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ABSTRACT

Many types of event sequence data exhibit triggering and clus-
tering properties in space and time. Point processes are widely
used in modeling such event data with applications such as pre-
dictive policing and disaster event forecasting. Although current
algorithms can achieve significant event prediction accuracy, the
historic data or the self-excitation property can introduce biased
prediction. For example, hotspots ranked by event hazard rates can
make the visibility of a disadvantaged group (e.g., racial minorities
or the communities of lower social economic status) more apparent.
Existing methods have explored ways to achieve parity between
the groups by penalizing the objective function with several group
fairness metrics. However, these metrics fail to measure the fairness
on every prefix of the ranking. In this paper, we propose a novel
list-wise fairness criterion for point processes, which can efficiently
evaluate the ranking fairness in event prediction. We also present
a strict definition of the unfairness consistency property of a fair-
ness metric and prove that our list-wise fairness criterion satisfies
this property. Experiments on several real-world spatial-temporal
sequence datasets demonstrate the effectiveness of our list-wise
fairness criterion.
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1 INTRODUCTION

Many types of event sequence data exhibit triggering and clustering
properties in space and time. For example, after a large earthquake,
events of after-shocks usually occur in the following days or weeks
near the epicenter of the main shock [8]. Similarly, criminologists
have reported that 25% to 50% crime events are observed in a few ar-
eas of a city [17]. They have also demonstrated that certain types of
crime events such as burglaries are often reported repetitively from
the same neighborhood [2]. The time interval and spatial distance
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among events carry important information about the underlying
dynamics of a specific type of events.

Predicting and ranking the rate of events as a function of space
and time enables important applications. Typically, space is divided
into regions, time is divided into short intervals, and regions are
ranked based on the predicted event rates over a time window.
For example, in a predictive policing system, a city is divided into
geographic sub-regions such as grid cells or political boundaries. A
predictive algorithm is used to forecast the rates of crime events for
each region at each day based on historical crime events. According
to the predicted rates, police daily patrol activities can be adjusted
so that more resources are allocated to the regions with higher
risks. In practice, due to limited resources, regions are ranked by
the predicted hazard rates in each day and police activities are
directed to top-k regions, also known as hotspots [17].

Variations of point-process models [22, 23] have become very
popular for modeling event rates based on historic events. They
assume different forms of dependencies on the history. For exam-
ple, the Hawkes process [7, 14] assumes that the influences from
previous events are linearly additive towards the current event.
Such models are able to capture the temporal correlations between
events and are well-suited for inhomogeneous inter-event time
modeling. Spatial-temporal Hawkes models extend temporal mod-
els to predict the rate of events at a specific location and time.
Spatial heterogeneity in hazard rates can be characterized as base
intensities and the self-exciting effects can be modeled with a vari-
ety of temporal kernels. Model parameters can be estimated using
standard maximum likelihood estimators given training data, e.g.,
events observed before a specific time.

Although those predictive models improve event forecasting
accuracy, biased predictions may be introduced and amplified due
to factors such as data bias and the feedback loop of algorithms.
For example, time-stamped geo-tagged event data from Twitter
have been used for rapid flood mapping, damage assessment, and
situation awareness. However, it has been reported that higher
disaster-related Twitter-use communities tend to be of higher so-
cioeconomic status [33]. Prediction based on such data may exhibit
socioeconomic bias. Moreover, recent studies have focused on the
bias problem of event prediction in predictive policing. One po-
tential problem is that if the police only patrol areas with higher
estimated risks, there will likely be more arrests than in other ar-
eas, and then biased arrests may be further amplified through the
feedback loop.

While there have been some early explorations [12, 24, 28, 31]
in developing ranking fairness metrics that can be adopted by haz-
ardous event prediction, most of them focus on either measurement
of fairness or post-processing ranking list to satisfy a fair condition.
Hence, the ranking functions are not influenced by the fairness
metrics. A recent work [18] introduces demographic parity into
spatial-temporal crime prediction and directly uses it to penalize
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the likelihood function. The fairness metric enforces the amount
of police patrol allocated to each demographic group in selected
hotspots to be proportional to the percentage of that group in the
whole population. However, the fairness metric does not guarantee
group parity at any point in ranked regions.

In this paper, we propose a novel list-wise fairness criterion
for spatial-temporal point process, which can efficiently evaluate
the list ranking fairness. We also present a strict definition of the
unfairness consistency property of a fairness metric and prove that
our list-wise fairness criterion satisfies this property. We further
integrate the fairness criterion into the objective function and then
obtain a fairness-aware ranking function that can generate a fair
ranking list. We carry on experiments over several real-word spatial-
temporal datasets, and the results demonstrate the effectiveness
of our list-wise fairness criterion. We also discuss the scalability
of our method and propose a smoothed variation, which makes it
easier for optimization.

2 RELATED WORK

Spatial-temporal Hawkes processes, which are capable of modeling
correlated spatial-temporal event sequences, have been widely used
in various applications including earthquake prediction [27], predic-
tive policing [18], and hazard rate prediction [7, 14]. Traditionally,
events are aggregated in discrete time intervals over a set of grid
cells. A regression model is learned to predict event occurrences in
each cell and time interval given spatial and temporal covariates,
and previous counts. However, these methods suffer from discrete
granularity in both space and time. In comparison with traditional
approaches, point processes show better prediction accuracy for
predicting event hazard rates and ranking event hotspots [16].

Machine learning and artificial intelligence (AI) systems exhibit
bias due to a number of factors including the human bias in training
data and the design of algorithm models. It is also well known that
machine learning and Al algorithms may reproduce and even am-
plify human biases and social inequities especially in applications
involving feedback loops such as predictive policing [10, 18]. There
are many definitions of fairness such as group parity [4], equalized
odds [9, 30], individual fairness [5], and counterfactual fairness [21].
Group parity and its variations are widely applied in classification
and regression tasks [3, 11, 29].

The impact of imposing fairness constraints to machine learning
and Al is dependent on the specific domain datasets, the specific
fairness definition, and the prediction algorithms. Most of the mod-
els and algorithms proposed to improve fairness fall into three
categories: pre-processing [15, 32], optimization at training time
[11, 30], and post-processing [6, 9]. Generally, training time opti-
mization, which is domain-specific, can achieve good performance
on accuracy and fairness measures and offers the flexibility to bal-
ance the trade-off between accuracy and fairness measures.

Recent studies have focused on the fairness problem of ranking.
Specifically, a fairness measure is proposed in [28] to compare the
distributions between two demographic groups at several prefixes
with a discount factor based on an inverse logarithmic function.
However, the definition of ranking fairness is heuristic with no
rigorous proof and only preliminary results are demonstrated. Fair-
ness constraints on rankings are formulated in [24], which uses

linear programming approaches to find rankings that maximize
user utility while provably satisfying a specified fairness constraint.
However, this approach still needs to sample the final rankings
rather than directly optimize the objective, which may be ineffi-
cient for large scale industry dataset. An auditing framework is
proposed [12] to measure search engine bias. The work focuses
on the identification of the sources of bias rather than the gener-
ation of a fair ranking list. A recent work [31] presents a ranked
group fairness criterion based on the statistical hypothesis testing.
The method can adjust a ranking list so that a minimal number
of instances in protected groups must appear in the top-k list to
guarantee a fair criterion. However, this post-processing algorithm
and the training of ranking function are independent and thus the
adjustment is limited. A variation of group parity is proposed in
[18] for top-K crime hotspots prediction. The fairness loss is in-
tegrated into the likelihood of event occurrences and the model
parameters are penalized to strike a balance between accuracy and
fair loss. However, the fairness metric does not guarantee group
parity at any point in the ranked list.

3 MOTIVATION

In this section, we first introduce the background of spatial-temporal
point process model for event prediction and then present the fair-
ness concerns on event prediction.

3.1 Ranking Prediction by Spatial-Temporal
Point Process

A collection of n events in an area (e.g., a city) during a time win-
dow [0, T] is represented as a temporally ordered list 7~ = {e =
(xk» tk)}y_,» Where event e; happens at time . and location xy,
e.g., a pair of longitude and latitude. An event e; may be a crime
event reported from a victim or a disaster-related rescue request. In
many event prediction applications, an area is divided into grid cells
or political boundaries such as ZIP Codes. For example, disaster ar-
eas can be discretized into 30m by 30m square grid cells (resolution
of TM remote sensing image), 150m by 150m (size of a city block),
or larger. Let G denote the set of grid cellsand g € {1,2,...,m}
index all m cells in G. For each location x, let g; denote the index
of the cell that covers this location.

A temporal event sequence at the g*# grid cell can be modeled as
a Hawkes process [16, 18]. The process can be characterized via its
conditional intensity A4(t), which models the expected rate of the
event occurrences at the cell given the history of all the previous
events up to time t. The conditional intensity function is:

Ay =ng+ > Oxolt—te), (1)

e <t,gr=9

where 1y > 0 is the base intensity of cell g, 8 is the self-exciting
coefficient, and k,, is the kernel function that captures the temporal
intensity triggered by recent events. A common choice of kernel
functions is an exponential kernel function with a bandwidth o,
ie., Ky(t) = wexp(—wt).

The base intensity 74 can be modeled as a function of spatial
covariates/features, such as demographics [18], geological and so-
cioeconomic variables. Let f, denote the d-dimensional feature

vector for cell g, ie., fg € RY, Commonly, the base intensity is



log-linear with the coefficients & and the feature vector f, that is,
ng = exp(a-f g). The base intensity can be inhomogeneous through
the space, which explains spatial variations of event hazards (e.g.,
disparate crime rates or flood hazards in different neighborhoods).

Given the observed historic event sequences 7, the model pa-
rameters can be estimated by maximizing the log-likelihood [18],
or equivalently, minimizing the joint negative log-likelihood:

n T
L(@,0,0) == ) loglhg (t) + Y / Ag(dt, ()
k=1 geg ¥
where gy, is the cell index for event ey.

To better capture correlations between multiple processes de-
fined on different grid cells, we can incorporate spatial proximities
in the form of graphs into Hawkes processes. Specifically, each
grid cell is a node and two nodes are connected by an edge if they
are neighborhoods. The graph is a proximity network of spatial
cells. Similar to [20, 23], a graph regularization is added to enforce
spatial smoothness of the intensities at each cell. Formally, the ob-
jective function of the spatial-temporal Hawkes process with graph
regularization is:

T
O(a, 0, ») = min L(a, 6, ») + p{T™? Z tr(A®)TLA®)},  (3)
t=1
where A(t) = [A1(t), A2(t), ..., Am(t)]T is the vector of event rates
at m cells during a time window, p is the regularization parameter,
and L is the Laplacian matrix constructed on the graph.

For event forecasting, the model parameters estimated using
training data can be used to compute the intensities in eq. (1) at
each cell g and a given time ¢. A higher intensity means a larger
probability that an event will happen at its corresponding location.
In practice, the intensities A(¢) in the list are ranked from the highest
to the lowest, and top-K hotspots may be selected at time ¢ for
informing further activities such as police patrolling.

3.2 Fairness Concerns on Ranking

Our concern is that grid cells ranked by event hazard rates can make
the visibility of a disadvantaged group even worse. For instance, the
disadvantaged groups can be racial minorities or the communities
of lower social economic status. Existing fairness metrics focus
on the group fairness averaged over the entire list such that the
average amount of attention received by each demographic group
should be fair. However, they do not compare the group fairness at
every point in the ranked list.

In table 1, we list a simple example to demonstrate that event rate
prediction may exhibit bias towards certain groups. Assume there
are 10 locations (e.g., grid cells), which are ranked by the predicted
event rates during a given time period. Each cell is associated with
2-dimensional demographic feature and each feature indicates the
population of one race in the cell. The column “Group” indicates
the type of majority race for each cell. For example, 1 means that
race 1 is the majority and 2 means race 2 is the majority in that cell.
Specifically, for cell 1 in the first row, the predicted hazard rate is
10.0, which is the highest. There are 10.0 persons of race 1 and 1.0
person of race 2 living in the area of cell 1.

If we use the traditional fairness metrics to evaluate the entire
list in table 1, it is fair. Specifically, we can see that the total numbers

Table 1: Example for ranking fairness.

Cell by Rank Intensity Group Racel Race?2

Cell 1 10.0 1 10.0 1.0
Cell 2 5.0 2 5.0 6.0
Cell 3 4.6 2 5.0 6.0
Cell 4 4.2 2 4.0 7.0
Cell 5 3.8 2 3.0 8.0
Cell 6 34 2 2.0 9.0
Cell 7 3.0 2 1.0 10.0
Cell 8 2.8 1 9.0 2.0
Cell 9 2.4 1 8.0 3.0
Cell 10 0.8 1 9.0 4.0

of population for race 1 and race 2 are the same, which is 56.0. Also,
there are six cells labeled as group 2 while four labeled as group
1. However, it is not fair at every point of the list. As we can see,
most of the locations on the top of the list are labeled as group
2, which means the ranker intends to rank group 2 higher than
group 1. Moreover, in reality, only top ranked cells receive sufficient
attentions. If we take top-5 locations into consideration, there are
80% of the locations labeled as group 2, which is also unfair for race
1. In this case, a more specific fairness criterion focusing on the
entire ranking list is needed.

4 LIST-WISE FAIRNESS CRITERION

In this section, we introduce our List-wise Fairness Criterion
for spatial-temporal point process. We first propose a series of
definitions to describe the unfairness consistency property of a
fairness metric and then prove that our metric satisfies this property.

4.1 Preliminaries

Let G be the instance space, e.g., a set of all m grid cells. Each
instance is associated with some sensitive features such as races
or social economic status. For simplicity, we assume there are two
sensitive features, such as race type one and race type two. Let Y
be the set of values for one race for all grid cells, and Y be the set of
values for the other, respectively. The feature value of each instance
indicates the relevance of the instance with respect to that feature.
For example, if we define the feature as the race population in a
cell, y = 10.0 means 10.0 population of race type one and y = 0
means zero population of that type. Also, a larger y € Y indicates
a larger representation of race type one.

At a specific time ¢, the intensity function A4(t) can be considered
as a mapping from instances G to R and be shortened as A4. For
every instance g € G, we rank them by intensity function Ag.
The final ranking list is denoted by g(y), ..., g(m), Which satisfies
Agay = - 2 Agi- Let yr, o ym(yi € Y) and 1, ..., Gm(Gi € Y)
be the sensitive features associated with gy, ..., gm, respectively.
Denote Sm = {(91, Y15 §1)» - (Gm»> Ym»> Ym)} the set of intensities
and features. Following [26], we assume that (g;, y;, 7;) are i.i.d.
samples taken from a distribution P,y ; over G X Y X Y.

The Normalized Discounted Cumulative Gain (NDCG) is a widely
used list-wise ranking metric to measure the ranking quality. It



is often used to measure if web search engine algorithms rank
most relevant documents at top ranks. In our case, we adopt its
formula to measure the relevance of a ranked list with respect to
sensitive feature values. Thus, we replace the relevance scores with
the sensitive feature values in the following definition.

Definition 1. Let P(r)(r < 1) denote a discount function on rank-
ing positions. The intensity function A4 is the ranker. The Dis-
counted Cumulative Gain (DCG) of the ranker A4 with respect to a
sensitive feature Y using a discount function P(r) is defined as:

DCG(Ag, G, Y) = ) yirP(r). (4)

r=1

We can similarly define DCG for another sensitive feature Y as
DCG(4g.G.Y) = ZJL; Gr)P(r).

The ideal DCG (IDCG) is the best DCG value of any possible rank-
ing function with respect to a sensitive feature. Specifically, for the
sensitive group Y, we have IDCG(G, Y) = max;, P y(’r>P(r).
Thus, the Normalized DCG of intensity function 44 on Sy, with
discount function P(r) is defined as:

DCG(Ag, G, Y)
IDCG(G,Y)

NDCG are normalized scores ranging from 0.0 to 1.0 and thus
are cross-group comparable. A NDCG is a standard NDCG if the
discounting function is chosen to be the inverse logarithm decay
P(r) = bg(%l)' The choice of the base of the logarithm does not af-
fect NDCG since the normalization can cancel out constant scaling.
We use the natural logarithm in this paper. It is worth mentioning
that even though the discount function P(r) is defined as a function
of positive integers r, it can be treated as a function of non-negative
real variable in the following sections. Thus, we can also consider
the corresponding derivative P’(r) and integral f P(r)dr. In the
following section, we leave out the word "standard" and directly
use NDCG unless we emphasis the difference.

NDCG(Ay4, G, Y) = (5

4.2 List-wise Fairness Criterion

We now propose our List-wise Fairness Criterion of ranked list
with respect to sensitive features. Intuitively, we can compare the
difference of NDCG scores with respect to different sensitive fea-
tures (e.g., racial groups). A disparity between NDCG scores in-
dicates a larger degree of unfairness between the racial groups.
A strict definition of our List-wise Fairness Criterion between
each pair of groups is:

F(Ag, G, Y, Y) = (NDCG(Ag, G, Y) — NDCG(Ag, G, ¥))*. (6)

Note that an ideal List-wise Fairness Criterion should sub-
stantially distinguish the ranking gain with respect to two groups
at any prefix of the ranking. Below we first give the formal defini-
tion that a ranker measured by a metric ¥ is consistently unfair
between two groups. The definition describe the unfairness con-
sistency property of a fairness measure.

Definition 2. Let (g1, y1, §1), (92, Y2, §2), ... be i.i.d. instance-label
tuples taken from the underlying distribution P,  over GXY X Y.
Given Sy, = {(91,y1, 1), ---» (9m> Ym> Jm)} and intensity function

Ag as the ranker. The ranker 14 measured by a fairness metric ¥ is
said to be consistently unfair between two groups if there exists
a negligible function ! j(N) such that for every sufficient large N,
with probability 1 — p(N),

F(1g.G.Y.Y) > 0 (7)
holds for all m > N simultaneously.

This definition indicates the unfairness consistency property
by a metric measuring the rank list. We then give a theorem to
show that our fairness metric indeed satisfies this property. For
simplicity, we present the theorem for features with binary values,
ie,Y ={0,1} and Y = {0, 1}. It can be easily extended to general
cases where the values of Y/ and Y are finite sets [26].

To begin with, suppose there exist another intensity function ig
that preserves the order ? as original intensity function Ag, then
we have NDCG(Ay, G, V) = NDCG(ig, G, Y) by definition. Hence,
the NDCG is defined on an equivalent class of intensity functions
which can preserve the same order. We now introduce the concept
of canonical form.

Definition 3. Given an intensity function A4, we present a canon-
ical form of 4 as:
dg= Pr [Ag < Agl. 8
g G~PG[ G g] ( )
The benefit of using the canonical form intensity function is

that it satisfies the following property, which can be proven by
definition.

PROPOSITION 4. For any intensity function Ag4, its canonical form

Ag preserves the order of Ay and has uniform distribution on interval
[0, 1].

Now we give the following theorem:

THEOREM 5. Given the canonical intensity function /ig, lety’(s) =
Prg.pslY =1 | G = s] and 7'(s) = PrG~pG[l? =11 g = s].
Assume y’(s) and ij’(s) are Holder continuous in s. Then, unless
y’(s) = §’ almost everywhere on interval [0, 1], the ranker A4 mea-
sured by our List-wise Fairness Criterion is consistently unfair
between the groups with sensitive features Y and Y.

PrRoOOF. We prove our unfairness consistency in theorem 5 by
adopting the technology provided by [26] which are used to prove
the property that a measure can distinguish ranking functions. We
first define the pseudo expectation N(m) and N(m), which are
integrals to approximate the DCG, for the sensitive features Y and
Y respectively. We start with V/:

Definition 6. Assume Y = {0,1}, and let y’(s) = Prg.p,[Y =
1] iG = 5], we define the pseudo expectation N(m) for the unnor-
malized DCG as:

1

N(m) = [ y'(1-r/m)P(r)dr = m '/1/ y'(1 - s)P(ms)ds, (9)

1A function p#: N — R is negligible iff V¢ € N, 3ny € N such that Vn > ny,
pu(n) < n=¢.
?Preserving the order means for Yg1, g € G, Ay, > Ag, implies Ag; > Ag,.



with the substitution of integration r = ms. Suppose that F(x) =
flx P(r)dr and the probability p = Pr[Y = 1] > 0, we have the
normalized pseudo expectation E(m) as E(m) = N(m)/F(mp).

We first prove that the difference between the NDCG and its
pseudo expectation is relatively small with high probability by
lemma 7.

LEMMA 7. Suppose p = Pr[Y = 1] > 0 and y’(s) = Prg~p,[Y =
1| /iG = s] is Holder continuous? ins € [0, 1] with constantsa, C > 0.

Then
Pr[lNDCG(Aga G, Y)-8(m)| > 5Cp_1m_ min(a/3,1)] < O(e_m1/4),
(10)

We then prove that the difference between the pseudo expecta-
tions for the NDCG of the two groups is much larger by lemma 8.

LEMMA 8. Supposep = Pr[Y = 1] > 0 andlety’(s) = Prg.p,[Y =
1| /iG = s] and §’(s) = PrGNPG[f’ =1 | )ALG = s]. Then, unless
y’(s) = §’ almost everywhere on interval [0, 1], there must exist an
integer K > 0 and a constant B # 0, so that

- B 1
8(m) = 8m) = | < Ol (1)

log

The proofs of lemma 7 and lemma 8 are in appendix B. Thus, from

7m1/4 <

the two lemmas, and with the observation that },,- n e
1/4 1/5

O(N3/4e~N ! )< 0N ! ), the ranker A, measured by our List-

wise Fairness Criterion is consistently unfair between two

groups with high probability. O

Remark: theorem 5 provides the consistent analysis of our
List-wise Fairness Criterion. It can consistently differentiate two
group in the ranking list provided by the intensity function. Thus,
we consider using it to penalize the objective function later in
section 5. By minimizing our List-wise Fairness Criterion, the
penalties affect the final intensity function to generate a fair ranking
list.

It is worth mentioning that in the Standard NDCG, the inverse
logarithm function is used as the discount function. If other func-
tions such as inverse polynomial P(r) = r#, § > 0 are used for
computing the NDCG, the unfairness consistency is not exactly
guaranteed. Also, an inverse polynomial decay with f > 1 might
not be appropriate when the list is huge, since the tail of the ranking
list may be omitted in calculation.

4.3 Cut-off Version

It is usually computational inhibitive the when calculate all the
instance in practice. Thus, we consider a cut-off version of our List-
wise Fairness Criterion F(14, G, Y, y)@k by using the NDCG@k
with k = ¢m for some constant ¢ € (0, 1) in eq. (6). We also adopt the
discount function P(r) = m if r < k and P(r) = 0 otherwise.
Note that it is not appropriate to define k as a constant independent
with list size m. The reason is the NDCG@k is bounded by the
partial summation, which cannot consistently cover the total rank-
ing list. Thus, k must grow unboundedly when m goes to infinity.
In addition, by adopting k = c¢m, the unfairness consistency of

3That is, for Vs, s’ € [0, 1], |y’(s) = y’(s")| < C||s = s’||¢

F(1¢.G. Y, Y )@k holds under the conditions given in theorem 5.
The proof is similar to its full version in theorem 5.

5 LEARNING

In this section, we develop a penalized likelihood approach to in-
corporate fairness penalties into point process models. Trade-off
between event prediction accuracy and fairness can be achieved by
controlling the degree of fairness penalties in objective function.

5.1 Objective Function with List-wise Fairness
Criterion

The fairness penalties based on List-wise Fairness Criterion for
ranking grid cells with respect to sensitive groups over the total
training time period [0, T] is defined as follows:

T
F(a, 0, 0) = % D UNDCG(4(1), G, ¥) = NDCG(Ay (1), G, I ))*.
t=1

(12)
When F = 0, the ranking list with respect to the two groups achieves
consistently fairness averagely over a time period.
More generally, suppose there are g types of sensitive features
and the i-th type of sensitive features f; contains c¢; groups, then
for Vi;, 1] € c;, the total penalty is defined as follows:

9 T
Flae,0,0) =2 3" 3" (NDCG(g(t), 6.1, )-NDCG(g (1), G, i),

i=11;>1t=1

(13)
where Y, is the [-th group of the i-th type sensitive features. For
example, sensitive features include race and gender. There are mul-
tiple types of race and different gender. When F = 0, for every type
of sensitive features and for each pair of feature groups, the ranker
achieves consistently fairness averagely over a time period.

Finally, we add the penalty F weighted by a trade-off parameter
y to the objective function eq. (3) and minimize:
T
OPT = min £(e, 0, ») + p{T"" Z tr(A()TLA(H))} + yF(, 0, w).
t=1

(14)
Once we obtain «, 6 and w, we can directly calculate the intensities
for all grid cells by eq. (1) and present a fair ranking list.

5.2 Optimization and Scalability

The objective function with fairness penalties defined by eq. (14) is
non-differentiable since grid cells needs to be ranked by intensities
and a threshold is required for selecting top-k cells at each time
slot . Thus, we adopt the Nelder-Mead simplex method [13] to find
a local minimum. We show the details how we apply this method
in appendix A.

It is well known that simplex method takes polynomial time com-
plexity, i.e, O(n¥) in average [25], which is computational inhibitive
when the dataset is huge. Hence, we provide a smoothed variation
of our method, which uses a non-linear function to approximate
the rank and makes it differentiable.

As we introduced before, for the standard NDCG, we use the

inverse logarithm decay P(r) = m as the discount function.



We first rewrite the standard DCG in the following form:

(15)

N Ui
be6dg. 6. Y) = ; log(R(i) + 1)

where R(i) is the rank position of the cell g; by the ranker, inten-
sity function Ay. The DCG is non-smooth mainly because of the
non-continuous mapping from the intensity score A4, to the rank
position R(i). Specifically, the rank position can be defined in the
following form:

R() =1+ ) I3, -2, <0)- (16)
j#i
To deal with this problem, we follow [19] to revise the discount

function so that it becomes a continuous function of the intensities.
Thus, we have the approximate rank position R(i) as:

B0 exp(—é(/lgi - Agj ))
R(i) = ,
D=1+ ; 1+ exp(—3(Ag; — 1) (7)

where ¢ is the hyper-parameter which is often set dynamically like
the decay of learning rate. A larger § leads to a better approximation
of rank position. However it increase the difficulty of optimization
due to the stronger degree of nonlinearity. When 44, < Ag,, the
non-linear part approaches zero, thus the position hardly changes.
Integrating the approximate rank position eq. (17) into eq. (15), we
obtain the smoothed DCG. The smoothed DCG can be optimized
by gradient based methods, which makes the computation faster
and the model scalable. Nevertheless, we have to mention that this
smoothed method is not suitable for the cut-off version NDCG@k.
In addition, the smoothed method cannot guarantee the unfairness
consistency property we introduced before.

It is worth mentioning that our List-wise Fairness Criterion
is not limited to spatial-temporal point processes, in fact, it can
be extended to other ranking problems. For example, suppose we
recommend a candidate list and the candidates may have sensitive
features such as gender and race. Our fairness metric can be applied
to either binary or finite sets of features. The computational com-
plexity increases when the list is huge (e.g., a million). In this case,
our method using the smoothed DCG can tackle the computation
challenge and we can obtain an approximately fair ranking list.

6 EXPERIMENT

In this section, we introduce the experiments and results.

6.1 Data

We evaluate our list-wise fairness criterion on three open sourced
real-world datasets detailed in table 2. Specifically, the Portland
dataset 4 [17] is provided by 2017 NIJ Crime Forecasting Challenge >
that tasks participants to predict the spatial locations with highest
numbers of crime related calls in Portland, OR. It contains a list of
events with geographic coordinates, timestamps, and the types of
events such as burglary, street crime, and auto theft from March,
1, 2012 to February 28, 2017. In our setting, a unit time slot ¢ is a
day. Each event is assigned to one of equal sized regular rectangle
grids based on the longitude and latitude. In the experiments, we

“https://github.com/gomohler/crimerank
Shttps://nij.ojp.gov/funding/real-time-crime-forecasting-challenge

Table 2: Dataset description.

Dataset Events Geo-Type Unique-IDs Time Groups

Portland 166K Grid 398 1916d 2
Dallas 201K Grid 303 853d 3

Houston 1182  ZIP Code 106 26h 2

only use the street event data and we simulate the race populations
for white and Hispanic/Latino as the sensitive features, which is an
extreme case. We first learn the model without fairness penalties
to obtain a ranked list of locations, and assign the population for
white as 1 to m in the order from high to low and m to 1 for the
Hispanic/Latino. The Dallas dataset ¢ in Kaggle comes from the
Dallas Police Department containing detailed incidence reports for
around 3 years at Dallas, Texas. We adopt the similar settings for
Portland dataset to specify the locations that the events belong to.
For the race population feature, we count the number of events for
complainants in three races (black, white, and Hispanic/Latino) and
regard them as the population of that location grid. The Houston
dataset 7 is a crowdsourcing dataset obtained from a Google doc
which contains rescue requests for 3 days around Harris County
in Greater Houston Area during the Hurricane Harvey disaster. In
this dataset, a time slot ¢ is an hour and we use the ZIP Code as the
location id. We get the race population statistics from American
FactFinder 8. We use the populations of white and Hispanic/Latino
as the sensitive features.

For Portland and Dallas datasets, we use the first 200 days for
training and the days from 201 to 400 for testing given the huge
number of events, while for Houston dataset we adopt the first 14
hours for training and the rest for testing. For geometric settings
such as graph regularizers in eq. (14), we assume that each location
is a node in a graph and adjacent location nodes are connected. In
training, we use cut-off version of our list-wise fairness criterion as
the fairness penalties with NDCG@50 to improve computational
efficiency. Since the optimization algorithm only converges to local
minimal, we run several times with different initialization and
present the best results.

6.2 Evaluation Metrics

We use several metrics to evaluate both prediction performance
and fairness influence by adopting our list-wise fairness criterion.

6.2.1 Fairness Evaluation Metrics.

o NDCG@k: We directly compare the NDCG@50 scores of
different groups since we use them in training. A smaller
difference indicates a fairer prediction.

e FairLoss: We apply the fairness penalties that we define in
eq. (14) to the test data. A smaller fairness loss indicates a
fairer ranking list.

e Patrol@k: We use the fairness metric defined in [18], which
is the ratio of the summation of population in the top-k

®https://www.kaggle.com/carriel/dallaspolicereportedincidents
https://data.world/sya/harvey-rescue-doc
8https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml
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Figure 1: The NDCG@50 for different racial groups before and after adding list-wise fairness penalties.

locations over that in the total list per race group. Specifically,

Z‘45'(:1 Yo

ZEiym’
and we just replace the NDCG with this metric and the
difference between two groups should still be averaged over
time slot ¢ and types i in eq. (13). We name it List-sum
Fairness Criterion, in contrast to our List-wise Fairness
Criterion. In the experiments, we adopt k = 50 to keep
uniform standard with the former setting.

Patrol@k = (18)

6.2.2  Prediction Performance Evaluation Metrics.

e Correlation: We use the Pearson correlation coefficient be-
tween the predicted intensity list A(¢) and the ground truth,
which is the list of numbers of events at time slot ¢, to eval-
uate the prediction performance. It is between 1 and —1,
where 1 means total positive linear correlation, 0 means no
linear correlation, and —1 represents total negative linear
correlation according to the Cauchy-Schwarz inequality.

o TestLoss: It is the test loss without fairness penalties in
eq. (14), which is the log-likelihood of point process in eq. (2)
that indicates the probability that existing history event 7~
has happened and no events happen in [t,, t).

o PAI@k: Predictive Accuracy Index (PAI) is widely used to
measure the percentage of crime events in the top-k locations
[17, 18] and has the following form:

events in k locations total area

PAI@k = (19)

Since PAI@k is area normalized, a value of 1 indicates ran-
dom predictions. We also apply it to the Houston rescue
dataset. The value of k is chosen by the police resources
or the rescue resources and we provide two choices in the
experiments, PAI@15 and PAI@50.

total events " area of k locations

6.3 Fairness over Groups

We plot both the neutral (before adding our list-wise fairness penal-
ties) and fair scenarios of our model by measuring NDCG@50 on
test data per group over all three datasets in fig. 1. We can see that
in general, this list-wise fairness criterion is effective and the differ-
ences between the groups become smaller after adding our list-wise

fairness penalties, and all the scores become closer to each other to
approach the ideal case with the fairness penalties close to 0. The
performance on Houston dataset is not as good as the former two
due to data sparsity. In particular, there are much fewer events in a
little smaller number of unique ZIP Codes as described in table 2.
Besides the time slot ¢ is an hour, and thus the events/time that
represents the temporal sparsity is also at a low level. Therefore, the
locations most influenced by Hurricane Harvey might have much
higher intensities and much more rescue requests than others. As a
result, it requires a much larger fairness penalty to change the order
of the ranking list. This leads to the weak performance in terms of
the fairness metrics and makes it hard to balance the NDCG@50
values between two groups. In addition, for the neutral scenario,
the difference of the NDCG@50 values between two groups for
Houston data is relatively smaller than others, which indicates
the fairness penalty unscaled with y is relatively small. That also
increases the difficulty in obtaining an extremely fair ranking list.

6.4 TFairness vs. Prediction Performance

We measure the prediction performance and present the correlation
and PAI@k before and after adding our list-wise fairness penalties
in table 3. A higher correlation coefficient indicates stronger corre-
lation between the predicted intensity list and the ground truth of
the number of events, which finally represents the point process
model’s prediction accuracy. A higher PAI@k does not reflect the
ranking accuracy of the intensity list according to the definition;
however, it represents a higher predicted number of independent
events at top-k locations which is useful in practice with limited
police and rescue resources.

From the table, we can see that at first, the prediction perfor-
mance is influenced when we incorporate the fairness in objective
functions. The ranking prediction performance represented by the
correlation is affected to a large extent. However, either PAI@15
or PAI@50 still keeps a higher level. This demonstrates that most
of the hotspots is still on the top of the predicted ranking list. It
is worth mentioning that although there is a significant cost in
considering the list-wise fairness, the PAI value is not only much
higher than the random case, which is 1, but also potentially even
more accurate than human analysis.
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Figure 2: Fairness-accuracy curves for list-wise and list-sum fairness.

Table 3: Average prediction performance before and after
adding list-wise fairness penalties.

Results

Dataset  Accuracy Measure Before After

PAI@15 344.0795 263.9681

Portland PAI@50 194.2702 95.9875
Correlation 0.6614 0.0030

PAI@15 156.3209 21.1041

Dallas PAI@50 105.2752 16.4861
Correlation 0.6550 0.1534

PAI@15 455.4241 400.3325

Houston PAI@50 179.1580 171.0044
Correlation 0.3993 0.3367

6.5 Comparison between List-wise and

List-sum Fairness

Similar to [1], we investigate the trade-off between accuracy and
fairness for two different types of fairness penalties including the
List-wise Fairness and List-sum Fairness. We apply these two
different fairness metrics in the training stage, and adjust the trade-
off parameter of the fairness y in the range 10%,s = [0, 1,2, ..., 8].
The x axis is the test loss without considering fairness penalties
and it indicates the model prediction performance. A lower test
loss value represents better prediction performance. The y axis is
the fairness penalty based on our list-wise fairness criterion and is
calculated over test data. A lower value means a fairer ranking list.

According to the results shown in fig. 2, we can see that for all
the three datasets, the degree of the fairness of the model increases
as the trade-off parameter y becomes larger, resulting in a worse
prediction. Also, with the same level of the fairness loss, our List-
wise Fairness achieves better prediction performance than the
List-sum Fairness in general. This indicates that our list-wise
fairness criterion is more efficient and less costly in the optimization.
In addition, note that the fairness loss for Houston data is relatively
smaller than others as we described in section 6.3. List-wise fairness
have resulted in consistently more efficient curves with different
values of trade-off parameter y than list-sum fairness.
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Figure 3: Case study.

6.6 Case Study

We visualize the top-20 detected hotspots before (blue) and after
(red) adding our list-wise fairness penalties in fig. 3. The circle
of both blue and red indicates that the location are captured in
both ranking lists. The background ° shows the population of His-
panic/Latino ranked by percentage at Harris County in the Greater
Houston Area, Texas. A total of 5 locations has changed in the top-
20 list and it is obvious that they switch to the locations with more
Hispanic/Latino population in general. Even though the Houston
dataset is sparse and it is hard to obtain a fair ranking list as we
introduced in section 6.3, the results are still visible in the figure. It
is worth mentioning that the east of Harris County, where several
hotspots are detected in both neutral and fair ranking lists, is the
worst-hit area suffering Hurricane Harvey. Since the model still

“Downloaded from the website: http://www.houstonstateofhealth.com/



keeps these top predicted locations, it demonstrates the effective-
ness of the spatial-temporal point process in predicting the future
events. Similar results are obtained on the white population map
and presented in appendix D due to space limit.

7 CONCLUSION

In this paper, we present a novel list-wise fairness criterion to obtain
a fair ranking list for predicting top-k locations via spatial-temporal
point process. We propose a strict definition of the unfairness con-
sistency property of a fairness metric and prove that our list-wise
fairness criterion satisfies this property. Extensive experiments on
the real-world datasets demonstrate the effectiveness of the list-
wise fairness criterion. Future work includes extending our list-wise
fairness to other fields such as scalable recommender system and
developing efficient methods for fairness optimization.
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A EXPERIMENT SETTING

We apply the Nelder-Mead simplex method in MATLAB® by using
the function “fminsearch” 10, which can find local minimum of un-
constrained multivariable functions using derivative-free method.
Specifically, the code contains three parts: a script file that set all
the variables and initials such that apply the "fminsearch" over
objective function; a function file that is exactly the objective; and
another function file calculates the log-likelihood, graph regularizer
and the fairness penalties. We initialize the parameter as o = 0,
0 = 0.8, and w = e~ for all the datasets. We set geometric trade-
off parameter p = 1 and vary the fairness trade-off parameters
asy = 10%, s = [0,1,2,...,8]. We follow [18] to define the fair
model learned with y = 108 and the neutral model without fairness
penalties(y = 0). The other experiments settings about datasets are
introduced in section 6.1.

We show the convergence curve of the algorithm in fig. 4 on
Portland Dataset. We can see that the method works well and the
fairness loss, correlation and the value of objective finally stably
converge to a local minimal.

0.8 1080
—FairLoss

= —Correlation
2060 — Objective | 0
s
£ 0
S 2

A {1020 Q
0 10" 3
Z e
3
0271 11020
o

0 : 100

0 100 200 300 400 500

Iteration

Figure 4: Convergence of the Algorithm on Portland
Dataset.

B PROOFS OF THE LEMMAS

In this section, we present the proofs of lemma 7 and lemma 8. We
first give two key claims that are useful to prove lemma 7, and
then provide the proof of lemma 8. The proofs of claims are in
appendix C.

B.1 Proof of Lemma 7

We first give two key claims.

CrLamm 9. Suppose that F(x) = flx P(r)dr and the probability
p = Pr[Y = 1] > 0. For any sufficiently large m, the following
inequality
DCG(Ag, G, ¥)
F(mp)
holds with probability (1 — 2¢=21"").

Ohttps://www.mathworks.com/help/matlab/ref/fminsearch.html

INDCG(Ag, G, ) — | <om™%),  (20)

Craim 10. Suppose that F(x) = /1x P(r)dr andy’(s) = Prg.p,[Y =

1] ig = s| is Holder continuous in s € [0, 1] with constants a, C > 0.
Then,

m
| Z y'(1-r/mP@r)— N(m)| < Cm™*3F(m)+10. (21

r=1
Proor. Let G be the instance space and g1, ...,gm(g; € G) be
the m locations i.i.d. drawn from underlying distribution Pg. Let
X(r) = Mg, and we have x(;y 2 x(z) = ... 2 X() by definition.
According to the Chernoff bound which is a special case of Bernstein
inequalities, for each r we have |x(y — (1 - r/m)| > m~1/3 with

probability Q = 2¢=2m'"? Then, a union bound over r yields

PrVr € [m]. |x) — (1= r/m)| < 03] > 1-mQ.  (22)

Since y’(s) is Holder continuousin s € [0, 1] with constants a, C > 0,
we have:

Pr[| Z(y'(x(r))P(r)—y’(l—r/m)P(r))| <Cm™9/3 Z P(r)] >1-mQ.
r=1 r=1
(23)

Considering claim 10 and eq. (23) together, we obtain:

m
Pr|| Z Y (x(r)P(r) = N(m)| < 2Cm~*3F(m) +10] > 1 - mQ.
r=1
(24)

Considering the fact that y’(s) = Prg.p;[Y = 1 | ic = s] =
E[Y|Ag = s], hence 2L Y (x(r))P(r) is the expectation of the
DCG(44,G,Y) = Z’V"II y(r)P(r) conditioned on X(1)» -+ X(m)- Note
that conditioning on x(1, ..., X(sm), Y(r)(r = 1, ...m) are independent.
Thus, since that g1, ...gm are arbitrary and for Vr, (P(r))? < P(r),
by applying Hoeffding’s inequality which is another special case of
Bernstein inequalities, we have for Ve > 0,
2

2€
)"

(25)

Pr{IDCG(Ag, G ¥) = D 4/ (x(;))P(r)] > €] < 2exp(~

r=1

Lete = F(m)z/3 and combine eq. (24) and eq. (25), we obtain
Pr[[DCG(Ag, G, Y )-N (m)[>2Cm™=*F(my2F(m)? }|l<mQ+2¢~2F (m)!F?
(26)

Thus,
DCG(lg. 6. Y)

N(m)|>4Cp~ L~ min(a/3. 0714, ze—zF(m)l/S’
FmD) (m)|24Cp JsmQ+

27)

and the lemma 7 is proved by combining claim 9 and eq. (27). O

B.2 Proof of Lemma 8
We first quote two propositions from [26].

PropOSITION 11. (Claim 29 at [26]) Given a fixed integer k €
N* = {0} UN. For any sufficiently large n,
1| logk x|dx B 1
2 (log(nx))k+1 = logh*lp

), (28)

and



ProPOSITION 12. (Claim 30 at [26]) Span({logkx}kzo), is dense
in L?[0,1].

Proor. Let Ay’(s) = y’(s) — §’(s). Note that F(mp) = Li(mp +

1), where Li(-) is the offset logarithmic integral function and has

the property Li(n) ~ o~ gn . Hence, given the normalized pseudo

expectation E(m) in definition 6 and the observation that |Ay’(s)| <

1, we obtain:
m /1 Ay’ (1 -s)ds
Li(mp + 1) i log(1 + ms)
m Ay’(1 - s)ds 1
(0] . (29
Li(mp + 1) _/% log(1 + ms) * (Li(m)) @9)
By expanding log(1+ms) at ms, we have:
LAy (1-s)ds 1Ay’ (1-s)ds 1 ds logm
Ik Y <[, 5 —<0(Em),
Z log(1+ms) Z logm+logs 2 mslog®(ms) m
(30)
and by expanding m at log m, we obtain the following

' Ay'(1-s)ds (! -1
|,/Alogm+logs _Z log?m /_Ay (1=5)log™ " sds|

l/IAy (1-5)log* sds

(log m+éem, S)”Jrl

&E(m) - E(m) =

1Ay’ (1-5)log* slds< 1
2 (logm+logs)**1 =~ “log“*m
(1)

holds for Vu € N*, where ¢y, s € (logs,0) and we obtain the last
inequality by proposition 11. Also, by proposition 12 we known
that unless Ay’(s) = 0 almost everywhere, there exist a constant
k € N* and a non-zero constant B so that

1
(-1)k /0 Ay’ (1 s)log sds = 0. (32)

Assume K is the smallest k satisfying eq. (32) and note that

2
n log x
logh xdx = k') (-1)k~ iX
[ e Z :

i=l

2

=0(

k
log" n ) (33)
n

0

we finally have the following inequality by combining all the equa-
tions above:

~ B logX m
Em) = Em) - —z—| < O(=E-
log™ m

1
)+ Ol 9

and that completes the proof of lemma 8. ]

C PROOFS OF THE CLAIMS

C.1 Proof of Claim 9

PrROOF. Let w = Z('Z‘ y )I[yi = 1] represent the number of
y; = 1in the dataset. Considering i.i.d. sampling and the definition

Pr[Y = 1] = p, by Chernoff bound we obtain:

1/3

Prllw/m—p| > m™ /3] < 2¢72™ " (35)

—2m!/3

Hence, with probability larger than 1 — 2e , we have:
DCG(Ay4, G, Y) DCG(A4,G,Y) DCG(Ay,G.Y)
NDCG(Ay, G, Y ) <] | <
| (g F(mp) - w F(mp) '
1 1
DCG(A4,G.Y)-max(] R ).

F(m (;Hn—l/S)) F(mp)” F(m(p+m~1/3)) F(mp)
(36)

Based on the observation that DCG(14,G,Y) < F(m) and the Taylor
1
F(m(pxm=1/%))

C.2 Proof of Claim 10

Proor. Based on the fact that |P’(r)| and P(r) are monotone
decreasing functions and P(1) + |P’(1)| < 10, we have:

expansion of at mp, claim 9 is proved. O

IZEM4MMW%Mﬂ#§)ﬁﬂMMWﬁ[yhﬂmwwﬁ
r=1 r=1

m-1
=|

r+1
./ (v/ (1= r/m)P(r) — (1 = s /m)P(s)) ds]| + 4 (O)P(m)

<
—_

r+1
|§][ ¥/ (1= s/m)(P(r) - P(s))ds|

IA
3

H

2]/ |y (1 = r/m) = y'(1 = s/m)|P(r)ds + y' (0)P(m)
-1

m-—1 r+1 m
< / |P(r) — P(s)|ds + Cm~%/3 Z P(r) + P(m)

r=1 r=1
m—1 m
SZlP'(r)|+Cm_a/ 3F(m)+p(m)5(;m*“/3F(m)+|P’(1)|+Z|P'(r)|+P(m)
r=1 r=2

<Cm~3F(m)+|P(1)|+P(1)=P(m)+P(m) < Cm~%/3>F(m)+10.
(37)
O
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