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ABSTRACT: In this work, heteroepitaxial vertically aligned nanocomposite
(VAN) La0.9Ba0.1MnO3 (LBMO)-CeO2 films are engineered to produce
ferromagnetic insulating (FMI) films. From combined X-ray photoelectron
spectroscopy, X-ray diffraction, and electron microscopy, the elimination of
the insulator−metal (I−M) transition is shown to result from the creation of
very small lateral coherence lengths (with the corresponding lateral size ∼ 3
nm (∼7 u.c.)) in the LBMO matrix, achieved by engineering a high density of
CeO2 nanocolumns in the matrix. The small lateral coherence length leads to
a shift in the valence band maximum and reduction of the double exchange
(DE) coupling. There is no “dead layer” effect at the smallest achieved lateral
coherence length of ∼3 nm. The FMI behavior obtained by lateral
dimensional tuning is independent of substrate interactions, thus intrinsic to the film itself and hence not related to film thickness.
The unique properties of VAN films give the possibility for multilayer spintronic devices that can be made without interface
degradation effects between the layers.

KEYWORDS: lateral coherence length, ferromagnetic insulators, lightly doped manganite, vertically aligned nanocomposites,
double exchange coupling

1. INTRODUCTION

Vertically aligned nanocomposite (VAN) thin films have
attracted significant attention1,2 due to their ability to three-
dimensionally (3D) strain tune the physical properties of
numerous functional systems, leading to improved ferro-
electric, ferromagnetic, superconducting, and other functional
properties.3−6 Furthermore, the electronic properties of
vertical interfaces can be controlled to have either higher or
lower conduction, depending on the materials used.7−10

It is widely known that film thickness is critical to the
physical properties in standard epitaxial films of strongly
correlated perovskite oxides. Indeed, several studies have been
conducted on strongly correlated La1−xAxMnO3, where A =
Ca, Sr, Ba. These materials are of particular interest because
their physical properties are very sensitive to structural/
compositional modifications, especially when the doping ratio
is low (x < 0.2).11 When the film thickness is below ∼10 u.c.,
lattice-orbital-spin-charge degrees of freedom are strongly
modified and so are the film properties. At the interface,
“emergent” properties can be induced that are drastically
different from either bulk or thick plain films and beyond the
interfacial region, other “dead layer” effects come into
play.12−15 The critical thickness below which the physical
properties undergo drastic change is termed the “dimensional
crossover”16 thickness. It can also be termed a vertical
coherence length. In this low-thickness regime, in addition to

modification of degrees of freedom from substrate interactions,
strain-relieving defects from substrate−film lattice mismatch
also come into play, which complicate the understanding of
low-dimensional effects.17−20

The phase diagram of La1−xAxMnO3 covers almost all of the
spectrum of critical functionalities for spintronic and multi-
ferroic devices, ranging from ferromagnetic metals (which act
as spin injection, detection layers in spintronics) to
ferromagnetic insulators (which can be used in spin filters or
in magnetoelectric devices). Within the lanthanum manganite
family, La1−xBaxMnO3 has the highest Curie temperature (Tc)
and is ferromagnetic insulating in the low-doped region. For
example, theTc of La0.9Ba0.1MnO3 is 185 K, while Sr- or Ca-
doped counterparts have Tc < 150 K.11,21,22 La0.9Ba0.1MnO3
(LBMO) is particularly interesting for its FMI bulk properties,
and we choose to focus on this composition in this work. It is
well known that in thin films of LBMO, the FMI state cannot
be easily achieved in films. Our recent study showed that it is
possible to achieve this in films of thickness below ∼8 u.c.
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grown on SrTiO3. There, the SrTiO3 pins the octahedral
rotations in the LBMO and decreases the Mn 3d eg electronic
bandwidth.20,23 While this effect is interesting, it is reliant on
the underlying layer (whether substrate or another film) having
unrotated, rigid, octahedra to prevent octahedral rotations in
the LBMO film, and so is not widely applicable to device
systems.
Here, we control film properties without relying on the

substrate. We do this using vertically aligned nanocomposite
(VAN) films and explore the dependence of the physical
properties of LBMO on coherence length. These films allow us
to better understand interfacial effects in strongly correlated
oxide films, so as to provide information about how to
ultimately achieve controllable device properties. Here the
coherence length is controlled laterally, rather than the
standard vertically (via film thickness). VAN films are formed
of a matrix phase of LBMO, with embedded self-assembled
columns of a second phase that interdisperse in the matrix and
break up the overall coherence of the matrix (Figures 1e and
S2). L is the lateral “coherence length”, defined as the
physically separated “mosaic block” average lateral dimension
of the LBMO film between the columns.24,25 We also define
Lcolumn as the coherence length of the column phase (Figure
S2). Since each “mosaic block” coherently scatters X-rays,24

the change of L can be precisely detected using X-ray
characterization.
Crucially, L is different from the aforementioned vertical

coherence length because it can be changed independent of
substrate effects (namely, direct substrate interaction effects
and strain effects), which the vertical effect cannot.
The benefits of VAN films for studying and exploiting lateral

coherence length effects are:

1. The strain is much more uniform in VAN films than in
plain films, especially when the film thickens. This is
because strain in the VAN film above a certain thickness
is controlled by the nanocolumns embedded in the film,
rather than freestanding on the substrate. Hence, one
can change L, while keeping a more uniform vertical
strain.4 Also, since the film strain is dominated by the
nanocolumns rather than by other film (or substrate)
layers below the film, this may enable the desired
functionalities of multilayer device structures to be
attained.

2. L can readily be tuned in VAN films by controlling the
distribution, size, and morphology of the columns.2,26

The self-assembly kinetics of film growth enable these
dimensional features to be carefully engineered.3,7,27

3. Since the VAN vertical interface is self-assembled and
has a much slower growth rate compared to the plain
film interface, this enables high-quality vertical interfaces
to be formed without any chemical reactions taking
place at the interfaces.18,28−31

In a previous study, we showed that VAN LBMO films can
be made much less conductive than plain films through
changing film thickness.39 This study goes well beyond the
previous work by achieving highly insulating films using a
different approach. Hence, instead of changing film thickness,
we tune L. In doing so, we traverse the “dimensional crossover”
limit and eliminate deleterious effects resulting from substrate
interactions, which has not been done before. More broadly,
we open up a new and more flexible approach for engineering
the physical properties of transition-metal oxides.

We show that when L is reduced (by reducing film growth
temperature), the films switch from being ferromagnetic
metallic (FMM) to ferromagnetic insulating (FMI) at L <

Figure 1. (a) Bright-field transmission electron microscopy (TEM)
cross section of a 46 nm thick LBMO (M) -CeO2 (C) NC films
grown at 720 °C. (b) Plan-view scanning TEM (STEM) image of the
LBMO-CeO2 NC grown at 720 °C. Credit line: Adapted, reproduced
in part with permission from ref 39. Copyright 2020 Royal Society of
Chemistry. (c, d) Plan-view high-resolution TEM (HRTEM) images
of the LBMO-CeO2 NC films grown at 720 and 800 °C, respectively.
(e) Schematic diagram of VAN film showing d values, the shortest
lengths in the matrix (d) compared to the lateral coherence lengths of
the matrix (L) comprised of nanocolumns (purple) embedded inside
a matrix (light blue). (f) L determined from Williamson−Hall analysis
of ω rocking curves of X-ray diffraction (XRD) data, as discussed in
Supporting Information S2 and S3, in comparison to d determined
from TEM (examples of d shown in (c) and (d)).
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10 u.c. (4 nm). As we show later, this corresponds to a lateral
size d of the LBMO from the nanopillar surface of <7 u.c. (3
nm). Accompanying this transition, we find a drastic shift of
the valence band maximum (VBM) and decrease in the Mn 3d
eg density of states near EF, indicating a decrease in the Mn 3d
eg electron bandwidth. At the same time, Tc is not reduced
compared to the bulk value, as is normally the case for
reducing the vertical coherence length (plain film thickness).
Our result holds strong promise for spintronic devices, where
FMI films are required, better than substrate or underlayer
control of the film properties as it is commonly the case for
spintronic multilayer devices.32

2. EXPERIMENTAL METHODS
Sample preparation: La0.9Ba0.1MnO3-CeO2 (molar ratio 1:1) nano-
composite films were grown on single crystalline SrTiO3 (001)
substrates via a one-step process using pulsed laser deposition (PLD).
The composite PLD target was prepared using a conventional solid-
state sintering: stoichiometric and high-purity La2O3, Mn2O3, and
BaO powders were mixed, grounded, and sintered at 900 °C for 40 h,
and then reground and pelletized after mixing with CeO2, followed by
an additional sintering at 1100 °C for 9 h. During deposition, the
oxygen partial pressure was maintained at 0.2 mbar and growth
temperature varied from 690 to 800 °C. A KrF excimer laser with a
248 nm wavelength was used. The repetition rate and laser fluency
were 1 Hz and 1 J/cm2, respectively. After deposition, the sample was
cooled down to room temperature under an oxygen pressure of 0.4
atm, with a cooling rate of 10 °C/min.
Sample characterization: The structure of the films was

characterized with a Panalytical Empyrean high-resolution X-ray
diffraction (XRD) system. The film thickness was controlled by the
identical number of laser pulses during growth and was obtained by
Laue fringes through XRD scans. Cross-sectional and plain-view
images of the film were obtained by a high-resolution transmission
electron microscope (HRTEM) FEI TALOS F200X at 200 kV
equipped with ultrahigh-resolution high-angle annular dark-field
detectors and a Super-X electron-dispersive X-ray spectrometer. The
samples for the TEM analysis were obtained through mechanical
grinding, dimpling, and a final ion milling step. SEM images of the
VAN films were acquired using a Hitachi S-5200 SEM operated at 15
kV. The sample surfaces were coated with Ag prior to the detection to
minimize the charging effects caused by insulating samples. Magnetic
and transport property measurements were performed using a
superconducting quantum interference device (SQUID) magneto-
meter (MPMS, Quantum Design) and a physical properties
measurement system (PPMS, Quantum Design). Platinum electrodes
were deposited by DC sputtering for standard four-probe character-
ization of the transport properties. X-ray photoelectron spectroscopy
(XPS) was used to study the valence band of the films by a
monochromatic Al Kα1 X-ray source (hν = 1486.6 eV) using a SPECS
PHOIBOS 150 electron energy analyzer with a total energy resolution
of 500 meV. To prevent charging effects during the measurements,

the samples were grown on (001) Nb-STO substrates, while all of the
other samples were grown on undoped STO substrates. The Fermi
level of the films was calibrated by a polycrystalline Au foil.

3. RESULTS AND DISCUSSION

Four LBMO-CeO2 (molar ratio 1:1) VAN nanocomposite
(defined as NC) films were grown using four different growth
temperatures (690, 720, 750, and 800 °C). Three reference
LBMO plain films (defined as PF, grown at 690, 720, and 800
°C) were also grown. The thickness of these films was ∼45 nm.
Figure S1 shows the XRD 2θ-ω scans of the NC films in

comparison to a PF grown at 720 °C. The LBMO peaks of the
NC films are all very close to or overlapped with the STO
peaks, due to the very close lattice parameters (aLBMOpc =
3.88−3.92 Å33−38 and aSTO = 3.905 Å). The thickness fringes
that exist in all of the NC films near the STO (002) peak
clearly indicate the existence of high-quality LBMO phase.
Figure 1 shows the electron micrograph images and

schematic images of the NC films, where both d and L are
also shown. d is defined as the average shortest LBMO distance
between the columns and can be determined simply by
inspection of planar TEM micrographs. We note here that
while L is of interest to us, it is not possible to measure it
directly owing to overlapping of the (00l) LBMO peaks with
(00l) STO peaks (Figure S1). Hence, L is determined by
extrapolation (Supporting Information S2 and Figure S2) from
the measurement of Lcolumn using ω rocking curves of X-ray
diffraction, as described in detail in Supporting Information S3
and Figure S3.
Figure 1a,b shows the TEM cross-sectional and plan-view

STEM images of the NC film grown at 720 °C, while Figure
1c,d shows HRTEM plan-view images and gives the measured
d values of the NC films grown at 720 and 800 °C,
respectively. In all images, clear phase separation and high-
quality epitaxy is observed, with the CeO2 nanocolumns found
to be evenly distributed in the LBMO matrix. The columns
become more faceted with increasing growth temperature as
the kinetics enable sufficient mobility of atoms to form lower-
energy faces.40

Figure 1e shows a schematic diagram of the VAN film
microstructure emphasizing how d differs slightly from L.
Figures 1e and S2 also illustrate that the matrix and column
dimensions simultaneously increase with growth temperature.
Figure 1f shows how the calculated values of L from XRD and
directly measured values of d change with growth temperature;
d is lower than L, as expected because d is the shortest
geometric LBMO distance between columns along the
perpendicular direction, while L is an average dimension,

Figure 2. Growth temperature-dependent R−T curve for (a) the PF and (b) NC films. The films all have a thickness of ∼45 nm.
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which includes all lateral distances that radiate away from
perpendicular distance from the columns, regardless of
nonequal d existed in three dimensions. L is the physically
more important distance in relation to the physical properties.
When the growth temperature increases from 720 to 800 °C,

L (and d) increases from 3.48 (and 2.0−3.6) nm to 6.40 (and
3.6−5.2) nm, with L being around 25−45% larger than the
average value of d. The increase in both these dimensions is
expected based on the increase in diffusion coefficient with
temperature. Hence, a thermally activated exponential depend-
ence of L on 1/T very well fits the data, as shown in Figure
S3b.26

The Williamson−Hall analysis of XRD rocking curves to
calculate L (Figure S3a), the close fit of L to the measured d
values for 720 and 800 °C (Figure 1f), as well as the very good
fit of a nucleation and growth model to the L values (Figure
S3b) confirm the L values determined for the four temper-
atures studied. We note that the ability to calculate L rather
than measure it from TEM data is useful very broadly across
other VAN systems, as it avoids the need to do time-
consuming TEM. We also note that there have been many
previous studies on VAN films showing growth temperature-
dependent evolution of VAN dimensions, and physical
properties, and our work is in broad agreement with the
dimensional trends obtained previously.41,42

As shown in Figure 2a, all of the PFs show a clear insulator-
to-metal (I−M) transition at around 221 K. This means that
growth temperature has little influence on the transition
temperature TM. In contrast, for the NC films, upon decreasing
the growth temperature from 800 to 690 °C, the films change
from ferromagnetic metal (FMM) to ferromagnetic insulating
(FMI) behavior, as illustrated by the dashed arrow in Figure
2b. The I−M transition is gradually washed out as the
temperature is decreased and disappears for the 690 °C-grown
film, which is highly insulating throughout the whole
temperature range. The room temperature/30 K resistance
of the NC film grown at 690 °C is 2/4 orders of magnitude
larger than the room temperature/30 K value of the NC film
grown at 800 °C, i.e., 105 Ω vs 104 Ω at room temperature and
107 vs 103 Ω at 30 K.
As shown in Figure S4, for the PF films, the ferromagnetic-

to-paramagnetic transition temperature Tc remains almost
constant at around 213 K. In the NC films, as the growth
temperature is decreased from 800 to 690 °C, Tc also decreases
from 223 to 167 K. Here, Tc is determined at the temperature
where dM/dT reaches the maximum. While the strain state of
the LBMO did not change to a clearly measurable extent (from
Figure S1), L approximately halved (Figure 1e and Table S1).
Figure S5 shows the magnetization vs. magnetic field loop

for the NC films. All of the four samples exhibit typical
ferromagnetic behavior. It is noted that the saturation
magnetization (Ms) decreases from 441 emu/cm3 to 391,
355, and then to 280 emu/cm3 when the growth temperature
decreases from 800 to 690 °C. This decrease in Ms could be
due to the increase in interfacial area caused by the decrease in
L.
The simultaneous tuning of Tc and TM in the NC films

indicates a strong modification of double exchange (DE)
arising from modification of the electronic band structure. We
now turn to understanding the origin of the drastic property
tuning of NC films, i.e., PF. The change in the electronic band
structure can be studied indirectly by measuring the Mn−O
bond angle/length or the Mn 3d eg orbital occupancy through

global structural characterization (i.e., lattice parameters or c/a
ratio). It can also be studied directly by in-depth probing of the
electronic band structure. As already mentioned, there is a
close overlap of the XRD peaks between LBMO and STO
(Figure S1), and so the precise determination of LBMO lattice
parameters is not possible. We therefore turn to X-ray
photoelectron spectroscopy (XPS) to investigate the changes
in the electronic structure of LBMO with growth temperature.
Figure 3 (left) shows the complete XPS valence band (VB)

spectra of the NC films. As illustrated by the blue dashed lines,

five structures can be identified as labeled.43,44 The Fermi level
is illustrated by the black dotted lines. The valence band
maximum (VBM) positions were determined by linear
extrapolation of the leading edge of the valence band region
to the extended baseline of the spectra,23 as shown in the near-
EF spectra (Figure 3, right). When the growth temperature is
reduced from 800 to 690 °C, the VBM shifts toward higher
binding energies (from 0.04 to 0.42 eV) and the eg state of the
Mn 3d orbital is well below EF, indicating that the films
become more insulating.23 This is in good agreement with the
observation of the change in transport and magnetic properties
of the NC films (Figures 2 and S4), indicating an intrinsic
change in the Mn 3d electronic band structure of LBMO.
We now study how L controls the electronic properties

(electrical resistivity and band structure). The VBM values
from Figure 3, along with Tc, are plotted versus L in Figure 4.
The plot shows an inverse correlation between Tc, metallicity,
and L. As we explain below, the smaller L produces more
insulating material by tuning the Mn 3d electronic structure
(higher shift of the VBM observed).
Dimensional modulation of the electronic band structure

and other physical properties has been reported previously in
manganites, but the origin is controversial, with octahedral
deformations, modification of the Mn−O bond length and
orbital occupancies, nonstoichiometry, and phase separation
being put forward.12−15 All of these modulations are correlated
to the DE coupling.11 Here, our XPS results and their
correlation to the physical properties are similar to the trend
reported in the SrVO3

16
films and plain LBMO films,20 where

a metal-to-insulator transition was found upon decreasing the

Figure 3. Left: XPS valence band spectra of the LBMO-CeO2 NC
films grown at different temperatures. Right: XPS valence band
spectra near the Fermi level (EF). The red line is a guide to the eye,
showing the movement of the valence band maximum (VBM) with
the change of growth temperature.
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thin film thickness, correlated to a higher shift of the 3d states
of V or Mn located at EF (i.e., a higher shift of VBM), decrease
of density of states near EF, and reduction in the Mn 3d eg one-
electron bandwidth, Wa. The latter results from the emergence
of a “pseudo” band gap at EF due to the absence of a density of
eg states when the coordination number of the 3d ions is
reduced.16 A reduction in Wa and band gap is observed, which
accounts for the tendency of insulating behavior.20

Here, in the LBMO-CeO2 VAN, when L is decreased, there
are more uncoordinated Mn and La (or Ba) bonds blocked by
CeO2 columns as the surface area-to-volume ratio and interface
area both increase. The uncoordinated bonds lead to a
reduction in density of eg states near EF, which can result in a
reduction in Wa

16,20 and a reduction of the DE coupling
hopping integral between adjacent Mn ions, tij, as shown in eq
145

t W d sin( /2)ij a
3.5 θ∝ ∝ −

(1)

where d is the Mn−O bond length. This explains the transition
from FMM to FMI behavior and to the moderate Tc reduction.
In addition to creating more uncoordinated bonds, a smaller

L means a larger LBMO/CeO2 interfacial area owing to denser
CeO2 columns, which can also lead to greater control of the op
strain state of LBMO by CeO2, i.e., on cLBMO, then influences
the bond length d or preferential occupancy of d3z2−r2
orbitals,45−48 and hence tij (eq 1). This effect has been
previously shown by in-depth studies on other VAN
systems.41,42

As already noted, cLBMO cannot be obtained accurately from
XRD data owing to some overlap of LBMO peaks with the
STO peaks. However, we observe a small left shift of the
LBMO (003) peak of the 720 °C-grown sample compared to
the 800 °C grown sample (illustrated in Figure S1a), indicating
an increase in cLBMO with decreasing growth temperature. This
is consistent with a previous report.49 A further corroboration
of increasing cLBMO with decreasing temperature comes from
the change of CeO2 op lattice parameter. With decreasing
growth temperature, cCeO2

increases from 5.44 to 5.48 Å for
800 to 690 °C (see Figure S1a) corresponding to a 0.7%
increase in op strain. Since the mechanically softer LBMO3,50,51

is vertically clamped by the stiffer CeO2 (ECeO2
= 220−240

GPa52,53) with 2:3, 3:4, or 5:7 domain matching,49,54 cLBMO
should also increase, which can lead to the increase in d or
preferential occupancy of d3z−r2 orbitals;

45−48 hence, tij will be

reduced, another factor explaining the transition from FMM to
FMI behavior.55 In contrast to the LBMO VAN films, we note
that the LBMO PF films do not show a clear trend of cLBMO
with growth temperature, as evidenced by the LBMO (003)
peak positions showing no clear shift (Figure S1b).
We note that apart from the modulation of DE coupling (the

TM/Tc), the overall resistance of the VAN films increases with
decreasing growth temperature. This is well understood based
on the reduced L value and increased interfacial area with the
CeO2 and hence increased electronic scattering, which
therefore induces a more rapid increase in resistivity than the
decrease in ferromagnetic Tc.
Finally, as mentioned above, the tuning of the DE coupling

can also have a compositional origin. Since light Ce doping in
LBMO has been found in our previous work in the LBMO-
CeO2 NC grown at 720 °C,39 one possible compositional
origin for the progressive change in Tc can be explained as a
progressive change in the Mn4+/Mn3+ ratio caused by a change
in the Ce doping content in the LBMO phase. This origin can
be directly eliminated since the Tc evolution of the NCs
crosses over that of the PFs and the NCs grown above 750 °C
have higher Tc’s than those of the reference PFs (Figure S4b),
which cannot be explained by Ce doping. Also, since Ce3+ or
Ce4+ has higher valences than Ba2+, Ce doping can indeed
reduce the hole carrier concentration when doped into LBMO,
and hence Ce doping should reduce the Tc value of LBMO
instead of increasing it. As intermixing in VAN is always
favored by a higher growth temperature,56 the postulated result
is opposite to the result observed here. Therefore, even though
light Ce doping of LBMO is deemed to exist in the NC films,
Ce doping alone fails to explain the progressive tuning of Tc
and metallicity with the change in growth temperature. Instead,
a structural origin should be a more dominant cause, i.e., a
change in the bandwidth irrelevant to chemical substitution, as
suggested above.
We now compare the influence of our measured lateral

coherence length (L) effect on bulk Tc suppression with the
vertical coherence length effect (different film thicknesses)
from the literature for La1−xSrxMnO3 (LSMO) films, x = 0.2−
0.33 (Figure 5). For LSMO, there is a large body of data that
allows a clear observation of suppressed Tc in films below
about 12 nm by up to 50 K before the dead layer thickness is
reached at about <3 nm (7 u.c.) when Tc drops more sharply.
Compared to the vertical coherence length effect, our VAN
films do not show a Tc suppression below the bulk value,
except for the 690 °C-grown film with the smallest L of ∼3.5
nm (∼8.7 u.c). We note that this L value gives a d value of
1.9−2.6 nm (∼4.8 to 6.5 u.c., estimated based on the relative
relationship of d and L in Figure 1f, i.e., L is 25−45% larger
than d), which is more directly comparable to film thickness
for the plain films (as it is the shortest distance from the
interface). At 1.9−2.6 nm, this value is at the border of the
“dead layer” zone. It is also worth noting that the VAN film is
grown below the optimum temperature (>700 °C) for high
crystalline perfection in a plain film57−59 and so a stronger Tc
reduction would be expected considering the proximity to the
“deal layer” thickness and the non-optimum growth temper-
ature.
The different lateral and vertical behaviors can be attributed

to the different nature of vertical interfaces in VAN films
compared to the planar film/substrate interface in plain films.
Reduced Tc’s with film thickness, ultimately leading to a “dead
layer” in plain films, originates from substrate strain and

Figure 4. Relation between Tc and VBM to lateral coherence length,
L. The depth of shading represents the extent of the metallicity, with
more insulating behavior for smaller L values.
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associated strong structural/compositional modifications.61,63

This “dead layer effect” is reduced here owing to both the
more uniform vertical strain effect from the VAN columns and
the more perfect atom-by-atom stacking along the vertical
interfaces during the slow growth of the vertical interfaces.18,26

Overall, in VAN films, by engineering very low lateral
coherence lengths, L, down to 8.7 u.c. (3.5 nm) in the film
matrix, it has been possible to create FMI films with a relatively
high Tc of 167 K. The control of the matrix by vertical
interfaces as opposed to the substrate interfaces enables the
high Tc to be maintained to lower L values.
On a final note, since VAN films enable FMI properties to

be realized intrinsically within the film without domination of
the underlying layers (e.g., from a substrate or another film),
this opens up possibilities for new spintronic device concepts
formed of multilayer VAN films.

4. CONCLUSIONS
We tuned the properties of LBMO from a ferromagnetic metal
to a highly resistive ferromagnetic insulator using self-
assembled LBMO-CeO2 VAN films. The control of lateral
coherence length, L, led to a “dimensional crossover”,
consistent with a modulation of the valence band maximum
and density of eg states near EF, tuning of the DE coupling, and
thus tuning of Tc and metallicity. In contrast to VAN vertical
thickness control, our new approach of lateral dimension
tuning avoids clamping or strain effects from the substrate,
thus eliminating deleterious interface interactions. Also, since L
can be easily tuned in VAN structures simply made in a one-
step process, VAN structures have the potential to offer more
precise property control and simplicity of fabrication over top-
down artificial designs, possibly opening up new pathways to
novel spintronic devices.
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