*For correspondence:
dylan@dylanhmorris.com (DHM);
jlloydsmith@ucla.edu (JOL-S)

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Mechanistic theory predicts the
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Abstract Ambient temperature and humidity strongly affect inactivation rates of enveloped
viruses, but a mechanistic, quantitative theory of these effects has been elusive. We measure the
stability of SARS-CoV-2 on an inert surface at nine temperature and humidity conditions and
develop a mechanistic model to explain and predict how temperature and humidity alter virus
inactivation. We find SARS-CoV-2 survives longest at low temperatures and extreme relative
humidities (RH); median estimated virus half-life is >24 hours at 10°C and 40 % RH, but ~1.5hours
at 27°C and 65 % RH. Our mechanistic model uses fundamental chemistry to explain why
inactivation rate increases with increased temperature and shows a U-shaped dependence on
RH. The model accurately predicts existing measurements of five different human coronaviruses,
suggesting that shared mechanisms may affect stability for many viruses. The results indicate
scenarios of high transmission risk, point to mitigation strategies, and advance the mechanistic
study of virus transmission.
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Introduction

For viruses to transmit from one host to the next, virus particles must remain infectious in the pe-
riod between release from the transmitting host and uptake by the recipient host. Virus environ-
mental stability thus determines the potential for surface (fomite) transmission and for mid-to-long
range transmission through the air. Empirical evidence suggests that virus environmental stability
depends strongly on ambient temperature and humidity, particularly for enveloped viruses; ex-
amples among enveloped viruses that infect humans include influenza viruses (Marr et al., 2019),
endemic human coronaviruses (ljaz et al., 1985), and the zoonotic coronaviruses SARS-CoV-1 (Chan
et al., 2011) and MERS-CoV (Van Doremalen et al., 2013).

In late 2019, a new zoonotic coronavirus now called SARS-CoV-2 emerged; it has since caused
a global pandemic (COVID-19) and is poised to become an endemic human pathogen. Many coun-
tries in the Northern Hemisphere experienced a substantial uptick in transmission with the arrival
of their late autumn and winter. Epidemiologists had anticipated such a seasonal increase (Kissler
et al., 2020; Neher et al., 2020) based on observations from other enveloped respiratory viruses,
such as endemic human coronaviruses (Monto et al., 2020) and influenza viruses (Lofgren et al.,
2007). These viruses spread more readily in temperate zone winters than in temperate zone sum-
mers. SARS-CoV-2 has also displayed epidemic dynamics shaped by superspreading events, in
which one person transmits to many others (Furuse et al., 2020; Kain et al., 2020); the related
SARS-CoV-1 virus was likewise characterized by superspreading (Lloyd-Smith et al., 2005).

Virus transmission is governed by many factors, among them properties of the virus and prop-
erties of the host population. But anticipating seasonal changes in transmission and preventing
superspreading events both require an understanding of virus persistence in the environment,
since ambient conditions can facilitate or impede virus spread. Empirical evidence suggests that
SARS-CoV-2, like other enveloped viruses, varies in its environmental stability as a function of tem-
perature and humidity (Biryukov et al., 2020; Matson et al., 2020), but the joint effect of these two
factors remains unclear.

Moreover, despite years of research on virus environmental stability, there do not exist mech-
anistically motivated quantitative models for virus inactivation as a function of both temperature
and humidity. Existing predictive models for the environmental stability of SARS-CoV-2 (Biryukov
et al., 2020; Guillier et al., 2020) and other viruses (Posada et al., 2010) are phenomenological re-
gression models that do not model the underlying biochemical mechanisms of inactivation. This
limits both our insight into the underlying inactivation process and our ability to generalize from
any given experiment to unobserved conditions, or to real-world settings. A lack of quantitative,
mechanistic models also makes it difficult to determine which environmental factors are most im-
portant, for instance whether absolute humidity (Shaman et al., 2010) or relative humidity (Marr
et al., 2019) best explains influenza inactivation and seasonality.

We measured the environmental stability of SARS-CoV-2 virus particles (virions) suspended in
cell culture medium and deposited onto a polypropylene plastic surface at nine environmental
conditions: three relative humidities (RH; 40 %, 65 %, and 85 %) at each of three temperatures (10°C,
22°C, and 27°C). We first quantified viable (infectious) virus titer over time and estimated virus de-
cay rates and corresponding half-lives in each condition using a simple Bayesian regression model
(see Methods). We quantified the evaporation of the suspension medium and compared virus sta-
bility during the sample evaporation phase—while substantial water loss was ongoing—to virus
stability after a quasi-equilibrium phase was reached—when further evaporation was not evident
over the timescale of the experiment.

We then created a mechanistic biochemical model of virus inactivation kinetics, drawing upon
existing hypotheses for how temperature and humidity affect the inactivation chemistry of virus
particles in microdroplets (Lin & Marr, 2020; Marr et al., 2019). We fit this mechanistic model to our
SARS-CoV-2 data, and used it to predict observations from other human coronaviruses and other
studies of SARS-CoV-2, and to extrapolate our SARS-CoV-2 results to unobserved temperature and
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humidity conditions.

Our mechanistic model is based on a simple premise: virus inactivation in the environment is
a chemical reaction and so obeys the laws of chemical kinetics. Reactions proceed faster at higher
temperatures and higher solute concentrations. Solutes will be more concentrated when there is
more evaporation; this occurs when the ambient relative humidity is lower. But below a threshold
relative humidity, the efflorescence relative humidity (ERH), droplets may crystallize; this is also
expected to change reaction kinetics. These principles apply across reactions. We do not need to
know the exact identities and concentrations of non-virus reactants (e.g. amino acids, electrolytes,
etc.) involved to make mechanistic predictions about how the inactivation reaction rate will vary
with temperature and humidity.

Our model encodes these principles. We estimated its three central parameters from our data.

Empirical patterns of virus decay

Our data suggest that SARS-CoV-2 environmental persistence could vary meaningfully across the
range of temperatures and humidities encountered in daily life, with posterior median [95 % credi-
ble interval] half-lives as long as 27 h [20, 39] (10°C, 40 % RH) and as short as 1.5h [1.1, 2.1] (27 °C, 65 %
RH), once droplets reach quasi-equilibrium with the ambient air conditions (Figure 1b, Appendix
Table 1).

Minimal virus decay occurred during the evaporation phase (Figure 1a, Figure 1-Figure Sup-
plement 2), when excess water was present. Estimated half-lives were long but exact values were
highly uncertain, as the small amount of absolute virus inactivation during the brief evaporation
phases, combined with the noise involved in sampling and titration, limits our inferential capacity.
Posterior median half-lives during the evaporation phase were 42h [11, 330] at 10°C, 12h [4.5, 160]
at 22°C, and 5.8h [2.1, 130] at 27 °C (Table 1).

Overall, virus decay became markedly faster as temperature increased for all humidities, with
decay at 27°C roughly five to ten times faster than decay at 10°C. Across temperatures, virus de-
cay was relatively rapid at 65 % RH and tended to be slower either at lower (40 %) or higher (85 %)
humidities or when excess water was present during the evaporation phase (Figure 1b, Table 7).

Table 1. Estimated half-lives in hours of SARS-CoV-2 on polypropylene as a function of temperature (T)
and relative humidity (RH). Estimated half-lives are reported as posterior median and the middle 95%
credible interval.

T(°C) RH(%) medianhalflife(th) 25% 97.5%

quasi-equilibrium phase 10 40 26.55 20.28 38.75
10 65 1422 1217 17.16

10 85 13.78 10.67 19.70

22 40 6.43 5.52 7.56

22 65 2.41 2.03 2.88

22 85 7.50 6.22 9.24

27 40 343 291 412

27 65 1.52 1.05 2.14

27 85 2.79 2.12 3.78

evaporation phase 10 42.08 1097 334.34
22 12.18 447 163.58

27 5.76 2.14 125.85
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Figure 1. Inactivation kinetics and estimated half-life of SARS-CoV-2 on an inert surface as a function of temperature and relative
humidity (RH). (a) Example of medium evaporation and virus inactivation as a function of time since deposition; experiments at 22 °C and 65 %
RH shown. Inactivation proceeds in two phases: an evaporation phase during which water mass is lost from the sample to evaporation and a
quasi-equilibrium phase once the sample mass has plateaued. Light blue vertical line shows posterior median estimated time that
quasi-equilibrium was reached. Top plot: medium evaporation. Dots show measured masses. Square shows measured final (quasi-equilibrium)
mass; plotted at 24 h for readability. Lines are 10 random draws from the posterior for the evaporation rate; horizontal section of line reflects
the reaching of quasi-equilibrium (measured final mass). See figure supplements for all conditions. Bottom plot: virus inactivation. Points show
posterior median estimated titers in log,,TCIDs,/mL for each sample; lines show 95 % credible intervals. Black dotted line shows the
approximate single-replicate limit of detection (LOD) of the assay: 10%3 TCIDs,/mL media. Three samples collected at each time-point. Lines are
10 random draws per measurement from the posterior distribution for the inactivation rates, estimated by a simple regression model (see
Methods). (b) Measured virus half-lives. Violin plots show posterior distribution of estimated half-lives, plotted on a logarithmic scale. Dots show
posterior median value. Color indicates temperature. Measurements at 40 %, 65 %, and 85 % RH reflect decay kinetics once the deposited
solution has reached quasi-equilibrium with the ambient air. Estimated half-lives for the evaporation phase that occurs prior to
quasi-equilibrium are plotted to the right, since conditions during this phase are mainly dilute, and thus analogous to high RH quasi-equilibrium
conditions. See figure supplements for plots showing the fit of the regression used to estimate half-lives to the titer data. (c) Schematic of
hypothesized effects of temperature and relative humidity on duration of virus viability. Virus half-lives are longer at lower temperatures,
regardless of humidity, because inactivation reaction kinetics proceed more slowly. Relative humidity affects virus half-life by determining
quasi-equilibrium solute concentration in the droplet containing the virus. Above the efflorescence relative humidity (ERH), solutes are
concentrated by evaporation. The lower the ambient humidity, the more water evaporates, the more concentration occurs, and the faster
inactivation reactions proceed. Below the ERH, solutes effloresce, forming crystals. Half-lives are thus not particularly sensitive to changes in
sub-ERH relative humidity, and half-lives even slightly below the ERH may be substantially longer than half-lives slightly above it.

Figure 1-Figure supplement 1. Results of medium evaporation experiments.

Figure 1-Figure supplement 2. Fit of the regression model used to estimate the half-lives in b to evaporation phase (pre-drying) SARS-CoV-2
titer data.

Figure 1-Figure supplement 3. Fit of the regression model used to estimate the half-lives in b to quasi-equilibrium (post-drying) SARS-CoV-2 titer
data.
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Mechanistic model for temperature and humidity effects

Many viruses, including SARS-CoV-2, exhibit exponential decay on surfaces and in aerosols (Biryukov
et al., 2020; Marr et al.,, 2019; van Doremalen et al., 2020). We drew upon chemical principles of
droplet evaporation and virus inactivation (Figure 1c) to create a minimal mechanistic model incor-
porating the effects of both temperature and relative humidity on exponential decay rates.

We model virus inactivation at quasi-equilibrium on inert surfaces as a chemical reaction with
first-order reaction kinetics; that s, the quantity of virus is the limiting reactant of the rate-determining
step. This reflects the empirical pattern of exponential decay and is consistent with the fact that
virions will be numerically rare in microdroplets compared to other reactants.

We characterize the temperature dependence of this reaction with the Arrhenius equation,
which describes a reaction rate (here the virus inactivation rate k) as a function of an activation
energy E,, an asymptotic high-temperature reaction rate A4, the universal gas constant R, and the
absolute temperature T

Ea
k=Aexp(—RT> ()

Prior work has found Arrhenius-like temperature dependence for virus inactivation on surfaces
and in aerosols for many viruses (Adams, 1949), including human coronaviruses (Yap et al., 2020).

Mechanistic principles of virus inactivation as a function of humidity have been more elusive.
Recent work has suggested that relative humidity affects virus inactivation by controlling evapora-
tion and thus governing the solute concentrations in a droplet containing virions (Lin & Marr, 2020;
Marr et al., 2019). In more humid environments, evaporation is slower and more water remains
when quasi-equilibrium is reached. In less humid environments, evaporation is faster and little or
no water remains (Figure 1c).

When released from infected hosts, virions are found in host bodily fluids, and virus inactivation
experiments are typically conducted in cell culture medium. Both solutions contain amino acids
and electrolytes, in particular sodium chloride (NaCl) (Cavaliere et al., 1989; Dulbecco & Freeman,
1959). Prior work has found that higher quasi-equilibrium solute concentrations are associated
with faster virus inactivation rates (Yang et al., 2012; Yang & Marr, 2012). The simplest explanation
for this is that the measured solute concentration is a direct proxy for the concentration of the
reactants governing the inactivation reaction. Thus ambient humidity affects the reaction rate by
setting the quasi-equilibrium concentrations of the reactants that induce inactivation of the virus.

The exact quasi-equilibrium state reached will depend on the solutes present, since different
solutes depress vapor pressure to different degrees. In electrolyte solutions like bodily fluids or cell
culture media, efflorescence is also important. Below a threshold ambient humidity—the efflores-
cence relative humidity (ERH)—electrolytes effloresce out of solution, forming a crystal (Figure 1c).
Below the ERH, the reaction no longer occurs in solution, and so inactivation may be slower. The
non-monotonic (“U-shaped”) dependence of virus inactivation on relative humidity, observed in
our data (Figure 1a) and elsewhere in the literature (Benbough, 1971; Prussin et al., 2018; Webb
et al., 1963; Yang et al., 2012), including for coronaviruses (Casanova et al., 2010; Songer, 1967),
could be explained by this regime shift around the ERH (Figure 1c).

During the evaporation phase prior to quasi-equilibrium, reactants are less concentrated and
decay is expected to be slower, as observed from our data (Figure 1a,b). If small initial droplet sizes
are used—as in real-world depositions (predominantly < 10 uL; D. Johnson et al., 2013; G. Johnson
et al., 2011; Thompson et al., 2013) and in some experiments—evaporative quasi-equilibration
should be near instant, and so inactivation should follow the kinetics at quasi-equilibrium. Larger
droplets, such as those used in our experiments, will take more time to equilibrate (depending
on temperature and humidity); this allows us to distinguish the quasi-equilibrium phase from the
evaporation phase.

We partition inactivation at quasi-equilibrium into two humidity regimes, effloresced and solu-
tion, according to whether the ambient RH is below the ERH (effloresced) or above (solution). In

5 of 57



either case, we approximate virus inactivation as a first-order reaction with inactivation rate k. or
k., respectively. Based on observations of NaCl solutions at room temperature and atmospheric
pressure (Mikhailov et al., 2004), we use an ERH of 45 %. This means that 40 % RH experiments are
in the effloresced regime and 65 % and 85 % RH experiments are in the solution regime.

We model the effloresced and solution inactivation rates k. and k, using two Arrhenius equa-
tions with a shared activation energy E, but distinct asymptotic high-temperature reaction rates

Ay and A,. In solution conditions, we further modulate &, by a quasi-equilibrium “concentration
factor” 2 which quantifies how concentrated the solution has become at quasi-equilibrium [S,,]
relative t(% its initial state [S,].

Given our assumption of first-order kinetics, an n-fold increase in the non-virion reactant con-
centrations should translate directly into an n-fold increase in the inactivation rate. Lower relative
humidity leads to higher quasi-equilibrium concentration and thus increases virus inactivation rate,
until the ERH is reached. Below the ERH, inactivation rates may again be low due to crystallization,
depending on A,;. We do not force the relationship between RH and inactivation rate to be con-
tinuous at the ERH; there may be a discontinuity (see Appendix, Interpretation of the transition in
inactivation rate at the ERH for a discussion).

Ell
kegr = Aggr €Xp (‘ RT) (2)

ke = %Am, exp <—§%> (3)

We estimated E,, A, and A, from our data, constraining all to be positive. We treated evap-
oration phase data as governed by k_,, with a dynamic value of the concentration factor [S(’” (Ap-
pendix, Modeling of virus decay dynamics during the evaporation phase). We computed the quaS|-
equilibrium concentration factor L “‘] by fitting a theoretically-motivated curve to our evaporation
data (Figure 2-Figure Supplement 1)

The relationship between RH and quasi-equilibrium concentration factor depends on complex
evaporative kinetics that will vary among media. For this reason, we do not attempt to predict
it from first principles, but instead measure it directly and use the fitted curve to extrapolate to
unmeasured RH conditions. We use this approach for the results presented in the main text; we
refer to it as the “main model".

To check robustness of the main model results, we also estimated a version of the model with-
out this theoretical curve-using only directly measured equilibrium concentration factors. This
model (referred to as the “directly-measured concentration model”) yielded similar results to the
main model; see Appendix, Mechanistic model versions for details.

We also considered a 4-parameter variant of the model with distinct activation energies below
the ERH (E¢') and above (E:!), placing the same prior on each. This accounts for the possibility
that the rate-determining step of the inactivation reaction might be distinct in the two regimes.
The estimated activation energies were very similar below and above the ERH (Figure AT1). This
suggests that the rate-determining reaction step—and thus the activation energy—is the same in
both regimes. Accordingly, we report estimates from the 3-parameter model with a shared E,.
We provide additional details and interpretation of our mechanistic inactivation modeling in the
Appendix; see Mechanistic inactivation model interpretation and Mechanistic model estimation.
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Figure 2. Estimated titers and main mechanistic model fit for SARS-CoV-2 stability on polypropylene at
quasi-equilibrium. Points show posterior median estimated titers in log,,TCID5,/mL for each sample; lines
show 95 % credible intervals. Time-points with no positive wells for any replicate are plotted as triangles at the
approximate single-replicate limit of detection (LOD) of the assay—denoted by a black dotted line at 10°>
TCIDs,/mL media—to indicate that a range of sub-LOD values are plausible. Three samples collected at each
time-point. x-axis shows time since quasi-equilibrium was reached, as measured in evaporation experiments.
Lines are random draws (10 per sample) from the joint posterior distribution of the initial sample virus
concentration and the mechanistic model predicted decay rate; the distribution of lines gives an estimate of
the uncertainty in the decay rate and the variability of the initial titer for each experiment. See

Figure 2-Figure Supplement 3 for a visualization of the mechanistic model fit using directly-measured
concentration, rather with a curve estimating the humidity/concentration relationship.

Figure 2-Figure supplement 1. Fitted curve estimate the relationship between humidity and quasi-equilibrium
concentration factor

Figure 2-Figure supplement 2. Equivalent main mechanistic model fit figure for the evaporation phase.
Figure 2-Figure supplement 3. Equivalent figure, but using directly-measured concentration factors rather
than a fitted curve that relates RH to concentration.

Figure 2-Figure supplement 4. Evaporation phase figure, but using directly-measured concentration factors
rather than a fitted curve that relates RH to concentration.

Figure 2-Figure supplement 5. Comparison of directly measured half-lives with those predicted by the mech-
anistic model, both with and without a fitted curve relating RH to concentration.

Figure 2-Figure supplement 6. Mechanistic model parameter estimates, both with and without a fitted curve
relating RH to concentration.
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Model fitting and prediction of unobserved conditions

Our dataset comprises 9 experimental conditions, each with 7 time-points that span the evapora-
tion and quasi-equilibrium phases. We sought to explain the virus inactivation rates across this
entire dataset using our mechanistic model with just 3 free parameters: the activation energy E,
and the asymptotic high-temperature reaction rates under effloresced and solution conditions,
A and A, The mechanistic function used and the constraint on the parameters to be positive
means that inactivation rate must increase with temperature and with increasing solute concen-
tration. Remarkably, the fit of the mechanistic model (Figure 2) is nearly as good as that of the
simple regression, in which we estimate independent exponential decay rates for each condition
to measure virus half-life (Figure 1-Figure Supplement 3, see Appendix, Simple regression model).
Mechanistic model parameter estimates are given in the Appendix, Figure 2-Figure Supplement 6
and Appendix Table A1.

We used the mechanistic model to predict SARS-CoV-2 half-life for unobserved temperature
and humidity conditions from 0 to 40°C, and from 0to 100 % RH. We chose these ranges to reflect
environments encountered by human beings in daily life. We did not extrapolate to temperatures
below 0°C since inactivation kinetics may be different when fluid containing the virus freezes. The
exact freezing points of suspension medium and human fluids at sea level will depend on solute
concentration, but will typically be below the 0°C freezing point of pure water.

Median predicted SARS-CoV-2 half-life varies by more than three orders of magnitude, from
less than half an hour at 40°C just above the modeled approximate ERH, to more than a month
at0°C and 100 % RH (Figure 3a,c). We find good qualitative agreement between model predictions
and model-free estimates from our data, including long half-lives prior to quasi-equilibrium. The
U-shaped effect of humidity on virus half-life is readily explained by the regime-shift at the ERH
(Figure 3a). In particular, half-lives become extremely long at cold temperatures and in very dilute
solutions, which are expected at high RH (Figure 3a,b). Of note, the worst agreement between
mechanistic model predictions and (independent) simple regression estimates is found at 10°C and
85 % RH (Figure 3a). This is partially explained by the fact that the quasi-equilibrium concentration
reached under those conditions was higher than our model prediction of concentration from RH
(Appendix Figure 2-Figure Supplement 1). Accordingly, the half-life prediction for 10°C and 85 % RH
based on directly measured concentrations is superior to the prediction based on an extrapolation
from the relative humidity (Figure 2-Figure Supplement 5).

As a stronger test of our model's validity, we used our estimated E, and A values to make out-
of-sample predictions of the half-lives of five human coronaviruses reported from independent
studies: four betacoronaviruses (SARS-CoV-2, SARS-CoV-1, MERS-CoV and HCoV-OC43) and one
alphacoronavirus (HCoV-229E). We compiled data on the environmental stability of those viruses
under conditions ranging from 4 to 95 °C, from 30 to 80 % RH, and on a range of surfaces or bulk me-
dia, and computed empirical (regression) estimates of virus half-lives (Table A3). We also included
data on stability of SARS-CoV-1 (van Doremalen et al., 2020) and MERS-CoV (same method as in
van Doremalen et al., 2020) collected by our group during previous studies (Table A4).

Where both temperature and RH were available, we compared these model-free estimates to
predictions based on the mechanistic model parameterized with our SARS-CoV-2 data (Figure 3c,
Figure 3-Figure Supplement 7). We found striking agreement for half-life estimates both above
and below the ERH, and for temperatures ranging from 4to 37 °C.

To include a broader range of conditions in our out-of-sample model testing, we used our
model to predict half-lives observed in all comparable studies by extrapolating from a reference
half-life in each study. Predicted half-lives matched observations well across five orders of magni-
tude (Figure 3d), despite spanning five virus species and despite important heterogeneities in the
data collection process (see Appendix, Meta-analysis of human coronavirus half-lives). The two
conspicuous outliers, where SARS-CoV-2 half-lives were measured to be substantially shorter than
our prediction, correspond to samples exposed to high heat in closed vials (Chin, 2020; Chin et al.,
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Figure 3. Extrapolation of human coronavirus half-life from the mechanistic model to unobserved
temperatures and humidities and prediction of data from the literature. (a) Predicted half-life as a
function of relative humidity. Points show posterior median for measured half-lives, estimated without the
mechanistic model (simple regression estimate for each temperature/humidity combination), lines show a
68 % (thick) and 95 % (thin) credible interval. Dashed line shows the ERH. Estimated evaporation phase
half-lives are plotted at the right. Colored lines show predicted half-lives as a function of humidity at five
temperatures: 0°C, 10°C, 22°C, 27°C, and 40 °C. 100 random draws from the posterior distribution are shown
at each temperature to visualize uncertainty. Line and point colors indicate temperature. (b) Predicted
half-life above the ERH as a function of quasi-equilibrium concentration factor. Points and lines as in a, but
only solution (above ERH) conditions are shown. (c) Heatmap showing posterior median predicted half-lives
as a function of temperature and relative humidity. Posterior median estimated half-lives for human
coronaviruses from our study and from the literature plotted on top using the same color map (see also
Table A3 and Figure 3-Figure Supplement 1). Shape indicates virus; measurements from our own group are
shown slightly larger with a slightly thicker outline. Points of identical temperature and humidity are nudged
slightly to avoid direct overplotting. (d) Relative within-study mechanistic model predictions (x-axis, see
Appendix, Relative predictions) compared to simple regression measurements (y-axis) for human coronavirus
half-lives. Points show posterior median for measured (horizontal) or predicted (vertical) half-lives and lines
show a 68 % (thick) and 95 % (thin) credible interval. Shape indicates virus; datapoints come from studies in the
literature for which there were measurements at at least two temperature and/or humidity conditions for the
same virus and experimental material (e.g. plastic, steel, bulk medium).

Figure 3-Figure supplement 1. Absolute mechanistic model predictions compared simple regression esti-
mates of half-lives, as in ¢, but plotted as in a and d.

Figure 3-source data 1. Predicted and measured half-lives (posterior medians and credible intervals) for ab-
solute predictions shown in ¢ and in Figure 3-Figure Supplement 1.

Figure 3-source data 2. Predicted and measured half-lives (posterior medians and credible intervals) for
within-study relative predictions shown in d.
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Discussion

Combining novel data, mathematical modeling, and a meta-analysis of existing literature, we have
developed a unified, mechanistic framework to quantify the joint effects of temperature and hu-
midity on virus stability. In particular, our model provides a mechanism for the non-linear and
non-monotonic relationship between relative humidity and virus stability previously observed for
numerous enveloped viruses (Casanova et al., 2010; Songer, 1967; Yang & Marr, 2012), but not
previously reported for SARS-CoV-2. Our work documents and explains the strong dependence of
SARS-CoV-2 stability on environmental temperature and relative humidity, and accurately predicts
half-lives for five coronavirus species in conditions from 4 to 95°C, and from 30 to 80 % RH and in
bulk solution.

Our findings have direct implications for the epidemiology and control of SARS-CoV-2 and other
enveloped viruses. The majority of SARS-CoV-2 clusters have been linked to indoor settings (Leclerc
etal., 2020), suggesting that virus stability in indoor environmental conditions may be an important
determinant of superspreading risk. Our results provide a mechanistic explanation for the many
observed SARS-CoV-2 superspreading events in cool indoor environments such as food process-
ing plants (Dyal, 2020; Gunther et al., 2020; Pokora et al., 2020) and hockey rinks (Atrubin et al.,
2020; McNabb & Ries, 2020), where the typical air temperature is around 10°C, or in dry indoor
environments such as long-distance flights (Jayaweera et al., 2020; Khanh et al., 2020). Conversely,
our results imply that the relative rarity of outdoor SARS-CoV-2 transmission clusters is not readily
explained by temperature and humidity effects, since these conditions outdoors during temper-
ate zone winters should be favorable for the virus. Instead, increased ventilation (Prather et al.,
2020) and UV light inactivation (Ratnesar-Shumate et al., 2020) may be more important than the
effects of temperature and humidity outdoors. In contrast, typical climate-controlled conditions
indoors (moderate temperature and low humidity) are favorable for virus stability, and special-
ized conditions such as those found in food processing plants even more so. Our results highlight
the importance of proper personal protective equipment and improved ventilation for protecting
workers, particularly in cold indoor settings, and the general transmission risks associated with
indoor gatherings.

The effects of temperature and humidity we observe in our data and model are relevant both
to fomite and to airborne transmission. Prior work has shown that virus decay as a function of RH
is similar in droplets on surfaces and suspended aerosols (Kormuth et al., 2018; Lin & Marr, 2020).
Numerous studies of smaller deposited droplets (Prussin et al., 2018) or aerosols (Benbough, 1971;
ljazetal., 1985; Yang et al., 2012) have reported similar qualitative patterns to those we report, with
increased decay rates at high temperatures and a U-shaped effect of RH. Furthermore, surface sta-
bility can matter for aerosol transmission risk, since small particles containing infectious virions
can be re-suspended from surfaces and inhaled (Asadi et al., 2020). Re-suspension is further en-
hanced by procedures such as high-pressure washing, which is common in food processing plants.
While the relative contributions of aerosol and fomite transmission to the epidemiology of SARS-
CoV-2 continue to be investigated (Cai et al., 2020; Ong et al., 2020), our results indicate that cold
situations present elevated transmission risks for either mode, especially if air is either dry or very
humid. It has been speculated, for instance, that chilled or frozen foods might allow for rare but
impactful long-range fomite transmission (Fisher et al., 2020). Our results show that this is conceiv-
able, as there is good empirical and mechanistic support for prolonged virus viability at very low
temperatures.

Environmental stability is not the only mechanism by which temperature and humidity affect
respiratory virus transmission. Very hot or cold conditions outdoors can lead people to spend more
time indoors, where transmission risks are heightened due to poor ventilation. Low-humidity envi-
ronments can dry out human airways and thus impair defenses against respiratory viruses (Kudo
etal., 2019). Ambient humidity also determines the size distribution of aerosols in the environment,
again by affecting evaporation rates. Smaller aerosols settle to the ground more slowly (Marr et al.,
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2019), which could facilitate transmission.

At low RH, humidity effects on inactivation, immunity, and settling may compound each other:
all increase transmission risk. At high RH, reduced inactivation could promote transmission, but
improved immune defenses and faster settling could hinder it, so the net effect on transmission is
less clear.

Still, temperate zone winters increase transmission of many respiratory viruses (Lofgren et al.,
2007). Individuals spend increased time indoors in heated buildings. Ventilation is often poor, as
windows are kept closed to make heating efficient. Air in heated buildings is typically very dry; this
improves virus stability and weakens immune defenses. Policymakers should consider ventilating
and humidifying essential indoor spaces to reduce transmission risk. Other mitigation measures
such as indoor masking may likewise be even more crucial during winter. Indoor spaces in which
individuals cannot be masked, such as bars and restaurants, remain particular cause for concern.

Several analyses have projected that SARS-CoV-2 transmission will likewise be faster in tem-
perate zone winters (Baker et al., 2020; Kissler et al., 2020; Neher et al., 2020). Major seasonal
or climate-mediated mitigation of SARS-CoV-2 spread was not evident during the northern hemi-
sphere’s spring and summer (Carlson et al., 2020; Poirier et al., 2020). This was expected, since
population susceptibility and epidemic control measures can be more important than seasonal-
ity in an early pandemic context (Baker et al., 2020). Thus the fact that temperate zone summers
did not eliminate transmission should not have led to false confidence that temperate zone win-
ters will not promote it. Winter surges in cases, hospitalizations, and deaths across the northern
hemisphere may have been driven in part by behavioral, immunological, or virological seasonality.

Our work has implications for the study of virus environmental stability and seasonality more
broadly. Whether absolute or relative humidity is more important for influenza stability has been
a matter of debate (Marr et al., 2019; Shaman et al., 2010). The answer has proved elusive because
it is difficult to disentangle the effects of humidity from those of temperature. Our mechanistic
model permits principled dis-aggregation of those effects, and reveals a strong effect of relative
humidity even after accounting for the effects of temperature.

There may thus exist general principles that govern virus inactivation across enveloped viruses,
and perhaps even more broadly. Similar empirical patterns of temperature and humidity depen-
dence to what we measured, and modeled, for SARS-CoV-2 have been observed for other impor-
tant viruses. In particular, the U-shaped dependence of inactivation on RH has been reported
for animal coronaviruses (Casanova et al., 2010; Songer, 1967), as well as for influenza viruses,
paramyxoviruses, rhabdoviruses and retroviruses (Benbough, 1971; Prussin et al., 2018; Webb et
al., 1963; Yang et al., 2012), suggesting the existence of a shared mechanism for the effect of hu-
midity across enveloped RNA viruses. Some enveloped DNA viruses such as herpesviruses and
poxviruses (Songer, 1967; Webb et al., 1963) and some encapsulated viruses such as polioviruses
(De Jong & Winkler, 1968; Songer, 1967) also show similar empirical behavior. Experiments have
found that heat treatment of viruses reduces infectivity principally by degrading surface proteins
(Wigginton et al., 2012), lending further support to a chemical model of environmental virus inacti-
vation.

Individual enveloped viruses may be more or less stable than SARS-CoV-2 while still obeying
our model’s basic principle: increased heat and concentration lead to faster inactivation. The val-
ues of model parameters (E,, A, A,,) May change while the mechanistic model itself remains
valid. The data from our own group and from the literature on MERS-CoV is suggestive in this
regard: our model predictions using SARS-CoV-2 parameters slightly overestimate the stability of
MERS-CoV, but correctly predict the pattern of temperature and humidity effects (Figure 3-Figure
Supplement 1).

Similarly, it is striking that our model for Arrhenius-like temperature dependence works well
with a single estimated activation energy across the effloresced and solution regimes for our SARS-
CoV-2 experiments and for experiments on a range of coronaviruses conducted in different con-
ditions by other investigators. This suggests that the rate-limiting step in coronavirus inactivation

12 of 57



359

360

361

382

383

384

may not necessarily depend on the exact inactivating reactant. We propose one simple potential
mechanism for how this could be so: if inactivation depends on disruption of the virion once it has
formed a complex with some inactivating reactant, the activation energy for that disruption event
could depend mainly on the chemical properties of the virion itself (see Interpretation of the single
activation energy).

We discuss additional practical implications for the empirical study of virus environmental sta-
bility in the Appendix (Methodological implications for experimental studies on virus stability).

Despite years of research on virus stability as a function of temperature and humidity and plau-
sible hypotheses about the underlying chemistry, proposed mechanisms have lacked explicit quan-
titative support. By encoding the underlying chemistry into a mathematical model and estimating
parameters using modern computational techniques, we provide such support, with critical in-
sights for the control of an ongoing pandemic. Our empirical results provide mechanistic insight
into transmission risks associated with cold and climate controlled indoor settings, while our mod-
eling work allows for explicit quantitative comparison of the aerosol and fomite risks in different
environments, and suggests that simple, general mechanisms govern the viability of enveloped
viruses: hotter, more concentrated solutions are favorable to chemical reactions—and therefore
unfavorable to viruses.

Methods

Laboratory experiments

Viruses and titration

We used SARS-CoV-2 strain HCoV-19 nCoV-WA1-2020 (MN985325.1; Holshue et al., 2020) for this
study. We quantified viable virus by end-point titration on Vero E6 cells as described previously
(Fischer et al., 2020; van Doremalen et al., 2020), and inferred posterior distributions for titers
and exponential decay rates directly from raw titration data using Bayesian statistical models (see
Statistical analyses and mathematical modeling below).

Virus stability experiment

We measured virus stability on polypropylene (ePlastics, reference PRONAT.030X24X47S/M) as pre-
viously described (van Doremalen et al., 2020). We prepared a solution of Dulbecco’s Modified
Eagle Medium (DMEM, a common cell culture medium) supplemented with 2 mM L-glutamine, 2 %
fetal bovine serum and 100 units/mL penicillin/streptomycin, and containing 10° TCID5,/mL SARS-
CoV-2. Polypropylene disks were autoclaved for decontamination prior to the experiment. We
then placed 50 pL aliquots of this SARS-CoV-2 suspension onto the polypropylene disks under nine
environmental conditions: three RH (40 %, 65 %, and 85 %) at each of three temperatures (10°C, 22 °C,
and 27 °C). These controlled environmental conditions were produced in incubators (MMM Group
CLIMACELL and Caron model 6040) with protection from UV-B or UV-C exposure. We prepared
216 disks corresponding to three replicates per eight post-deposition time-points (0, 1, 4, 8, and
24 hours, then daily for 4 days) for the nine conditions. At each time-point, samples were collected
by rinsing the disks with 1 mL of DMEM and stored at —80 °C until titration.

Evaporation experiment

We measured the evaporation kinetics of suspension medium under the same temperature and
humidity conditions as the virus stability experiments. We placed 50 uL aliquots of supplemented
DMEM onto polypropylene disks in a Electro-Tech Systems 5518 environmental chamber. The
polypropylene disks were rinsed three times 1M sulfuric acid, ethanol and DI H20 respectively be-
fore use. We measured medium mass m(z) every 5 min for up to 20 h or until a quasi-equilibrium was
reached using a micro-balance (Sartorius MSE3.6P-000-DM, readability 0.0010 mg). The chamber of
the micro-balance was half-opened to keep air circulating with the environmental chamber. The
flow entering the balance chamber decreased the balance accuracy to around 0.010 mg. We mea-
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sured initial droplet mass (m(0)) and final droplet mass (m(e0)) under closed-chamber conditions to
increase accuracy.

Statistical analyses and mathematical modeling

We quantified the stability of SARS-CoV-2 under different conditions by estimating the decay rates
of viable virus titers. We inferred individual titers using a Bayesian model we have previously de-
scribed (Gamble et al., 2021). Briefly, the model treats titration well infection as a Poisson single-hit
process. We inferred raw exponential decay rates by modifying a previously-described simple re-
gression model (Gamble et al., 2021) to account for the evaporation phase. See the Appendix
(Empirical virus decay estimation) for model description.

We estimated parameters of our mechanistic models by predicting titers based on those mod-
els and then applying the same Poisson single-hit observation process to estimate parameters
from the data. See Appendix (Mechanistic model estimation) for a complete description, including
model priors.

We estimated evaporation rates and corresponding drying times by modeling mass loss for
each environmental condition i as linear in time at a rate g, until the final mass m(c0) was reached.
See Appendix (Modeling of medium evaporation and Evaporation model fitting) for a full descrip-
tion, including model priors.

We drew posterior samples using Stan (Stan Development Team, 2018), which implements a No-
U-Turn Sampler (a form of Markov Chain Monte Carlo), via its R interface RStan (Stan Development
Team, 2016). We inferred all parameters jointly (e.g. evaporation parameters and mechanistic
model parameters were inferred in light of each other).

Meta-analysis

To test the validity of our model beyond the measured environmental conditions (i.e., beyond 10-
27°C and 40-85% RH), we compiled data from 11 published studies on human coronaviruses, in-
cluding SARS-CoV-2, SARS-CoV-1, MERS-CoV, HCoV-OC43 and HCoV-299E, under 17 temperature-
RH conditions. We generated estimates of half-life and uncertainties (Appendix Table A3) and com-
pared those estimates to the half-lives predicted by the mechanistic model parametrized from our
SARS-CoV-2 data. As data on evaporation kinetics were not available, we estimated a unique half-
life for each experimental condition, covering both the evaporation and quasi-equilibrium phases.
As virus decay during the evaporation phase is expected to be minimal, and the evaporation phase
to be short, the estimated half-life can be used as a proxy for the quasi-equilibrium half-life. The
complete data selection, extraction and analysis process is detailed in the Appendix (Meta-analysis
of human coronavirus half-lives).

We also included data from SARS-CoV-1 and MERS-CoV collected by our group during previous
studies (van Doremalen et al., 2020). Those data were collected at 22 °C and 40 % RH on polypropy-
lene using the protocol described previously (van Doremalen et al., 2020) and similar to the one
used to collect the SARS-CoV-2 data. SARS-CoV-1 strain Tor2 (AY274119.3) (Marra et al., 2003) and
MERS-CoV strain HCoV-EMC/2012 (Zaki et al., 2012) were used for these experiments. We calcu-
lated half-lives for evaporation and quasi-equilibrium phases using the same analysis pipeline used
for SARS-CoV-2 (Appendix, Empirical virus decay estimation). These data were used only for out-
of-sample prediction testing. We used the obtained evaporation phase half-lives as proxies for the
half-life at 100 % RH, as with SARS-CoV-2. See Appendix for a figure showing model fits (Figure A23)
and a table of estimated half-lives (Table A4).

Visualization
We created plots in R version using ggplot2 (Wickham, 2016), ggdist (Kay, 2020a), and tidybayes
(Kay, 2020b), and created original schematics using BioRender.com.
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Mechanistic inactivation model interpretation

Interpretation of the single activation energy
We observe in the main text that a single activation energy E, explains the data well across the
effloresced and solution regimes (Figure AT).

Moreover, our estimate is consistent with activation energies observed for other RNA viruses
(Rowell & Dobrovolny, 2020). Our median [100 % credible interval] E, estimate from the main model,
9.10 x 10*Jmol~! [8.21 x 10%, 1.01 x 10°], falls squarely within the range of literature estimates (ap-
proximately 6.00 x 10* to 2.40 x 10° J mol~!') (Rowell & Dobrovolny, 2020).

These observations raise the question of whether the actual inactivating reaction is identical
in the effloresced and solution regimes, in different media, and for different viruses. But at least
for a given virus or family of viruses, it is possible for virus inactivation reactions to have the same
activation energy even if different media or different environments imply a different inactivating
reactant. Plausible routes of chemical virus inactivation include conformational changes in virion
proteins, disruption of the virus capsid (Wigginton et al., 2012), and disruption of the virus envelope
(Yang & Marr, 2012). These may occur via a two-step reaction:

viable virion + external reactant « intermediate product — inactivated virion (4)

If the second step is rate-limiting, then the overall reaction kinetics are first order and the mea-
sured activation energy will reflect the E, for that step. This energy could easily depend only on
the virus proteins or envelope and not on the external reactant.

Two-step reactions can produce first-order kinetics proportional to concentration
Provided the external reactant concentration [r] is not meaningfully depleted, a two-step inactiva-
tion reaction of this form would stillimply a linear dependence of inactivation rate on concentration
of external reactant, and thus a linear dependence on solution concentration as postulated in our
model (Equation 3). Below we describe a minimal two-step reaction mechanism that is consistent
with these observations.

We denote the concentration of viable virus by [v,], the concentration of inactivated virus by
[v,], and the concentration of intermediate product by [x]. We denote the rate constants for the
forward and backward first-step reactions by kI and k; and the rate constant for the second-step
reaction by k3. We have:

d[v,] _
= = kIl + kT [x] di
dix] _ s kT[x] — k¥[x]d (5)
o = KT, = K Lx] = K Lx di
dlv]
T = k2 [X] dt

By assumption, the first step in the reaction is fast relative to the second. The intermediate
product [x] should therefore reach a quasi-equilibrium value [x]. We solve for it by setting % =0
and neglecting the smaller —k; term:

+

r][ﬁ[] (6)
x| =lrl—lv,
ket

Substituting [x] for [x] into % it follows that virus inactivation obeys first-order kinetics pro-

portional to the external reactant concentration [r]:

dlv. kt
%§=m@#mwr 7)
1
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Interpretation of the asymptotic reaction rates

We also observe that the pre-exponential factor (asymptotic high temperature reaction rate) is
somewhat but not substantially greater in the effloresced regime than in the solution regime (A, >
A Since A, ismodulated by [fs“:]], thisimplies that reaction rates in the effloresced crystals (which
we assume occur at the same rate for all sub-ERH ambient humidities) are faster than reactions
at 100 % RH, but not as fast as at humidities slightly above the ERH, such as 65 % (Figure 2-Figure
Supplement 6, Table A1).

This empirical result is plausible. Below the ERH, reactants are in closer proximity, but also
less mobile: modeled as a quasi-solution, there is a higher reactant concentration but also a lower
diffusion coefficient. It is thus plausible that the effective rate of potentially reactive collisions for
a given temperature could be greater than the rate in dilute solution at 100 % RH, but substantially
lower than the rate in more concentrated solution at 65 % RH.

Interpretation of the transition in inactivation rate at the ERH

Since A, and A, are estimated separately in our model, there is discontinuity in the inactiva-
tion rate at the ERH (Figure 3a). In reality, there may be a more continuous transition. Molecular
interactions may interpolate between the fully-effloresced and fully-solution states, resulting in a
continuous phase transition-like behavior. But as multiple measurements close to the ERH on both
sides of it would be required to characterize this behavior conclusively, it is beyond the scope of
our study. We therefore allow a discontinuity at the ERH.

Model parameter estimate tables

Table A1. Parameter estimates for the mechanistic model of SARS-CoV-2 inactivation as a function of
temperature and humidity, using a fitted curve relating RH to concentration factor, as in the main text.
Estimates are reported as posterior median and the middle 95% credible interval.

parameter median 25% 97.5% unit
Acte 6.15x 101 1.64x 10"  3.02x10'6  h~!
Agl 251x 108 631x 10" 1.34x10" h7!

E 9.10x 10*  821x10* 1.01x10°  Jmol™!

a

Table A2. Parameter estimates for the mechanistic model of SARS-CoV-2 inactivation as a function of
temperature and humidity, using concentration factors directly measured in evaporation experiments.
Estimates are reported as posterior median and the middle 95% credible interval.

parameter median 25% 97.5% unit
Acge 8.70x 1013 3.48x 102  231x 10" h7!
A 343x 1012 1.27x 10" 9.64x 1013  h7!

sol

E, 8.62x10*  7.82x10* 942x10*  Jmol™!

a

Mechanistic modeling of evaporation and concentration
To measure the solute concentration factor over time and to determine when droplets reached
evaporative quasi-equilibrium (i.e. evaporation became slow enough that concentration factor
could be treated as a constant), we quantified the evaporation of the suspension medium on
polypropylene plastic (without virus) at the tested temperature and humidity combinations (Meth-
ods; Figure 1-Figure Supplement 1).

To extrapolate to unobserved relative humidities, we estimated the quasi-equilibrium solute
concentration factor [é:;qj as a function of relative humidity A.

The mathematical rr%odeling we describe in this section is not central to our mechanistic model
of how temperature and humidity affect virus inactivation. Rather, it is an attempt to conduct prin-
cipled extrapolation to unobserved conditions. We do not attempt a general or fully-mechanistic
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model of the relationship between relative humidity and quasi-equilibrium concentration factor,
as in real-world conditions this will depend on the chemistry of the human fluids in which virions
are found and its interactions with a non-ideal environment; this is an important avenue for future
research. For our purposes here, a semi-mechanistic characterization of the increase in concen-
tration factor with decreased relative humidity (up to the ERH) suffices.

Similarly, our analysis here allows us to distinguish the evaporation and quasi-equilibrium phases
when doing inference. This matters because the time to reach quasi-equilibrium will vary in real
conditions. It was prolonged in some of our experiments because we used large droplets; in every-
day scenarios, it may vary from near-instant for small respiratory droplets and aerosols produced
in speech to somewhat longer for large droplets produced by a sneeze.

Solute concentration factor

The concentration factor as a function of time % is equal to the ratio of the initial mass of water
w(0) (before evaporation begins) to the current mass of water w(r). We measured total masses
m(1), not masses of water, but assuming that the mass of solutes, s, is conserved:

(SO _ w(©) _ m© s
(S~ w® ~ m@-s

(8)
and so:

[Seql  w(0)  m(0)—s

[So] — w(e0)  m(c0)—s

In order to predict decay rates at unobserved relative humidities, we fit a semi-mechanistic

function to the measured concentration factors to predict — Bl 55 a function of fractional relative

humidity A. We begin with the observation (see Relat|onsh|p between concentration factor and

solute molar fraction (Equation 10) for a derivation) that if X(co) is the molar fraction of solutes in
the solution at quasi-equilibrium and X(0) is the initial molar fraction of solutes, then:

9)

[Seql  1-X(0) X(c0)
Sy~ X(0) 1-X(co0)

(10)

We denote the initial ratio of the molar fractions by r(0) = =<©

1-X©0)"
The final molar ratio r(co) = % depends on the fractional relative humidity h. We approxi-

mate this relationship by a flexible two-parameter function:

_ X(o) _ (=In(h) %
r(o0) = T X(oo) — < o > (11)
Combining yields:
[Seq] 1 - ln(h) > ail'
= 12
LSl r(0) ( a (12)

The estimated parameters a_, a, > 0 reflect deviations of our solute mixture from ideal behavior
(e, = a, = 1). We derived this approximate expression from chemical theory; see Derivation of
approximate functional form for the quasi-equilibrium solute concentration (Equation 11) for the
derivation. Ideal chemical behavior would imply a linear relationship between X () and h near h =
1: X(o0) = 1 — h. This works well for dilute solutions. But it predicts too high a concentration factor
at low relative humidities, since it neglects the increasingly strong effects of solutes in preventing
evaporation as those solutes become more concentrated. To extrapolate in a worthwhile way, then,
we need at least a minimal model of non-ideal evaporative behavior in a concentrated solution. Our

simple function fits our data well (Figure 2-Figure Supplement 7).
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Modeling of medium evaporation

In our evaporation experiments, we observed an approximately linear decrease in water mass w()
over time (Figure 1-Figure Supplement 1), followed by a leveling off at an approximately constant
value (quasi-equilibrium). We therefore approximated the evaporation process with a piece-wise
linear function:

m(t) = m(0) — pt  pt < m(0) — m(co) (13)
m(oco) otherwise

As noted above (see Solute concentration factor), we assumed that solute mass s was con-

served, so w(t) = m(t) — s. It follows that:

w(t) = m0)—s —pt pt <m(0) — m(c0) (14)

m(o0) — s otherwise

This implies that the concentration factor as a function of time is given by:

[SO] _ w©)  m@©)-s

[Sol — w(@® ~ m©0)~s~pt 1)
Defining B = ﬁ = $ yields a normalized form:
RO 16
[S,] 1-Bt

Evaporation and quasi-equilibrium phases
In our estimation models, we partitioned virus inactivation into two phases: evaporation and quasi-
equilibrium (see Methods). We denote the time to quasi-equilibrium for experiment i by z,.

We determined ; for each inactivation experimental condition based on on the evaporative
mass loss rate g, in the corresponding evaporation experiment.

For the simple regression model and the fit of the mechanistic model using only directly-measured
concentration, we define z, as the time to reach the measured final total mass m;(c0) from the mea-
sured initial total mass m,(0) given the inferred evaporative mass loss rate g;:

m,(o) - m/(oo)
=
B;
For the main fit of the mechanistic model, in which we use a fitted curve relating RH to “‘]]

we partition the phases not based on r but rather based on the tlme 7, to reach the predlcted
quasi-equilibrium concentration factor ““ ; given the inferred B, =

(17)

w, (O)

1— 1

Begl
ol ;

7, = — 18

T B (18)

Note that this relation also holds for a directly measured concentration. Letting % = %
0 m(co)—s

Equation 18 simplifies to Equation 17.

Modeling of virus decay dynamics during the evaporation phase

Prior to evaporative quasi-equilibrium or complete efflorescence, virions are in wet conditions, with
non-negligible evaporation ongoing. The degree of concentration of that solution l[ss—gj changes as
a function of time as the solvent (here, suspension medium) evaporates, until a quasi-equilibrium

. S
state is reached at 5@ — Beal,
Sol 1S

Per Equation 8, the concentration factor as a function of time is equal to “2

w®
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The inactivation rate during that evaporation phase, which we denote by k,,, is then a function

of time k., (¢):

ev’

w(0)

E
ko (1) = WASOI exp (— R;) (19)

Letting v(r) denote the quantity of viable virus, inactivation kinetics will then proceed according
to the differential equation:

% =~k (vdi (20)
We define k, = k,(0) = A, exp (—%) and apply our linear evaporation model from Equa-
tion 15:
k k
@=—kev(z)udt=— 0 vdt = ——2—pdr (21
dr 1— i)t 1 - Bt
w(0)
Solving yields:
kq (ko/B)
o(t) = v(0) exp Z In(1 — Br) ) = v(0)(1 — Br)o (22)

subject to the constraint that Br < 1, which is always satisfied for r < r, under the assumption
that some non-zero amount of water remains at quasi-equilibrium.

Since virus titers are typically measured in log,, units, it is useful to have this expression in those
terms:

k
log,, v(7) = log,o(v,) + EO log,,(1 — Bt) (23)

Relationship between concentration factor and solute molar fraction (Equation 10)
Under the assumption that mass of solute does not change, all mass change reflects loss or gain
of solvent. This mass change translates directly into increased or decreased concentration, and
allows us to compute the estimated concentration factor as a function of time, % based on our
evaporation experiments.

If we have N, () moles of solvent versus an initial value of N,(0) and a constant number N, of
solute, then following a similar reasoning as in Equation 8:

[SO] _ Nu(0)
(S~ N,

If X(¢) is the mole fraction of solutes in the solution, N,(#) = (1 - X#)N (@) and N, = X(1)N ()
where N(r) = N, (t) + N,. It follows that the ratio of moles is the ratio of the mole fractions:

(24)

N 1= X(0)

N, X(1) (25)
Since N, does not change:
N, X0 (26)
Hence:
1-X(0)
(SOl _ N,0 N,O/N, o _[(1-XO) X0 27)
S0 = N, N, /N, I—X_)(«)w “\ X0 J1-Xx0
and therefore:
S —
[Seq] _ (1 X(0)> X (c0) 28)
[:So] X(0) 1 — X(c0)
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Derivation of approximate functional form for the quasi-equilibrium solute con-
centration (Equation 11)

To compute - L “'] as a function of fractional relative humidity #, we need an expression for the ratio

of the quasi- eqU|I|br|um solute mole fraction X (e0) to the quasi-equilibrium solvent mole fraction
X(o0) as a function of A.

An evaporating aqueous solution reaches equilibrium with the ambient air when the ambient

relative humidity is equal to the water activity a,, in the solution:

h=a (29)

w

For an ideal solution, the water activity would be given by:

a,=1-X(») (30)

where X(o0) is the mole fraction of solutes (Raoult's law). In a real solution, this expression must
be modified to account for non-ideal behavior.

If there are n species of solute ions and/or molecules present with molar fractions X;, we ex-
press this non-ideality in terms of the practical osmotic coefficient ¢(X,,...X,) (Blandamer et al.,
2005), which is in general a function of the X

Z;;l X; X (o0)
a, —CXP<—¢TZ=1XJ_> —GXP<—¢m) (31

Since our medium has a consistent solute formulation and we assume that solutes are con-
served, we can treat ¢ as a function of the total solute molar fraction X(r). We use the following
flexible functional form for ¢:

X a.—1
= 32

¢=a ( - X) (32)

With a,, @, > 0. We define these constrained parameters in terms of unconstrained parameters

c.and ¢,:

a, =exp(—c,)
a, = exp(—c,)

It follows that:

4 = exp [—as (%)] (34)

This is a flexible two-parameter function with a number of desirable properties.

* X =0impliesa, =1and X =1 implies a,, = 0, as should be the case.

* When ¢, ¢, = 0, the relationship approximates the linear behavior observed in the ideal case,
and we have ¢ = 1 regardless of X, reflecting this ideality.

* ¢, < 0 implies a concave relationship between mole fraction and activity near a,, = 1, ¢, > 0
implies a convex relationship there, and ¢, = 0 a linear relationship.

* Varying ¢, controls the steepness of the relationship near a,, = 1 while preserving concavity

in that region; larger values imply a steeper relationship.

Empirical ¢(X) functions for important solute components of DMEM, such as NaCl, are mono-

tonically increasing in X over the range of expected equilibrium mole fractions (Mikhailov et

al., 2004), and thus should be readily approximated by our function.

Using the property that evaporative equilibrium occurs when a,, = A, we approximate the ratio
r(o0) of solute to solvent mole fractions at quasi-equilibrium (Equation 117) by:
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X(c0) —In(h) %
- X(c0) < « >

This function readily approximates a number of realistic shapes (Mikhailov et al., 2004; Redrow
etal., 2011) for the relationship between X and h, particularly on the interval of interest, between
100% relative humidity and the efflorescence relative humidity (ERH) (1 > 2 > ERH ~ 0.45).

This function has simpler approximations to the humidity-molar-ratio relationship as special
cases. For instance, a, = 1 implies that ¢ does not vary with solute mole fraction X (as happens in
ideal solutions).

The main downside of this function is that our ¢(X) is constrained to be be monotonic. It is
thus impossible for the relationship between 4 and % to have more than one concavity change
the range [0, 1]. But this is unlikely to be important given that we are mainly interested (and fitting
to) the range from the ERH to 100 % relative humidity. In fact, an always-concave function readily
explains our evaporation data in that range (Figure 2-Figure Supplement 1).

Plugging Equation 11 into Equation 10 yields the expression for [[S“‘] in terms of the initial solute
0
X(0)

Sol
1-X(0)

r(o0) =

mole fraction ratio r(0) =

and the ambient relative humidity 4 given in Equation 12:

[Seql 1 (=In(h) 3
a

(Sl — r@ \ a
Notice that while quasi-equilibrium concentration factors will depend on both «, and «,, the

ratio of two quasi-equilibrium concentration factors from the same baseline (i.e. % for two
eq 0
different ambient humiditites A, and h,) will depend only on a,:
1
[Se1/1So] In(h,) \ *
SP1/ISo] (35)
[S2,1/1S0] In(h,)

Using Equation 35 in conjunction with Equation 3, one can predict a half-life at one temperature-
relative humidity pair from a half-life measured at another, provided all else is equal. We use such
an approach to make relative predictions in our meta-analysis (Figure 3d). See Relative predictions
for details.

Bayesian estimation models

Model notation
In the model notation that follows, the symbol ~ denotes that a random variable is distributed
according to the given distribution. Normal distributions are parametrized as:

Normal(mean, standard deviation)
Positive-constrained normal distributions (“Half-Normal”) are parametrized as:
Half-Normal(mode, standard deviation)

For each inactivation experiment (set of temperature humidity conditions for a given virus),
there is a corresponding medium evaporation experiment, which in which we measured the evap-
oration of suspension medium at that same temperature and humidity.

Titer inference

Titer inference model
We inferred individual titers directly from titration well data using a Poisson single-hit model.
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We then modeled individual positive and negative wells for sample i according to a Poisson
single-hit model (Brownie et al., 2011). That is, the number of virions that successfully infect cells
within a given well is Poisson distributed with mean:

In(2)10% (36)

This expression for the mean derives from the fact that our units are TCID,; the probability of
a positive well at v, = 0, i.e. 1 TCIDy,, is equal to 1 — exp(—1n(2) x 1) = 0.5.

Let y,,, be a binary variable indicating whether the &' well at dilution factor d (where d is ex-
pressed as log,, dilution factor) for sample i was positive (so y,,, = 1 if that well was positive and 0
if it was negative). Under a single-hit process, a well will be positive as long as at least one virion
successfully infects a cell.

It follows from Equation 36 that the conditional probability of observing y,,, = 1 given a true
underlying log,, titer v, is given by:

Ly =1]v)=1=exp(=In(2)x 10°~) (37)

This is simply the probability that a Poisson random variable with mean In(2)10¢“=% is greater
than 0, and v, — d is the expected concentration of virions, measured in log,, TCIDs,, in the dilute
sample. Similarly, the conditional probability of observing y,,, = 0 given a true underlying log,, titer

v, is:

LYq =0 v,) = exp(—In(2) x 10¢~) (38)

which is the probability that the Poisson random variable is equal to 0.

This gives us our likelihood function, assuming independence of outcomes across wells. Titrated
doses introduced to each cell-culture well were of volume 0.1 mL, so we incremented inferred titers
by 1 to convert to units of log,,TCIDs,/mL.

Titer inference model prior distributions

We assigned a weakly informative Normal prior to the log,, titers v, (v; is the titer for sample i
measured in log,,TCIDs,/0.1mL, since wells were inoculated with 0.1mL), similar to that used in our
previous work (Fischer et al., 2020):

v; ~ Normal(2.5,4) (39)

Titer inference model predictive checks

We assessed the appropriateness of this prior distribution choice using prior predictive checks.
The prior checks suggested that prior distributions were agnostic over the titer values of interest
(Figure A2, Figure A3).
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Figure A2. Prior predictive check for SARS-CoV-2 titer inference. Violin plots show distribution of
simulated titers sampled from the prior predictive distribution. Points show posterior median estimated
titers in log,TCIDs,/mL for each sample; lines show 95 % credible intervals. Time-points with no positive wells
for any replicate are plotted as triangles at the approximate single-replicate limit of detection (LOD) of the
assay—denoted by a black dotted line at 10%° TCIDs,/mL media—to indicate that a range of sub-LOD values
are plausible. Three samples collected at each time-point. x-axis shows time since sample deposition. Wide
coverage of violins relative to datapoints shows that priors are agnostic over the titer values of interest.
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Figure A3. Prior predictive check for titer inference for SARS-CoV-1 and MERS-CoV. Violin plots show
distribution of simulated titers sampled from the prior predictive distribution. Points show posterior median
estimated titers in log;, TCIDs,/mL for each sample; lines show 95 % credible intervals. Time-points with no
positive wells for any replicate are plotted as triangles at the approximate single-replicate limit of detection
(LOD) of the assay—denoted by a black dotted line at 10> TCIDs,/mL media—to indicate that a range of
sub-LOD values are plausible. Three samples collected at each time-point. x-axis shows time since sample
deposition. Wide coverage of violins relative to datapoints shows that priors are agnostic over the titer values
of interest.
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Evaporation model fitting
Following Modeling of medium evaporation, Equation 13, we modeled the expected mass m,(t) for
each evaporation experiment i according to the equation:

) = m(0) = Bt Bt < my(0) — m,(c0) 40)
m;(c0) otherwise

We modeled that the observed masses m,(r) as normally distributed about the predicted masses
m,(1) with an estimated, experiment-specific standard deviation o,;:

m,(t) ~ Normal(r, (1), o,;) (41)

To make evaporation prior distributions more interpretable, we placed our prior not on the
evaporative mass loss rate g, but rather on the time to reach quasi-equilibrium z, which is related
to g, by Equation 17:

_ m,(o) - m,(oo)
T

We placed weakly informative Half-Normal priors on the times to quasi-equilibrium 7, (mea-

sured in hours) and on the measurement standard deviations o,;:

7, ~ Half-Normal(10, 10) (42)

o,; ~ Half-Normal(0, 1) (43)

Empirical virus decay estimation

Simple regression model

The duration of virus detectability depends not only on environmental conditions and treatment
method but also initial inoculum and sampling noise. We therefore estimated the exponential
decay rates of viable virus (and thus virus half-lives) using a simple Bayesian regression approach
analogous to that described in Fischer et al. 2020. This modeling approach allowed us to account
for differences in initial inoculum levels across samples as well as other sources of experimental
noise. The model yields estimates of posterior distributions of viral decay rates and half-lives in
the various experimental conditions—that is, estimates of the range of plausible values for these
parameters given our data, with an estimate of the overall uncertainty (Gelman et al., 2013).

Our data consist of nine different experimental conditions corresponding to the combinations
ofthree temperatures (10°C, 22 °C, and 27 °C) and three relative humidity levels (40 %, 65 %, and 85 %).
For each treatment, three samples were collected at 0, 1, 4, 8, 24, 72 and 96 hours after deposition.
We also used this model for our group’s SARS-CoV-1 and MERS-CoV data (in the meta-analysis),
which had one experimental condition each: 22 °C and 40 %RH, observed over multiple timepoints.
We accounted for evaporation with the same 22°C, 40 % RH suspension medium evaporation data
used for SARS-CoV-2 at that temperature and humidity (as all the virus inactivation experiments
were conducted using the same medium).

We modeled each sample j for experimental condition i as starting with some true initial log,,
titer v;,. At the time 7, that it is sampled, it has titer v;;. As described above (Evaporation and
quasi-equilibrium phases), we partitioned each experiment i into a evaporation phase and a quasi-
equilibrium phase according to an estimated quasi-equilibration time ,.

We modeled loss of viable virus at quasi-equilibrium as exponential decay at an experiment-
specific rate 4,. To avoid making assumptions about the correctness of our evaporation phase
inactivation model (see Modeling of virus decay dynamics during the evaporation phase), we ap-
proximated loss of viable virus during the evaporation phase as exponential decay with one decay
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rate for each temperature condition (which applies to all associated humidity conditions). That is,
the evaporation phase decay rate for experiment i is I, where T(i) denotes the temperature for
experiment i.

It follows that the quantity v;; of virus sampled at time ¢,; is given by:

D L Lrpty; =7 (44)

Uijo — lT(i)Ti - ’li(tij -7) ;>

We used the direct-from-well data likelihood function described above, except that instead of
estimating individual titers independently, we estimated 4, and I, under the assumption that our
observed well data y,,, reflected the corresponding predicted titers v;;.

To check the robustness of our results to our assumptions about the evaporation phase, we also
fit a model only to the quasi-equilibrium phase data, with time measured since quasi-equilibrium
was reached. In that model, the intercepts v, thus reflect the estimated titer at the time quasi-
equilibrium was reached:

ijo = A(ti; — 7)) (45)

We modeled each experiment i as having a mean initial log,, titer 5,,. We modeled the individual
v, @s normally distributed about 5, with an estimated, experiment-specific standard deviation o,

v;;0 ~ Normal(d,, ;) (40)

Simple regression model prior distributions
We placed a Normal prior on the mean initial log,, titers 7, to reflect the known inocula, similar to.

7,y ~ Normal(2.5, 1) (47)

We placed a Half-Normal prior on the standard deviations o;:

o; ~ Half-Normal(0, 0.5) (48)

The allows either for large variation (1 log) about the experiment mean or for substantially less
variation, depending on the data. It is similar—though slightly more diffuse—to that used in prior
work (Gamble et al., 2021).

To encode prior information about the decay rates in an interpretable way, we placed Normal
priors on the log half-lives In(y,), where 5, = mjﬁ and In(6;,), where 6, = % We made the

priors weakly informative (diffuse over the biologically plausible half-lives); we verified this with
prior predictive checks.

In(n,) ~ Normal(In(6), 2)

(49)
1n(9T(i)) ~ Normal(In(24), 1.25)

We used a larger prior mean for the evaporation phase decay rate based on observations of
slow decay of SARS-CoV-2 at moderate temperatures in bulk medium (Chin et al., 2020) and similar
results for other viruses (Marr et al., 2019).

Simple regression model predictive checks

We assessed the appropriateness of prior distribution choices using prior predictive checks and
assessed goodness of fit for the estimated model using posterior predictive checks. Prior checks
suggested that prior distributions were agnostic over the parameter values of interest, and poste-
rior checks suggested a good fit of the model to the data. The resultant checks are shown below
(Figure A4-Figure A11).
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Figure A4. Prior predictive check for empirical virus decay during the evaporation phase for
SARS-CoV-2. Violin plots show distribution of simulated titers sampled from the prior predictive distribution.
Points show posterior median estimated titers in log,, TCIDs,/mL for each sample; lines show 95 % credible
intervals. x-axis shows time since sample deposition. Black dotted line shows the single-replicate limit of
detection of the assay: 10%3 TCIDs,/mL media. Wide coverage of violins relative to datapoints show that
priors are agnostic over the titer values of interest, and that the priors regard both fast and slow decay rates
as possible.
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Figure AS5. Prior predictive check for empirical virus decay at quasi-equilibrium for SARS-CoV-2. Violin
plots show distribution of simulated titers sampled from the prior predictive distribution. Points show
posterior median estimated titers in log,,TCIDs,/mL for each sample; lines show 95 % credible intervals.
Time-points with no positive wells for any replicate are plotted as triangles at the approximate single-replicate
limit of detection (LOD) of the assay—denoted by a black dotted line at 10%3 TCIDs,/mL media—to indicate
that a range of sub-LOD values are plausible. Three samples collected at each time-point. x-axis shows time
since quasi-equilibrium was reached, as measured in evaporation experiments. Wide coverage of violins
relative to datapoints shows that priors are agnostic over the titer values of interest, and that the priors
regard both fast and slow decay rates as possible.
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Figure A6. Prior predictive check for empirical virus decay during the evaporation phase for
SARS-CoV-1 and MERS-CoV at 22 °C and 40 % relative humidity. Violin plots show distribution of simulated
titers sampled from the prior predictive distribution. Points show posterior median estimated titers in

log,( TCID5,/mL for each sample; lines show 95 % credible intervals. Black dotted line shows the approximate
single-replicate limit of detection (LOD) of the assay: 10°3 TCIDs,/mL media. Three samples collected at each
time-point. x-axis shows time since sample deposition. Lines are truncated at the estimated time
quasi-equilibrium was reached. Wide coverage of violins relative to datapoints shows that priors are agnostic
over the titer values of interest, and that the priors regard both fast and slow decay rates as possible.
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Figure A7. Prior predictive check for empirical virus decay at quasi-equilibrium for SARS-CoV-1 and
MERS-CoV at 22 °C and 40 % relative humidity. Violin plots show distribution of simulated titers sampled
from the prior predictive distribution. Points show posterior median estimated titers in log;, TCIDs,/mL for
each sample; lines show 95 % credible intervals. Time-points with no positive wells for any replicate are
plotted as triangles at the approximate single-replicate limit of detection (LOD) of the assay—denoted by a
black dotted line at 10%3 TCIDs,/mL media—to indicate that a range of sub-LOD values are plausible. Three
samples collected at each time-point. x-axis shows time since quasi-equilibrium was reached, as measured in
evaporation experiments. Wide coverage of violins relative to datapoints shows that priors are agnostic over
the titer values of interest, and that the priors regard both fast and slow decay rates as possible.
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Figure A8. Posterior predictive check for empirical virus decay during the evaporation phase for
SARS-CoV-2. Violin plots show distribution of simulated titers sampled from the posterior predictive
distribution. Points show posterior median estimated titers in log,,TCID5,/mL for each sample; lines show
95 % credible intervals. Black dotted line shows the approximate single-replicate limit of detection (LOD) of
the assay: 10%° TCIDs,/mL media. Three samples collected at each time-point. x-axis shows time since
sample deposition. Lines are truncated at the estimated time quasi-equilibrium was reached. Tight
correspondence between distribution of posterior simulated titers and independently estimated titers
suggests the model fits the data well.
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Figure A9. Posterior predictive check for empirical virus decay at quasi-equilibrium for SARS-CoV-2.
Violin plots show distribution of simulated titers sampled from the posterior predictive distribution. Points
show posterior median estimated titers in log,,TCIDs,/mL for each sample; lines show 95 % credible intervals.
Time-points with no positive wells for any replicate are plotted as triangles at the approximate single-replicate
limit of detection (LOD) of the assay—denoted by a black dotted line at 10%° TCIDs,/mL media—to indicate
that a range of sub-LOD values are plausible. Three samples collected at each time-point. x-axis shows time
since quasi-equilibrium was reached, as measured in evaporation experiments. Tight correspondence
between distribution of posterior simulated titers and independently estimated titers suggests the model fits
the data well.
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Figure A10. Posterior predictive check for empirical virus decay during the evaporation phase for
SARS-CoV-1 and MERS-CoV at 22 °C and 40 % relative humidity. Violin plots show distribution of simulated
titers sampled from the posterior predictive distribution. Points show posterior median estimated titers in
log,( TCID5,/mL for each sample; lines show 95 % credible intervals. Black dotted line shows the approximate
single-replicate limit of detection (LOD) of the assay: 10°3 TCIDs,/mL media. Three samples collected at each
time-point. x-axis shows time since sample deposition. Lines are truncated at the estimated time
quasi-equilibrium was reached. Tight correspondence between distribution of posterior simulated titers and
independently estimated titers suggests the model fits the data well.
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Figure A11. Posterior predictive check for empirical virus decay at quasi-equilibrium for SARS-CoV-1
and MERS-CoV at 22 °C and 40 % relative humidity. Violin plots show distribution of simulated titers
sampled from the posterior predictive distribution. Points show posterior median estimated titers in

log,( TCIDs,/mL for each sample; lines show 95 % credible intervals. Time-points with no positive wells for any
replicate are plotted as triangles at the approximate single-replicate limit of detection (LOD) of the
assay—denoted by a black dotted line at 10%° TCIDs,/mL media—to indicate that a range of sub-LOD values
are plausible. Three samples collected at each time-point. x-axis shows time since quasi-equilibrium was
reached, as measured in evaporation experiments. Tight correspondence between distribution of posterior
simulated titers and independently estimated titers suggests the model fits the data well.
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Mechanistic model estimation

Mechanistic model fitting

To fit our mechanistic model (see Mechanistic model for temperature and humidity effects), we
partitioned experiments according to humidity into two groups: sub-ERH / efflorescence (40 %) and
super-ERH / solution (65 %, 85 %). As before, we partitioned each experiment into a evaporation
phase and a quasi-equilibrium phase (see Evaporation and quasi-equilibrium phases).

As before, we modeled titers v;; by assuming an initial value v,;, and then modeling decay from
that value. We modeled decay during the evaporation phase according to Equation 23 and decay
during the quasi-equilibrium phase as exponential at a fixed rate k,.

These rates were functions of the temperatures T, and quasi-equilibrium concentration factors
%I_ according to the mechanistic model.

For all experiments i, we modeled decay in solution during the evaporation phase as following
Equation 23, which follows from the time-varying inactivation rate k() given in Equation 19:

P () E,
k@) = WASOI exp <_RT[> (50)

The use of A, reflects the assumption that the virus is in solution during the evaporation phase.
The w terms model the dynamic concentration factor.

For the quasi-equilibrium phase, we modeled virus decay as exponential at rate k. (Main Text
Equation 2) for efflorescent experiments (at 40 % relative humidity) and as exponential at rate k;
(Main Text Equation 3) for solution experiments (at 65 % or 85 % relative humidity).

That is:

‘= A €Xp (— 3) h; < ERH

i [Seq E,
ol iAsol exp <—RTi ) h; > ERH

(51)

The resultant titer prediction equation is:

koi €q
Vijo + goi log,y(1 - B; 1)) 1<

Yij = koi eq eq (52)
Uijo + ) logo(1 — B, 7,)) — k;(t;; —t;7) ;> 1

where k, = k! (0) and ;" is the modeled time to quasi-equilibrium (1;* = , for the main model
fitand 179 = 7, for the model fit using directly-measured concentration; see Evaporation and quasi-
equilibrium phases).

As in the simple regression model, we then used the direct-from-well data likelihood function
described above under the assumption that our observed well data y,,, reflected the titers v,; pre-
dicted by the mechanistic model per Equation 52.

We estimated the joint posterior for all parameters. That is, activation energies E, and asymp-
totic reaction rates A are estimated in light of evaporative mass loss rates g, and resulting times to
quasi-equilibrium #;%, and vice versa, for maximally informative propagation of uncertainty.

Concentration factor
In our evaporation experiments, we measured m,(0) and m;(c0), the initial and final total masses, re-
spectively, of the deposited droplet under the temperature and humidity conditions of experiment
i

For experiment i, we denote the initial mass of water by w;(0), the final mass of water by w;,(c0)
and the mass of solutes, which which we assume is conserved, by s,. Then:

m;(0) = w;(0) + s, (53)

m;(c0) = w;(c0) + s,
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Denote theinitial and final mass fractions of solutes in experiment i by Y;(0) =
— (m)+ , respectively.

We treated the Y,(0) as an estimated parameter, assuming that it had the same value across all
experiments: Y;(0) = Y(0).

To estimate the parameters a. and a, for
observed final total mass, m(co) as a function of h

and Y,(e0) =

(0)+

[ "q] as a function of h, we needed to predict the

By definition:
= (54)
m;(co0) = Y ()
We can find Y,(c0) by using the fact that I_Y(;)) = IX)(("(";) = r(c0), where X(c) is the quasi-
equilibrium molar fraction of solutes. So Y,(e0) = ”('(")"Jil Since s; = Y,(0)m,(0), it follows that the

predicted quasi-equilibrium total mass for experiment i, m,(c), is:

) r(o0) + 1
m;(c0) = ————Y;(O)m,(0) (55)
r;(c0)
We modeled r,(c0) according to Equation 11. Using Equation 55, we estimated Y(0) and the
parameters a, and a, of Equation 11 from our data. We modeled the observed log final total masses
In(m,(c0)) as normally distributed about the log predicted quasi-equilibrium total masses In(/,(c0))

with an estimated standard deviation o,,:

In(m;(c0)) ~ Normal(In(,(c0)), 5,,) (56)

We assumed that quasi-equilibrium total mass values measured below the ERH were equivalent
to the quasi-equilibrium total mass values at the ERH; this allowed us to use the 40 % RH (sub-ERH)
evaporation data points to add additional resolution to the estimation of «, and «,.

Mechanistic model versions
As described in the Main Text, we fit the mechanistic model in two ways. The results plotted in
our figures include a semi-mechanistic fitted curve estimating the effect of relative humidity on

l[ cal . We jointly estimate the mechanistic parameters and the fitted parameters approximating the

relationship between RH and [[ eq]J (see Solute concentration factor). This allows us to conduct a
more principled extrapolation to unobserved RH values.

We to check the robustness of our results, we also fit the mechanistic model using only the
directly-measured concentration factors obtained from our evaporation experiments. This fit is
the most direct snapshot of the relationship between temperature, concentration factor, and in-
activation observed in our data, but it can only predict inactivation rates at RH levels where ] is

known.

Main model fit
In the main model fit (which uses the fitted curve to relate RH to equilibrium concentration factor),

we calculated 1-Y(0)
Y(0)

% from the ambient relative humidity according to Equation 12, substituting
0l i

1 _ 1-X©)
for r© X0

, since the two ratios are equal:

[Sol 1 Xi(@)  (1=YO) [=In(h)\* )
[Sy], r®1-X,(c0) \ Y(0) a

Note that this means that «, and «, for the main model fit were estimated not only in light of
the measured droplet masses but also in light of the measured virus titers, filtered through the
mechanistic model of inactivation.
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Directly-measured concentration model fit

In the model fit using directly-measured concentration, we calculated the concentration factor for
the it experiment, l;“f according to Equation 9 using the measured initial and final total masses
m,(0) and m,(c0) and the estimated parameter Y(0):

[Sed w0 m(0)—s,  my(c0) — Y(0)m,(0) (58)
[So] i a w,(oo) B m,(oo) - B m,(oo) - Y(O)ml(O)

Mechanistic model prior distributions
Activation energies and asymptotic reaction rates.
To place priorson E,and A in aninterpretable manner, we placed them not on the parameter pairs
themselves but rather on the solution and efflorescent half-lives at 20 °C, ,,,(20) and #,,(20), and the
ratios of virus decay rate at 30 °C to the virus decay rate at 20 °C, k,(30)/k,(20) and k. (30)/k;(20).
These quantities fully determine the solution and efflorescence E, and A values.
Decay rate ratios are related to activation energies by:
Rln<@>
E = k(Ty) (59)

a 1 1

T, T
where the temperatures are given in Kelvin.
The 20°C half-lives 7(20) in hours imply associated exponential decay rates in log,, TCIDs,/mL/h:
k(20) = 229 Gijven an activation energy E, and a known decay rate k(T) for a given temperature

1(20)
T in Kelvin, one can calculate the asymptotic rate A:

In(4) = In (k(T)) (60)

RT

Note that for A, this is the asymptotic rate at the initial concentration (i.e. when [S(’” EOJ =1).
We placed a Normal prior on the log of the half-life at 20°C. Since #,.,(20) and '7\01(20) are the ef-
floresced quasi-equilibrium and unconcentrated solution half-lives, respectively, we used the same

prior as that used for the evaporation phase half-life (Simple regression model prior distributions):

sol’

In(77.¢;(20)) ~ Normal(In(24), 1.25)

(61)
In(77,,/(20)) ~ Normal(In(24), 1.25)

We placed a Half-Normal prior on the natural log of the decay rate ratios:

k(30)
1n<m> ~ Half-Normal(0, 1) (62)

Note that this means virus inactivation must become more rapid with temperature, another
way in which our model's fitted parameters are not truly free, and thus good fits should not neces-
sarily be expected unless the model describes reality.

For fits with distinct E5*! and E*'f, we used the same Half-Normal(0, 1) prior for both ln<w)

kerr (20)
and In( &at®
kg1(20) /

Titer intercepts.

We handled the titer intercepts v,;, for the mechanistic model identically to how they were han-
dled in the simple regression model, with identical priors (see Equation 46 and Equation 47). We
reproduce those equations here for reference:

Vj0 ~ Normal(dyy, 6;)
D,y ~ Normal(2.5, 1)
o; ~ Half-Normal(0, 0.5)
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Concentration factor.

We placed a Normal prior on the log of the initial solute mass fraction Y,, with a mode given by
the approximate solute mass fraction for Dulbecco’s Modified Eagle Medium (DMEM) reported by
the manufacturer (Sigma Aldrich, reference D6546 (“Dulbecco’s Modified Eagle’s Medium (DME)
Formulation”, n.d.)).

ln(YO) ~ Normal(In(0.011),0.33) (63)

We placed Normal priors on the parameters ¢, and ¢, that model quasi-equilibrium mole frac-
tion ratio as a function of humidity in Equation 12:

¢, ~ Normal(0,0.33)
¢, ~ Normal(0,0.33)

Note that this results in lognormal priors on «, and «,.
We placed a Normal prior on the standard deviation ¢,, of the observed log quasi-equilibrium
mass about its predicted value.

o, ~ Normal(0, 1) (64)

Mechanistic model predictive checks

We assessed the appropriateness of prior distribution choices using prior predictive checks and
assessed goodness of fit for the estimated model using posterior predictive checks. Prior checks
suggested that prior distributions were agnostic over the parameter values of interest, and pos-
terior checks suggested a good fit of the model to the data. The resultant checks for the main
and directly-measured concentration versions of the mechanistic model of virus decay are shown
below (Figure A12- Figure A19).
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Figure A12. Prior predictive check for main model fit during the evaporation phase. Violin plots show
distribution of simulated titers sampled from the prior predictive distribution. Points show posterior median
estimated titers in log,, TCIDs,/mL for each sample; lines show 95 % credible intervals. Black dotted line shows
the approximate single-replicate limit of detection (LOD) of the assay: 10%° TCIDs,/mL media. Three samples
collected at each time-point. x-axis shows time since sample deposition. Lines are truncated at the estimated
time quasi-equilibrium was reached. Wide coverage of violins relative to datapoints shows that priors are
agnostic over the titer values of interest, and that the priors regard both fast and slow decay rates as possible.
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Figure A13. Prior predictive check for main model fit at quasi-equilibrium. Violin plots show distribution
of simulated titers sampled from the prior predictive distribution. Points show posterior median estimated
titers in log;(TCIDs,/mL for each sample; lines show 95 % credible intervals. Time-points with no positive wells
for any replicate are plotted as triangles at the approximate single-replicate limit of detection (LOD) of the
assay—denoted by a black dotted line at 10%° TCIDs,/mL media—to indicate that a range of sub-LOD values
are plausible. Three samples collected at each time-point. x-axis shows time since quasi-equilibrium was
reached, as measured in evaporation experiments. Wide coverage of violins relative to datapoints shows that
priors are agnostic over the titer values of interest, and that the priors regard both fast and slow decay rates
as possible.
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Figure A14. Prior predictive check for model fit using directly-measured concentration during the
evaporation phase. Violin plots show distribution of simulated titers sampled from the prior predictive
distribution. Points show posterior median estimated titers in log,,TCID5,/mL for each sample; lines show
95 % credible intervals. Black dotted line shows the approximate single-replicate limit of detection (LOD) of
the assay: 10%° TCIDs,/mL media. Three samples collected at each time-point. x-axis shows time since
sample deposition. Lines are truncated at the estimated time quasi-equilibrium was reached. Wide coverage
of violins relative to datapoints shows that priors are agnostic over the titer values of interest, and that the
priors regard both fast and slow decay rates as possible.
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Figure A15. Prior predictive check for model fit using directly-measured concentration at
quasi-equilibrium. Violin plots show distribution of simulated titers sampled from the prior predictive
distribution. Points show posterior median estimated titers in log,, TCID5,/mL for each sample; lines show

95 % credible intervals. Time-points with no positive wells for any replicate are plotted as triangles at the
approximate single-replicate limit of detection (LOD) of the assay—denoted by a black dotted line at 10°>
TCIDs,/mL media—to indicate that a range of sub-LOD values are plausible. Three samples collected at each
time-point. x-axis shows time since quasi-equilibrium was reached, as measured in evaporation experiments.
Wide coverage of violins relative to datapoints shows that priors are agnostic over the titer values of interest,
and that the priors regard both fast and slow decay rates as possible.
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Figure A16. Posterior predictive check for main model fit during the evaporation phase. Violin plots
show distribution of simulated titers sampled from the posterior predictive distribution. Points show
posterior median estimated titers in log,,TCIDs,/mL for each sample; lines show 95 % credible intervals. Black
dotted line shows the approximate single-replicate limit of detection (LOD) of the assay: 10%> TCIDs,/mL
media. Three samples collected at each time-point. x-axis shows time since sample deposition. Lines are
truncated at the estimated time quasi-equilibrium was reached. Tight correspondence between distribution
of posterior simulated titers and independently estimated titers suggests the model fits the data well.
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Figure A17. Posterior predictive check for main model fit at quasi-equilibrium. Violin plots show
distribution of simulated titers sampled from the posterior predictive distribution. Points show posterior
median estimated titers in log,,TCID5,/mL for each sample; lines show 95 % credible intervals. Time-points
with no positive wells for any replicate are plotted as triangles at the approximate single-replicate limit of
detection (LOD) of the assay—denoted by a black dotted line at 10%° TCID5,/mL media—to indicate that a
range of sub-LOD values are plausible. Three samples collected at each time-point. x-axis shows time since
quasi-equilibrium was reached, as measured in evaporation experiments. Tight correspondence between
distribution of posterior simulated titers and independently estimated titers suggests the model fits the data
well.

46 of 57



temperature (°C)
10 22 27

106 4
10° 4 # % *_,
102 -

100 -
1072 -

[0)4

(%) Aupiuny annejes

10°
10*
10
10°
1072

virus titer (TCIDso/mL media)
59

!
1

time since deposition (hours)

Figure A18. Posterior predictive check for model fit using directly-measured concentration during the
evaporation phase. Violin plots show distribution of simulated titers sampled from the posterior predictive
distribution. Points show posterior median estimated titers in log,,TCID5,/mL for each sample; lines show
95 % credible intervals. Black dotted line shows the approximate single-replicate limit of detection (LOD) of
the assay: 10%° TCIDs,/mL media. Three samples collected at each time-point. x-axis shows time since
sample deposition. Lines are truncated at the estimated time quasi-equilibrium was reached. Tight
correspondence between distribution of posterior simulated titers and independently estimated titers
suggests the model fits the data well.
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Figure A19. Posterior predictive check for model fit using directly-measured concentration at
quasi-equilibrium. Violin plots show distribution of simulated titers sampled from the posterior predictive
distribution. Points show posterior median estimated titers in log,, TCID5,/mL for each sample; lines show

95 % credible intervals. Time-points with no positive wells for any replicate are plotted as triangles at the
approximate single-replicate limit of detection (LOD) of the assay—denoted by a black dotted line at 10°>
TCIDs,/mL media—to indicate that a range of sub-LOD values are plausible. Three samples collected at each
time-point. x-axis shows time since quasi-equilibrium was reached, as measured in evaporation experiments.
Tight correspondence between distribution of posterior simulated titers and independently estimated titers
suggests the model fits the data well.
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Meta-analysis of human coronavirus half-lives

Study selection and data extraction

We screened the Web of Science Core Collection database on May 31, 2020, using the following key
words: “coronavir* AND (stability OR viability OR inactiv*) AND (temperature OR heat OR humidity)”
(83 records). We also considered opportunistically identified pre-prints (up toJuly 6, 2020) and stud-
ies referenced in full-texts assessed for eligibility and potentially reporting datasets of interest (22
records). We then selected publications reporting data of viral stability for human coronaviruses
(MERS, SARS-CoV-1, SARS-CoV-2, HCoV-0C43, HCoV-HKU1, HCoV-229E and HCoV-NL63) and for at
least two temperature or humidity conditions. Considering the impact of medium composition
and contact surface on virus inactivation kinetics (van Doremalen et al., 2020; Yang & Marr, 2012),
we also filtered the selected studies based on these criteria. The complete selection procedure is
described in Figure A20 following the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) (Moher et al., 2009). Studies included in our analysis are listed in Table A3.

We compiled data in the form of viral titer or relative infectivity across time, depending on how
they were reported in the selected studies. Data were most often reported as mean + variation
(standard deviation or 95% confidence interval) across replicates per time-point and experimen-
tal condition. However, as number of replicates and measured variation was not systematically
reported, we did not include this information in our analyses. We extracted data from tables and
from figures manually using the WebPlotDigitizer application (Rohatgi, 2019). We also recorded
metadata including environmental conditions (temperature and relative humidity), contact surface,
and medium composition and volume. The complete dataset is available in the online data and
code repository.

Among the selected studies, we sub-selected data to be included in our meta-analysis based on
the same criteria. In particular, we restricted the dataset to suspensions composed of respiratory
secretions, or cell culture or virus transportation media supplemented only with antibiotics and up
to 10% fetal calf serum and 1% glutamine; we also restricted the dataset to stability measurements
conducted in bulk medium suspensions, or using droplets deposited on inert surfaces (including
steel and polypropylene) or on skin. The final dataset consisted of 38 experimental conditions,
covering 17 temperature-humidity combinations and five human coronaviruses (HCoV-229E, HCoV-
0OC43, MERS-CoV, SARS-CoV-1 and SARS-CoV-2) listed in Table A3.

Estimation of virus decay in the literature

Estimation model and priors

We converted all data from the literature into log,, fraction of viable virus remaining (Figure A21-
Figure A22). Thatis, we normalized the reported quantity of viable virus to the earliest measurement—
if the authors had not already done so—and expressed time as time elapsed since earliest mea-
surement. We then estimated half-lives independently for each environmental condition j in each
study i by fitting a Bayesian exponential decay model with exponential decay rates 4;; for each ex-
periment j. We treated each reported measurement y,, (in log,, fraction viable) from experiment
J of study i as normally distributed about the predicted log,, fraction viable £, with an unknown
standard deviation o,,,,.(i, j) estimated independently for each material in study i, but shared across
all temperature/humidity conditions for that study-material pair.

Yije ~ Normal(f;,, 6mae(is J))

fijk = _)‘ijt

We placed a diffuse Normal prior on the log half-lives #,; = “’3—“2) and a Half-Normal prior on
ij

(65)

the standard deviations o,,,.(i, j):

In(#,;) ~ Normal(—2,4)
Omat (i j) ~ Half-Normal(0.6, 0.2)
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Estimation model predictive checks

We assessed appropriateness of priors with prior predictive checks (Figure A21) and goodness-of-
fit with posterior predictive checks (Figure A22). Prior checks suggested that prior distributions
were agnostic over the parameter values of interest, and posterior checks suggested a good fit of

the model to the data.
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83 records identified
through database
searching

< 22 additional records identified through other sources

A\ 4

1 duplicated record excluded

v
104 records screened

41 records excluded
- Not addressing environmental stability (n = 40)
- Not focused on coronaviruses (n = 1)

A\ 4

v
63 full-text articles
assessed for eligibility

A\ 4

27 full-text articles excluded
- Full-text not available (n = 1)
- Not focused on coronaviruses (n = 1)
- Not addressing environmental stability (n = 1)
- Meta-analyses, reviews, opinions or modelling studies not
presenting original data (n = 11)
- Subject to inactivation treatments other than heat (n = 9)
- Data collected in non-laboratory conditions (n = 1)
- Titration protocol not comparable (n = 3)

v
36 studies included in
qualitative synthesis

25 studies excluded
- Only one temperature or humidity condition (n = 8)
- Aerosolized virus (n = 2)
- Non-human coronaviruses (n = 8)
- Experimental conditions not comparable (n = 4)
- No quantitative or raw data reported (n = 3)

A\ 4

\ 4
11 studies included in
quantitative synthesis

Figure A20. Selection process of the studies included in the meta-analysis of the effect of temperature
and humidity on human coronaviruses.
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Figure A21. Prior predictive check for empirical coronavirus decay from literature data. Violin plots
show distribution of simulated titers sampled from the prior predictive distribution. Points show estimated
titers for each collected sample based on data extracted from the literature. Shape and color indicates virus.
x-axis shows time since first available measure. Study author, virus, and experimental conditions—material,
temperature, and relative humidity (RH)—indicated at the top of each panel. Black dotted line shows LOD for
each experiment. Wide coverage of violins relative to datapoints shows that priors are agnostic over the titer
values of interest, and that the priors regard both fast and slow decay rates as possible.

52 of 57



Batejat Batejat Batejat Batejat Bucknall

SARS—CoV—2 SARS—CoV—2 SARS—CoV—2 SARS—CoV—2 HCoV—229E
Bulk CCM Bulk CCM Bulk Resp. sec. Bulk Resp. sec. Bulk CCM
56°C 65°C 65°C 95°C 33°C
10°
1072 — =
o //:H
B Y V. - UE—— )
0.0 05 1.0 1500 02 04 06 00 01 02 03 000 005 010 015 0 5 10 15
Bucknall Bucknall Bucknall Chin Chin
HCoV—229E HCoV—0C43 HCoV—0C43 SARS—CoV—2 SARS—CoV—2
Bulk CCM Bulk CCM Bulk CCM Bulk VTM Bulk VTM
37°C 33°C 37°C 4C 22°C
10°
10724 ===
107"
1076
0 5 10 15 0 20 40 -10 0 10 20 30 200 0 200 400 —200 0 200 400
Chin Chin Darnell Darnell
SARS—CoV—2 SARS—CoV—2 SARS—CoV—1 SARS—CoV—1
Bulk VTM Bulk VTM Bulk CCM Bulk CCM
56°C 70°C 56°C 65°C
10°
1072
107
10°°

100 200 300 —100 0 100 200 300

Harbourt Harbourt Harbourt Lai
SARS—CoV—2 SARS—CoV—2 SARS—CoV—2 SARS—CoV—-1
Skin Skin Skin Bulk Resp. sec

4°C/45 %RH 22°C/45 %RH 37°C/45 %RH 4°C

10°
1072 - = ——ed-—=
3 10 virus
]
2 6
> 10 u HCoV—229E
0 0 200 400 0 40 80 0 500 1000
£ Lai Lamarre Lamarre Lamarre Lamarre n HCov—0css
£ SARS—CoV—1 HCoV—229E HCoV—229E HCoV—229E HCoV—229E n MERS—CoV
o Bulk Resp. sec. Bulk CCM Bulk CCM Bulk CCM Bulk CCM
s 20°C 4C 22°C 33°C 37°C SARS—CoV—1
=
g 10 | o] sars—cov—2
= 1072
107 AN- - -
10°°
[ 100 200 100 150
Leclercq Leclercq Pagat Pagat Rabenau
MERS—CoV MERS—CoV/ SARS—CoV—1 SARS—CoV—1 SARS—CoV—1
Bulk CCM Bulk CCM Bulk CCM Bulk CCM Bulk CCM
56°C 65°C 60°C 70°C 4C
10°
1074
-= ~a------ ___§ - o — — = — B g S S N
107 f h ling
3 -1 0 1 3 -1 [ 1 2 303 04 05 06 07
van Doremalen van Doremalen van Doremalen
MERS—CoV MERS—CoV MERS—CoV
Plastic Plastic Plastic
20°C/40 %RH 30°C/30 %RH 30°C/80 %RH
10°
1072
107"
1070 L2 - = ZZ
03 04 05 06 07 03 04 05 06
van Doremalen van Doremalen van Doremalen
MERS—CoV MERS—CoV/ MERS—CoV
Steel Steel Steel
20°C/40 %RH 30°C/30 %RH 30°C/80 %RH

time (hours)

Figure A22. Posterior predictive check for empirical coronavirus decay from literature data. Violin plots
show distribution of simulated titers sampled from the posterior predictive distribution. Points show
estimated titers for each collected sample based on data extracted from the literature. Shape and color
indicates virus. x-axis shows time since first available measure. Study author, virus, and experimental
conditions—material, temperature, and relative humidity (RH)—indicated at the top of each panel. Black
dotted line shows LOD for each experiment. Tight correspondence between distribution of posterior
simulated titers and independently estimated titers suggests the model fits the data well.
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Figure A23. Fit of simple regression model to SARS-CoV-1 and MERS-CoV data. Points show posterior
median estimated titers in log,,TCIDs,/mL for each sample; lines show 95 % credible intervals. Time-points
with no positive wells for any replicate are plotted as triangles at the approximate single-replicate limit of
detection (LOD) of the assay—denoted by a black dotted line at 109 TCIDs,/mL media—to indicate that a
range of sub-LOD values are plausible. Three samples collected at each time-point. x-axis shows time since
sample deposition. Lines are random draws (10 per sample) from the joint posterior distribution of the initial
sample virus concentration and the estimated decay rate; the distribution of lines gives an estimate of the
uncertainty in the decay rate and the variability of the initial titer for each experiment.

Additional SARS-CoV-1 and MERS-CoV data

As noted in the Main Text Methods, we made half-life estimates for SARS-CoV-1 and MERS-CoV at
22°C and 40 % RH during the evaporation and quasi-equilibrium phases using data collected by our
group during previous studies (van Doremalen et al., 2020). We included these estimates in the
meta-analysis alongside the estimates described above. Table A4 shows the estimated half-lives
for these data, and Figure A23 shows the fit of the simple regression model to these data.
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Table A3. Estimated half-lives in hours for data from the literature, as a function of material,
temperature (T), and relative humidity (RH). Estimated half-lives are reported as posterior median and the
middle 95% credible interval. CCM: cell culture medium; VTM: virus transport medium; Resp. sec.: respiratory

secretions.
study virus material T(°C) RH (%) median half-life (h) 25% 97.5%
Harbourt et al. 2020 SARS-CoV-2  Skin 4 45 418x 10! 259 % 101 1.42x 102
Lamarre et al. 1989 HCoV-229E Bulk CCM 4 1.87 x 102 4.96 % 101 8.55x 103
Rabenau et al. 2005 SARS-CoV-1 Bulk CCM 4 1.15 110x 10™! 8.63x 102
Lai et al. 2005 SARS-CoV-1 Bulk Resp. sec. 4 442 10! 3.63x 10! 5.74x 10!
Chin et al. 2020 SARS-CoV-2 Bulk VTM 4 1.96 x 102 5.46x 10! 1.06 % 104
Van Doremalen et al. 2013 MERS-CoV Plastic 20 40 1.55 1.08 244
Van Doremalen et al. 2013 MERS-CoV Steel 20 40 3.16 229 4.77
Lai et al. 2005 SARS-CoV-1 Bulk Resp. sec. 20 1.10x 10! 838 1.61 x 10!
Harbourt et al. 2020 SARS-CoV-2 Skin 22 45 375 2.07 8.06
Lamarre et al. 1989 HCoV-229E Bulk CCM 22 1.52x 10! 8.83 257x 10!
Chin etal. 2020 SARS-CoV-2  Bulk VM 22 1.84x 10! 1.34x 10! 2.64 % 10!
Van Doremalen et al. 2013 MERS-CoV Plastic 30 30 1.18 6.27x 10! 2.34
Van Doremalen et al. 2013 MERS-CoV Steel 30 30 131 7.19x 1071 2.60
Van Doremalen et al. 2013 MERS-CoV Plastic 30 80 9.66x 10! 556% 10! 1.78
Van Doremalen et al. 2013 MERS-CoV Steel 30 80 574x 107! 399x10~! 9.69x10~!
Bucknall et al. 1972 HCoV-229E Bulk CCM 33 161 1.00 3.85
Bucknall et al. 1972 HCoV-0C43 Bulk CCM 33 6.55 372 7.08x 10!
Lamarre et al. 1989 HCoV-229E Bulk CCM 33 1.43x 10! 8.55 229x 10!
Harbourt et al. 2020 SARS-CoV-2 Skin 37 45 5.96x 1071 337x 107! 1.32
Bucknall et al. 1972 HCoV-229E Bulk CCM 37 1.04 6.60% 10~! 2.19
Bucknall et al. 1972 HCoV-0C43 Bulk CCM 37 422 2.30 6.53x 10!
Lamarre et al. 1989 HCoV-229E Bulk CCM 37 573 2.89 L11x 10!
Chin et al. 2020 SARS-CoV-2  Bulk VTM 37 2.09 148 312
Batéjat et al. 2020 SARS-CoV-2 Bulk CCM 56 225% 1072 1.65x 1072 2.80% 1072
Darnell et al. 2004 SARS-CoV-1 Bulk CCM 56 449x1072 345x1072  634x1072
Leclercq et al. 2014 MERS-CoV Bulk CCM 56 432%1073 127x1073 152x 1072
Rabenau et al. 2005 SARS-CoV-1 Bulk CCM 56 3.08x 1073 1.08x 1075 2.63x 1072
Chin et al. 2020 SARS-CoV-2  Bulk VM 56 1.64x 1072 107x1072  2.89x 1072
Pagat et al. 2007 SARS-CoV-1 Bulk CCM 60 3.49% 1072 2611072 5.06% 1072
Rabenau et al. 2005 SARS-CoV-1 Bulk CCM 60 3.16x 1073 9.01x1070  263x1072
Batéjat et al. 2020 SARS-CoV-2  Bulk CCM 65 1.86x 1073 7.62x 1070 1.17x 1072
Darnell et al. 2004 SARS-CoV-1 Bulk CCM 65 4.14%1072 3.08x 1072 6.21x 1072
Leclercq et al. 2014 MERS-CoV Bulk CCM 65 7.35% 1074 5151074 142% 1073
Batéjat et al. 2020 SARS-CoV-2 Bulk Resp. sec. 65 8.36x 1073 5.95% 1073 116x 1072
Pagat et al. 2007 SARS-CoV-1 Bulk CCM 70 9.79x 1073 7.72x 1073 138x 1072
Chin et al. 2020 SARS-CoV-2  Bulk VTM 70 328x 1073 169x 1073 610x 1073
Darnell et al. 2004 SARS-CoV-1 Bulk CCM 75 231x 1073 8.88x 1076 2.10x 1072
Batéjat et al. 2020 SARS-CoV-2  Bulk Resp. sec. 95 241x 1073 162x1073  3.62x 103

Table A4. Estimated half-lives in hours of SARS-CoV-1 and MERS-CoV on polypropylene as a function of
temperature (T) and relative humidity (RH). Estimated half-lives are reported as posterior median and the
middle 95% credible interval.

T(°C) RH(%) virus median half-life(h) 25% 97.5%

quasi-equilibrium phase 22 40 SARS-CoV-1 6.42 5.22 7.92
22 40 MERS-CoV 3.16 253 3.97

evaporation phase 22 SARS-CoV-1 11.55 143  207.68

22 MERS-CoV 13.18 1.09 217.34
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Mechanistic model prediction of half-lives from literature

Absolute predictions

Where both temperature and humidity were available for a measurement from the literature, we
were able to predict the absolute half-life directly from our main model fit, as parametrized from
our own SARS-CoV-2 data. These predictions are plotted in Main Text Figure 3c and Figure 3-Figure
Supplement 1.

Relative predictions
For many studies, however, only temperature information was available. Moreover, heterogeneities
both among viruses and among laboratory protocols could shift the half-live by a constant factor
relative to our SARS-CoV-2-polypropylene-DMEM data. To account for this, we made within-study
relative predictions for studies with at least two temperature and/or humidity conditions on the
same side of the ERH for a given virus on a given surface. For each such set of experiments, we
chose the experiment whose temperature was closest to 20 °C to serve as the reference experiment.
If there were multiple such experiments, we picked the experiment with the relative humidity clos-
est to the ERH.

Our mechanistic model implies that the ratio of a pair of half-lives 5, and 5, at ambient temper-
atures T, and T, and super-ERH relative humidities a, and h, is given by:

mo_ ()N [ﬂ (i _ i)] (67)
Uy In(h,) R\T, T,

If h, and h, are both sub-ERH, we have:

m_ E (1 1
P [; (f n)] (68)

Where no information about ambient relative humidity was available, we assumed humidities
were shared across experiments and were super-ERH, and therefore used Equation 67 with h, = h,
to make predictions. Note that these predictions are independent of a, and 4; they rely only on
relative rates of inactivation, not absolute ones. These relative predictions according to Equation 67
and Equation 68 are plotted in Figure 3d.

Discussion of the results

We report half-life estimates for each experimental condition in Table A3. This meta-analysis high-
lights the same qualitative effect of temperature as our data: higher temperatures are associated
with faster virus decay (shorter half-lives), with SARS-CoV-2 half-life in bulk medium varying from
several hours at4°Ctolessthan 15sat 95 °C. The direct comparison of coronavirus half-lives across
humidities is difficult, as only a few studies measured virus decay at several humidities with a fixed
temperature.

This data set includes data collected following heterogeneous experimental procedures, which
can considerably impact virus inactivation kinetics. For instance, we included data collected from
suspensions at different pH, which notably explains the difference between the half-lives estimated
from Bucknall et al. 1972 (cell culture medium at pH 7.4) and Lamarre et al. 1989 (cell culture
medium supplemented to reach pH 6) for HCoV-229E in bulk medium at 33 °C and 37°C. Indeed,
Lamarre et al. 1989 showed that pH 6 is optimal for HCoV-229E stability, hence the higher half-lives
reported by this study. We also included data collected from suspensions supplemented with vary-
ing levels of proteins (from 1 %(Pagat et al., 2007) to 10 %(Darnell et al., 2004; Harbourt et al., 2020)
of fetal calf serum) although protein concentration is known to impact virus inactivation kinetics
(Pastorino et al., 2020; Yang et al., 2012). Containers used to expose samples to environmental
conditions can also impact virus inactivation rate, but this information is rarely reported (Gamble
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et al., 2021). Notably, the two SARS-CoV-2 points in Main Text Figure 3d that show shorter-than-
predicted half-lives are from heated bulk medium in closed vials, where inactivation is known to
be rapid (Gamble et al., 2021).

Despite this heterogeneity of the data collection process, and the high uncertainty of some
half-life estimates, we find good qualitative agreement between model predictions and model-free
estimates (see Main Text, Figure 3, and Figure 3-Figure Supplement 1).

Methodological implications for experimental studies on virus stability
The characterization of the mechanisms by which humidity impacts virus stability allows us to draw
methodological implications for future experimental studies. First, since solute concentration plays
a critical role in the decay of viable virus, studies interested in virus viability should either include
a measure of solute concentration over time (ideally via medium evaporation or precise measure-
ments of sample mass through time), or focus on the quasi-equilibrium phase (during which so-
lute concentration can be assumed to be constant). Second, since the evaporative kinetics and the
resultant solute environments depend on the composition of the initial suspension medium, quan-
titative estimates of duration of virus viability based on experiments conducted in different media
should be compared with caution. In our meta-analysis, we were able to make accurate relative
predictions of data from multiple artificial medium formulations as well as from bodily fluids; this
suggests that the underlying mechanisms are robust to variation in suspension medium, though
absolute durations may vary. Third, given the non-linear relationship between virus half-life and
relative humidity, studies interested in the effect of humidity on virus viability should include a
wide range of conditions at constant temperature, including both sub- and super-ERH conditions.
Code for titer estimation and model fitting is freely available the online data and code repository,
and could readily be adapted to the study of other viruses.

Figure supplements
The following pages contain figure supplements for Main Text and Appendix figures.
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Figure 1-Figure supplement 1. Evaporation of supplemented Dulbecco’s Modified Eagle
Medium (DMEM) as a function of temperature and humidity. Dots show measured masses.
Square shows measured final (quasi-equilibrium) mass; actual measurement times for final
masses were upon removal of sample from chamber, but for readability they are plotted at 24h
for all experiments. Lines are 100 random draws from the posterior for the evaporation rate; hor-
izontal section of line reflects the reaching of quasi-equilibrium (measured final mass). Transition
point between evaporation phase and quasi-equilibrium phase inferred from data (see Modeling
of medium evaporation and Evaporation model fitting). Note that final mass measurementis more
accurate than time series measurements (see Methods, Evaporation experiment).
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Figure 1-Figure supplement 2. Fit of the regression model used to estimate half-lives to
the evaporation phase (pre-drying) SARS-CoV-2 titer data, according to method described in
Empirical virus decay estimation (see Equation 44). We model evaporation phase decay of in-
fectious virus at temperature T'(i) as exponential at a rate [, this decay rate can therefore be esti-
mated by fitting a line to the time series of estimated log,, virus titers. Points show posterior median
estimated titers in log,, TCIDs,/mL for each sample; lines show 95 % credible intervals. Black dotted
line shows the approximate single-replicate limit of detection (LOD) of the assay: 10° TCIDs,/mL
media. Three samples collected at each time-point. x-axis shows time since sample deposition.
Lines are truncated at the estimated time quasi-equilibrium was reached. Lines are random draws
(10 per sample) from the joint posterior distribution of the initial sample virus concentration and
the estimated decay rate; the distribution of lines gives an estimate of the uncertainty in the decay
rate and the variability of the initial titer for each experiment.
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Figure 1-Figure supplement 3. Fit of the regression model used to estimate half-lives to
quasi-equilibrium (post-drying) SARS-CoV-2 titer data, according to method described in Em-
pirical virus decay estimation (see Equation 44). We model quasi-equilibrium decay of infec-
tious virus in environmental condition i as exponential at a rate 4;; this decay rate can therefore be
estimated by fitting a line to the time series of estimated log,, virus titers. Points show posterior
median estimated titers in log,, TCIDs,/mL for each sample; lines show 95 % credible intervals. Time-
points with no positive wells for any replicate are plotted as triangles at the approximate single-
replicate limit of detection (LOD) of the assay—denoted by a black dotted line at 10°5 TCID,/mL
media—to indicate that a range of sub-LOD values are plausible. Three samples collected at each
time-point. x-axis shows time since quasi-equilibrium was reached, as measured in evaporation
experiments. Lines are random draws (10 per sample) from the joint posterior distribution of the
initial sample virus concentration and the estimated decay rate; the distribution of lines gives an
estimate of the uncertainty in the decay rate and the variability of the initial titer for each experi-
ment.
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Figure 2-Figure supplement 1. Fitted curve estimating concentration factor at quasi-
equilibrium a function of relative humidity. Points show estimates for quasi-equilibrium con-
centration factor based on empirically measured masses from the evaporation experiments (Fig-
ure 1-Figure Supplement 1) and the estimated initial solute mass fraction. Estimates shown for
each temperature (point color) and ambient RH (x-axis value). Vertical lines around the points show
a 68 % (thick) and 95 % (thin) credible interval. Blue curves show model predictions for concentration
factor given parameters «a,, a, (see Solute concentration factor, Equation 12), and the initial solute
mass fraction, all estimated jointly alongside mechanistic model parameters and evaporation rates.
Each curve is an independent draw from the joint posterior distribution of the parameters, thus
giving a sense of the distribution of possible curves. Vertical dashed line shows the efflorescence
relative humidity, 45 %.
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Figure 2-Figure supplement 2. Estimated titers and main mechanistic model fit for SARS-
CoV-2 stability on polypropylene during the evaporation phase. Points show posterior median
estimated titers in log,, TCID,,/mL for each sample; lines show 95 % credible intervals. Black dotted
line shows the approximate single-replicate limit of detection (LOD) of the assay: 105 TCIDs,/mL
media. Three samples collected at each time-point. x-axis shows time since sample deposition.
Lines are truncated at the estimated time quasi-equilibrium was reached. Lines are random draws
(10 per sample) from the joint posterior distribution of the initial sample virus concentration and
the mechanistic model predicted decay rate; the distribution of lines gives an estimate of the un-
certainty in the decay rate and the variability of the initial titer for each experiment.
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Figure 2-Figure supplement 3. Estimated titers and fit of the directly-measured concen-
tration mechanistic model for SARS-CoV-2 stability on polypropylene at quasi-equilibrium
(concentration factor taken from evaporation experiments, rather than from a fitted curve that
relates RH to concentration). Points show posterior median estimated titers in log,,TCID,/mL
for each sample; lines show 95% credible intervals. Time-points with no positive wells for any
replicate are plotted as triangles at the approximate single-replicate limit of detection (LOD) of
the assay—denoted by a black dotted line at 10°° TCID,,/mL media—to indicate that a range of
sub-LOD values are plausible. Three samples collected at each time-point. x-axis shows time since
quasi-equilibrium was reached, as measured in evaporation experiments. Lines are random draws
(10 per sample) from the joint posterior distribution of the initial sample virus concentration and
the mechanistic model predicted decay rate; the distribution of lines gives an estimate of the un-
certainty in the decay rate and the variability of the initial titer for each experiment.
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Figure 2-Figure supplement 4. Estimated titers and fit of the directly-measured concentra-
tion mechanistic model for SARS-CoV-2 stability on polypropylene during the evaporation
phase (concentration factor taken from evaporation experiments, rather than from a fitted curve
that relates RH to concentration). Points show posterior median estimated titers in log,, TCID,,/mL
for each sample; lines show 95 % credible intervals. Black dotted line shows the approximate single-
replicate limit of detection (LOD) of the assay: 10%° TCIDs,/mL media. Three samples collected at
each time-point. x-axis shows time since sample deposition. Lines are truncated at the estimated
time quasi-equilibrium was reached. Lines are random draws (10 per sample) from the joint pos-
terior distribution of the initial sample virus concentration and the mechanistic model predicted
decay rate; the distribution of lines gives an estimate of the uncertainty in the decay rate and the
variability of the initial titer for each experiment.
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Figure 2-Figure supplement 5. Comparison of directly measured half-lives (left) with those
predicted by the mechanistic model, either with a fitted curve relating RH to concentration
(center), as in the main text, or using directly-measured concentration factors (right). Violin
plots show posterior distribution of estimated half-lives, plotted on a logarithmic scale. Dots show
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Figure 2-Figure supplement 6. Posterior distributions for key mechanistic model parame-
ters. Main model fit (with fitted curve relating RH to concentration factor) shown at left, directly-
measured concentration factor model fit shown at right. Distributions are visualized as quantile
dotplots (Kale et al., 2020); 100 representative dots are shown for each parameter. Black circle be-
low shows posterior median, bars show 68 % (thick) and 95 % (thin) credible intervals. For A4, and
A, parameter values are plotted on a logarithmic scale. See Table A1 for posterior medians and
95 % credible intervals; see Code and data availability for code to reproduce full set of posterior
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Figure 3-Figure supplement 1. Mechanistic model predictions compared to half-lives esti-
mated directly from data via simple regression. All inactivation studies in which both tem-
perature and relative humidity were reported are included. (a) Half-life as a function of relative
humidity at different temperatures. Colored lines show predicted half-life as a function of relative
humidity (x-axis value) and temperature (color) according to the main model fit. 100 random draws
from the posterior distribution are plotted for each of 20 evenly spaced temperatures between 0
and 40°C. Grey line shows the efflorescence relative humidity (ERH) assumed in the model, 45 %.
Points show posterior median for measured half-lives for human coronaviruses. Measurements in-
cluded come from this study (Table 1), from our meta-analysis of the literature (Table A3), and from
SARS-CoV-1 and MERS-CoV data collected by our group (Table A4). (b) Half-life predicted from the
mechanistic model (x-axis) compared to independent estimates (y-axis), for the same observations
plotted in a. In both panels, half-life estimates are simple regression estimates (i.e. no mechanistic
model; fitting of independent exponential decay rates to each condition). Shape indicates virus;
in a, measurements from our own group are shown slightly larger. Black lines show a 68 % (thick)
and 95 % (thin) credible interval for posterior estimates. Note that three SARS-CoV-2 points from a
particular study (Harbourt et al., 2020) show consistently longer-than-predicted half-lives, and all
MERS-CoV points show shorter-than-predicted half-lives. In both instances, our mechanistic model
makes accurate relative predictions for these data once calibrated to a reference half-life within
the same study (Figure 3d). Taken together, this indicates that there can be experiment- and/or
virus- specific effects on absolute half-lives while the general mechanism remains: hotter, more
concentrated solutions produce faster virus inactivation.
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