium has a
456 significant interaction towards the hydroxyl to form a chemical complex.^{39, 41, 78} It is worth to
457 note that the reported mechanisms do not necessarily require protonation of alcoholic groups and
458 amine groups, which could be the underlying mechanism of Se uptake in higher pH values.
459 However, in the present study the removals with lower pH values were significantly higher
460 indicating that the electrostatic attraction due to protonation of alcoholic groups has a
461 predominant role in removing Se.^{41, 59, 78}

462 **3.6 Adsorption isotherm studies for Se removal using the optimized beads.** Isotherm studies
463 were carried out at 25 °C to investigate the Se adsorption properties. Qe vs Ce curves for initial
464 selenium concentrations of 5 to 250 ppm were fitted using non-linear forms of Langmuir and
465 Freundlich adsorption models as described earlier.^{53, 55, 78-79} Obtained experimental data and non-
466 linear curve fits are shown in figure S6. The most statistically relevant isotherm model was
467 selected based on the goodness-of-fit, R^2 , criterion. For the Langmuir isotherm, R^2 value of 0.995
468 was obtained; while R^2 of 0.998 was obtained for the Freundlich isotherm suggesting that both
469 isotherms might describe the adsorption process adequately as shown in earlier studies.^{41, 55-56, 58}
470 Values obtained for the Freundlich isotherm: K_F and n were 0.093 L/g and 2.1, respectively;
471 while the values obtained for the Langmuir isotherm: b and Q_m were 0.01 L/g and 1.62 mg/g,
472 respectively. The maximum adsorption obtained in the present study is very competitive
473 compared to the other adsorbent materials found in the literature, as shown in the table 2.

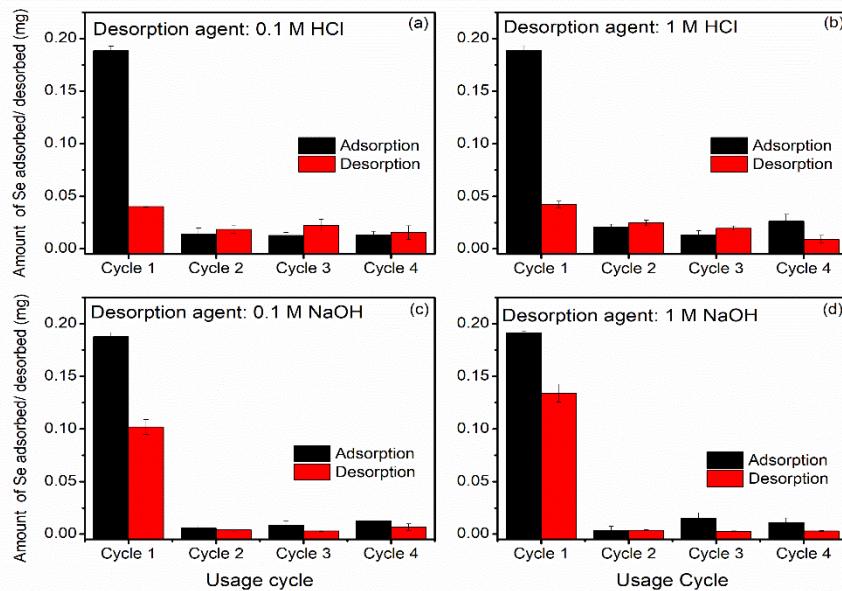
474

475

476

Table 2. Comparison of maximum adsorption capacity with prior studies

Adsorbent material	Q_m (mg/g)
CS-PEI-GO beads (this work)	1.62
Magnetite ⁸⁰	0.22
Hematite ⁸¹	0.39
Goethite ⁸¹	0.52
Aluminium oxide coated sand ⁸²	1.08
Fe ₃ O ₄ -chitosan nanocomposite hollow fibres ⁸³	1.34
TiO ₂ ⁸⁴	1.64


477

478 With the premise of hydroxyl ions being the predominant functional group that is
479 resulting in Se adsorption based on the XPS spectra observed earlier, it is fair to say the
480 homogeneous monolayer adsorption suggested by the Langmuir isotherm might be a better
481 model. As other studies have previously stated, it is also worth to note that the heterogeneous
482 nature of the adsorption process suggested by the Freundlich isotherm agrees with the
483 characteristics of the CS-PEI-GO beads, as they consist of various functional groups such as -
484 OH, -COOH, and -NH₂ on the surface. Furthermore, protonated amine can be part of the
485 selenium ion uptake during acidic conditions.^{1, 39, 41, 56} This also suggests that there could be
486 multiple functional groups; hence multiple underlying mechanisms undergoing during the Se
487 adsorption.⁴¹

488 **3.7 Regeneration of mathematically optimized beads.** The spent CS-PEI-GO beads were used
489 for regeneration studies employing four different desorption agents: 0.1 M HCl, 1 M HCl, 0.1 M
490 NaOH and 1 M NaOH to investigate the possibility of regeneration of the active sites for

491 subsequent cycles of adsorption. Results obtained for four subsequent cycles are shown in figure
492 7.

493

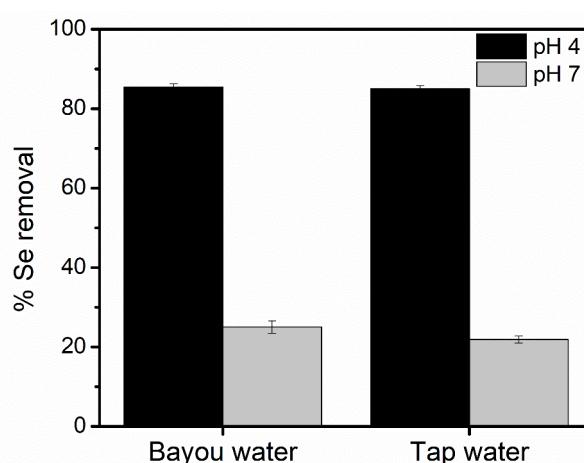


Figure 7. Amount of Se adsorbed/desorbed with (a) 0.1 M HCl, (b) 1 M HCl, (c) 0.1 M NaOH and (d) 1 M NaOH as desorption agents. Beads exposed to acidic desorption agents showed higher removals suggesting that the acidic nature of the desorption agent might be more effective in regenerating some active sites on the bead surface.

494 In the adsorption and desorption assays, the data were normalized by the bead dosage for
495 each case. As shown in the figure 7c and 7d, 0.1 M NaOH and 1 M NaOH showed more efficient
496 desorption of Se from the used beads with more than 50% of the adsorbed Se recovered. As
497 suggested by the calculated p-values of 0.35, there was no significant difference in the amounts
498 of Se desorbed by the 0.1 M HCl and 1 M HCl. Furthermore, these desorption approaches were
499 significantly lower compared to the alkaline desorption agents used. Even though there were
500 indications of desorption of Se, all the initial active sites responsible for the Se uptake were not
501 regenerated as there were no significant removals recorded with any of the adsorption assays

502 after desorption. These results explain the findings of the adsorption kinetics, which suggested
503 chemisorption as the main mechanism of Se uptake. In the chemisorption, the functional groups
504 might undergo permanent changes making them unavailable for the reactions in subsequent
505 adsorption cycles. Even though the removals were low, the beads exposed to acidic desorption
506 agents showed marginally high removals indicating that the acidic nature of the desorption agent
507 might be more effective in regenerating some active sites on the bead surface.

508 **3.8 Application of beads with environmental samples spiked with selenium.** The optimized
509 beads were also tested against the Se spiked in real environmental water samples in order to
510 mimic the potential applications of the beads. The batch adsorptions with bayou water and tap
511 water samples were designed to represent the application of CS-PEI-GO beads for indirect
512 potable reuse water treatment and simple water filtration for domestic point of use where excess
513 amounts of Se in tap water has been recorded.^{25-26, 85} The experiments were carried out at pH 4
514 and pH 7, as the pH was shown to be critical for Se removal efficiency and the results are
515 illustrated in figure 8.

Figure 8. Percent Se removal with 10 ppm Se spiked bayou water and tap water at pH 4 and pH 7 also agrees with the observations made with pH earlier as Se removals were significantly high when initial pH is acidic.

516 Similar to the Se solutions made in DI water, the removals were more significant at pH 4
517 justifying the superior removals at acidic conditions. In terms of process development, this is
518 important as the treatment of water for Se with CS-PEI-GO beads needs to be equipped with the
519 additional pH controlling step for much better performance. In industrial scale, the pH
520 controlling step could be easily applied to the water treatment process design, however, may not
521 be suitable for domestic use. As of now, selenium can be removed using chemical reduction,
522 coagulation-based processes and membrane separation processes, such as reverse osmosis and
523 nanofiltration; however these approaches also have limitations.^{41, 59, 86-87} Except for membrane
524 processes, the other mentioned selenium removal methods depend on pH, and also result in large
525 amounts of solid waste.^{59, 86-87} However, based on the findings of the present study, it is worth to
526 note that this can be overcome by increasing the availability of the adsorption sites by further
527 adding more functional groups in the beads.

528 CONCLUSIONS

529 The RSM was successfully used to optimize a nanocomposite bead containing CS, PEI and GO
530 for Se removal from water. A three-level BBD experimental design was used to model the
531 system with three independent factors and % Se removal as the response variable.
532 Mathematically optimized bead composition was experimentally validated showing that the
533 inclusion of GO increased the Se removal significantly compared to the control beads. The
534 optimized beads showed efficient Se removals in acidic conditions owing to the dissociations of
535 selenous acid, which allowed protonation of functional groups from CS and GO, such as -OH
536 and -COOH. These functional groups are known to uptake negatively charged heavy metal
537 species.^{1, 48, 88-89} The adsorption kinetic studies showed better agreement with the pseudo-second
538 order kinetic models indicating the adsorption process is most likely a chemisorption process.

539 This was further corroborated by the regeneration studies showing that the spent adsorption sites
540 are hard to regenerate as they undergo permanent changes making them unavailable for
541 subsequent adsorption cycles. The beads were also tested with Se spiked bayou water samples
542 and tap water samples indicating the acidic conditions were more suitable for Se removal as
543 shown earlier. As the limitation of the Se removal by this novel material is governed by the
544 solution pH and regeneration, it can be concluded that for more practical application of the CS-
545 PEI-GO beads, this material should be directed towards increasing the availability of active sites
546 by adding another polymer that would provide additional binding sites to adsorb Se.

547 **ASSOCIATED CONTENT**

548 **Supporting information**

549 Table S1 (Experimental factors and conditions used for the three-level Box-Behnken Design),
550 Table S2 (Box-Behnken Design for Se removal), Figure S1 (Residual analysis), Figure S2
551 (Surface plots for Se removal), Figure S3 (Experimental validation of the optimized CS-PEI-GO
552 beads), Figure S4 (Characterization of CS-PEI-GO beads), Figure S5 (Linear fitting of the data
553 with the linearized forms of kinetic models), Figure S6 (Experimental isotherm data and non-
554 linear isotherm model curve fits).

555 **AUTHOR INFORMATION**

556 **Corresponding author**

557 *Phone: +1 713-743-1495. E-mail: dfrigirodrigues@uh.edu

558 **ORCID**

559 Pasan C. Bandara: 0000-0001-7562-4377

560 Jem Valerie D. Perez: 0000-0002-0330-4806

561 Enrico T. Nadres: 0000-0002-7591-5868

562 Raj G. Nannapaneni: 0000-0002-4974-6810

563 Konrad J. Krakowiak: 0000-0003-0374-9554

564 Debora F. Rodrigues: 0000-0002-3124-1443

565

566 **NOTES**

567 The authors declare no competing financial interest.

568 **ACKNOWLEDGEMENTS**

569 This work was supported by the US Department of Interior, Bureau of Reclamation through the
570 Desalination and Water Purification Research and Development Program (Agreement No.
571 R16AC00123); CBET NSF Career grant number: 1150255; NSF BEINM Grant Number:
572 1705511, NSF CMMI Award Number: 1825921, as well as the Welch Foundation Award
573 Number: E-2011-20190330. The findings achieved herein are solely the responsibility of the
574 authors. Authors would like to extend their acknowledgements to Dr. Janire Peña Bahamonde,
575 Dr. Haleh Ardebili, Dr. Charisma Lattao, Dr. Nalinda Kulatunga, and Sofia K. Fanourakis for
576 their valuable contributions to the present study.

577 **REFERENCES**

578 (1) Perez, J. V. D.; Nadres, E. T.; Nguyen, H. N.; Dalida, M. L. P.; Rodrigues, D. F. Response
579 surface methodology as a powerful tool to optimize the synthesis of polymer-based graphene
580 oxide nanocomposites for simultaneous removal of cationic and anionic heavy metal
581 contaminants. *RSC Advances* **2017**, 7 (30), 18480-18490, DOI: 10.1039/C7RA00750G.

582 (2) Perreault, F.; Fonseca de Faria, A.; Elimelech, M. Environmental applications of graphene-
583 based nanomaterials. *Chemical Society Reviews* **2015**, *44* (16), 5861-5896, DOI:
584 10.1039/C5CS00021A.

585 (3) Westerhoff, P.; Alvarez, P.; Li, Q.; Gardea-Torresdey, J.; Zimmerman, J. Overcoming
586 implementation barriers for nanotechnology in drinking water treatment. *Environmental Science:
587 Nano* **2016**, *3* (6), 1241-1253, DOI: 10.1039/C6EN00183A.

588 (4) Mauter, M. S.; Zucker, I.; Perreault, F.; Werber, J. R.; Kim, J.-H.; Elimelech, M. The role of
589 nanotechnology in tackling global water challenges. *Nature Sustainability* **2018**, *1* (4), 166-175,
590 DOI: 10.1038/s41893-018-0046-8.

591 (5) Xie, Y.; Chen, C.; Ren, X.; Wang, X.; Wang, H.; Wang, X. Emerging natural and tailored
592 materials for uranium-contaminated water treatment and environmental remediation. *Progress in
593 Materials Science* **2019**, *103*, 180-234.

594 (6) Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. Recent advances in graphene
595 based polymer composites. *Progress in Polymer Science* **2010**, *35* (11), 1350-1375, DOI:
596 <https://doi.org/10.1016/j.progpolymsci.2010.07.005>.

597 (7) Palencia, C.; Rubio, J.; Rubio, F.; Fierro, J. L. G.; Oteo, J. L. Silane Coupling Agent
598 Structures on Carbon Nanofibers. *Journal of Nanoscience and Nanotechnology* **2011**, *11* (5),
599 4142-4152, DOI: 10.1166/jnn.2011.4147.

600 (8) Yu, K.; Ho, J.; McCandlish, E.; Buckley, B.; Patel, R.; Li, Z.; Shapley, N. C. Copper ion
601 adsorption by chitosan nanoparticles and alginate microparticles for water purification
602 applications. *Colloids and Surfaces A: Physicochemical and Engineering Aspects* **2013**, *425*, 31-
603 41, DOI: <https://doi.org/10.1016/j.colsurfa.2012.12.043>.

604 (9) Filipkowska, U.; Józwiak, T. *Application of chemically-cross-linked chitosan for the removal
605 of Reactive Black 5 and Reactive Yellow 84 dyes from aqueous solutions*, 2013; Vol. 33, p 735-
606 747.

607 (10) Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. A review and experimental verification of using
608 chitosan and its derivatives as adsorbents for selected heavy metals. *Journal of Environmental
609 Management* **2010**, *91* (4), 798-806, DOI: <https://doi.org/10.1016/j.jenvman.2009.10.018>.

610 (11) Bailey, S. E.; Olin, T. J.; Bricka, R. M.; Adrian, D. D. A review of potentially low-cost
611 sorbents for heavy metals. *Water Research* **1999**, *33* (11), 2469-2479, DOI:
612 [https://doi.org/10.1016/S0043-1354\(98\)00475-8](https://doi.org/10.1016/S0043-1354(98)00475-8).

613 (12) Medina, R. P.; Nadres, E. T.; Ballesteros, F. C.; Rodrigues, D. F. Incorporation of graphene
614 oxide into a chitosan-poly(acrylic acid) porous polymer nanocomposite for enhanced lead
615 adsorption. *Environmental Science: Nano* **2016**, *3* (3), 638-646, DOI: 10.1039/C6EN00021E.

616 (13) Li, N.; Bai, R. A Novel Amine-Shielded Surface Cross-Linking of Chitosan Hydrogel
617 Beads for Enhanced Metal Adsorption Performance. *Industrial & Engineering Chemistry
618 Research* **2005**, *44* (17), 6692-6700, DOI: 10.1021/ie050145k.

619 (14) Li, X.; Zhou, H.; Wu, W.; Wei, S.; Xu, Y.; Kuang, Y. Studies of heavy metal ion adsorption
620 on Chitosan/Sulfonyl-functionalized graphene oxide composites. *Journal of Colloid and
621 Interface Science* **2015**, *448*, 389-397, DOI: <https://doi.org/10.1016/j.jcis.2015.02.039>.

622 (15) Deng, S.; Ting, Y. P. Polyethylenimine-Modified Fungal Biomass as a High-Capacity
623 Biosorbent for Cr(VI) Anions: Sorption Capacity and Uptake Mechanisms. *Environmental
624 Science & Technology* **2005**, *39* (21), 8490-8496, DOI: 10.1021/es050697u.

625 (16) Virgen-Ortíz, J. J.; dos Santos, J. C. S.; Berenguer-Murcia, Á.; Barbosa, O.; Rodrigues, R.
626 C.; Fernandez-Lafuente, R. Polyethylenimine: a very useful ionic polymer in the design of

627 immobilized enzyme biocatalysts. *Journal of Materials Chemistry B* **2017**, 5 (36), 7461-7490,
628 DOI: 10.1039/C7TB01639E.

629 (17) Zhang, X.; Lin, D.; Chen, W. Nitrogen-doped porous carbon prepared from a liquid carbon
630 precursor for CO₂ adsorption. *RSC Advances* **2015**, 5 (56), 45136-45143, DOI:
631 10.1039/C5RA08014B.

632 (18) Basu, R.; Haque, S. E.; Tang, J.; Ji, J.; Johannesson, K. H. Evolution of selenium
633 concentrations and speciation in groundwater flow systems: Upper Floridan (Florida) and
634 Carrizo Sand (Texas) aquifers. *Chemical Geology* **2007**, 246 (3), 147-169, DOI:
635 <https://doi.org/10.1016/j.chemgeo.2007.09.010>.

636 (19) Korobova, E. M.; Ryzhenko, B. N.; Cherkasova, E. V.; Sedykh, E. M.; Korsakova, N. V.;
637 Danilova, V. N.; Khushvakhtova, S. D.; Berezkin, V. Y. Iodine and selenium speciation in
638 natural waters and their concentrating at landscape-geochemical barriers. *Geochemistry
639 International* **2014**, 52 (6), 500-514, DOI: <http://dx.doi.org/10.1134/S001670291404003X>.

640 (20) Zawislanski, P. T.; Benson, S. M.; TerBerg, R.; Borglin, S. E. Selenium Speciation,
641 Solubility, and Mobility in Land-Disposed Dredged Sediments. *Environmental Science &
642 Technology* **2003**, 37 (11), 2415-2420, DOI: 10.1021/es020977z.

643 (21) Peter W. Bush, A. F. A., Lynne Fahlquist, Patricia B. Ging, C. Evan Hornig, Jennifer
644 Lanning-Rush *Water Quality in South-Central Texas* US Geological Survey: 2000.

645 (22) Robert, C. R., Bridget R. Scanlon, Steven Walden, Gil Strassber. *Naturally occurring
646 groundwater contamination in Texas*; Texas Water Development Board: 2011.

647 (23) Effiong Ukoerebi, E. Occurrence and Distribution of Arsenic, Antimony and Selenium in
648 Shallow Groundwater Systems of Ibadan Metropolis, Southwestern Nigerian. *Journal of Health
649 and Pollution* **2017**, 7 (13), 32-41, DOI: 10.5696/2156-9614-7.13.32.

650 (24) Kuisi, M. A.; Abdel-fattah, A. Groundwater vulnerability to selenium in semi-arid
651 environments: Amman Zarqa Basin, Jordan. *Environmental Geochemistry and Health* **2010**, 32
652 (2), 107-28, DOI: <http://dx.doi.org/10.1007/s10653-009-9269-y>.

653 (25) Vinceti, M.; Bonvicini, F.; Rothman, K. J.; Vescovi, L.; Wang, F. The relation between
654 amyotrophic lateral sclerosis and inorganic selenium in drinking water: a population-based case-
655 control study. *Environmental Health* **2010**, 9 (1), 77, DOI: 10.1186/1476-069X-9-77.

656 (26) Vinceti, M.; Cann, C. I.; Calzolari, E.; Vivoli, R.; Garavelli, L.; Bergomi, M. Reproductive
657 outcomes in a population exposed long-term to inorganic selenium via drinking water. *Science of
658 The Total Environment* **2000**, 250 (1), 1-7, DOI: [https://doi.org/10.1016/S0048-9697\(99\)00419-2](https://doi.org/10.1016/S0048-9697(99)00419-2).

660 (27) Igarashi, T.; Sasaki, R.; Tabelin, C. B. Chemical Forms of Arsenic and Selenium Leached
661 from Mudstones. *Procedia Earth and Planetary Science* **2013**, 6, 105-113, DOI:
662 <https://doi.org/10.1016/j.proeps.2013.01.015>.

663 (28) Tabelin, C. B.; Hashimoto, A.; Igarashi, T.; Yoneda, T. Leaching of boron, arsenic and
664 selenium from sedimentary rocks: I. Effects of contact time, mixing speed and liquid-to-solid
665 ratio. *Science of The Total Environment* **2014**, 472, 620-629, DOI:
666 <https://doi.org/10.1016/j.scitotenv.2013.11.006>.

667 (29) National Primary Drinking Water Regulaion Table. In *EPA 816-F-09-004*, Agency, U. S. E.
668 P., Ed. 2009; p 7.

669 (30) Project, E. I. *Don't Drink the Water*; Environmental Integrity Project: 2016.

670 (31) Vinceti, M.; Crespi, C. M.; Bonvicini, F.; Malagoli, C.; Ferrante, M.; Marmiroli, S.;
671 Stranges, S. The need for a reassessment of the safe upper limit of selenium in drinking water.

672 *Science of The Total Environment* **2013**, *443*, 633-642, DOI:
673 <https://doi.org/10.1016/j.scitotenv.2012.11.025>.

674 (32) Ackerman, J. T.; Eagles-Smith, C. A.; Herzog, M. P.; Hartman, C. A. Maternal transfer of
675 contaminants in birds: Mercury and selenium concentrations in parents and their eggs.
676 *Environmental Pollution* **2016**, *210*, 145-154, DOI:
677 <https://doi.org/10.1016/j.envpol.2015.12.016>.

678 (33) Brady, C.; Petrie, S.; Schummer, M.; Badzinski, S.; Belzile, N.; Chen, Y.-W. Effects of
679 dietary selenium on the health and survival of captive wintering lesser scaup. *Environmental*
680 *Pollution* **2013**, *175*, 8-15, DOI: <https://doi.org/10.1016/j.envpol.2012.12.005>.

681 (34) King, K. A.; Custer, T. W.; Weaver, D. A. Reproductive success of barn swallows nesting
682 near a selenium-contaminated lake in east Texas, USA. *Environmental Pollution* **1994**, *84* (1),
683 53-58, DOI: [https://doi.org/10.1016/0269-7491\(94\)90070-1](https://doi.org/10.1016/0269-7491(94)90070-1).

684 (35) Lindsay, L. W.; Scott, A. P.; Robert, C. B.; Shannon, S. B.; Michael, L. S.; Yu-Wei, C.;
685 Nelson, B. Effects of Elevated Selenium on Body Condition, Oxidative Stress, and Organ Health
686 in Greater Scaup Wintering at Lake Ontario. *Wildlife Society Bulletin (2011-)* **2012**, *36* (3), 506-
687 511.

688 (36) Loguercio, C.; De Girolamo, V.; Federico A, A.; Feng, S. L.; Cataldi, V.; Del Vecchio
689 Blanco, C.; Gialanella, G. Trace Elements and Chronic Liver Diseases. *Journal of Trace*
690 *Elements in Medicine and Biology* **1997**, *11* (3), 158-161, DOI: [https://doi.org/10.1016/S0946-672X\(97\)80045-4](https://doi.org/10.1016/S0946-672X(97)80045-4).

691 (37) Li, J.; Wang, X.; Zhao, G.; Chen, C.; Chai, Z.; Alsaedi, A.; Hayat, T.; Wang, X. Metal-
692 organic framework-based materials: superior adsorbents for the capture of toxic and radioactive
693 metal ions. *Chemical Society Reviews* **2018**, *47* (7), 2322-2356, DOI: 10.1039/C7CS00543A.

694 (38) Cui, W.; Li, P.; Wang, Z.; Zheng, S.; Zhang, Y. Adsorption study of selenium ions from
695 aqueous solutions using MgO nanosheets synthesized by ultrasonic method. *Journal of*
696 *Hazardous Materials* **2018**, *341*, 268-276, DOI: <https://doi.org/10.1016/j.jhazmat.2017.07.073>.

697 (39) Xiao, W.; Yan, B.; Zeng, H.; Liu, Q. Dendrimer functionalized graphene oxide for selenium
698 removal. *Carbon* **2016**, *105*, 655-664, DOI: <https://doi.org/10.1016/j.carbon.2016.04.057>.

699 (40) Holmes, A. B.; Gu, F. X. Emerging nanomaterials for the application of selenium removal
700 for wastewater treatment. *Environmental Science: Nano* **2016**, *3* (5), 982-996, DOI:
701 10.1039/C6EN00144K.

702 (41) Fu, Y.; Wang, J.; Liu, Q.; Zeng, H. Water-dispersible magnetic nanoparticle-graphene
703 oxide composites for selenium removal. *Carbon* **2014**, *77*, 710-721, DOI:
704 <https://doi.org/10.1016/j.carbon.2014.05.076>.

705 (42) Lu, H.; Zhang, S.; Guo, L.; Li, W. Applications of graphene-based composite hydrogels: a
706 review. *RSC Advances* **2017**, *7* (80), 51008-51020, DOI: 10.1039/C7RA09634H.

707 (43) Yu, Y.; Andrade, L.; Fang, L.; Ma, J.; Zhang, W.; Tang, Y. Graphene oxide and
708 hyperbranched polymer-toughened hydrogels with improved absorption properties and
709 durability. *Journal of Materials Science* **2015**, *50* (9), 3457-3466, DOI: 10.1007/s10853-015-
710 8905-4.

711 (44) Chen, Y.; Chen, L.; Bai, H.; Li, L. Graphene oxide-chitosan composite hydrogels as broad-
712 spectrum adsorbents for water purification. *Journal of Materials Chemistry A* **2013**, *1* (6), 1992-
713 2001, DOI: 10.1039/C2TA00406B.

714 (45) Liu, J.; Zhu, K.; Jiao, T.; Xing, R.; Hong, W.; Zhang, L.; Zhang, Q.; Peng, Q. Preparation of
715 graphene oxide-polymer composite hydrogels via thiol-ene photopolymerization as efficient dye
716

717 adsorbents for wastewater treatment. *Colloids and Surfaces A: Physicochemical and Engineering*
718 *Aspects* **2017**, 529, 668-676, DOI: <https://doi.org/10.1016/j.colsurfa.2017.06.050>.

719 (46) Liao, G.; Hu, J.; Chen, Z.; Zhang, R.; Wang, G.; Kuang, T. Preparation, Properties, and
720 Applications of Graphene-Based Hydrogels. *Front Chem* **2018**, 6, 450-450, DOI:
721 10.3389/fchem.2018.00450.

722 (47) Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. *Journal of the American*
723 *Chemical Society* **1958**, 80 (6), 1339-1339, DOI: 10.1021/ja01539a017.

724 (48) Bandara, P. C.; Nadres, E. T.; Rodrigues, D. F. Use of Response Surface Methodology To
725 Develop and Optimize the Composition of a Chitosan–Polyethyleneimine–Graphene Oxide
726 Nanocomposite Membrane Coating To More Effectively Remove Cr(VI) and Cu(II) from Water.
727 *ACS Applied Materials & Interfaces* **2019**, 11 (19), 17784-17795, DOI:
728 10.1021/acsmami.9b03601.

729 (49) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitkii, A.; Sun, Z.; Slesarev, A.;
730 Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. *ACS Nano* **2010**, 4
731 (8), 4806-4814, DOI: 10.1021/nn1006368.

732 (50) Hou, J.; Dong, G.; Ye, Y.; Chen, V. Enzymatic degradation of bisphenol-A with
733 immobilized laccase on TiO₂ sol–gel coated PVDF membrane. *Journal of Membrane Science*
734 **2014**, 469 (2015), 19-30.

735 (51) Barrett, E. P.; Joyner, L. G.; Halenda, P. P. The Determination of Pore Volume and Area
736 Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. *Journal of the*
737 *American Chemical Society* **1951**, 73 (1), 373-380, DOI: 10.1021/ja01145a126.

738 (52) Largette, L.; Pasquier, R. A review of the kinetics adsorption models and their application to
739 the adsorption of lead by an activated carbon. *Chemical Engineering Research and Design* **2016**,
740 109, 495-504, DOI: <https://doi.org/10.1016/j.cherd.2016.02.006>.

741 (53) Nethaji, S.; Sivasamy, A.; Mandal, A. B. Adsorption isotherms, kinetics and mechanism for
742 the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from *Juglans*
743 *regia* shell biomass. *International Journal of Environment Science and Technology* **2013**, 10 (2),
744 DOI: 10.1007/s13762-012-0112-0.

745 (54) Ho, Y. S.; McKay, G. Pseudo-second order model for sorption processes. *Process*
746 *Biochemistry* **1999**, 34 (5), 451-465, DOI: [https://doi.org/10.1016/S0032-9592\(98\)00112-5](https://doi.org/10.1016/S0032-9592(98)00112-5).

747 (55) Kailas, L. W.; Prasad, B.; Ch. Sekhararao, G. BATCH STUDY, EQUILIBIRUM AND
748 KINETICS OF ADSORPTION OF SELENIUM USING RICE HUSK ASH (RHA). *Journal of*
749 *Engineering Science and Technology* **2011**, 6 (5), 586-605.

750 (56) Jegadeesan, G. B.; Mondal, K.; Lalvani, S. B. Adsorption of Se (IV) and Se (VI) Using
751 Copper-Impregnated Activated Carbon and Fly Ash-Extracted Char Carbon. *Water, Air, & Soil*
752 *Pollution* **2015**, 226 (8), 234, DOI: 10.1007/s11270-015-2520-5.

753 (57) Sarkar, M.; Majumdar, P. Application of response surface methodology for optimization of
754 heavy metal biosorption using surfactant modified chitosan bead. *Chemical Engineering Journal*
755 **2011**, 175, 376-387, DOI: <https://doi.org/10.1016/j.cej.2011.09.125>.

756 (58) Wasewar, K. L.; Prasad, B.; Gulipalli, S. Removal of Selenium by Adsorption onto
757 Granular Activated Carbon (GAC) and Powdered Activated Carbon (PAC). *CLEAN – Soil, Air,*
758 *Water* **2009**, 37 (11), 872-883, DOI: 10.1002/clen.200900188.

759 (59) Santos, S.; Ungureanu, G.; Boaventura, R.; Botelho, C. Selenium contaminated waters: An
760 overview of analytical methods, treatment options and recent advances in sorption methods.
761 *Science of The Total Environment* **2015**, 521-522, 246-260, DOI:
762 <https://doi.org/10.1016/j.scitotenv.2015.03.107>.

763 (60) Thommes, M.; Kaneko, K.; Neimark Alexander, V.; Olivier James, P.; Rodriguez-Reinoso,
764 F.; Rouquerol, J.; Sing Kenneth, S. W., Physisorption of gases, with special reference to the
765 evaluation of surface area and pore size distribution (IUPAC Technical Report). In *Pure and
766 Applied Chemistry*, 2015; Vol. 87, p 1051.

767 (61) Alkhamis, K. A.; Salem, M. S.; Khanfar, M. S. The sorption of ketotifen fumarate by
768 chitosan. *AAPS PharmSciTech* **2008**, 9 (3), 866-869, DOI: 10.1208/s12249-008-9123-z.

769 (62) Arabyarmohammadi, H.; Darban, A. K.; Abdollahy, M.; Yong, R.; Ayati, B.; Zirakjou, A.;
770 van der Zee, S. E. A. T. M. Utilization of a Novel Chitosan/Clay/Biochar Nanobiocomposite for
771 Immobilization of Heavy Metals in Acid Soil Environment. *Journal of Polymers and the
772 Environment* **2018**, 26 (5), 2107-2119, DOI: 10.1007/s10924-017-1102-6.

773 (63) Li, Z.; Song, X.; Cui, S.; Jiao, Y.; Zhou, C. Fabrication of macroporous reduced graphene
774 oxide composite aerogels reinforced with chitosan for high bilirubin adsorption. *RSC Advances
775* **2018**, 8 (15), 8338-8348, DOI: 10.1039/C8RA00358K.

776 (64) Mohanasrinivasan, V.; Mishra, M.; Paliwal, J. S.; Singh, S. K.; Selvarajan, E.; Suganthi, V.;
777 Subathra Devi, C. Studies on heavy metal removal efficiency and antibacterial activity of
778 chitosan prepared from shrimp shell waste. *3 Biotech* **2014**, 4 (2), 167-175, DOI:
779 10.1007/s13205-013-0140-6.

780 (65) Julkapli, N. M.; Ahmad, Z.; Akil, H. M. X-Ray Diffraction Studies of Cross Linked
781 Chitosan With Different Cross Linking Agents For Waste Water Treatment Application. *AIP
782 Conference Proceedings* **2010**, 1202 (1), 106-111, DOI: 10.1063/1.3295578.

783 (66) Zhang, Q.; Du, Q.; Hua, M.; Jiao, T.; Gao, F.; Pan, B. Sorption Enhancement of Lead Ions
784 from Water by Surface Charged Polystyrene-Supported Nano-Zirconium Oxide Composites.
785 *Environmental Science & Technology* **2013**, 47 (12), 6536-6544, DOI: 10.1021/es400919t.

786 (67) Wang, K.; Zhang, X.; Zhang, X.; Yang, B.; Li, Z.; Zhang, Q.; Huang, Z.; Wei, Y. One-pot
787 preparation of cross-linked amphiphilic fluorescent polymer based on aggregation induced
788 emission dyes. *Colloids and Surfaces B: Biointerfaces* **2015**, 126, 273-279, DOI:
789 <https://doi.org/10.1016/j.colsurfb.2014.12.025>.

790 (68) Grande Carlos, D.; Mangadlao, J.; Fan, J.; De Leon, A.; Delgado-Ospina, J.; Rojas Juan, G.;
791 Rodrigues Debora, F.; Advincula, R. Chitosan Cross-Linked Graphene Oxide Nanocomposite
792 Films with Antimicrobial Activity for Application in Food Industry. *Macromolecular Symposia*
793 **2017**, 374 (1), 1600114, DOI: 10.1002/masy.201600114.

794 (69) López-Pérez, P. M.; Marques, A. P.; Silva, R. M. P. d.; Pashkuleva, I.; Reis, R. L. Effect of
795 chitosan membrane surface modification via plasma induced polymerization on the adhesion of
796 osteoblast-like cells. *Journal of Materials Chemistry* **2007**, 17 (38), 4064-4071, DOI:
797 10.1039/B707326G.

798 (70) Wang, Y.; Li, B.; Zhou, Y.; Jia, D. In Situ Mineralization of Magnetite Nanoparticles in
799 Chitosan Hydrogel. *Nanoscale Research Letters* **2009**, 4 (9), 1041, DOI: 10.1007/s11671-009-
800 9355-1.

801 (71) Yu Shu-juan, C. K., Wang Feng, Zhu Yong-fei. Synthesis of chitosan-based polymer carbon
802 dots fluorescent materials and application of self-assembled drug-loading. *Chinese Optics* **2018**,
803 11 (3), 420-430.

804 (72) Duc, M.; Lefèvre, G.; Féodoroff, M. Sorption of selenite ions on hematite. *Journal of Colloid
805 and Interface Science* **2006**, 298 (2), 556-563, DOI: <https://doi.org/10.1016/j.jcis.2006.01.029>.

806 (73) Dobrowolski, R.; Otto, M. Preparation and evaluation of Fe-loaded activated carbon for
807 enrichment of selenium for analytical and environmental purposes. *Chemosphere* **2013**, 90 (2),
808 683-690, DOI: <https://doi.org/10.1016/j.chemosphere.2012.09.049>.

809 (74) Wang, X.; Chen, L.; Wang, L.; Fan, Q.; Pan, D.; Li, J.; Chi, F.; Xie, Y.; Yu, S.; Xiao, C.;
810 Luo, F.; Wang, J.; Wang, X.; Chen, C.; Wu, W.; Shi, W.; Wang, S.; Wang, X. Synthesis of novel
811 nanomaterials and their application in efficient removal of radionuclides. *Science China
812 Chemistry* **2019**, *62* (8), 933-967, DOI: 10.1007/s11426-019-9492-4.

813 (75) Nie, Y.; Deng, S.; Wang, B.; Huang, J.; Yu, G. Removal of clofibric acid from aqueous
814 solution by polyethylenimine-modified chitosan beads. *Frontiers of Environmental Science &
815 Engineering* **2014**, *8* (5), 675-682, DOI: 10.1007/s11783-013-0622-0.

816 (76) Avadiar, L.; Leong, Y.-K. Interactions of PEI (polyethylenimine)--silica particles with citric
817 acid in dispersions. *Colloid & Polymer Science* **2011**, *289* (3), 237-245, DOI:
818 <http://dx.doi.org/10.1007/s00396-010-2351-2>.

819 (77) Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws
820 in the modeling of adsorption kinetics. *Chemical Engineering Journal* **2016**, *300*, 254-263, DOI:
821 <https://doi.org/10.1016/j.cej.2016.04.079>.

822 (78) Lu, Z.; Yu, J.; Zeng, H.; Liu, Q. Polyamine-modified magnetic graphene oxide
823 nanocomposite for enhanced selenium removal. *Separation and Purification Technology* **2017**,
824 *183*, 249-257, DOI: <https://doi.org/10.1016/j.seppur.2017.04.010>.

825 (79) Gong, X.; Li, W.; Wang, K.; Hu, J. Study of the adsorption of Cr(VI) by tannic acid
826 immobilised powdered activated carbon from micro-polluted water in the presence of dissolved
827 humic acid. *Bioresource Technology* **2013**, *141*, 145-151, DOI:
828 <https://doi.org/10.1016/j.biortech.2013.01.166>.

829 (80) Martinez, M.; Gimenez, J.; Pablo, J. d.; Rovira, M.; Duro, L. Sorption of selenium(IV) and
830 selenium(VI) onto magnetite. *Applied Surface Science* **2006**, *252* (10), 3767-3773, DOI:
831 DOI:10.1016/j.japsusc.200505067.

832 (81) Rovira, M.; Giménez, J.; Martínez, M.; Martínez-Lladó, X.; de Pablo, J.; Martí, V.; Duro, L.
833 Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: Goethite and hematite.
834 *Journal of Hazardous Materials* **2008**, *150* (2), 279-284, DOI:
835 <https://doi.org/10.1016/j.jhazmat.2007.04.098>.

836 (82) Kuan, W.-H.; Lo, S.-L.; Wang, M. K.; Lin, C.-F. Removal of Se(IV) and Se(VI) from water
837 by aluminum-oxide-coated sand. *Water Research* **1998**, *32* (3), 915-923, DOI:
838 [https://doi.org/10.1016/S0043-1354\(97\)00228-5](https://doi.org/10.1016/S0043-1354(97)00228-5).

839 (83) Seyed Dorraji, M. S.; Amani-Ghadim, A. R.; Hanifehpour, Y.; Woo Joo, S.; Figoli, A.;
840 Carraro, M.; Tasselli, F. Performance of chitosan based nanocomposite hollow fibers in the
841 removal of selenium(IV) from water. *Chemical Engineering Research and Design* **2017**, *117*,
842 309-317, DOI: <https://doi.org/10.1016/j.cherd.2016.10.043>.

843 (84) Svecova, L.; Dossot, M.; Cremel, S.; Simonnot, M.-O.; Sardin, M.; Humbert, B.; Den
844 Auwer, C.; Michot, L. J. Sorption of selenium oxyanions on TiO₂ (rutile) studied by batch or
845 column experiments and spectroscopic methods. *Journal of Hazardous Materials* **2011**, *189* (3),
846 764-772, DOI: <https://doi.org/10.1016/j.jhazmat.2011.02.090>.

847 (85) Petrini, R.; Slezko, F.; Lutman, A.; Pison, S.; Franceschini, G.; Zini, L.; Italiano, F.; Galic,
848 A. Natural arsenic contamination in waters from the Pesariis village, NE Italy. *Environmental
849 Earth Sciences* **2011**, *62* (3), 481-491, DOI: <http://dx.doi.org/10.1007/s12665-010-0541-3>.

850 (86) Richards, L. A.; Richards, B. S.; Schäfer, A. I. Renewable energy powered membrane
851 technology: Salt and inorganic contaminant removal by nanofiltration/reverse osmosis. *Journal
852 of Membrane Science* **2011**, *369* (1), 188-195, DOI:
853 <https://doi.org/10.1016/j.memsci.2010.11.069>.

854 (87) Subramani, A.; Cryer, E.; Liu, L.; Lehman, S.; Ning, R. Y.; Jacangelo, J. G. Impact of
855 intermediate concentrate softening on feed water recovery of reverse osmosis process during
856 treatment of mining contaminated groundwater. *Separation and Purification Technology* **2012**,
857 88, 138-145, DOI: <https://doi.org/10.1016/j.seppur.2011.12.010>.

858 (88) Pasan Chinthana Bandara, E. T. N., Debora Frigi Rodrigues. Use of response surface
859 methodology to develop and optimize graphene oxide based nanocomposite membrane coatings
860 for Cr(VI) and Cu(II) removal from water. *ACS Applied Materials & Interfaces* **2019**.

861 (89) Bandara, P. C.; Nadres, E. T.; Rodrigues, D. F. Use of response surface methodology to
862 develop and optimize the composition of a chitosan-polyethyleneimine-graphene oxide
863 nanocomposite membrane coating to more effectively remove Cr(VI) and Cu(II) from water.
864 *ACS Applied Materials & Interfaces* **2019**, DOI: 10.1021/acsami.9b03601.

865