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Abstract Ambient temperature and humidity strongly affect inactivation rates of enveloped17

viruses, but a mechanistic, quantitative theory of these effects has been elusive. We measure the18

stability of SARS-CoV-2 on an inert surface at nine temperature and humidity conditions and19

develop a mechanistic model to explain and predict how temperature and humidity alter virus20

inactivation. We find SARS-CoV-2 survives longest at low temperatures and extreme relative21

humidities (RH); median estimated virus half-life is >24 hours at 10 ◦C and 40% RH, but ∼1.5 hours22

at 27 ◦C and 65% RH. Our mechanistic model uses fundamental chemistry to explain why23

inactivation rate increases with increased temperature and shows a U-shaped dependence on24

RH. The model accurately predicts existing measurements of five different human coronaviruses,25

suggesting that shared mechanisms may affect stability for many viruses. The results indicate26

scenarios of high transmission risk, point to mitigation strategies, and advance the mechanistic27

study of virus transmission.28

29
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Introduction30

For viruses to transmit from one host to the next, virus particles must remain infectious in the pe-31

riod between release from the transmitting host and uptake by the recipient host. Virus environ-32

mental stability thus determines the potential for surface (fomite) transmission and formid-to-long33

range transmission through the air. Empirical evidence suggests that virus environmental stability34

depends strongly on ambient temperature and humidity, particularly for enveloped viruses; ex-35

amples among enveloped viruses that infect humans include influenza viruses (Marr et al., 2019),36

endemic human coronaviruses (Ijaz et al., 1985), and the zoonotic coronaviruses SARS-CoV-1 (Chan37

et al., 2011) and MERS-CoV (Van Doremalen et al., 2013).38

In late 2019, a new zoonotic coronavirus now called SARS-CoV-2 emerged; it has since caused39

a global pandemic (COVID-19) and is poised to become an endemic human pathogen. Many coun-40

tries in the Northern Hemisphere experienced a substantial uptick in transmission with the arrival41

of their late autumn and winter. Epidemiologists had anticipated such a seasonal increase (Kissler42

et al., 2020; Neher et al., 2020) based on observations from other enveloped respiratory viruses,43

such as endemic human coronaviruses (Monto et al., 2020) and influenza viruses (Lofgren et al.,44

2007). These viruses spread more readily in temperate zone winters than in temperate zone sum-45

mers. SARS-CoV-2 has also displayed epidemic dynamics shaped by superspreading events, in46

which one person transmits to many others (Furuse et al., 2020; Kain et al., 2020); the related47

SARS-CoV-1 virus was likewise characterized by superspreading (Lloyd-Smith et al., 2005).48

Virus transmission is governed by many factors, among them properties of the virus and prop-49

erties of the host population. But anticipating seasonal changes in transmission and preventing50

superspreading events both require an understanding of virus persistence in the environment,51

since ambient conditions can facilitate or impede virus spread. Empirical evidence suggests that52

SARS-CoV-2, like other enveloped viruses, varies in its environmental stability as a function of tem-53

perature and humidity (Biryukov et al., 2020; Matson et al., 2020), but the joint effect of these two54

factors remains unclear.55

Moreover, despite years of research on virus environmental stability, there do not exist mech-56

anistically motivated quantitative models for virus inactivation as a function of both temperature57

and humidity. Existing predictive models for the environmental stability of SARS-CoV-2 (Biryukov58

et al., 2020; Guillier et al., 2020) and other viruses (Posada et al., 2010) are phenomenological re-59

gression models that do not model the underlying biochemical mechanisms of inactivation. This60

limits both our insight into the underlying inactivation process and our ability to generalize from61

any given experiment to unobserved conditions, or to real-world settings. A lack of quantitative,62

mechanistic models also makes it difficult to determine which environmental factors are most im-63

portant, for instance whether absolute humidity (Shaman et al., 2010) or relative humidity (Marr64

et al., 2019) best explains influenza inactivation and seasonality.65

We measured the environmental stability of SARS-CoV-2 virus particles (virions) suspended in66

cell culture medium and deposited onto a polypropylene plastic surface at nine environmental67

conditions: three relative humidities (RH; 40%, 65%, and 85%) at each of three temperatures (10 ◦C,68

22 ◦C, and 27 ◦C). We first quantified viable (infectious) virus titer over time and estimated virus de-69

cay rates and corresponding half-lives in each condition using a simple Bayesian regression model70

(see Methods). We quantified the evaporation of the suspension medium and compared virus sta-71

bility during the sample evaporation phase—while substantial water loss was ongoing—to virus72

stability after a quasi-equilibrium phase was reached—when further evaporation was not evident73

over the timescale of the experiment.74

We then created a mechanistic biochemical model of virus inactivation kinetics, drawing upon75

existing hypotheses for how temperature and humidity affect the inactivation chemistry of virus76

particles in microdroplets (Lin &Marr, 2020; Marr et al., 2019). We fit this mechanistic model to our77

SARS-CoV-2 data, and used it to predict observations from other human coronaviruses and other78

studies of SARS-CoV-2, and to extrapolate our SARS-CoV-2 results to unobserved temperature and79
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humidity conditions.80

Our mechanistic model is based on a simple premise: virus inactivation in the environment is81

a chemical reaction and so obeys the laws of chemical kinetics. Reactions proceed faster at higher82

temperatures and higher solute concentrations. Solutes will be more concentrated when there is83

more evaporation; this occurs when the ambient relative humidity is lower. But below a threshold84

relative humidity, the efflorescence relative humidity (ERH), droplets may crystallize; this is also85

expected to change reaction kinetics. These principles apply across reactions. We do not need to86

know the exact identities and concentrations of non-virus reactants (e.g. amino acids, electrolytes,87

etc.) involved to make mechanistic predictions about how the inactivation reaction rate will vary88

with temperature and humidity.89

Our model encodes these principles. We estimated its three central parameters from our data.90

Empirical patterns of virus decay91

Our data suggest that SARS-CoV-2 environmental persistence could vary meaningfully across the92

range of temperatures and humidities encountered in daily life, with posterior median [95% credi-93

ble interval] half-lives as long as 27 h [20, 39] (10 ◦C, 40% RH) and as short as 1.5 h [1.1, 2.1] (27 ◦C, 65%94

RH), once droplets reach quasi-equilibrium with the ambient air conditions (Figure 1b, Appendix95

Table 1).96

Minimal virus decay occurred during the evaporation phase (Figure 1a, Figure 1–Figure Sup-97

plement 2), when excess water was present. Estimated half-lives were long but exact values were98

highly uncertain, as the small amount of absolute virus inactivation during the brief evaporation99

phases, combined with the noise involved in sampling and titration, limits our inferential capacity.100

Posterior median half-lives during the evaporation phase were 42 h [11, 330] at 10 ◦C, 12 h [4.5, 160]101

at 22 ◦C, and 5.8 h [2.1, 130] at 27 ◦C (Table 1).102

Overall, virus decay became markedly faster as temperature increased for all humidities, with103

decay at 27 ◦C roughly five to ten times faster than decay at 10 ◦C. Across temperatures, virus de-104

cay was relatively rapid at 65% RH and tended to be slower either at lower (40%) or higher (85%)105

humidities or when excess water was present during the evaporation phase (Figure 1b, Table 1).106

Table 1. Estimated half-lives in hours of SARS-CoV-2 on polypropylene as a function of temperature (T)
and relative humidity (RH). Estimated half-lives are reported as posterior median and the middle 95%credible interval.

T (◦C) RH (%) median half-life (h) 2.5 % 97.5 %
quasi-equilibrium phase 10 40 26.55 20.28 38.7510 65 14.22 12.17 17.1610 85 13.78 10.67 19.70

22 40 6.43 5.52 7.5622 65 2.41 2.03 2.8822 85 7.50 6.22 9.24
27 40 3.43 2.91 4.1227 65 1.52 1.05 2.1427 85 2.79 2.12 3.78

evaporation phase 10 42.08 10.97 334.3422 12.18 4.47 163.5827 5.76 2.14 125.85
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Figure 1. Inactivation kinetics and estimated half-life of SARS-CoV-2 on an inert surface as a function of temperature and relative
humidity (RH). (a) Example of medium evaporation and virus inactivation as a function of time since deposition; experiments at 22 ◦C and 65%RH shown. Inactivation proceeds in two phases: an evaporation phase during which water mass is lost from the sample to evaporation and aquasi-equilibrium phase once the sample mass has plateaued. Light blue vertical line shows posterior median estimated time thatquasi-equilibrium was reached. Top plot: medium evaporation. Dots show measured masses. Square shows measured final (quasi-equilibrium)mass; plotted at 24 h for readability. Lines are 10 random draws from the posterior for the evaporation rate; horizontal section of line reflectsthe reaching of quasi-equilibrium (measured final mass). See figure supplements for all conditions. Bottom plot: virus inactivation. Points showposterior median estimated titers in log10TCID50∕mL for each sample; lines show 95% credible intervals. Black dotted line shows theapproximate single-replicate limit of detection (LOD) of the assay: 100.5 TCID50∕mLmedia. Three samples collected at each time-point. Lines are10 random draws per measurement from the posterior distribution for the inactivation rates, estimated by a simple regression model (seeMethods). (b) Measured virus half-lives. Violin plots show posterior distribution of estimated half-lives, plotted on a logarithmic scale. Dots showposterior median value. Color indicates temperature. Measurements at 40%, 65%, and 85% RH reflect decay kinetics once the depositedsolution has reached quasi-equilibrium with the ambient air. Estimated half-lives for the evaporation phase that occurs prior toquasi-equilibrium are plotted to the right, since conditions during this phase are mainly dilute, and thus analogous to high RH quasi-equilibriumconditions. See figure supplements for plots showing the fit of the regression used to estimate half-lives to the titer data. (c) Schematic ofhypothesized effects of temperature and relative humidity on duration of virus viability. Virus half-lives are longer at lower temperatures,regardless of humidity, because inactivation reaction kinetics proceed more slowly. Relative humidity affects virus half-life by determiningquasi-equilibrium solute concentration in the droplet containing the virus. Above the efflorescence relative humidity (ERH), solutes areconcentrated by evaporation. The lower the ambient humidity, the more water evaporates, the more concentration occurs, and the fasterinactivation reactions proceed. Below the ERH, solutes effloresce, forming crystals. Half-lives are thus not particularly sensitive to changes insub-ERH relative humidity, and half-lives even slightly below the ERH may be substantially longer than half-lives slightly above it.
Figure 1–Figure supplement 1. Results of medium evaporation experiments.
Figure 1–Figure supplement 2. Fit of the regression model used to estimate the half-lives in b to evaporation phase (pre-drying) SARS-CoV-2
titer data.
Figure 1–Figure supplement 3. Fit of the regressionmodel used to estimate the half-lives in b to quasi-equilibrium (post-drying) SARS-CoV-2 titer
data.
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Mechanistic model for temperature and humidity effects107

Many viruses, including SARS-CoV-2, exhibit exponential decay on surfaces and in aerosols (Biryukov108

et al., 2020; Marr et al., 2019; van Doremalen et al., 2020). We drew upon chemical principles of109

droplet evaporation and virus inactivation (Figure 1c) to create a minimal mechanistic model incor-110

porating the effects of both temperature and relative humidity on exponential decay rates.111

We model virus inactivation at quasi-equilibrium on inert surfaces as a chemical reaction with112

first-order reaction kinetics; that is, the quantity of virus is the limiting reactant of the rate-determining113

step. This reflects the empirical pattern of exponential decay and is consistent with the fact that114

virions will be numerically rare in microdroplets compared to other reactants.115

We characterize the temperature dependence of this reaction with the Arrhenius equation,116

which describes a reaction rate (here the virus inactivation rate k) as a function of an activation117

energy Ea, an asymptotic high-temperature reaction rate A, the universal gas constant R, and the118

absolute temperature T :119

k = A exp
(

−
Ea
RT

)

(1)
Prior work has found Arrhenius-like temperature dependence for virus inactivation on surfaces120

and in aerosols for many viruses (Adams, 1949), including human coronaviruses (Yap et al., 2020).121

Mechanistic principles of virus inactivation as a function of humidity have been more elusive.122

Recent work has suggested that relative humidity affects virus inactivation by controlling evapora-123

tion and thus governing the solute concentrations in a droplet containing virions (Lin &Marr, 2020;124

Marr et al., 2019). In more humid environments, evaporation is slower and more water remains125

when quasi-equilibrium is reached. In less humid environments, evaporation is faster and little or126

no water remains (Figure 1c).127

When released from infected hosts, virions are found in host bodily fluids, and virus inactivation128

experiments are typically conducted in cell culture medium. Both solutions contain amino acids129

and electrolytes, in particular sodium chloride (NaCl) (Cavaliere et al., 1989; Dulbecco & Freeman,130

1959). Prior work has found that higher quasi-equilibrium solute concentrations are associated131

with faster virus inactivation rates (Yang et al., 2012; Yang & Marr, 2012). The simplest explanation132

for this is that the measured solute concentration is a direct proxy for the concentration of the133

reactants governing the inactivation reaction. Thus ambient humidity affects the reaction rate by134

setting the quasi-equilibrium concentrations of the reactants that induce inactivation of the virus.135

The exact quasi-equilibrium state reached will depend on the solutes present, since different136

solutes depress vapor pressure to different degrees. In electrolyte solutions like bodily fluids or cell137

culture media, efflorescence is also important. Below a threshold ambient humidity—the efflores-138

cence relative humidity (ERH)—electrolytes effloresce out of solution, forming a crystal (Figure 1c).139

Below the ERH, the reaction no longer occurs in solution, and so inactivation may be slower. The140

non-monotonic (“U-shaped”) dependence of virus inactivation on relative humidity, observed in141

our data (Figure 1a) and elsewhere in the literature (Benbough, 1971; Prussin et al., 2018; Webb142

et al., 1963; Yang et al., 2012), including for coronaviruses (Casanova et al., 2010; Songer, 1967),143

could be explained by this regime shift around the ERH (Figure 1c).144

During the evaporation phase prior to quasi-equilibrium, reactants are less concentrated and145

decay is expected to be slower, as observed from our data (Figure 1a,b). If small initial droplet sizes146

are used—as in real-world depositions (predominantly < 10 µL; D. Johnson et al., 2013; G. Johnson147

et al., 2011; Thompson et al., 2013) and in some experiments—evaporative quasi-equilibration148

should be near instant, and so inactivation should follow the kinetics at quasi-equilibrium. Larger149

droplets, such as those used in our experiments, will take more time to equilibrate (depending150

on temperature and humidity); this allows us to distinguish the quasi-equilibrium phase from the151

evaporation phase.152

We partition inactivation at quasi-equilibrium into two humidity regimes, effloresced and solu-153

tion, according to whether the ambient RH is below the ERH (effloresced) or above (solution). In154
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either case, we approximate virus inactivation as a first-order reaction with inactivation rate keff or155

ksol, respectively. Based on observations of NaCl solutions at room temperature and atmospheric156

pressure (Mikhailov et al., 2004), we use an ERH of 45%. This means that 40% RH experiments are157

in the effloresced regime and 65% and 85% RH experiments are in the solution regime.158

Wemodel the effloresced and solution inactivation rates keff and ksol using two Arrhenius equa-159

tions with a shared activation energy Ea but distinct asymptotic high-temperature reaction rates160

Aeff and Asol. In solution conditions, we further modulate ksol by a quasi-equilibrium “concentration161

factor” [Seq]

[S0]
, which quantifies how concentrated the solution has become at quasi-equilibrium [Seq]162

relative to its initial state [S0].163

Given our assumption of first-order kinetics, an n-fold increase in the non-virion reactant con-164

centrations should translate directly into an n-fold increase in the inactivation rate. Lower relative165

humidity leads to higher quasi-equilibrium concentration and thus increases virus inactivation rate,166

until the ERH is reached. Below the ERH, inactivation rates may again be low due to crystallization,167

depending on Aeff . We do not force the relationship between RH and inactivation rate to be con-168

tinuous at the ERH; there may be a discontinuity (see Appendix, Interpretation of the transition in169

inactivation rate at the ERH for a discussion).170

keff = Aeff exp
(

−
Ea
RT

)

(2)

ksol =
[Seq]
[S0]

Asol exp
(

−
Ea
RT

)

(3)
We estimated Ea, Aeff , and Asol from our data, constraining all to be positive. We treated evap-171

oration phase data as governed by ksol, with a dynamic value of the concentration factor [S(t)]
[S0]

(Ap-172

pendix, Modeling of virus decay dynamics during the evaporation phase). We computed the quasi-173

equilibrium concentration factor [Seq]

[S0]
by fitting a theoretically-motivated curve to our evaporation174

data (Figure 2–Figure Supplement 1).175

The relationship between RH and quasi-equilibrium concentration factor depends on complex176

evaporative kinetics that will vary among media. For this reason, we do not attempt to predict177

it from first principles, but instead measure it directly and use the fitted curve to extrapolate to178

unmeasured RH conditions. We use this approach for the results presented in the main text; we179

refer to it as the “main model”.180

To check robustness of the main model results, we also estimated a version of the model with-181

out this theoretical curve–using only directly measured equilibrium concentration factors. This182

model (referred to as the “directly-measured concentration model”) yielded similar results to the183

main model; see Appendix, Mechanistic model versions for details.184

We also considered a 4-parameter variant of the model with distinct activation energies below185

the ERH (Eeff
a ) and above (Esol

a ), placing the same prior on each. This accounts for the possibility186

that the rate-determining step of the inactivation reaction might be distinct in the two regimes.187

The estimated activation energies were very similar below and above the ERH (Figure A1). This188

suggests that the rate-determining reaction step—and thus the activation energy—is the same in189

both regimes. Accordingly, we report estimates from the 3-parameter model with a shared Ea.190

We provide additional details and interpretation of our mechanistic inactivation modeling in the191

Appendix; see Mechanistic inactivation model interpretation and Mechanistic model estimation.192
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Figure 2. Estimated titers and main mechanistic model fit for SARS-CoV-2 stability on polypropylene at
quasi-equilibrium. Points show posterior median estimated titers in log10TCID50∕mL for each sample; linesshow 95% credible intervals. Time-points with no positive wells for any replicate are plotted as triangles at theapproximate single-replicate limit of detection (LOD) of the assay—denoted by a black dotted line at 100.5
TCID50∕mLmedia—to indicate that a range of sub-LOD values are plausible. Three samples collected at eachtime-point. x-axis shows time since quasi-equilibrium was reached, as measured in evaporation experiments.Lines are random draws (10 per sample) from the joint posterior distribution of the initial sample virusconcentration and the mechanistic model predicted decay rate; the distribution of lines gives an estimate ofthe uncertainty in the decay rate and the variability of the initial titer for each experiment. See
Figure 2–Figure Supplement 3 for a visualization of the mechanistic model fit using directly-measuredconcentration, rather with a curve estimating the humidity/concentration relationship.
Figure 2–Figure supplement 1. Fitted curve estimate the relationship betweenhumidity andquasi-equilibrium
concentration factor
Figure 2–Figure supplement 2. Equivalent main mechanistic model fit figure for the evaporation phase.
Figure 2–Figure supplement 3. Equivalent figure, but using directly-measured concentration factors rather
than a fitted curve that relates RH to concentration.
Figure 2–Figure supplement 4. Evaporation phase figure, but using directly-measured concentration factors
rather than a fitted curve that relates RH to concentration.
Figure 2–Figure supplement 5. Comparison of directly measured half-lives with those predicted by the mech-
anistic model, both with and without a fitted curve relating RH to concentration.
Figure 2–Figure supplement 6. Mechanistic model parameter estimates, both with and without a fitted curve
relating RH to concentration.
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Model fitting and prediction of unobserved conditions193

Our dataset comprises 9 experimental conditions, each with 7 time-points that span the evapora-194

tion and quasi-equilibrium phases. We sought to explain the virus inactivation rates across this195

entire dataset using our mechanistic model with just 3 free parameters: the activation energy Ea196

and the asymptotic high-temperature reaction rates under effloresced and solution conditions,197

Aeff and Asol. The mechanistic function used and the constraint on the parameters to be positive198

means that inactivation rate must increase with temperature and with increasing solute concen-199

tration. Remarkably, the fit of the mechanistic model (Figure 2) is nearly as good as that of the200

simple regression, in which we estimate independent exponential decay rates for each condition201

to measure virus half-life (Figure 1–Figure Supplement 3, see Appendix, Simple regression model).202

Mechanistic model parameter estimates are given in the Appendix, Figure 2–Figure Supplement 6203

and Appendix Table A1.204

We used the mechanistic model to predict SARS-CoV-2 half-life for unobserved temperature205

and humidity conditions from 0 to 40 ◦C, and from 0 to 100% RH. We chose these ranges to reflect206

environments encountered by human beings in daily life. We did not extrapolate to temperatures207

below 0 ◦C since inactivation kinetics may be different when fluid containing the virus freezes. The208

exact freezing points of suspension medium and human fluids at sea level will depend on solute209

concentration, but will typically be below the 0 ◦C freezing point of pure water.210

Median predicted SARS-CoV-2 half-life varies by more than three orders of magnitude, from211

less than half an hour at 40 ◦C just above the modeled approximate ERH, to more than a month212

at 0 ◦C and 100% RH (Figure 3a,c). We find good qualitative agreement between model predictions213

and model-free estimates from our data, including long half-lives prior to quasi-equilibrium. The214

U-shaped effect of humidity on virus half-life is readily explained by the regime-shift at the ERH215

(Figure 3a). In particular, half-lives become extremely long at cold temperatures and in very dilute216

solutions, which are expected at high RH (Figure 3a,b). Of note, the worst agreement between217

mechanisticmodel predictions and (independent) simple regression estimates is found at 10 ◦C and218

85% RH (Figure 3a). This is partially explained by the fact that the quasi-equilibrium concentration219

reached under those conditions was higher than our model prediction of concentration from RH220

(Appendix Figure 2–Figure Supplement 1). Accordingly, the half-life prediction for 10 ◦C and 85% RH221

based on directly measured concentrations is superior to the prediction based on an extrapolation222

from the relative humidity (Figure 2–Figure Supplement 5).223

As a stronger test of our model’s validity, we used our estimated Ea and A values to make out-224

of-sample predictions of the half-lives of five human coronaviruses reported from independent225

studies: four betacoronaviruses (SARS-CoV-2, SARS-CoV-1, MERS-CoV and HCoV-OC43) and one226

alphacoronavirus (HCoV-229E). We compiled data on the environmental stability of those viruses227

under conditions ranging from 4 to 95 ◦C, from 30 to 80% RH, and on a range of surfaces or bulk me-228

dia, and computed empirical (regression) estimates of virus half-lives (Table A3). We also included229

data on stability of SARS-CoV-1 (van Doremalen et al., 2020) and MERS-CoV (same method as in230

van Doremalen et al., 2020) collected by our group during previous studies (Table A4).231

Where both temperature and RH were available, we compared these model-free estimates to232

predictions based on the mechanistic model parameterized with our SARS-CoV-2 data (Figure 3c,233

Figure 3–Figure Supplement 1). We found striking agreement for half-life estimates both above234

and below the ERH, and for temperatures ranging from 4 to 37 ◦C.235

To include a broader range of conditions in our out-of-sample model testing, we used our236

model to predict half-lives observed in all comparable studies by extrapolating from a reference237

half-life in each study. Predicted half-lives matched observations well across five orders of magni-238

tude (Figure 3d), despite spanning five virus species and despite important heterogeneities in the239

data collection process (see Appendix, Meta-analysis of human coronavirus half-lives). The two240

conspicuous outliers, where SARS-CoV-2 half-lives were measured to be substantially shorter than241

our prediction, correspond to samples exposed to high heat in closed vials (Chin, 2020; Chin et al.,242
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2020) which is known to accelerate virus inactivation (Gamble et al., 2021).243
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solute predictions shown in c and in Figure 3–Figure Supplement 1.
Figure 3–source data 2. Predicted and measured half-lives (posterior medians and credible intervals) for
within-study relative predictions shown in d.
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Discussion244

Combining novel data, mathematical modeling, and a meta-analysis of existing literature, we have245

developed a unified, mechanistic framework to quantify the joint effects of temperature and hu-246

midity on virus stability. In particular, our model provides a mechanism for the non-linear and247

non-monotonic relationship between relative humidity and virus stability previously observed for248

numerous enveloped viruses (Casanova et al., 2010; Songer, 1967; Yang & Marr, 2012), but not249

previously reported for SARS-CoV-2. Our work documents and explains the strong dependence of250

SARS-CoV-2 stability on environmental temperature and relative humidity, and accurately predicts251

half-lives for five coronavirus species in conditions from 4 to 95 ◦C, and from 30 to 80% RH and in252

bulk solution.253

Our findings have direct implications for the epidemiology and control of SARS-CoV-2 and other254

enveloped viruses. Themajority of SARS-CoV-2 clusters have been linked to indoor settings (Leclerc255

et al., 2020), suggesting that virus stability in indoor environmental conditionsmay be an important256

determinant of superspreading risk. Our results provide a mechanistic explanation for the many257

observed SARS-CoV-2 superspreading events in cool indoor environments such as food process-258

ing plants (Dyal, 2020; Günther et al., 2020; Pokora et al., 2020) and hockey rinks (Atrubin et al.,259

2020; McNabb & Ries, 2020), where the typical air temperature is around 10 ◦C, or in dry indoor260

environments such as long-distance flights (Jayaweera et al., 2020; Khanh et al., 2020). Conversely,261

our results imply that the relative rarity of outdoor SARS-CoV-2 transmission clusters is not readily262

explained by temperature and humidity effects, since these conditions outdoors during temper-263

ate zone winters should be favorable for the virus. Instead, increased ventilation (Prather et al.,264

2020) and UV light inactivation (Ratnesar-Shumate et al., 2020) may be more important than the265

effects of temperature and humidity outdoors. In contrast, typical climate-controlled conditions266

indoors (moderate temperature and low humidity) are favorable for virus stability, and special-267

ized conditions such as those found in food processing plants even more so. Our results highlight268

the importance of proper personal protective equipment and improved ventilation for protecting269

workers, particularly in cold indoor settings, and the general transmission risks associated with270

indoor gatherings.271

The effects of temperature and humidity we observe in our data and model are relevant both272

to fomite and to airborne transmission. Prior work has shown that virus decay as a function of RH273

is similar in droplets on surfaces and suspended aerosols (Kormuth et al., 2018; Lin & Marr, 2020).274

Numerous studies of smaller deposited droplets (Prussin et al., 2018) or aerosols (Benbough, 1971;275

Ijaz et al., 1985; Yang et al., 2012) have reported similar qualitative patterns to thosewe report, with276

increased decay rates at high temperatures and a U-shaped effect of RH. Furthermore, surface sta-277

bility can matter for aerosol transmission risk, since small particles containing infectious virions278

can be re-suspended from surfaces and inhaled (Asadi et al., 2020). Re-suspension is further en-279

hanced by procedures such as high-pressure washing, which is common in food processing plants.280

While the relative contributions of aerosol and fomite transmission to the epidemiology of SARS-281

CoV-2 continue to be investigated (Cai et al., 2020; Ong et al., 2020), our results indicate that cold282

situations present elevated transmission risks for either mode, especially if air is either dry or very283

humid. It has been speculated, for instance, that chilled or frozen foods might allow for rare but284

impactful long-range fomite transmission (Fisher et al., 2020). Our results show that this is conceiv-285

able, as there is good empirical and mechanistic support for prolonged virus viability at very low286

temperatures.287

Environmental stability is not the only mechanism by which temperature and humidity affect288

respiratory virus transmission. Very hot or cold conditions outdoors can lead people to spendmore289

time indoors, where transmission risks are heightened due to poor ventilation. Low-humidity envi-290

ronments can dry out human airways and thus impair defenses against respiratory viruses (Kudo291

et al., 2019). Ambient humidity also determines the size distribution of aerosols in the environment,292

again by affecting evaporation rates. Smaller aerosols settle to the groundmore slowly (Marr et al.,293
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2019), which could facilitate transmission.294

At low RH, humidity effects on inactivation, immunity, and settling may compound each other:295

all increase transmission risk. At high RH, reduced inactivation could promote transmission, but296

improved immune defenses and faster settling could hinder it, so the net effect on transmission is297

less clear.298

Still, temperate zone winters increase transmission of many respiratory viruses (Lofgren et al.,299

2007). Individuals spend increased time indoors in heated buildings. Ventilation is often poor, as300

windows are kept closed to make heating efficient. Air in heated buildings is typically very dry; this301

improves virus stability and weakens immune defenses. Policymakers should consider ventilating302

and humidifying essential indoor spaces to reduce transmission risk. Other mitigation measures303

such as indoor masking may likewise be even more crucial during winter. Indoor spaces in which304

individuals cannot be masked, such as bars and restaurants, remain particular cause for concern.305

Several analyses have projected that SARS-CoV-2 transmission will likewise be faster in tem-306

perate zone winters (Baker et al., 2020; Kissler et al., 2020; Neher et al., 2020). Major seasonal307

or climate-mediated mitigation of SARS-CoV-2 spread was not evident during the northern hemi-308

sphere’s spring and summer (Carlson et al., 2020; Poirier et al., 2020). This was expected, since309

population susceptibility and epidemic control measures can be more important than seasonal-310

ity in an early pandemic context (Baker et al., 2020). Thus the fact that temperate zone summers311

did not eliminate transmission should not have led to false confidence that temperate zone win-312

ters will not promote it. Winter surges in cases, hospitalizations, and deaths across the northern313

hemisphere may have been driven in part by behavioral, immunological, or virological seasonality.314

Our work has implications for the study of virus environmental stability and seasonality more315

broadly. Whether absolute or relative humidity is more important for influenza stability has been316

amatter of debate (Marr et al., 2019; Shaman et al., 2010). The answer has proved elusive because317

it is difficult to disentangle the effects of humidity from those of temperature. Our mechanistic318

model permits principled dis-aggregation of those effects, and reveals a strong effect of relative319

humidity even after accounting for the effects of temperature.320

There may thus exist general principles that govern virus inactivation across enveloped viruses,321

and perhaps even more broadly. Similar empirical patterns of temperature and humidity depen-322

dence to what we measured, and modeled, for SARS-CoV-2 have been observed for other impor-323

tant viruses. In particular, the U-shaped dependence of inactivation on RH has been reported324

for animal coronaviruses (Casanova et al., 2010; Songer, 1967), as well as for influenza viruses,325

paramyxoviruses, rhabdoviruses and retroviruses (Benbough, 1971; Prussin et al., 2018; Webb et326

al., 1963; Yang et al., 2012), suggesting the existence of a shared mechanism for the effect of hu-327

midity across enveloped RNA viruses. Some enveloped DNA viruses such as herpesviruses and328

poxviruses (Songer, 1967; Webb et al., 1963) and some encapsulated viruses such as polioviruses329

(De Jong & Winkler, 1968; Songer, 1967) also show similar empirical behavior. Experiments have330

found that heat treatment of viruses reduces infectivity principally by degrading surface proteins331

(Wigginton et al., 2012), lending further support to a chemical model of environmental virus inacti-332

vation.333

Individual enveloped viruses may be more or less stable than SARS-CoV-2 while still obeying334

our model’s basic principle: increased heat and concentration lead to faster inactivation. The val-335

ues of model parameters (Ea, Aeff , Asol) may change while the mechanistic model itself remains336

valid. The data from our own group and from the literature on MERS-CoV is suggestive in this337

regard: our model predictions using SARS-CoV-2 parameters slightly overestimate the stability of338

MERS-CoV, but correctly predict the pattern of temperature and humidity effects (Figure 3–Figure339

Supplement 1).340

Similarly, it is striking that our model for Arrhenius-like temperature dependence works well341

with a single estimated activation energy across the effloresced and solution regimes for our SARS-342

CoV-2 experiments and for experiments on a range of coronaviruses conducted in different con-343

ditions by other investigators. This suggests that the rate-limiting step in coronavirus inactivation344

12 of 57



may not necessarily depend on the exact inactivating reactant. We propose one simple potential345

mechanism for how this could be so: if inactivation depends on disruption of the virion once it has346

formed a complex with some inactivating reactant, the activation energy for that disruption event347

could dependmainly on the chemical properties of the virion itself (see Interpretation of the single348

activation energy).349

We discuss additional practical implications for the empirical study of virus environmental sta-350

bility in the Appendix (Methodological implications for experimental studies on virus stability).351

Despite years of research on virus stability as a function of temperature and humidity and plau-352

sible hypotheses about the underlying chemistry, proposedmechanisms have lacked explicit quan-353

titative support. By encoding the underlying chemistry into a mathematical model and estimating354

parameters using modern computational techniques, we provide such support, with critical in-355

sights for the control of an ongoing pandemic. Our empirical results provide mechanistic insight356

into transmission risks associated with cold and climate controlled indoor settings, while our mod-357

eling work allows for explicit quantitative comparison of the aerosol and fomite risks in different358

environments, and suggests that simple, general mechanisms govern the viability of enveloped359

viruses: hotter, more concentrated solutions are favorable to chemical reactions—and therefore360

unfavorable to viruses.361

Methods362

Laboratory experiments363

Viruses and titration364

We used SARS-CoV-2 strain HCoV-19 nCoV-WA1-2020 (MN985325.1; Holshue et al., 2020) for this365

study. We quantified viable virus by end-point titration on Vero E6 cells as described previously366

(Fischer et al., 2020; van Doremalen et al., 2020), and inferred posterior distributions for titers367

and exponential decay rates directly from raw titration data using Bayesian statistical models (see368

Statistical analyses and mathematical modeling below).369

Virus stability experiment370

Wemeasured virus stability on polypropylene (ePlastics, reference PRONAT.030X24X47S/M) as pre-371

viously described (van Doremalen et al., 2020). We prepared a solution of Dulbecco’s Modified372

Eagle Medium (DMEM, a common cell culture medium) supplemented with 2mM L-glutamine, 2%373

fetal bovine serum and 100 units∕mL penicillin/streptomycin, and containing 105 TCID50∕mL SARS-374

CoV-2. Polypropylene disks were autoclaved for decontamination prior to the experiment. We375

then placed 50 µL aliquots of this SARS-CoV-2 suspension onto the polypropylene disks under nine376

environmental conditions: three RH (40%, 65%, and 85%) at each of three temperatures (10 ◦C, 22 ◦C,377

and 27 ◦C). These controlled environmental conditions were produced in incubators (MMM Group378

CLIMACELL and Caron model 6040) with protection from UV-B or UV-C exposure. We prepared379

216 disks corresponding to three replicates per eight post-deposition time-points (0, 1, 4, 8, and380

24 hours, then daily for 4 days) for the nine conditions. At each time-point, samples were collected381

by rinsing the disks with 1mL of DMEM and stored at −80 ◦C until titration.382

Evaporation experiment383

We measured the evaporation kinetics of suspension medium under the same temperature and384

humidity conditions as the virus stability experiments. We placed 50 µL aliquots of supplemented385

DMEM onto polypropylene disks in a Electro-Tech Systems 5518 environmental chamber. The386

polypropylene disks were rinsed three times 1M sulfuric acid, ethanol and DI H2O respectively be-387

fore use. Wemeasuredmediummassm(t) every 5min for up to 20 h or until a quasi-equilibriumwas388

reached using a micro-balance (Sartorius MSE3.6P-000-DM, readability 0.0010mg). The chamber of389

the micro-balance was half-opened to keep air circulating with the environmental chamber. The390

flow entering the balance chamber decreased the balance accuracy to around 0.010mg. We mea-391
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sured initial droplet mass (m(0)) and final droplet mass (m(∞)) under closed-chamber conditions to392

increase accuracy.393

Statistical analyses and mathematical modeling394

We quantified the stability of SARS-CoV-2 under different conditions by estimating the decay rates395

of viable virus titers. We inferred individual titers using a Bayesian model we have previously de-396

scribed (Gamble et al., 2021). Briefly, themodel treats titration well infection as a Poisson single-hit397

process. We inferred raw exponential decay rates by modifying a previously-described simple re-398

gression model (Gamble et al., 2021) to account for the evaporation phase. See the Appendix399

(Empirical virus decay estimation) for model description.400

We estimated parameters of our mechanistic models by predicting titers based on those mod-401

els and then applying the same Poisson single-hit observation process to estimate parameters402

from the data. See Appendix (Mechanistic model estimation) for a complete description, including403

model priors.404

We estimated evaporation rates and corresponding drying times by modeling mass loss for405

each environmental condition i as linear in time at a rate �i until the final mass m(∞) was reached.406

See Appendix (Modeling of medium evaporation and Evaporation model fitting) for a full descrip-407

tion, including model priors.408

Wedrewposterior samples using Stan (StanDevelopment Team, 2018), which implements aNo-409

U-Turn Sampler (a form of Markov Chain Monte Carlo), via its R interface RStan (Stan Development410

Team, 2016). We inferred all parameters jointly (e.g. evaporation parameters and mechanistic411

model parameters were inferred in light of each other).412

Meta-analysis413

To test the validity of our model beyond the measured environmental conditions (i.e., beyond 10–414

27 ◦C and 40–85% RH), we compiled data from 11 published studies on human coronaviruses, in-415

cluding SARS-CoV-2, SARS-CoV-1, MERS-CoV, HCoV-OC43 and HCoV-299E, under 17 temperature-416

RH conditions. We generated estimates of half-life and uncertainties (Appendix Table A3) and com-417

pared those estimates to the half-lives predicted by the mechanistic model parametrized from our418

SARS-CoV-2 data. As data on evaporation kinetics were not available, we estimated a unique half-419

life for each experimental condition, covering both the evaporation and quasi-equilibrium phases.420

As virus decay during the evaporation phase is expected to beminimal, and the evaporation phase421

to be short, the estimated half-life can be used as a proxy for the quasi-equilibrium half-life. The422

complete data selection, extraction and analysis process is detailed in the Appendix (Meta-analysis423

of human coronavirus half-lives).424

We also included data from SARS-CoV-1 and MERS-CoV collected by our group during previous425

studies (van Doremalen et al., 2020). Those data were collected at 22 ◦C and 40% RH on polypropy-426

lene using the protocol described previously (van Doremalen et al., 2020) and similar to the one427

used to collect the SARS-CoV-2 data. SARS-CoV-1 strain Tor2 (AY274119.3) (Marra et al., 2003) and428

MERS-CoV strain HCoV-EMC/2012 (Zaki et al., 2012) were used for these experiments. We calcu-429

lated half-lives for evaporation and quasi-equilibriumphases using the same analysis pipeline used430

for SARS-CoV-2 (Appendix, Empirical virus decay estimation). These data were used only for out-431

of-sample prediction testing. We used the obtained evaporation phase half-lives as proxies for the432

half-life at 100% RH, as with SARS-CoV-2. See Appendix for a figure showing model fits (Figure A23)433

and a table of estimated half-lives (Table A4).434

Visualization435

We created plots in R version using ggplot2 (Wickham, 2016), ggdist (Kay, 2020a), and tidybayes436

(Kay, 2020b), and created original schematics using BioRender.com.437
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Mechanistic inactivation model interpretation456

Interpretation of the single activation energy457

We observe in the main text that a single activation energy Ea explains the data well across the458

effloresced and solution regimes (Figure A1).459

Moreover, our estimate is consistent with activation energies observed for other RNA viruses460

(Rowell &Dobrovolny, 2020). Ourmedian [100% credible interval]Ea estimate from themainmodel,461

9.10 × 104 Jmol−1 [8.21 × 104, 1.01 × 105], falls squarely within the range of literature estimates (ap-462

proximately 6.00 × 104 to 2.40 × 105 Jmol−1) (Rowell & Dobrovolny, 2020).463

These observations raise the question of whether the actual inactivating reaction is identical464

in the effloresced and solution regimes, in different media, and for different viruses. But at least465

for a given virus or family of viruses, it is possible for virus inactivation reactions to have the same466

activation energy even if different media or different environments imply a different inactivating467

reactant. Plausible routes of chemical virus inactivation include conformational changes in virion468

proteins, disruption of the virus capsid (Wigginton et al., 2012), and disruption of the virus envelope469

(Yang & Marr, 2012). These may occur via a two-step reaction:470

viable virion + external reactant ↔ intermediate product → inactivated virion (4)
If the second step is rate-limiting, then the overall reaction kinetics are first order and the mea-471

sured activation energy will reflect the Ea for that step. This energy could easily depend only on472

the virus proteins or envelope and not on the external reactant.473

Two-step reactions can produce first-order kinetics proportional to concentration474

Provided the external reactant concentration [r] is not meaningfully depleted, a two-step inactiva-475

tion reaction of this formwould still imply a linear dependence of inactivation rate on concentration476

of external reactant, and thus a linear dependence on solution concentration as postulated in our477

model (Equation 3). Below we describe a minimal two-step reaction mechanism that is consistent478

with these observations.479

We denote the concentration of viable virus by [vv], the concentration of inactivated virus by480

[vi], and the concentration of intermediate product by [x]. We denote the rate constants for the481

forward and backward first-step reactions by k+1 and k−1 and the rate constant for the second-step482

reaction by k+2 . We have:483

d[vv]
dt

= −k+1 [r][vv] + k
−
1 [x] dt

d[x]
dt

= k+1 [r][vv] − k
−
1 [x] − k

+
2 [x] dt

d[vi]
dt

= k+2 [x] dt

(5)

By assumption, the first step in the reaction is fast relative to the second. The intermediate484

product [x] should therefore reach a quasi-equilibrium value [x̄]. We solve for it by setting d[x]
dt

= 0485

and neglecting the smaller −k+2 term:486

[x̄] = [r]
k+1
k−1

[vv] (6)
Substituting [x̄] for [x] into d[vi]

dt
, it follows that virus inactivation obeys first-order kinetics pro-487

portional to the external reactant concentration [r]:488

d[vi]
dt

= [r]k+2
k+1
k−1

[vv] dt (7)
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Interpretation of the asymptotic reaction rates489

We also observe that the pre-exponential factor (asymptotic high temperature reaction rate) is490

somewhat but not substantially greater in the effloresced regime than in the solution regime (Aeff >491

Asol). SinceAsol ismodulated by [Seq]

[S0]
, this implies that reaction rates in the effloresced crystals (which492

we assume occur at the same rate for all sub-ERH ambient humidities) are faster than reactions493

at 100% RH, but not as fast as at humidities slightly above the ERH, such as 65% (Figure 2–Figure494

Supplement 6, Table A1).495

This empirical result is plausible. Below the ERH, reactants are in closer proximity, but also496

less mobile: modeled as a quasi-solution, there is a higher reactant concentration but also a lower497

diffusion coefficient. It is thus plausible that the effective rate of potentially reactive collisions for498

a given temperature could be greater than the rate in dilute solution at 100% RH, but substantially499

lower than the rate in more concentrated solution at 65% RH.500

Interpretation of the transition in inactivation rate at the ERH501

Since Aeff and Asol are estimated separately in our model, there is discontinuity in the inactiva-502

tion rate at the ERH (Figure 3a). In reality, there may be a more continuous transition. Molecular503

interactions may interpolate between the fully-effloresced and fully-solution states, resulting in a504

continuous phase transition-like behavior. But asmultiplemeasurements close to the ERH on both505

sides of it would be required to characterize this behavior conclusively, it is beyond the scope of506

our study. We therefore allow a discontinuity at the ERH.507

Model parameter estimate tables508

Table A1. Parameter estimates for the mechanistic model of SARS-CoV-2 inactivation as a function oftemperature and humidity, using a fitted curve relating RH to concentration factor, as in the main text.Estimates are reported as posterior median and the middle 95% credible interval.
parameter median 2.5 % 97.5 % unit
Aeff 6.15 × 1014 1.64 × 1013 3.02 × 1016 h−1

Asol 2.51 × 1013 6.31 × 1011 1.34 × 1015 h−1

Ea 9.10 × 104 8.21 × 104 1.01 × 105 Jmol−1

Table A2. Parameter estimates for the mechanistic model of SARS-CoV-2 inactivation as a function oftemperature and humidity, using concentration factors directly measured in evaporation experiments.Estimates are reported as posterior median and the middle 95% credible interval.
parameter median 2.5 % 97.5 % unit
Aeff 8.70 × 1013 3.48 × 1012 2.31 × 1015 h−1

Asol 3.43 × 1012 1.27 × 1011 9.64 × 1013 h−1

Ea 8.62 × 104 7.82 × 104 9.42 × 104 Jmol−1

Mechanistic modeling of evaporation and concentration509

To measure the solute concentration factor over time and to determine when droplets reached510

evaporative quasi-equilibrium (i.e. evaporation became slow enough that concentration factor511

could be treated as a constant), we quantified the evaporation of the suspension medium on512

polypropylene plastic (without virus) at the tested temperature and humidity combinations (Meth-513

ods; Figure 1–Figure Supplement 1).514

To extrapolate to unobserved relative humidities, we estimated the quasi-equilibrium solute515

concentration factor [Seq]

[S0]
as a function of relative humidity ℎ.516

The mathematical modeling we describe in this section is not central to our mechanistic model517

of how temperature and humidity affect virus inactivation. Rather, it is an attempt to conduct prin-518

cipled extrapolation to unobserved conditions. We do not attempt a general or fully-mechanistic519
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model of the relationship between relative humidity and quasi-equilibrium concentration factor,520

as in real-world conditions this will depend on the chemistry of the human fluids in which virions521

are found and its interactions with a non-ideal environment; this is an important avenue for future522

research. For our purposes here, a semi-mechanistic characterization of the increase in concen-523

tration factor with decreased relative humidity (up to the ERH) suffices.524

Similarly, our analysis here allowsus to distinguish the evaporation andquasi-equilibriumphases525

when doing inference. This matters because the time to reach quasi-equilibrium will vary in real526

conditions. It was prolonged in some of our experiments because we used large droplets; in every-527

day scenarios, it may vary from near-instant for small respiratory droplets and aerosols produced528

in speech to somewhat longer for large droplets produced by a sneeze.529

Solute concentration factor530

The concentration factor as a function of time [S(t)]
[S0]

is equal to the ratio of the initial mass of water531

w(0) (before evaporation begins) to the current mass of water w(t). We measured total masses532

m(t), not masses of water, but assuming that the mass of solutes, s, is conserved:533

[S(t)]
[S0]

=
w(0)
w(t)

=
m(0) − s
m(t) − s

(8)
and so:534

[Seq]
[S0]

=
w(0)
w(∞)

=
m(0) − s
m(∞) − s

(9)
In order to predict decay rates at unobserved relative humidities, we fit a semi-mechanistic535

function to the measured concentration factors to predict [Seq]

[S0]
as a function of fractional relative536

humidity ℎ. We begin with the observation (see Relationship between concentration factor and537

solute molar fraction (Equation 10) for a derivation) that if X(∞) is the molar fraction of solutes in538

the solution at quasi-equilibrium and X(0) is the initial molar fraction of solutes, then:539

[Seq]
[S0]

=
1 −X(0)
X(0)

X(∞)
1 −X(∞)

(10)
We denote the initial ratio of the molar fractions by r(0) = X(0)

1−X(0)
.540

The final molar ratio r(∞) = X(∞)
1−X(∞)

depends on the fractional relative humidity ℎ. We approxi-541

mate this relationship by a flexible two-parameter function:542

r(∞) =
X(∞)

1 −X(∞)
=
(

− ln(ℎ)
�s

)
1
�c (11)

Combining yields:543

[Seq]
[S0]

= 1
r(0)

(

− ln(ℎ)
�s

)
1
�c (12)

The estimated parameters �c , �s > 0 reflect deviations of our solutemixture from ideal behavior544

(�c = �s = 1). We derived this approximate expression from chemical theory; see Derivation of545

approximate functional form for the quasi-equilibrium solute concentration (Equation 11) for the546

derivation. Ideal chemical behavior would imply a linear relationship between X(∞) and ℎ near ℎ =547

1: X(∞) = 1 − ℎ. This works well for dilute solutions. But it predicts too high a concentration factor548

at low relative humidities, since it neglects the increasingly strong effects of solutes in preventing549

evaporation as those solutes becomemore concentrated. To extrapolate in aworthwhileway, then,550

weneed at least aminimalmodel of non-ideal evaporative behavior in a concentrated solution. Our551

simple function fits our data well (Figure 2–Figure Supplement 1).552
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Modeling of medium evaporation553

In our evaporation experiments, we observed an approximately linear decrease in water mass w(t)554

over time (Figure 1–Figure Supplement 1), followed by a leveling off at an approximately constant555

value (quasi-equilibrium). We therefore approximated the evaporation process with a piece-wise556

linear function:557

m(t) =

⎧

⎪

⎨

⎪

⎩

m(0) − �t �t < m(0) − m(∞)

m(∞) otherwise (13)

As noted above (see Solute concentration factor), we assumed that solute mass s was con-558

served, so w(t) = m(t) − s. It follows that:559

w(t) =

⎧

⎪

⎨

⎪

⎩

m(0) − s − �t �t < m(0) − m(∞)

m(∞) − s otherwise (14)

This implies that the concentration factor as a function of time is given by:560

[S(t)]
[S0]

=
w(0)
w(t)

=
m(0) − s

m(0) − s − �t
(15)

Defining B = �
w(0)

= �
m(0)−s

yields a normalized form:561

[S(t)]
[S0]

= 1
1 − Bt

(16)

Evaporation and quasi-equilibrium phases562

In our estimationmodels, we partitioned virus inactivation into two phases: evaporation and quasi-563

equilibrium (see Methods). We denote the time to quasi-equilibrium for experiment i by �i.564

We determined �i for each inactivation experimental condition based on on the evaporative565

mass loss rate �i in the corresponding evaporation experiment.566

For the simple regressionmodel and the fit of themechanisticmodel using only directly-measured567

concentration, we define �i as the time to reach the measured final total mass mi(∞) from themea-568

sured initial total mass mi(0) given the inferred evaporative mass loss rate �i:569

�i =
mi(0) − mi(∞)

�i
(17)

For the main fit of the mechanistic model, in which we use a fitted curve relating RH to [Seq]

[S0]
,570

we partition the phases not based on �i but rather based on the time �̄i to reach the predicted571

quasi-equilibrium concentration factor [Seq]

[S0] i
given the inferred Bi = �i

wi(0)
:572

�̄i =

1 − 1
[Seq]
[S0] i

Bi
(18)

Note that this relation also holds for a directly measured concentration. Letting [Seq]

[S0]
= m(0)−s

m(∞)−s
,573

Equation 18 simplifies to Equation 17.574

Modeling of virus decay dynamics during the evaporation phase575

Prior to evaporative quasi-equilibriumor complete efflorescence, virions are inwet conditions, with576

non-negligible evaporation ongoing. The degree of concentration of that solution [S(t)]
[S0]

changes as577

a function of time as the solvent (here, suspension medium) evaporates, until a quasi-equilibrium578

state is reached at [S(t)]
[S0]

= [Seq]

[S0]
.579

Per Equation 8, the concentration factor as a function of time is equal to w(0)
w(t)

.580
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The inactivation rate during that evaporation phase, which we denote by kev, is then a function581

of time kev(t):582

kev(t) =
w(0)
w(t)

Asol exp
(

−
Ea
RT

)

(19)
Letting v(t) denote the quantity of viable virus, inactivation kinetics will then proceed according583

to the differential equation:584

dv
dt

= −kev(t)v dt (20)
We define k0 = ksol(0) = Asol exp

(

− Ea
RT

) and apply our linear evaporation model from Equa-585

tion 15:586

dv
dt

= −kev(t)v dt = −
k0

1 −
(

�
w(0)

)

t
v dt = −

k0
1 − Bt

v dt (21)
Solving yields:587

v(t) = v(0) exp
(

k0
B

ln(1 − Bt)
)

= v(0)(1 − Bt)(k0∕B) (22)
subject to the constraint that Bt < 1, which is always satisfied for t ≤ �, under the assumption588

that some non-zero amount of water remains at quasi-equilibrium.589

Since virus titers are typically measured in log10 units, it is useful to have this expression in those590

terms:591

log10 v(t) = log10(v0) +
k0
B

log10(1 − Bt) (23)
Relationship between concentration factor and solutemolar fraction (Equation 10)592

Under the assumption that mass of solute does not change, all mass change reflects loss or gain593

of solvent. This mass change translates directly into increased or decreased concentration, and594

allows us to compute the estimated concentration factor as a function of time, [S(t)]
[S0]

, based on our595

evaporation experiments.596

If we have Nw(t)moles of solvent versus an initial value of Nw(0) and a constant number Ns of597

solute, then following a similar reasoning as in Equation 8:598

[S(t)]
[S0]

=
Nw(0)
Nw(t)

(24)
If X(t) is the mole fraction of solutes in the solution, Nw(t) = (1 − X(t))N(t) and Ns = X(t)N(t)599

where N(t) = Nw(t) +Ns. It follows that the ratio of moles is the ratio of the mole fractions:600

Nw(t)
Ns

=
1 −X(t)
X(t)

(25)
Since Ns does not change:601

Nw(0)
Ns

=
(1 −X(0))
X(0)

(26)
Hence:602

[S(t)]
[S0]

=
Nw(0)
Nw(t)

=
Nw(0)∕Ns

Nw(t)∕Ns
=

1−X(0)
X(0)
1−X(t)
X(t)

=
(

1 −X(0)
X(0)

)

X(t)
1 −X(t)

(27)
and therefore:603

[Seq]
[S0]

=
(

1 −X(0)
X(0)

)

X(∞)
1 −X(∞)

(28)
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Derivation of approximate functional form for the quasi-equilibrium solute con-604

centration (Equation 11)605

To compute [Seq]

[S0]
as a function of fractional relative humidity ℎ, we need an expression for the ratio606

of the quasi-equilibrium solute mole fraction X(∞) to the quasi-equilibrium solvent mole fraction607

1 −X(∞) as a function of ℎ.608

An evaporating aqueous solution reaches equilibrium with the ambient air when the ambient609

relative humidity is equal to the water activity aw in the solution:610

ℎ = aw (29)
For an ideal solution, the water activity would be given by:611

aw = 1 −X(∞) (30)
whereX(∞) is themole fraction of solutes (Raoult’s law). In a real solution, this expressionmust612

be modified to account for non-ideal behavior.613

If there are n species of solute ions and/or molecules present with molar fractions Xj , we ex-614

press this non-ideality in terms of the practical osmotic coefficient �(X1, ...Xn) (Blandamer et al.,615

2005), which is in general a function of the Xj :616

aw = exp

(

−�

∑n
j=1Xj

1 −
∑n

j=1Xj

)

= exp
(

−�
X(∞)

1 −X(∞)

)

(31)
Since our medium has a consistent solute formulation and we assume that solutes are con-617

served, we can treat � as a function of the total solute molar fraction X(t). We use the following618

flexible functional form for �:619

� = �s
( X
1 −X

)�c−1 (32)
With �c , �s > 0. We define these constrained parameters in terms of unconstrained parameters620

cc and cs:621

�c = exp
(

−cc
)

�s = exp
(

−cs
)

(33)
It follows that:622

aw = exp
[

−�s
( X
1 −X

)�c
]

(34)
This is a flexible two-parameter function with a number of desirable properties.623

• X = 0 implies aw = 1 and X = 1 implies aw = 0, as should be the case.624

• When cc , cs = 0, the relationship approximates the linear behavior observed in the ideal case,625

and we have � = 1 regardless of X, reflecting this ideality.626

• cc < 0 implies a concave relationship between mole fraction and activity near aw = 1, cc > 0627

implies a convex relationship there, and cc = 0 a linear relationship.628

• Varying cs controls the steepness of the relationship near aw = 1 while preserving concavity629

in that region; larger values imply a steeper relationship.630

• Empirical �(X) functions for important solute components of DMEM, such as NaCl, aremono-631

tonically increasing in X over the range of expected equilibrium mole fractions (Mikhailov et632

al., 2004), and thus should be readily approximated by our function.633

Using the property that evaporative equilibrium occurs when aw = ℎ, we approximate the ratio634

r(∞) of solute to solvent mole fractions at quasi-equilibrium (Equation 11) by:635
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r(∞) =
X(∞)

1 −X(∞)
=
(

− ln(ℎ)
�s

)
1
�c

This function readily approximates a number of realistic shapes (Mikhailov et al., 2004; Redrow636

et al., 2011) for the relationship between X and ℎ, particularly on the interval of interest, between637

100% relative humidity and the efflorescence relative humidity (ERH) (1 ≥ ℎ ≥ ERH ≈ 0.45).638

This function has simpler approximations to the humidity-molar-ratio relationship as special639

cases. For instance, �c = 1 implies that � does not vary with solute mole fraction X (as happens in640

ideal solutions).641

The main downside of this function is that our �(X) is constrained to be be monotonic. It is642

thus impossible for the relationship between ℎ and X
1−X

to have more than one concavity change643

the range [0, 1]. But this is unlikely to be important given that we are mainly interested (and fitting644

to) the range from the ERH to 100% relative humidity. In fact, an always-concave function readily645

explains our evaporation data in that range (Figure 2–Figure Supplement 1).646

Plugging Equation 11 into Equation 10 yields the expression for [Seq]

[S0]
in terms of the initial solute647

mole fraction ratio r(0) = X(0)
1−X(0)

and the ambient relative humidity ℎ given in Equation 12:648

[Seq]
[S0]

= 1
r(0)

(

− ln(ℎ)
�s

)
1
�c

Notice that while quasi-equilibrium concentration factors will depend on both �c and �s, the649

ratio of two quasi-equilibrium concentration factors from the same baseline (i.e. [Saeq]∕[S0]

[Sbeq]∕[S0]
for two650

different ambient humiditites ℎa and ℎb) will depend only on �c :651

[Sa
eq]∕[S0]

[Sb
eq]∕[S0]

=

(

ln
(

ℎa
)

ln
(

ℎb
)

)
1
�c (35)

Using Equation 35 in conjunctionwith Equation 3, one can predict a half-life at one temperature-652

relative humidity pair from a half-life measured at another, provided all else is equal. We use such653

an approach to make relative predictions in our meta-analysis (Figure 3d). See Relative predictions654

for details.655

Bayesian estimation models656

Model notation657

In the model notation that follows, the symbol ∼ denotes that a random variable is distributed
according to the given distribution. Normal distributions are parametrized as:

Normal(mean, standard deviation)

Positive-constrained normal distributions (“Half-Normal”) are parametrized as:
Half -Normal(mode, standard deviation)

For each inactivation experiment (set of temperature humidity conditions for a given virus),658

there is a corresponding medium evaporation experiment, which in which we measured the evap-659

oration of suspension medium at that same temperature and humidity.660

Titer inference661

Titer inference model662

We inferred individual titers directly from titration well data using a Poisson single-hit model.663
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We then modeled individual positive and negative wells for sample i according to a Poisson664

single-hit model (Brownie et al., 2011). That is, the number of virions that successfully infect cells665

within a given well is Poisson distributed with mean:666

ln(2)10vi (36)
This expression for the mean derives from the fact that our units are TCID50; the probability of667

a positive well at vi = 0, i.e. 1 TCID50, is equal to 1 − exp(− ln(2) × 1) = 0.5.668

Let yidk be a binary variable indicating whether the kth well at dilution factor d (where d is ex-669

pressed as log10 dilution factor) for sample i was positive (so yidk = 1 if that well was positive and 0670

if it was negative). Under a single-hit process, a well will be positive as long as at least one virion671

successfully infects a cell.672

It follows from Equation 36 that the conditional probability of observing yidk = 1 given a true673

underlying log10 titer vi is given by:674

(yidk = 1 ∣ vi) = 1 − exp
(

− ln(2) × 10(vi−d)
) (37)

This is simply the probability that a Poisson random variable with mean ln(2)10(vi−d) is greater675

than 0, and vi − d is the expected concentration of virions, measured in log10TCID50, in the dilute676

sample. Similarly, the conditional probability of observing yidk = 0 given a true underlying log10 titer677

vi is:678

(yidk = 0 ∣ vi) = exp
(

− ln(2) × 10(vi−d)
) (38)

which is the probability that the Poisson random variable is equal to 0.679

This gives us our likelihood function, assuming independence of outcomes acrosswells. Titrated680

doses introduced to each cell-culture well were of volume 0.1mL, so we incremented inferred titers681

by 1 to convert to units of log10TCID50∕mL.682

Titer inference model prior distributions683

We assigned a weakly informative Normal prior to the log10 titers vi (vi is the titer for sample i684

measured in log10TCID50∕0.1mL, since wells were inoculated with 0.1mL), similar to that used in our685

previous work (Fischer et al., 2020):686

vi ∼ Normal(2.5, 4) (39)
Titer inference model predictive checks687

We assessed the appropriateness of this prior distribution choice using prior predictive checks.688

The prior checks suggested that prior distributions were agnostic over the titer values of interest689

(Figure A2, Figure A3).690
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Figure A2. Prior predictive check for SARS-CoV-2 titer inference. Violin plots show distribution ofsimulated titers sampled from the prior predictive distribution. Points show posterior median estimatedtiters in log10TCID50∕mL for each sample; lines show 95% credible intervals. Time-points with no positive wellsfor any replicate are plotted as triangles at the approximate single-replicate limit of detection (LOD) of theassay—denoted by a black dotted line at 100.5 TCID50∕mLmedia—to indicate that a range of sub-LOD valuesare plausible. Three samples collected at each time-point. x-axis shows time since sample deposition. Widecoverage of violins relative to datapoints shows that priors are agnostic over the titer values of interest.
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Figure A3. Prior predictive check for titer inference for SARS-CoV-1 and MERS-CoV. Violin plots showdistribution of simulated titers sampled from the prior predictive distribution. Points show posterior medianestimated titers in log10TCID50∕mL for each sample; lines show 95% credible intervals. Time-points with nopositive wells for any replicate are plotted as triangles at the approximate single-replicate limit of detection(LOD) of the assay—denoted by a black dotted line at 100.5 TCID50∕mLmedia—to indicate that a range ofsub-LOD values are plausible. Three samples collected at each time-point. x-axis shows time since sampledeposition. Wide coverage of violins relative to datapoints shows that priors are agnostic over the titer valuesof interest.

26 of 57



Evaporation model fitting691

Following Modeling of medium evaporation, Equation 13, we modeled the expected mass m̄i(t) for692

each evaporation experiment i according to the equation:693

m̄i(t) =

⎧

⎪

⎨

⎪

⎩

mi(0) − �it �it < mi(0) − mi(∞)

mi(∞) otherwise (40)

Wemodeled that the observedmassesmi(t) as normally distributed about the predictedmasses694

m̄i(t) with an estimated, experiment-specific standard deviation �ei:695

mi(t) ∼ Normal(m̄i(t), �ei) (41)
To make evaporation prior distributions more interpretable, we placed our prior not on the696

evaporative mass loss rate �i but rather on the time to reach quasi-equilibrium �i which is related697

to �i by Equation 17:698

�i =
mi(0) − mi(∞)

�i
We placed weakly informative Half-Normal priors on the times to quasi-equilibrium �i (mea-699

sured in hours) and on the measurement standard deviations �ei:700

�i ∼ Half -Normal(10, 10) (42)

�ei ∼ Half -Normal(0, 1) (43)
Empirical virus decay estimation701

Simple regression model702

The duration of virus detectability depends not only on environmental conditions and treatment703

method but also initial inoculum and sampling noise. We therefore estimated the exponential704

decay rates of viable virus (and thus virus half-lives) using a simple Bayesian regression approach705

analogous to that described in Fischer et al. 2020. This modeling approach allowed us to account706

for differences in initial inoculum levels across samples as well as other sources of experimental707

noise. The model yields estimates of posterior distributions of viral decay rates and half-lives in708

the various experimental conditions—that is, estimates of the range of plausible values for these709

parameters given our data, with an estimate of the overall uncertainty (Gelman et al., 2013).710

Our data consist of nine different experimental conditions corresponding to the combinations711

of three temperatures (10 ◦C, 22 ◦C, and 27 ◦C) and three relative humidity levels (40%, 65%, and 85%).712

For each treatment, three samples were collected at 0, 1, 4, 8, 24, 72 and 96 hours after deposition.713

We also used this model for our group’s SARS-CoV-1 and MERS-CoV data (in the meta-analysis),714

which had one experimental condition each: 22 ◦C and 40%RH, observed over multiple timepoints.715

We accounted for evaporation with the same 22 ◦C, 40% RH suspension medium evaporation data716

used for SARS-CoV-2 at that temperature and humidity (as all the virus inactivation experiments717

were conducted using the same medium).718

We modeled each sample j for experimental condition i as starting with some true initial log10719

titer vij0. At the time tij that it is sampled, it has titer vij . As described above (Evaporation and720

quasi-equilibrium phases), we partitioned each experiment i into a evaporation phase and a quasi-721

equilibrium phase according to an estimated quasi-equilibration time �i.722

We modeled loss of viable virus at quasi-equilibrium as exponential decay at an experiment-723

specific rate �i. To avoid making assumptions about the correctness of our evaporation phase724

inactivation model (see Modeling of virus decay dynamics during the evaporation phase), we ap-725

proximated loss of viable virus during the evaporation phase as exponential decay with one decay726
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rate for each temperature condition (which applies to all associated humidity conditions). That is,727

the evaporation phase decay rate for experiment i is lT (i), where T (i) denotes the temperature for728

experiment i.729

It follows that the quantity vij of virus sampled at time tij is given by:730

vij =

⎧

⎪

⎨

⎪

⎩

vij0 − lT (i)tij tij ≤ �i
vij0 − lT (i)�i − �i(tij − �i) tij > �i

(44)

We used the direct-from-well data likelihood function described above, except that instead of731

estimating individual titers independently, we estimated �i and lT (i) under the assumption that our732

observed well data yidk reflected the corresponding predicted titers vij .733

To check the robustness of our results to our assumptions about the evaporation phase, we also734

fit a model only to the quasi-equilibrium phase data, with time measured since quasi-equilibrium735

was reached. In that model, the intercepts vij0 thus reflect the estimated titer at the time quasi-736

equilibrium was reached:737

vij0 − �i(tij − �i) (45)
Wemodeled each experiment i as having amean initial log10 titer v̄i0. Wemodeled the individual738

vij0 as normally distributed about v̄i0 with an estimated, experiment-specific standard deviation �i:739

vij0 ∼ Normal(v̄i0, �i) (46)
Simple regression model prior distributions740

We placed a Normal prior on the mean initial log10 titers v̄i0 to reflect the known inocula, similar to.741

v̄i0 ∼ Normal(2.5, 1) (47)
We placed a Half-Normal prior on the standard deviations �i:742

�i ∼ Half -Normal(0, 0.5) (48)
The allows either for large variation (1 log) about the experiment mean or for substantially less743

variation, depending on the data. It is similar—though slightly more diffuse—to that used in prior744

work (Gamble et al., 2021).745

To encode prior information about the decay rates in an interpretable way, we placed Normal746

priors on the log half-lives ln
(

�i
), where �i = log10(2)

�i
and ln

(

�T (i)
), where �T (i) = log10(2)

lT (i)
. We made the747

priors weakly informative (diffuse over the biologically plausible half-lives); we verified this with748

prior predictive checks.749

ln
(

�i
)

∼ Normal(ln(6), 2)

ln
(

�T (i)
)

∼ Normal(ln(24), 1.25)
(49)

We used a larger prior mean for the evaporation phase decay rate based on observations of750

slow decay of SARS-CoV-2 at moderate temperatures in bulk medium (Chin et al., 2020) and similar751

results for other viruses (Marr et al., 2019).752

Simple regression model predictive checks753

We assessed the appropriateness of prior distribution choices using prior predictive checks and754

assessed goodness of fit for the estimated model using posterior predictive checks. Prior checks755

suggested that prior distributions were agnostic over the parameter values of interest, and poste-756

rior checks suggested a good fit of the model to the data. The resultant checks are shown below757

(Figure A4–Figure A11).758
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Figure A4. Prior predictive check for empirical virus decay during the evaporation phase for
SARS-CoV-2. Violin plots show distribution of simulated titers sampled from the prior predictive distribution.Points show posterior median estimated titers in log10TCID50∕mL for each sample; lines show 95% credibleintervals. x-axis shows time since sample deposition. Black dotted line shows the single-replicate limit ofdetection of the assay: 100.5 TCID50∕mLmedia. Wide coverage of violins relative to datapoints show thatpriors are agnostic over the titer values of interest, and that the priors regard both fast and slow decay ratesas possible.
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Figure A5. Prior predictive check for empirical virus decay at quasi-equilibrium for SARS-CoV-2. Violinplots show distribution of simulated titers sampled from the prior predictive distribution. Points showposterior median estimated titers in log10TCID50∕mL for each sample; lines show 95% credible intervals.Time-points with no positive wells for any replicate are plotted as triangles at the approximate single-replicatelimit of detection (LOD) of the assay—denoted by a black dotted line at 100.5 TCID50∕mLmedia—to indicatethat a range of sub-LOD values are plausible. Three samples collected at each time-point. x-axis shows timesince quasi-equilibrium was reached, as measured in evaporation experiments. Wide coverage of violinsrelative to datapoints shows that priors are agnostic over the titer values of interest, and that the priorsregard both fast and slow decay rates as possible.
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Figure A6. Prior predictive check for empirical virus decay during the evaporation phase for
SARS-CoV-1 and MERS-CoV at 22 ◦C and 40% relative humidity. Violin plots show distribution of simulatedtiters sampled from the prior predictive distribution. Points show posterior median estimated titers in
log10TCID50∕mL for each sample; lines show 95% credible intervals. Black dotted line shows the approximatesingle-replicate limit of detection (LOD) of the assay: 100.5 TCID50∕mLmedia. Three samples collected at eachtime-point. x-axis shows time since sample deposition. Lines are truncated at the estimated timequasi-equilibrium was reached. Wide coverage of violins relative to datapoints shows that priors are agnosticover the titer values of interest, and that the priors regard both fast and slow decay rates as possible.
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Figure A7. Prior predictive check for empirical virus decay at quasi-equilibrium for SARS-CoV-1 and
MERS-CoV at 22 ◦C and 40% relative humidity. Violin plots show distribution of simulated titers sampledfrom the prior predictive distribution. Points show posterior median estimated titers in log10TCID50∕mL foreach sample; lines show 95% credible intervals. Time-points with no positive wells for any replicate areplotted as triangles at the approximate single-replicate limit of detection (LOD) of the assay—denoted by ablack dotted line at 100.5 TCID50∕mLmedia—to indicate that a range of sub-LOD values are plausible. Threesamples collected at each time-point. x-axis shows time since quasi-equilibrium was reached, as measured inevaporation experiments. Wide coverage of violins relative to datapoints shows that priors are agnostic overthe titer values of interest, and that the priors regard both fast and slow decay rates as possible.
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Figure A8. Posterior predictive check for empirical virus decay during the evaporation phase for
SARS-CoV-2. Violin plots show distribution of simulated titers sampled from the posterior predictivedistribution. Points show posterior median estimated titers in log10TCID50∕mL for each sample; lines show
95% credible intervals. Black dotted line shows the approximate single-replicate limit of detection (LOD) ofthe assay: 100.5 TCID50∕mLmedia. Three samples collected at each time-point. x-axis shows time sincesample deposition. Lines are truncated at the estimated time quasi-equilibrium was reached. Tightcorrespondence between distribution of posterior simulated titers and independently estimated titerssuggests the model fits the data well.
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Figure A9. Posterior predictive check for empirical virus decay at quasi-equilibrium for SARS-CoV-2.Violin plots show distribution of simulated titers sampled from the posterior predictive distribution. Pointsshow posterior median estimated titers in log10TCID50∕mL for each sample; lines show 95% credible intervals.Time-points with no positive wells for any replicate are plotted as triangles at the approximate single-replicatelimit of detection (LOD) of the assay—denoted by a black dotted line at 100.5 TCID50∕mLmedia—to indicatethat a range of sub-LOD values are plausible. Three samples collected at each time-point. x-axis shows timesince quasi-equilibrium was reached, as measured in evaporation experiments. Tight correspondencebetween distribution of posterior simulated titers and independently estimated titers suggests the model fitsthe data well.
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Figure A10. Posterior predictive check for empirical virus decay during the evaporation phase for
SARS-CoV-1 and MERS-CoV at 22 ◦C and 40% relative humidity. Violin plots show distribution of simulatedtiters sampled from the posterior predictive distribution. Points show posterior median estimated titers in
log10TCID50∕mL for each sample; lines show 95% credible intervals. Black dotted line shows the approximatesingle-replicate limit of detection (LOD) of the assay: 100.5 TCID50∕mLmedia. Three samples collected at eachtime-point. x-axis shows time since sample deposition. Lines are truncated at the estimated timequasi-equilibrium was reached. Tight correspondence between distribution of posterior simulated titers andindependently estimated titers suggests the model fits the data well.
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Figure A11. Posterior predictive check for empirical virus decay at quasi-equilibrium for SARS-CoV-1
and MERS-CoV at 22 ◦C and 40% relative humidity. Violin plots show distribution of simulated titerssampled from the posterior predictive distribution. Points show posterior median estimated titers in
log10TCID50∕mL for each sample; lines show 95% credible intervals. Time-points with no positive wells for anyreplicate are plotted as triangles at the approximate single-replicate limit of detection (LOD) of theassay—denoted by a black dotted line at 100.5 TCID50∕mLmedia—to indicate that a range of sub-LOD valuesare plausible. Three samples collected at each time-point. x-axis shows time since quasi-equilibrium wasreached, as measured in evaporation experiments. Tight correspondence between distribution of posteriorsimulated titers and independently estimated titers suggests the model fits the data well.
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Mechanistic model estimation759

Mechanistic model fitting760

To fit our mechanistic model (see Mechanistic model for temperature and humidity effects), we761

partitioned experiments according to humidity into two groups: sub-ERH / efflorescence (40%) and762

super-ERH / solution (65%, 85%). As before, we partitioned each experiment into a evaporation763

phase and a quasi-equilibrium phase (see Evaporation and quasi-equilibrium phases).764

As before, we modeled titers vij by assuming an initial value vij0 and then modeling decay from765

that value. We modeled decay during the evaporation phase according to Equation 23 and decay766

during the quasi-equilibrium phase as exponential at a fixed rate ki.767

These rates were functions of the temperatures Ti and quasi-equilibrium concentration factors768
[Seq]

[S0] i
according to the mechanistic model.769

For all experiments i, we modeled decay in solution during the evaporation phase as following770

Equation 23, which follows from the time-varying inactivation rate kev(t) given in Equation 19:771

kiev(t) =
wi(0)
wi(t)

Asol exp
(

−
Ea
RTi

)

(50)
The use ofAsol reflects the assumption that the virus is in solution during the evaporation phase.772

The w terms model the dynamic concentration factor.773

For the quasi-equilibrium phase, we modeled virus decay as exponential at rate keff (Main Text774

Equation 2) for efflorescent experiments (at 40% relative humidity) and as exponential at rate ksol775

(Main Text Equation 3) for solution experiments (at 65% or 85% relative humidity).776

That is:777

ki =

⎧

⎪

⎨

⎪

⎩

Aeff exp
(

− Ea
RTi

)

ℎi < ERH
[Seq]

[S0] i
Asol exp

(

− Ea
RTi

)

ℎi ≥ ERH (51)

The resultant titer prediction equation is:778

vij =

⎧

⎪

⎨

⎪

⎩

vij0 +
k0i
Bi

log10(1 − Bi tij) tij ≤ teqi
vij0 +

k0i
Bi

log10(1 − Bi �i) − ki(tij − t
eq
i ) tij > t

eq
i

(52)

where k0i = kiev(0) and teqi is the modeled time to quasi-equilibrium (teqi = �̄i for the main model779

fit and teqi = �i for the model fit using directly-measured concentration; see Evaporation and quasi-780

equilibrium phases).781

As in the simple regression model, we then used the direct-from-well data likelihood function782

described above under the assumption that our observed well data yidk reflected the titers vij pre-783

dicted by the mechanistic model per Equation 52.784

We estimated the joint posterior for all parameters. That is, activation energies Ea and asymp-785

totic reaction rates A are estimated in light of evaporative mass loss rates �i and resulting times to786

quasi-equilibrium teqi , and vice versa, for maximally informative propagation of uncertainty.787

Concentration factor788

In our evaporation experiments, wemeasured mi(0) and mi(∞), the initial and final total masses, re-789

spectively, of the deposited droplet under the temperature and humidity conditions of experiment790

i.791

For experiment i, we denote the initial mass of water by wi(0), the final mass of water by wi(∞)792

and the mass of solutes, which which we assume is conserved, by si. Then:793

mi(0) = wi(0) + si
mi(∞) = wi(∞) + si

(53)
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Denote the initial and finalmass fractions of solutes in experiment i by Yi(0) = si
wi(0)+si

and Yi(∞) =794

si
wi(∞)+si

, respectively.795

We treated the Yi(0) as an estimated parameter, assuming that it had the same value across all796

experiments: Yi(0) = Y(0).797

To estimate the parameters �c and �s for [Seq]

[S0]
as a function of ℎ, we needed to predict the798

observed final total mass, m(∞) as a function of ℎ.799

By definition:800

mi(∞) =
si

Yi(∞)
(54)

We can find Yi(∞) by using the fact that Y(∞)
1−Y(∞)

= X(∞)
1−X(∞)

= r(∞), where X(∞) is the quasi-801

equilibrium molar fraction of solutes. So Yi(∞) = ri(∞)
ri(∞)+1

. Since si = Yi(0)mi(0), it follows that the802

predicted quasi-equilibrium total mass for experiment i, m̄i(∞), is:803

m̄i(∞) =
ri(∞) + 1
ri(∞)

Yi(0)mi(0) (55)
We modeled ri(∞) according to Equation 11. Using Equation 55, we estimated Y(0) and the804

parameters �c and �s of Equation 11 fromour data. Wemodeled the observed log final totalmasses805

ln
(

mi(∞)
) as normally distributed about the log predicted quasi-equilibrium total masses ln(m̄i(∞)

)

806

with an estimated standard deviation �m:807

ln
(

mi(∞)
)

∼ Normal(ln
(

m̄i(∞)
)

, �m) (56)
We assumed that quasi-equilibrium totalmass valuesmeasured below the ERHwere equivalent808

to the quasi-equilibrium total mass values at the ERH; this allowed us to use the 40% RH (sub-ERH)809

evaporation data points to add additional resolution to the estimation of �c and �s.810

Mechanistic model versions811

As described in the Main Text, we fit the mechanistic model in two ways. The results plotted in812

our figures include a semi-mechanistic fitted curve estimating the effect of relative humidity on813
[Seq]

[S0]
. We jointly estimate the mechanistic parameters and the fitted parameters approximating the814

relationship between RH and [Seq]

[S0]
(see Solute concentration factor). This allows us to conduct a815

more principled extrapolation to unobserved RH values.816

We to check the robustness of our results, we also fit the mechanistic model using only the817

directly-measured concentration factors obtained from our evaporation experiments. This fit is818

the most direct snapshot of the relationship between temperature, concentration factor, and in-819

activation observed in our data, but it can only predict inactivation rates at RH levels where [Seq]

[S0]
is820

known.821

Main model fit822

In the main model fit (which uses the fitted curve to relate RH to equilibrium concentration factor),823

we calculated [Seq]

[S0] i
from the ambient relative humidity according to Equation 12, substituting 1−Y(0)

Y(0)
824

for 1
r(0)

= 1−X(0)
X(0)

, since the two ratios are equal:825

[Seq]
[S0] i

= 1
r(0)

Xi(∞)
1 −Xi(∞)

=
(

1 − Y(0)
Y(0)

)(

− ln(ℎ)
�s

)
1
�c (57)

Note that this means that �s and �c for the main model fit were estimated not only in light of826

the measured droplet masses but also in light of the measured virus titers, filtered through the827

mechanistic model of inactivation.828
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Directly-measured concentration model fit829

In the model fit using directly-measured concentration, we calculated the concentration factor for830

the ith experiment, [Seq]

[S0] i
according to Equation 9 using the measured initial and final total masses831

mi(0) and mi(∞) and the estimated parameter Y(0):832

[Seq]
[S0] i

=
wi(0)
wi(∞)

=
mi(0) − si
mi(∞) − si

=
mi(∞) − Y(0)mi(0)
mi(∞) − Y(0)mi(0)

(58)
Mechanistic model prior distributions833

Activation energies and asymptotic reaction rates.834

To place priors onEa andA in an interpretablemanner, we placed themnot on the parameter pairs835

themselves but rather on the solution and efflorescent half-lives at 20 ◦C, �sol(20) and �eff (20), and the836

ratios of virus decay rate at 30 ◦C to the virus decay rate at 20 ◦C, ksol(30)∕ksol(20) and keff (30)∕keff (20).837

These quantities fully determine the solution and efflorescence Ea and A values.838

Decay rate ratios are related to activation energies by:839

Ea =
R ln

(

k(T1)
k(T2)

)

1
T2

− 1
T1

(59)
where the temperatures are given in Kelvin.840

The 20 ◦C half-lives �(20) in hours imply associated exponential decay rates in log10 TCID50∕mL∕h:841

k(20) = log10(2)
�(20)

. Given an activation energy Ea and a known decay rate k(T ) for a given temperature842

T in Kelvin, one can calculate the asymptotic rate A:843

ln(A) = ln
(

k(T )
)

+
Ea
RT

(60)
Note that forAsol, this is the asymptotic rate at the initial concentration (i.e. when [S(t)]

[S0]
= [S0]

[S0]
= 1).844

We placed a Normal prior on the log of the half-life at 20 ◦C. Since �eff (20) and �sol(20) are the ef-845

floresced quasi-equilibrium and unconcentrated solution half-lives, respectively, we used the same846

prior as that used for the evaporation phase half-life (Simple regression model prior distributions):847

ln
(

�eff (20)
)

∼ Normal(ln(24), 1.25)

ln
(

�sol(20)
)

∼ Normal(ln(24), 1.25)
(61)

We placed a Half-Normal prior on the natural log of the decay rate ratios:848

ln
(

k(30)
k(20)

)

∼ Half -Normal(0, 1) (62)
Note that this means virus inactivation must become more rapid with temperature, another849

way in which our model’s fitted parameters are not truly free, and thus good fits should not neces-850

sarily be expected unless the model describes reality.851

For fits with distinct Esol
a and Eeff

a , we used the same Half-Normal(0, 1) prior for both ln
(

keff (30)
keff (20)

)

852

and ln
(

ksol(30)
ksol(20)

).853

Titer intercepts.854

We handled the titer intercepts vij0 for the mechanistic model identically to how they were han-855

dled in the simple regression model, with identical priors (see Equation 46 and Equation 47). We856

reproduce those equations here for reference:857

vij0 ∼ Normal(v̄i0, �i)

v̄i0 ∼ Normal(2.5, 1)

�i ∼ Half -Normal(0, 0.5)
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Concentration factor.858

We placed a Normal prior on the log of the initial solute mass fraction Y0, with a mode given by859

the approximate solute mass fraction for Dulbecco’s Modified Eagle Medium (DMEM) reported by860

the manufacturer (Sigma Aldrich, reference D6546 (“Dulbecco’s Modified Eagle’s Medium (DME)861

Formulation”, n.d.)).862

ln
(

Y0
)

∼ Normal(ln(0.011), 0.33) (63)
We placed Normal priors on the parameters cc and cs that model quasi-equilibrium mole frac-863

tion ratio as a function of humidity in Equation 12:864

cc ∼ Normal(0, 0.33)

cs ∼ Normal(0, 0.33)

Note that this results in lognormal priors on �c and �s.865

We placed a Normal prior on the standard deviation �m of the observed log quasi-equilibrium866

mass about its predicted value.867

�m ∼ Normal(0, 1) (64)
Mechanistic model predictive checks868

We assessed the appropriateness of prior distribution choices using prior predictive checks and869

assessed goodness of fit for the estimated model using posterior predictive checks. Prior checks870

suggested that prior distributions were agnostic over the parameter values of interest, and pos-871

terior checks suggested a good fit of the model to the data. The resultant checks for the main872

and directly-measured concentration versions of the mechanistic model of virus decay are shown873

below (Figure A12– Figure A19).874
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Figure A12. Prior predictive check for main model fit during the evaporation phase. Violin plots showdistribution of simulated titers sampled from the prior predictive distribution. Points show posterior medianestimated titers in log10TCID50∕mL for each sample; lines show 95% credible intervals. Black dotted line showsthe approximate single-replicate limit of detection (LOD) of the assay: 100.5 TCID50∕mLmedia. Three samplescollected at each time-point. x-axis shows time since sample deposition. Lines are truncated at the estimatedtime quasi-equilibrium was reached. Wide coverage of violins relative to datapoints shows that priors areagnostic over the titer values of interest, and that the priors regard both fast and slow decay rates as possible.
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Figure A13. Prior predictive check for main model fit at quasi-equilibrium. Violin plots show distributionof simulated titers sampled from the prior predictive distribution. Points show posterior median estimatedtiters in log10TCID50∕mL for each sample; lines show 95% credible intervals. Time-points with no positive wellsfor any replicate are plotted as triangles at the approximate single-replicate limit of detection (LOD) of theassay—denoted by a black dotted line at 100.5 TCID50∕mLmedia—to indicate that a range of sub-LOD valuesare plausible. Three samples collected at each time-point. x-axis shows time since quasi-equilibrium wasreached, as measured in evaporation experiments. Wide coverage of violins relative to datapoints shows thatpriors are agnostic over the titer values of interest, and that the priors regard both fast and slow decay ratesas possible.
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Figure A14. Prior predictive check for model fit using directly-measured concentration during the
evaporation phase. Violin plots show distribution of simulated titers sampled from the prior predictivedistribution. Points show posterior median estimated titers in log10TCID50∕mL for each sample; lines show
95% credible intervals. Black dotted line shows the approximate single-replicate limit of detection (LOD) ofthe assay: 100.5 TCID50∕mLmedia. Three samples collected at each time-point. x-axis shows time sincesample deposition. Lines are truncated at the estimated time quasi-equilibrium was reached. Wide coverageof violins relative to datapoints shows that priors are agnostic over the titer values of interest, and that thepriors regard both fast and slow decay rates as possible.
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Figure A15. Prior predictive check for model fit using directly-measured concentration at
quasi-equilibrium. Violin plots show distribution of simulated titers sampled from the prior predictivedistribution. Points show posterior median estimated titers in log10TCID50∕mL for each sample; lines show
95% credible intervals. Time-points with no positive wells for any replicate are plotted as triangles at theapproximate single-replicate limit of detection (LOD) of the assay—denoted by a black dotted line at 100.5
TCID50∕mLmedia—to indicate that a range of sub-LOD values are plausible. Three samples collected at eachtime-point. x-axis shows time since quasi-equilibrium was reached, as measured in evaporation experiments.Wide coverage of violins relative to datapoints shows that priors are agnostic over the titer values of interest,and that the priors regard both fast and slow decay rates as possible.
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Figure A16. Posterior predictive check for main model fit during the evaporation phase. Violin plotsshow distribution of simulated titers sampled from the posterior predictive distribution. Points showposterior median estimated titers in log10TCID50∕mL for each sample; lines show 95% credible intervals. Blackdotted line shows the approximate single-replicate limit of detection (LOD) of the assay: 100.5 TCID50∕mLmedia. Three samples collected at each time-point. x-axis shows time since sample deposition. Lines aretruncated at the estimated time quasi-equilibrium was reached. Tight correspondence between distributionof posterior simulated titers and independently estimated titers suggests the model fits the data well.
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Figure A17. Posterior predictive check for main model fit at quasi-equilibrium. Violin plots showdistribution of simulated titers sampled from the posterior predictive distribution. Points show posteriormedian estimated titers in log10TCID50∕mL for each sample; lines show 95% credible intervals. Time-pointswith no positive wells for any replicate are plotted as triangles at the approximate single-replicate limit ofdetection (LOD) of the assay—denoted by a black dotted line at 100.5 TCID50∕mLmedia—to indicate that arange of sub-LOD values are plausible. Three samples collected at each time-point. x-axis shows time sincequasi-equilibrium was reached, as measured in evaporation experiments. Tight correspondence betweendistribution of posterior simulated titers and independently estimated titers suggests the model fits the datawell.
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Figure A18. Posterior predictive check for model fit using directly-measured concentration during the
evaporation phase. Violin plots show distribution of simulated titers sampled from the posterior predictivedistribution. Points show posterior median estimated titers in log10TCID50∕mL for each sample; lines show
95% credible intervals. Black dotted line shows the approximate single-replicate limit of detection (LOD) ofthe assay: 100.5 TCID50∕mLmedia. Three samples collected at each time-point. x-axis shows time sincesample deposition. Lines are truncated at the estimated time quasi-equilibrium was reached. Tightcorrespondence between distribution of posterior simulated titers and independently estimated titerssuggests the model fits the data well.
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Figure A19. Posterior predictive check for model fit using directly-measured concentration at
quasi-equilibrium. Violin plots show distribution of simulated titers sampled from the posterior predictivedistribution. Points show posterior median estimated titers in log10TCID50∕mL for each sample; lines show
95% credible intervals. Time-points with no positive wells for any replicate are plotted as triangles at theapproximate single-replicate limit of detection (LOD) of the assay—denoted by a black dotted line at 100.5
TCID50∕mLmedia—to indicate that a range of sub-LOD values are plausible. Three samples collected at eachtime-point. x-axis shows time since quasi-equilibrium was reached, as measured in evaporation experiments.Tight correspondence between distribution of posterior simulated titers and independently estimated titerssuggests the model fits the data well.
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Meta-analysis of human coronavirus half-lives875

Study selection and data extraction876

We screened theWeb of Science Core Collection database onMay 31, 2020, using the following key877

words: “coronavir* AND (stability OR viability OR inactiv*) AND (temperature OR heat OR humidity)”878

(83 records). We also considered opportunistically identified pre-prints (up to July 6, 2020) and stud-879

ies referenced in full-texts assessed for eligibility and potentially reporting datasets of interest (22880

records). We then selected publications reporting data of viral stability for human coronaviruses881

(MERS, SARS-CoV-1, SARS-CoV-2, HCoV-OC43, HCoV-HKU1, HCoV-229E and HCoV-NL63) and for at882

least two temperature or humidity conditions. Considering the impact of medium composition883

and contact surface on virus inactivation kinetics (van Doremalen et al., 2020; Yang & Marr, 2012),884

we also filtered the selected studies based on these criteria. The complete selection procedure is885

described in Figure A20 following the Preferred Reporting Items for Systematic Reviews and Meta-886

Analyses (PRISMA) (Moher et al., 2009). Studies included in our analysis are listed in Table A3.887

We compiled data in the form of viral titer or relative infectivity across time, depending on how888

they were reported in the selected studies. Data were most often reported as mean ± variation889

(standard deviation or 95% confidence interval) across replicates per time-point and experimen-890

tal condition. However, as number of replicates and measured variation was not systematically891

reported, we did not include this information in our analyses. We extracted data from tables and892

from figures manually using the WebPlotDigitizer application (Rohatgi, 2019). We also recorded893

metadata including environmental conditions (temperature and relative humidity), contact surface,894

and medium composition and volume. The complete dataset is available in the online data and895

code repository.896

Among the selected studies, we sub-selected data to be included in ourmeta-analysis based on897

the same criteria. In particular, we restricted the dataset to suspensions composed of respiratory898

secretions, or cell culture or virus transportationmedia supplemented only with antibiotics and up899

to 10% fetal calf serum and 1% glutamine; we also restricted the dataset to stability measurements900

conducted in bulk medium suspensions, or using droplets deposited on inert surfaces (including901

steel and polypropylene) or on skin. The final dataset consisted of 38 experimental conditions,902

covering 17 temperature-humidity combinations andfive human coronaviruses (HCoV-229E, HCoV-903

OC43, MERS-CoV, SARS-CoV-1 and SARS-CoV-2) listed in Table A3.904

Estimation of virus decay in the literature905

Estimation model and priors906

We converted all data from the literature into log10 fraction of viable virus remaining (Figure A21–907

Figure A22). That is, wenormalized the reportedquantity of viable virus to the earliestmeasurement—908

if the authors had not already done so—and expressed time as time elapsed since earliest mea-909

surement. We then estimated half-lives independently for each environmental condition j in each910

study i by fitting a Bayesian exponential decay model with exponential decay rates �ij for each ex-911

periment j. We treated each reported measurement yijk (in log10 fraction viable) from experiment912

j of study i as normally distributed about the predicted log10 fraction viable f̄ijk, with an unknown913

standard deviation �mat(i, j) estimated independently for eachmaterial in study i, but shared across914

all temperature/humidity conditions for that study-material pair.915

yijk ∼ Normal(f̄ijk, �mat(i, j))
f̄ijk = −�ij t

(65)
We placed a diffuse Normal prior on the log half-lives �ij = log10(2)

�ij
and a Half-Normal prior on916

the standard deviations �mat(i, j):917

ln
(

�ij
)

∼ Normal(−2, 4)

�mat(i, j) ∼ Half -Normal(0.6, 0.2)
(66)
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Estimation model predictive checks918

We assessed appropriateness of priors with prior predictive checks (Figure A21) and goodness-of-919

fit with posterior predictive checks (Figure A22). Prior checks suggested that prior distributions920

were agnostic over the parameter values of interest, and posterior checks suggested a good fit of921

the model to the data.922
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83 records identified 
through database 

searching

22 additional records identified through other sources

104 records screened

63 full-text articles 
assessed for eligibility

36 studies included in 
qualitative synthesis

11 studies included in 
quantitative synthesis

1 duplicated record excluded

41 records excluded 
‐ Not addressing environmental stability (n = 40)
‐ Not focused on coronaviruses (n = 1)

27 full-text articles excluded 
‐ Full-text not available (n = 1)
‐ Not focused on coronaviruses (n = 1)
‐ Not addressing environmental stability (n = 1)
‐Meta-analyses, reviews, opinions or modelling studies not 
presenting original data (n = 11)
‐ Subject to inactivation treatments other than heat (n = 9)
‐ Data collected in non-laboratory conditions (n = 1)
‐ Titration protocol not comparable (n = 3)

25 studies excluded
‐ Only one temperature or humidity condition (n = 8)
‐ Aerosolized virus (n = 2)
‐ Non-human coronaviruses (n = 8)
‐ Experimental conditions not comparable (n = 4) 
‐ No quantitative or raw data reported (n = 3)

Figure A20. Selection process of the studies included in the meta-analysis of the effect of temperature
and humidity on human coronaviruses.
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Figure A21. Prior predictive check for empirical coronavirus decay from literature data. Violin plotsshow distribution of simulated titers sampled from the prior predictive distribution. Points show estimatedtiters for each collected sample based on data extracted from the literature. Shape and color indicates virus.x-axis shows time since first available measure. Study author, virus, and experimental conditions—material,temperature, and relative humidity (RH)—indicated at the top of each panel. Black dotted line shows LOD foreach experiment. Wide coverage of violins relative to datapoints shows that priors are agnostic over the titervalues of interest, and that the priors regard both fast and slow decay rates as possible.
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Figure A22. Posterior predictive check for empirical coronavirus decay from literature data. Violin plotsshow distribution of simulated titers sampled from the posterior predictive distribution. Points showestimated titers for each collected sample based on data extracted from the literature. Shape and colorindicates virus. x-axis shows time since first available measure. Study author, virus, and experimentalconditions—material, temperature, and relative humidity (RH)—indicated at the top of each panel. Blackdotted line shows LOD for each experiment. Tight correspondence between distribution of posteriorsimulated titers and independently estimated titers suggests the model fits the data well.
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Figure A23. Fit of simple regression model to SARS-CoV-1 and MERS-CoV data. Points show posteriormedian estimated titers in log10TCID50∕mL for each sample; lines show 95% credible intervals. Time-pointswith no positive wells for any replicate are plotted as triangles at the approximate single-replicate limit ofdetection (LOD) of the assay—denoted by a black dotted line at 100.5 TCID50∕mLmedia—to indicate that arange of sub-LOD values are plausible. Three samples collected at each time-point. x-axis shows time sincesample deposition. Lines are random draws (10 per sample) from the joint posterior distribution of the initialsample virus concentration and the estimated decay rate; the distribution of lines gives an estimate of theuncertainty in the decay rate and the variability of the initial titer for each experiment.

Additional SARS-CoV-1 and MERS-CoV data923

As noted in the Main Text Methods, we made half-life estimates for SARS-CoV-1 and MERS-CoV at924

22 ◦C and 40% RH during the evaporation and quasi-equilibrium phases using data collected by our925

group during previous studies (van Doremalen et al., 2020). We included these estimates in the926

meta-analysis alongside the estimates described above. Table A4 shows the estimated half-lives927

for these data, and Figure A23 shows the fit of the simple regression model to these data.928
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Meta-analysis estimates of half-lives929

Table A3. Estimated half-lives in hours for data from the literature, as a function of material,
temperature (T), and relative humidity (RH). Estimated half-lives are reported as posterior median and themiddle 95% credible interval. CCM: cell culture medium; VTM: virus transport medium; Resp. sec.: respiratorysecretions.

study virus material T (◦C) RH (%) median half-life (h) 2.5 % 97.5 %
Harbourt et al. 2020 SARS-CoV-2 Skin 4 45 4.18 × 101 2.59 × 101 1.42 × 102

Lamarre et al. 1989 HCoV-229E Bulk CCM 4 1.87 × 102 4.96 × 101 8.55 × 103

Rabenau et al. 2005 SARS-CoV-1 Bulk CCM 4 1.15 1.10 × 10−1 8.63 × 102

Lai et al. 2005 SARS-CoV-1 Bulk Resp. sec. 4 4.42 × 101 3.63 × 101 5.74 × 101

Chin et al. 2020 SARS-CoV-2 Bulk VTM 4 1.96 × 102 5.46 × 101 1.06 × 104

Van Doremalen et al. 2013 MERS-CoV Plastic 20 40 1.55 1.08 2.44
Van Doremalen et al. 2013 MERS-CoV Steel 20 40 3.16 2.29 4.77
Lai et al. 2005 SARS-CoV-1 Bulk Resp. sec. 20 1.10 × 101 8.38 1.61 × 101

Harbourt et al. 2020 SARS-CoV-2 Skin 22 45 3.75 2.07 8.06
Lamarre et al. 1989 HCoV-229E Bulk CCM 22 1.52 × 101 8.83 2.57 × 101

Chin et al. 2020 SARS-CoV-2 Bulk VTM 22 1.84 × 101 1.34 × 101 2.64 × 101

Van Doremalen et al. 2013 MERS-CoV Plastic 30 30 1.18 6.27 × 10−1 2.34
Van Doremalen et al. 2013 MERS-CoV Steel 30 30 1.31 7.19 × 10−1 2.60
Van Doremalen et al. 2013 MERS-CoV Plastic 30 80 9.66 × 10−1 5.56 × 10−1 1.78
Van Doremalen et al. 2013 MERS-CoV Steel 30 80 5.74 × 10−1 3.99 × 10−1 9.69 × 10−1

Bucknall et al. 1972 HCoV-229E Bulk CCM 33 1.61 1.00 3.85
Bucknall et al. 1972 HCoV-OC43 Bulk CCM 33 6.55 3.72 7.08 × 101

Lamarre et al. 1989 HCoV-229E Bulk CCM 33 1.43 × 101 8.55 2.29 × 101

Harbourt et al. 2020 SARS-CoV-2 Skin 37 45 5.96 × 10−1 3.37 × 10−1 1.32
Bucknall et al. 1972 HCoV-229E Bulk CCM 37 1.04 6.60 × 10−1 2.19
Bucknall et al. 1972 HCoV-OC43 Bulk CCM 37 4.22 2.30 6.53 × 101

Lamarre et al. 1989 HCoV-229E Bulk CCM 37 5.73 2.89 1.11 × 101

Chin et al. 2020 SARS-CoV-2 Bulk VTM 37 2.09 1.48 3.12
Batéjat et al. 2020 SARS-CoV-2 Bulk CCM 56 2.25 × 10−2 1.65 × 10−2 2.80 × 10−2

Darnell et al. 2004 SARS-CoV-1 Bulk CCM 56 4.49 × 10−2 3.45 × 10−2 6.34 × 10−2

Leclercq et al. 2014 MERS-CoV Bulk CCM 56 4.32 × 10−3 1.27 × 10−3 1.52 × 10−2

Rabenau et al. 2005 SARS-CoV-1 Bulk CCM 56 3.08 × 10−3 1.08 × 10−5 2.63 × 10−2

Chin et al. 2020 SARS-CoV-2 Bulk VTM 56 1.64 × 10−2 1.07 × 10−2 2.89 × 10−2

Pagat et al. 2007 SARS-CoV-1 Bulk CCM 60 3.49 × 10−2 2.61 × 10−2 5.06 × 10−2

Rabenau et al. 2005 SARS-CoV-1 Bulk CCM 60 3.16 × 10−3 9.01 × 10−6 2.63 × 10−2

Batéjat et al. 2020 SARS-CoV-2 Bulk CCM 65 1.86 × 10−3 7.62 × 10−6 1.17 × 10−2

Darnell et al. 2004 SARS-CoV-1 Bulk CCM 65 4.14 × 10−2 3.08 × 10−2 6.21 × 10−2

Leclercq et al. 2014 MERS-CoV Bulk CCM 65 7.35 × 10−4 5.15 × 10−4 1.42 × 10−3

Batéjat et al. 2020 SARS-CoV-2 Bulk Resp. sec. 65 8.36 × 10−3 5.95 × 10−3 1.16 × 10−2

Pagat et al. 2007 SARS-CoV-1 Bulk CCM 70 9.79 × 10−3 7.72 × 10−3 1.38 × 10−2

Chin et al. 2020 SARS-CoV-2 Bulk VTM 70 3.28 × 10−3 1.69 × 10−3 6.10 × 10−3

Darnell et al. 2004 SARS-CoV-1 Bulk CCM 75 2.31 × 10−3 8.88 × 10−6 2.10 × 10−2

Batéjat et al. 2020 SARS-CoV-2 Bulk Resp. sec. 95 2.41 × 10−3 1.62 × 10−3 3.62 × 10−3

Table A4. Estimated half-lives in hours of SARS-CoV-1 and MERS-CoV on polypropylene as a function of
temperature (T) and relative humidity (RH). Estimated half-lives are reported as posterior median and themiddle 95% credible interval.

T (◦C) RH (%) virus median half-life (h) 2.5 % 97.5 %
quasi-equilibrium phase 22 40 SARS-CoV-1 6.42 5.22 7.9222 40 MERS-CoV 3.16 2.53 3.97

evaporation phase 22 SARS-CoV-1 11.55 1.43 207.6822 MERS-CoV 13.18 1.09 217.34
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Mechanistic model prediction of half-lives from literature930

Absolute predictions931

Where both temperature and humidity were available for a measurement from the literature, we932

were able to predict the absolute half-life directly from our main model fit, as parametrized from933

our own SARS-CoV-2 data. These predictions are plotted inMain Text Figure 3c and Figure 3–Figure934

Supplement 1.935

Relative predictions936

Formany studies, however, only temperature informationwas available. Moreover, heterogeneities937

both among viruses and among laboratory protocols could shift the half-live by a constant factor938

relative to our SARS-CoV-2-polypropylene-DMEM data. To account for this, we made within-study939

relative predictions for studies with at least two temperature and/or humidity conditions on the940

same side of the ERH for a given virus on a given surface. For each such set of experiments, we941

chose the experimentwhose temperaturewas closest to 20 ◦C to serve as the reference experiment.942

If there were multiple such experiments, we picked the experiment with the relative humidity clos-943

est to the ERH.944

Our mechanistic model implies that the ratio of a pair of half-lives �1 and �2 at ambient temper-945

atures T1 and T2 and super-ERH relative humidities ℎ1 and ℎ2 is given by:946

�1
�2

=

(

ln
(

ℎ2
)

ln
(

ℎ1
)

)
1
�c

exp
[

Ea
R

(

1
T1

− 1
T2

)]

(67)
If ℎ1 and ℎ2 are both sub-ERH, we have:947

�1
�2

= exp
[

Ea
R

(

1
T1

− 1
T2

)]

(68)
Where no information about ambient relative humidity was available, we assumed humidities948

were shared across experiments andwere super-ERH, and therefore used Equation 67with ℎ1 = ℎ2949

to make predictions. Note that these predictions are independent of �s and A; they rely only on950

relative rates of inactivation, not absolute ones. These relative predictions according to Equation 67951

and Equation 68 are plotted in Figure 3d.952

Discussion of the results953

We report half-life estimates for each experimental condition in Table A3. This meta-analysis high-954

lights the same qualitative effect of temperature as our data: higher temperatures are associated955

with faster virus decay (shorter half-lives), with SARS-CoV-2 half-life in bulk medium varying from956

several hours at 4 ◦C to less than 15 s at 95 ◦C. The direct comparison of coronavirus half-lives across957

humidities is difficult, as only a few studies measured virus decay at several humidities with a fixed958

temperature.959

This data set includes data collected following heterogeneous experimental procedures, which960

can considerably impact virus inactivation kinetics. For instance, we included data collected from961

suspensions at different pH,which notably explains the difference between the half-lives estimated962

from Bucknall et al. 1972 (cell culture medium at pH 7.4) and Lamarre et al. 1989 (cell culture963

medium supplemented to reach pH 6) for HCoV-229E in bulk medium at 33 ◦C and 37 ◦C. Indeed,964

Lamarre et al. 1989 showed that pH 6 is optimal for HCoV-229E stability, hence the higher half-lives965

reported by this study. We also included data collected from suspensions supplemented with vary-966

ing levels of proteins (from 1%(Pagat et al., 2007) to 10%(Darnell et al., 2004; Harbourt et al., 2020)967

of fetal calf serum) although protein concentration is known to impact virus inactivation kinetics968

(Pastorino et al., 2020; Yang et al., 2012). Containers used to expose samples to environmental969

conditions can also impact virus inactivation rate, but this information is rarely reported (Gamble970
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et al., 2021). Notably, the two SARS-CoV-2 points in Main Text Figure 3d that show shorter-than-971

predicted half-lives are from heated bulk medium in closed vials, where inactivation is known to972

be rapid (Gamble et al., 2021).973

Despite this heterogeneity of the data collection process, and the high uncertainty of some974

half-life estimates, we find good qualitative agreement betweenmodel predictions andmodel-free975

estimates (see Main Text, Figure 3, and Figure 3–Figure Supplement 1).976

Methodological implications for experimental studies on virus stability977

The characterization of themechanisms by which humidity impacts virus stability allows us to draw978

methodological implications for future experimental studies. First, since solute concentration plays979

a critical role in the decay of viable virus, studies interested in virus viability should either include980

a measure of solute concentration over time (ideally via medium evaporation or precise measure-981

ments of sample mass through time), or focus on the quasi-equilibrium phase (during which so-982

lute concentration can be assumed to be constant). Second, since the evaporative kinetics and the983

resultant solute environments depend on the composition of the initial suspensionmedium, quan-984

titative estimates of duration of virus viability based on experiments conducted in different media985

should be compared with caution. In our meta-analysis, we were able to make accurate relative986

predictions of data from multiple artificial medium formulations as well as from bodily fluids; this987

suggests that the underlying mechanisms are robust to variation in suspension medium, though988

absolute durations may vary. Third, given the non-linear relationship between virus half-life and989

relative humidity, studies interested in the effect of humidity on virus viability should include a990

wide range of conditions at constant temperature, including both sub- and super-ERH conditions.991

Code for titer estimation andmodel fitting is freely available the online data and code repository,992

and could readily be adapted to the study of other viruses.993

Figure supplements994

The following pages contain figure supplements for Main Text and Appendix figures.995
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Figure 1–Figure supplement 1. Evaporation of supplemented Dulbecco’s Modified Eagle
Medium (DMEM) as a function of temperature and humidity. Dots show measured masses.
Square shows measured final (quasi-equilibrium) mass; actual measurement times for final
masses were upon removal of sample from chamber, but for readability they are plotted at 24 h
for all experiments. Lines are 100 random draws from the posterior for the evaporation rate; hor-
izontal section of line reflects the reaching of quasi-equilibrium (measured final mass). Transition
point between evaporation phase and quasi-equilibrium phase inferred from data (see Modeling
ofmedium evaporation and Evaporationmodel fitting). Note that finalmassmeasurement ismore
accurate than time series measurements (see Methods, Evaporation experiment).
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Figure 1–Figure supplement 2. Fit of the regression model used to estimate half-lives to
the evaporation phase (pre-drying) SARS-CoV-2 titer data, according to method described in
Empirical virus decay estimation (see Equation 44). We model evaporation phase decay of in-
fectious virus at temperature T (i) as exponential at a rate lT (i); this decay rate can therefore be esti-matedby fitting a line to the time series of estimated log10 virus titers. Points showposteriormedian
estimated titers in log10TCID50∕mL for each sample; lines show 95% credible intervals. Black dotted
line shows the approximate single-replicate limit of detection (LOD) of the assay: 100.5 TCID50∕mL
media. Three samples collected at each time-point. x-axis shows time since sample deposition.
Lines are truncated at the estimated time quasi-equilibriumwas reached. Lines are random draws
(10 per sample) from the joint posterior distribution of the initial sample virus concentration and
the estimated decay rate; the distribution of lines gives an estimate of the uncertainty in the decay
rate and the variability of the initial titer for each experiment.
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Figure 1–Figure supplement 3. Fit of the regression model used to estimate half-lives to
quasi-equilibrium (post-drying) SARS-CoV-2 titer data, according tomethod described in Em-
pirical virus decay estimation (see Equation 44). We model quasi-equilibrium decay of infec-
tious virus in environmental condition i as exponential at a rate �i; this decay rate can therefore beestimated by fitting a line to the time series of estimated log10 virus titers. Points show posterior
median estimated titers in log10TCID50∕mL for each sample; lines show 95% credible intervals. Time-
points with no positive wells for any replicate are plotted as triangles at the approximate single-
replicate limit of detection (LOD) of the assay—denoted by a black dotted line at 100.5 TCID50∕mL
media—to indicate that a range of sub-LOD values are plausible. Three samples collected at each
time-point. x-axis shows time since quasi-equilibrium was reached, as measured in evaporation
experiments. Lines are random draws (10 per sample) from the joint posterior distribution of the
initial sample virus concentration and the estimated decay rate; the distribution of lines gives an
estimate of the uncertainty in the decay rate and the variability of the initial titer for each experi-
ment.
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Figure 2–Figure supplement 1. Fitted curve estimating concentration factor at quasi-
equilibrium a function of relative humidity. Points show estimates for quasi-equilibrium con-
centration factor based on empirically measured masses from the evaporation experiments (Fig-
ure 1–Figure Supplement 1) and the estimated initial solute mass fraction. Estimates shown for
each temperature (point color) and ambient RH (x-axis value). Vertical lines around the points show
a 68% (thick) and 95% (thin) credible interval. Blue curves showmodel predictions for concentration
factor given parameters �c , �s (see Solute concentration factor, Equation 12), and the initial solutemass fraction, all estimated jointly alongsidemechanisticmodel parameters and evaporation rates.
Each curve is an independent draw from the joint posterior distribution of the parameters, thus
giving a sense of the distribution of possible curves. Vertical dashed line shows the efflorescence
relative humidity, 45%.
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Figure 2–Figure supplement 2. Estimated titers and main mechanistic model fit for SARS-
CoV-2 stability on polypropylene during the evaporation phase. Points show posteriormedian
estimated titers in log10TCID50∕mL for each sample; lines show 95% credible intervals. Black dotted
line shows the approximate single-replicate limit of detection (LOD) of the assay: 100.5 TCID50∕mL
media. Three samples collected at each time-point. x-axis shows time since sample deposition.
Lines are truncated at the estimated time quasi-equilibriumwas reached. Lines are random draws
(10 per sample) from the joint posterior distribution of the initial sample virus concentration and
the mechanistic model predicted decay rate; the distribution of lines gives an estimate of the un-
certainty in the decay rate and the variability of the initial titer for each experiment.
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Figure 2–Figure supplement 3. Estimated titers and fit of the directly-measured concen-
tration mechanistic model for SARS-CoV-2 stability on polypropylene at quasi-equilibrium
(concentration factor taken from evaporation experiments, rather than from a fitted curve that
relates RH to concentration). Points show posterior median estimated titers in log10TCID50∕mL
for each sample; lines show 95% credible intervals. Time-points with no positive wells for any
replicate are plotted as triangles at the approximate single-replicate limit of detection (LOD) of
the assay—denoted by a black dotted line at 100.5 TCID50∕mL media—to indicate that a range of
sub-LOD values are plausible. Three samples collected at each time-point. x-axis shows time since
quasi-equilibriumwas reached, asmeasured in evaporation experiments. Lines are randomdraws
(10 per sample) from the joint posterior distribution of the initial sample virus concentration and
the mechanistic model predicted decay rate; the distribution of lines gives an estimate of the un-
certainty in the decay rate and the variability of the initial titer for each experiment.
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Figure 2–Figure supplement 4. Estimated titers and fit of the directly-measured concentra-
tion mechanistic model for SARS-CoV-2 stability on polypropylene during the evaporation
phase (concentration factor taken from evaporation experiments, rather than from a fitted curve
that relates RH to concentration). Points show posterior median estimated titers in log10TCID50∕mL
for each sample; lines show 95% credible intervals. Black dotted line shows the approximate single-
replicate limit of detection (LOD) of the assay: 100.5 TCID50∕mL media. Three samples collected at
each time-point. x-axis shows time since sample deposition. Lines are truncated at the estimated
time quasi-equilibrium was reached. Lines are random draws (10 per sample) from the joint pos-
terior distribution of the initial sample virus concentration and the mechanistic model predicted
decay rate; the distribution of lines gives an estimate of the uncertainty in the decay rate and the
variability of the initial titer for each experiment.
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Figure 2–Figure supplement 5. Comparison of directly measured half-lives (left) with those
predicted by the mechanistic model, either with a fitted curve relating RH to concentration
(center), as in the main text, or using directly-measured concentration factors (right). Violin
plots show posterior distribution of estimated half-lives, plotted on a logarithmic scale. Dots show
posterior median value. Color indicates temperature. Measurements at 40%, 65%, and 85% RH
reflect decay kinetics once the deposited solution has reached quasi-equilibrium with the ambient
air.
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Figure 2–Figure supplement 6. Posterior distributions for key mechanistic model parame-
ters. Main model fit (with fitted curve relating RH to concentration factor) shown at left, directly-
measured concentration factor model fit shown at right. Distributions are visualized as quantile
dotplots (Kale et al., 2020); 100 representative dots are shown for each parameter. Black circle be-
low shows posterior median, bars show 68% (thick) and 95% (thin) credible intervals. For Aeff and
Asol, parameter values are plotted on a logarithmic scale. See Table A1 for posterior medians and
95% credible intervals; see Code and data availability for code to reproduce full set of posterior
samples.
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Figure 3–Figure supplement 1. Mechanistic model predictions compared to half-lives esti-
mated directly from data via simple regression. All inactivation studies in which both tem-
perature and relative humidity were reported are included. (a) Half-life as a function of relative
humidity at different temperatures. Colored lines show predicted half-life as a function of relative
humidity (x-axis value) and temperature (color) according to themainmodel fit. 100 randomdraws
from the posterior distribution are plotted for each of 20 evenly spaced temperatures between 0
and 40 ◦C. Grey line shows the efflorescence relative humidity (ERH) assumed in the model, 45%.
Points show posteriormedian formeasured half-lives for human coronaviruses. Measurements in-
cluded come from this study (Table 1), fromourmeta-analysis of the literature (TableA3), and from
SARS-CoV-1 and MERS-CoV data collected by our group (Table A4). (b) Half-life predicted from the
mechanistic model (x-axis) compared to independent estimates (y-axis), for the same observations
plotted in a. In both panels, half-life estimates are simple regression estimates (i.e. nomechanistic
model; fitting of independent exponential decay rates to each condition). Shape indicates virus;
in a, measurements from our own group are shown slightly larger. Black lines show a 68% (thick)
and 95% (thin) credible interval for posterior estimates. Note that three SARS-CoV-2 points from a
particular study (Harbourt et al., 2020) show consistently longer-than-predicted half-lives, and all
MERS-CoV points show shorter-than-predicted half-lives. In both instances, ourmechanistic model
makes accurate relative predictions for these data once calibrated to a reference half-life within
the same study (Figure 3d). Taken together, this indicates that there can be experiment- and/or
virus- specific effects on absolute half-lives while the general mechanism remains: hotter, more
concentrated solutions produce faster virus inactivation.
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