Solver-Aided Multi-Party Configuration

Kevin Dackow
Brown University
kevin_dackow@alumni.brown.edu

Shriram Krishnamurthi
Brown University
sk@cs.brown.edu

ABSTRACT

Configuring a service mesh often involves multiple parties, each
of whom is responsible for separate portions of the overall system.
This can result in miscommunication, silent and sudden errors, or
a failure to meet goals.

We identify two distinct modes of configuration that call for
different solutions. We use synthesis algorithms to extract a set
of properties—the envelope—that each party needs the other to
obey. Administrators can use the envelope to aid verification and
synthesis or to support fault-localization and negotiation when
goals conflict.

This paper introduces the problem, lays out the modes, presents
algorithms for to each, and gives a prototype implementation. We
use this to show the feasibility of the approach in the microservices
access-control domain and raise new research questions.

ACM Reference Format:

Kevin Dackow, Andrew Wagner, Tim Nelson, Shriram Krishnamurthi, and Th-
eophilus A. Benson. 2020. Solver-Aided Multi-Party Configuration. In Pro-
ceedings of the 19th ACM Workshop on Hot Topics in Networks (HotNets °20),
November 4-6, 2020, Virtual Event, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3422604.3425944

1 INTRODUCTION

Network administrators have long confronted the problem of gen-
erating and analyzing correct configurations, and yet misconfigura-
tions persist. A brief scan of message boards shows administrators
struggling [21-24, 30, 48] with seemingly simple tasks, such as
configuring reachability and service-to-service access control.
The problem is particularly thorny when multiple administrators,
with differing goals, expertise, and levels of abstraction, have to
collectively configure a system. For instance, Kirsten Newcomer of
RedHat says [41]:
“[A]Jll of these big companies have multiple teams, multiple
business units sometimes in those business units. ...[T]hey
need to make it possible for those different teams, with poten-
tially different security requirements or regulatory require-
ments for their applications, to deploy to a single cluster.”

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotNets 20, November 4—6, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8145-1/20/11...$15.00
https://doi.org/10.1145/3422604.3425944

Andrew Wagner
Brown University
andrew_wagnerl@alumni.brown.edu

Tim Nelson
Brown University
tbn@cs.brown.edu

Theophilus A. Benson
Brown University
tab@cs.brown.edu

Similarly, in a conversation about the interplay between adminis-
trators, Shriram Rajagopalan, a Principal Engineer at an enterprise
service mesh company, says:

“[Clonflicts are the main problem as they result in a lot of
downtime, or inability to identify what the heck is going
wrong in the system.”

This paper seeks to add focus and clarity on collaborative multi-
party configuration. It presents an initial attempt at solving the
problem that leverages, but does not fully rely on, synthesis. Con-
cretely, we observe that synthesis algorithms can produce interme-
diate objects that effectively define the interface that each party
expects the others to satisfy. We extract this object, which we call
an envelope, and use it to ease verification and enable collaborative
negotiation for configurations. In the process, we observe that there
are multiple modes of multi-party configuration, and specifically
address both of these poles:

Conformance A central provider’s settings override all others’
goals, so tenants must work around these inflexible demands
(e.g., a cloud provider’s global security goals must be met).

Negotiation Ina collaborative setting, administrators are open
to the possibility of compromise and negotiation can flow
in both directions (e.g., the different teams in a company
cooperating to configure their service mesh).

In short, we focus on a practically relevant configuration context
(which presents a new kind of synthesis problem), identify different
modes of operation, design algorithms for them (Sec. 4), and pack-
age the algorithms into a working prototype (Sec. 5). Our tool, riffing
on “multi-party” and “Puppet” (though Puppet does not contain
novel synthesis algorithms), is called Muppet. This paper motivates
the work in more detail (Sec. 2) and then provides a walkthrough
of Muppet’s behavior (Sec. 3) before presenting the technical core,
then terminates in related work and discussion.

2 MOTIVATION: MICROSERVICES

Microservices present particularly difficult configuration challenges.
Due to the widely distributed nature of typical industry-grade mi-
croservice architectures, there are often several distinct parties
involved in configuring the system. When two or more administra-
tors have overlapping jurisdiction over portions of the system, it
can result in conflicting policies and configurations.

As a working context for this paper, assume one team is configur-
ing the container orchestration while another configures the service
mesh. Suppose the Istio service mesh is running on Kubernetes
(K8s), with one Istio administrator and one K8s administrator.

https://doi.org/10.1145/3422604.3425944
https://doi.org/10.1145/3422604.3425944

srcPort: 10000 srcPort: 24
dstPort: 12000 dstPort: 25
DatabaseSvc > BackendSvc »| FrontendSvc
name: name: name:
test-db < test-backend | _ test-frontend
< <
srcPort: 14000 srcPort: 26
dstPort: 16000 dstPort: 23

Figure 1: Example microservice architecture.

port | perm selector
23 DENY | *

Figure 2: K8s goal. Denies traffic for all services on port 23.

srcService dstService srcPort | dstPort
test-frontend | test-backend | 24 25
test-backend | test-frontend | 26 23
test-backend | test-db 14000 16000
test-db test-backend | 10000 12000

Figure 3: Initial Istio goals. These convey the reachability
requirements defined in Figure 1.

K8s Configuration. The K8s administrator has configuration au-
thority over pod namespacing, traffic management, scheduling,
access control, fault tolerance, service endpoints, and security. A
K8s administrator can achieve their goals by permitting or prohibit-
ing traffic with a variety of policy options on domains including
ports, IP addresses, and resource labels.

Istio Configuration. The Istio administrator can configure the
functionality of the service mesh, access control, telemetry, perfor-
mance, and some security as well. Like K8s administrators, Istio
administrators can also permit or prohibit traffic using policies that
operate on ports, IPs, and resource labels to achieve their goals.
Confusingly, this means that there is much interaction between the
configuration domains of both administrators, despite Istio policies
typically focusing on mesh behavior and K8s policies often focusing
on structural security.

Configuration Challenges. This overlap creates problems when
the two administrators have conflicting goals. Consider that both
Istio and K8s administrators can permit or deny traffic based on the
port being sent to. If either Istio or K8s denies the traffic it will be
denied even if the other party explicitly allows the traffic. If human-
authored configurations are deployed without careful checking,
this can create situations that are challenging to debug: one admin-
istrator does not know why their previously-working policies are
failing while the other is unaware of the spill-over effects of their
own configuration changes. Moreover, existing monolithic synthe-
sis approaches fail to resolve these conflicts, as the union of the
two property sets is unsatisfiable; some compromise or weakening
of goals is necessary to move forward. We will next explore this
through a concrete example.

srcService dstService srcPort | dstPort
test-frontend | test-backend | JIw x
test-backend | test-frontend | Iy Jz
test-backend | test-db 14000 16000
test-db test-backend | 10000 12000

Figure 4: The revised Istio goals still convey Fig. 1 reacha-
bility, but relax some ports. A 3 indicates that any value is
acceptable to the Istio administrator, with the variables cap-
turing which must be the same (in this case, none).

3 MUPPET BY EXAMPLE

The conversations that prompted this work involved conflicts that
crossed the provider-customer line, and thus it was difficult to ob-
tain concrete configurations and precise data on the nature of the
conflicts. The present work thus extrapolates from discussions and
our survey of public help posts, which show that many adminis-
trators struggle with configuring even reachability. Due to space
restrictions, we limit this example to only include settings relevant
to reachability in microservices.

Structure. Suppose that traffic on the mesh may be affected by
K8s NetworkPolicy and Istio AuthorizationPolicy objects. This il-
lustrative example naturally leaves out a fair bit of functionality;
we discuss our modeling choices in Sec. 5.

The service mesh itself consists of three services — a frontend,
a backend, and a database — that communicate over the ports
shown in Fig. 1. Muppet consumes the YAML files that K8s and Istio
administrators use in production to model the system structure.

Goals. We assume that each administrator has their own inde-
pendent set of goals. Concretely, suppose the K8s administrator
learns about Telnet vulnerabilities common to port 23 and decides
to globally ban communication over the port. Meanwhile, however,
the Istio admin has a working service mesh whose frontend has
been configured to receive traffic from the backend via port 23.

Administrators specify these goals as CSV files. We show them
graphically in Fig. 2 (K8s) and Fig. 3 (Istio). For simplicity, we have
assumed that the K8s admin has only this one (new) goal.

Conflict. The conflict manifests when the K8s administrator
pushes the global ban on port 23. The Istio administrator is run-
ning their service mesh, but experiences sudden failures because
reachability from the frontend to backend is broken. Particularly
frustrating to the Istio administrator is the fact that they had not
pushed any recent changes that would impact reachability, which
makes identifying the root cause of the problem challenging.

Even more confusingly, the policies for Istio and K8s generally
operate at different levels in the stack, which further hinders debug-
ging by obfuscating the problem. This is because Istio administra-
tors are typically concerned with higher-level service-mesh-specific
policymaking, while the K8s administrator is more preoccupied
with system-wide policies that may touch many Istio meshes.

Suppose we are in conformance mode, where the K8s system may
support many independently-operated Istio meshes. Ideally, before
pushing the configuration change, the K8s administrator needs

all src: Service, dst: Service-dst |
/+1+/ 23 not in dst.active_ports or

/+2+/ 23 in {egress: AuthPolicy | egress.target in src.labels}.deny_to_ports or

/+3+/ (some {egress: AuthPolicy | egress.target in src.labels}.allow_to_ports and

23 not in {egress: AuthPolicy | egress.target in src.labels}.allow_to_ports) or

/+4+/ src in {ingress: AuthPolicy | ingress.target in dst.labels}.deny from_service or

/+5+/ (some {ingress: AuthPolicy | ingress.target in dst.labels}.allow_from_service and

src not in {ingress: AuthPolicy | ingress.target in dst.labels}.allow_from_service)

For all source-destination service pairs, either:

(1) The destination service does not listen on port 23.

(2) The source service is explicitly blocked from sending to port 23 by an egress policy.

(3) The source service is implicitly blocked from sending to port 23, since it is explicitly allowed to send to some other port but not to 23.
(4) The destination service is explicitly blocked from receiving from the source service by an ingress policy.

(5) The destination service is implicitly blocked from receiving from the source service, since it is explicitly allowed to receive from some

other service but not from the source.

Figure 5: An envelope generated by Muppet written in Alloy [34] syntax after applying elementary simplifications.

to provide information to its tenants. For security or intellectual-
property reasons, and also to avoid overwhelming their tenants,
they may not wish to publish their entire policy goals; also, parts
of the goals may be satisfied entirely internally. Rather, they need
to provide tenants with rules that guide the tenants’ configuration.

From Synthesis to Envelopes. Traditional approaches to configu-
ration synthesis would configure the two systems independently,
which is unhelpful in this context because the problem lies in their
interaction. We have therefore designed a modified synthesis algo-
rithm that translates each party’s goals into an envelope (inspired
by the “flight envelope” terminology used for airplanes). We use the
notation Exgs—sstio to mean the conditions the Istio administrator
must satisfy in order to be compatible with the K8s administrators
goals. An envelope is represented as a necessary and sufficient set
of predicates, which can be used in two ways:

o they can be applied to a recipient’s configuration, or
o they can be compared with the recipient’s goals (which are
also a set of predicates over configurations)
to check for compatibility. Furthermore, the provider’s envelope
and tenant’s goals can be combined to serve as input to synthesize
the tenant’s configuration.

Assuming we are in conformance mode, where Istio must con-
form to K8s, we show the Exgs—,1stio in Fig. 5. It is generated by
the algorithm in Sec. 4.

Envelope Usage. Before changing their configuration, the K8s
administrator sends Eggs—1stio to all their Istio customers. This
provides the Istio administrators with the ability to check if their
configuration or goals conflict with the K8s goals.

Concretely, this envelope states that for all services: either the
service is not exposed on port 23; it is explicitly or implicitly banned
by Istio AuthorizationPolicies receiving traffic on port 23; or is ex-
plicitly or implicitly banned by AuthorizationPolicies from receiv-
ing traffic from services that send via port 23. If, for any service,
all of these disjuncts are false, then the Istio administrator will be
in conflict with the K8s policy, and will therefore potentially have
bugs when the K8s admin pushes their new configuration.

The envelope informs the Istio administrator that their goals
must change (or can help identify a reachability problem if the K8s
configuration has already deployed). They may realize their goals
were too strict: it doesn’t matter which port is exposed so long as
the frontend is reachable. At the same time, the database may be
hard to reconfigure. They can thus provide partial, flexible goals,
shown in Fig. 4. The existential quantifiers allow the synthesizer to
choose up to four different ports that are harmonious with both the
Istio goals and the K8s envelope. With the goals satisfiable, Muppet
generates a configuration.

Muppet also gives an envelope in the other direction: Ergsjo— k8s-
In the conformance case, this may not be useful. In the cooperative
case, however, this can be used as the medium for fault-localization
and negotiation between administrators.

Furthermore, by providing just the formulas that need to be true
to ensure functionality, Muppet does not restrict the administrators
to the synthesized configurations. Both administrators can con-
figure their system however they want and evaluate the resulting
configurations against the envelopes they receive. This lets them
handle a variety of technical and human considerations that fall
outside the scope of synthesis tools, and which will exist no matter
how sophisticated the synthesizers become.

4 ENVELOPE EXTRACTION AND USE

Traditional configuration-synthesis tools tend to embrace a work-
flow (Fig. 6) where the user provides a set ¢4 of properties or exam-
ples, from which the synthesizer produces a configuration. Some
synthesizers, especially of the example-driven variety (e.g. [52]),
allow the user to add additional examples or properties (triggering
another synthesis step) if the output fails to meet their expecta-
tions. Other tools (e.g., NetComplete [15]) permit users to give a
partial configuration as a starting point, or involve some optimiza-
tion (e.g., [45]). Our approach allows for either of these notions of
partiality; Muppet permits administrators to flag portions of their
configuration as “soft” and thus open to automated compromise.
We now show how the existing synthesis workflow can be en-
riched to aid multi-party synthesis. While the approach presented

Cl.¢a
Find completion of CX
fail such that ¢4 holds

Ca

Figure 6: Sketch of property- or example-driven single-party

. . ?? . .
configuration synthesis. CA' denotes an input configuration
(possibly partially defined for autocompletion or given as a
target to approximate) and ¢4 represents formal properties
or an example set. Synthesis either produces a complete con-
figuration C4 as output or fails. If C4 is unacceptable, synthe-
sis may be re-run with an augmented input set.

??
S Check local
consistency
success
Compute
envelope

Deliver Cp,Cp

Cf;, ¢p success

reconcile

(C%.¢a.CE. ¢B)

EsB
B revises

Figure 7: Solver-aided conformance workflow. Here, A might
correspond to a service provider and B to a new tenant. Since
A provides information only once, the envelope E4_,g need
never be recomputed.

v fil_|

here is not domain-specific, we do assume (Alg. 3) that administra-
tor goals can be translated (by the system, not the administrator)
to bounded first-order formulas. We also present a version of the
model with two (rather than an arbitrary number of) administrators.
Neither of these limitations is essential; Sec. 7 discusses both in
more detail. In both modes sketched (solver-aided conformance and
solver-aided negotiation) all administrators have non-overlapping
configuration domains, which may involve different aspects of the
network and even different core abstractions.

4.1 Solver-Aided Conformance Model

The solver-aided conformance workflow (Fig. 7) begins with admin-
istrator A providing the system with a configuration target (C;?),
along with their behavioral goals for the overall system (¢4). Fol-
lowing the lead of Solar-Lezama, et al. [46], we use “??” to indicate
a configuration that may be partially specified. This can be thought
of as either a configuration with “holes” for autocompletion or a
full configuration that labels some settings as “soft”. Both varieties
of partiality in the configuration can be seen as the leeway that the
administrator is willing to grant the system throughout the synthe-
sis process. An empty C;? would thus indicate complete flexibility
on configuration values from A (although not on goals ¢4).

The system first performs a local-consistency check to confirm
that C;? does not preclude ¢4. Next, the system computes a set
of constraints on administrator B’s configuration space that are
necessary and sufficient to satisfy ¢4 —we call this constraint-set
an envelope for B from A (denoted E4_,), which is provided to B
to aid (Fig. 8) their configuration task.

Check local
Admm
consistency

7' satisfies ¢?

Check
envelope

M1n1mal edit to C”*
satisfying E

Figure 8: Solver aid provided to an arbitrary administrator
Admin during their revisions phase after receiving an enve-
lope E. We omit subscripts since the sender is also arbitrary.

Reconcile initial offers

reconcile

Clga
A init
(< o 40

& success

Deliver Ca,Cg Ep—a

B

A revises
C??
. Ca da

reconcile
(CY.¢a.CE. ¢B)

success

Deliver Ca,Cp

success

Negotiate
counter offers

reconcile
(C%.¢4,CY. ¢B)

J::
W3
|

CH 5.

Deliver Cp,Cp

B revises

Figure 9: Solver-aided negotiation workflow. After a recon-
ciliation attempt (top) on initial offers, the administrators
trade counter-offers via the solver (bottom).

Note that passing E4—,g to B deviates sharply from the tradi-
tional single-administrator method (Fig. 6). At this point in the
process, B has not yet even stated their goals. Yet, the system is still
capable of computing a characterization of A’s goals, modulo A’s
current configuration settings, strictly in terms of B’s domain. This
provides valuable guidance for B’s configuration efforts (Sec. 2).
The envelope can also be used (Fig. 8) to produce a candidate Cg?
that provably satisfies A’s goals, which B can then adjust to suit
their own goals before submitting both for reconciliation. Should
reconciliation succeed, the process ends. If it fails, B has submitted
an offer that failed to satisfy either E4_,p or ¢ and thus B must
make revisions: either by changing their goals or by widening the
negotiable region of their partial configuration.

4.2 Solver-Aided Negotiation Model

We now relax the key assumption in Sec. 4.1. Suppose A is now be
willing to negotiate over its initial configuration (and perhaps even
its goals). This enables a two-way exchange of offers and counter-
offers as the solver mediates between the two administrators. Fig. 9
sketches the solver-aided negotiation workflow. Note that the essen-
tial datatypes (goals, offers, etc.) and core interactions remain the
same as in Sec. 4.1; the only essential change is the generalization

fun localConsistency(Cz?, da):
r — sat?(3Cp,Ca 2 CY|CA UCB E $a);
if unsat(r) then return fail(feedback(r));
return success(r.Cp);

Alg. 1: Checking local consistency of A’s offer (symmetric for B’s).

fun reconcile(C;'?, da, c?, oB):
r—sat?(3CA 2 CY, C 2 CF'|CA UCB E ¢4 A ¢p);
if unsat(r) then return fail(feedback(r));
return success(r.Ca, r.Cp);

Alg. 2: Offer reconciliation. A set of partial configurations can
be reconciled if and only if they can each be extended to total
configurations that, together, satisfy the goals of all administrators.

fun computeEnvelope(Ca, ¢4, B):

¢’y < decompose($a);

Eap «— O

for ¢ € ¢/, do

‘ if vars(p) N dom(B) #+ @ then E4_,p & subst(p, Cp);
end

return E45_,g;

Alg. 3: Computing the envelope for B to satisfy ¢4, modulo a
fixed configuration Cp. The formulas ¢4 are decomposed into
small subformulas, and those subformulas that do not mention B’s
configuration domain are filtered out. For those subformulas that
do relate to B’s domain, any mention of an item from A’s domain
is substituted with the concrete settings provided by Ca .

to a case where both parties will negotiate. We opted for a round-
robin approach—rather than a symmetric one, where all parties
receive envelopes simultaneously—to avoid forcing administrators
to accommodate a potentially moving target.

Thus, the two differences from Sec. 4.1 are: (1) all parties register
their partial configurations and properties in advance; and (2) each
administrator gets a turn to revise in a round-robin fashion. After
the initial registration, an envelope is sent to an arbitrary participant
(represented by A in Fig. 9) and the round-robin negotiation begins.

In each revision phase, the pertinent administrator may change
either their partial configuration or their goals as needed. As with
any negotiation, there will be some situations the solver-mediator
can resolve, and others that may require direct communication
between administrators. The key here is that the solver media-
tion helps make administrators aware that such communication is
necessary, and envelopes provide a specific focus to the discussion.

4.3 Algorithmics

Both local consistency and reconciliation checks involve straightfor-
ward queries to a SAT/SMT solver that seek consistent completions.
The key difference is that local consistency (Alg. 1) completes one
offer and reconciliation (Alg. 2) completes both. Goal tuples given

by users (Fig. 2) are translated to logic formulas by substitution us-
ing a formalization of network and authorization policy semantics
derived from documentation.

In all cases, failure returns with feedback to help the user refine
their settings. On target configurations, feedback comes in the
form of minimal edits over soft-constrained variables, whereas on
configurations with “holes,” feedback comes as an unsatisfiable core
with blame information.

5 MUPPET

We have built Muppet, a prototype implementation of these ideas.
To apply it in the microservices domain, we created a logical model
and goal language for service-to-service reachability and port-level
security policies. Muppet expands each goal entry to a logical for-
mula over both K8s and Istio configurations that is then used in
envelope creation (Alg. 3).

In Muppet, configurations describe two types of components: K8s
NetworkPolicies, and Istio AuthorizationPolicies over a common
set of Services. We modeled the K8s NetworkPolicy so that K8s
administrators can control traffic to and from Services based on
service selectors and ports. For AuthorizationPolicies, we modeled
the subset relevant to Services, which gives the Istio administrator
the ability to allow or deny traffic across services and ports. This
scope is sufficient to express reachability problems akin to those
seen in our survey of real-world misconfigurations (Sec. 1).

The logical portion of Muppet is built atop the Pardinus [10]
target-oriented model finder, which is itself an extension of the Kod-
kod [50] relational model finder. This provides us with a formula-
manipulation library and efficient solver implementation. Although
we have not yet run our prototype on very large examples, all
queries made in modest scenarios, like the one presented in Sec. 3,
finish in under 1 second.

6 RELATED WORK

As has been observed [3, 36], formal methods tools must account
for the actual needs of administrators before they can be widely
adopted. While this point is often made in the context of verification,
the same holds for synthesis. Recent progress in autocompleting
partial configurations [15], in synthesizing minimal edits [45] and
in comparative synthesis by example [52] is encouraging work in
this direction, taking the “human in the loop” into account.

General research on configuration synthesis has thrived, yielding,
over the past decades, tools to produce configurations for firewalls
(e.g., [12, 13, 17, 42, 54]), routing (e.g., [4, 5, 15]), and other net-
working targets [14, 38, 44, 47]. Some work, such as Bravetti, et
al. [7] also focuses on microservice synthesis. All of these generate
a monolithic configuration, sidestepping the multi-party case.

Config2Spec [6] soundly extracts high-level properties from ex-
isting configurations. Our system requires properties while also
taking the existing configurations into account; we therefore view
it as complementary to Config2Spec.

Our work is perhaps closest in spirit to PGA [43], which elegantly
allows for verified composition of endpoint policies from different
authors. The key difference lies in our focus on enabling negotiation
in the conflict case: instead of just reporting unavoidable conflicts

to policy authors, Muppet localizes the conflict goals into envelopes
that are in terms of each administrator’s settings.

A variety of other works (e.g., [2, 16, 18, 35, 37, 53]) have ex-
plored distributed constraint solving and distributed notions of
configuration. Again, our work differs in its focus on negotiation
in the unsatisfiable case. The idea of envelope exchange is most
useful, not as part of a fully automated process, but rather as an aid
to communication between human administrators.

7 DISCUSSION

Despite the mounting evidence (e.g., [41]) that multi-party config-
uration is a challenging problem, to our knowledge this work is
the first to support solver-aided collaborative multi-party configu-
ration. We see use for solver-aided collaboration in many settings:
any enterprise with multiple operator teams (e.g., security ops vs.
dev ops); academic settings (campus vs. research teams), provider-
tenant relationships in the cloud, etc. Our prototype shows that the
basic idea of solver-aided multi-party negotiation is feasible.

Work remains to expand the set of microservice configuration
features the tool supports. Much as we observe numerous forum
help requests related to reachability (Sec. 2), there are many cries for
help [19, 20, 25-29, 31-33] in forums and even a talk at Kubecon [51]
about debugging interactions between other security elements in
Istio and KS8s, such as authentication.

Beyond Microservices. The problems discussed in this paper are
not limited to networking. Many software systems [8] are built as
compositions of features, where different teams produce individual
components and a third-party might compose them: sometimes as
part of the same organization (negotiation mode) and sometimes
as black-boxes (conformance mode). The technical solutions in this
paper would apply in those settings also.

Envelopes for Stateful Systems. Our current prototype assumes
goals can be expressed as stateless predicates in bounded first-order
logic, and thus cannot completely reason about stateful systems in
its present form. However, much existing synthesis in the stateful
setting use techniques [1, 9, 40, 46] that gradually learn constraints
from counterexamples. In principle, complete envelopes could be
obtained from these constraints after iterating until the solution
space is fully characterized (as Cimatti, et al. [9] do), rather than
halting at the first correct candidate.

Configuration Privacy. As Newcomer [41] observes, insider threat
(whether unintentional or intentional) and regulatory compliance
remain major concerns in large microservice deployments. One
might therefore reasonably ask how much one administrator can
unnecessarily learn about others’ configurations via envelopes. In
Sec. 2, the envelope revealed the special status of port 23, but lit-
tle else; we argue that this envelope therefore provides a minimal
necessary amount of leakage from the K8s administrator to the Is-
tio administrator. In general, however, our strategy of substitution
(Alg. 3) could potentially leak additional fragments of configuration.
While basic simplification techniques will mitigate this issue, we
are currently pursuing methods to truly ensure minimal leakage.

Extending Beyond 2 Parties. While Muppet currently supports
only two administrators, it is possible to increase the number of

participants. Handling three or more administrators would involve
adding more steps, i.e., increasing the cycle length in Fig. 9. En-
velopes would also need to encapsulate the needs of multiple agents
(e-g- E{a,B}—c)> which our algorithm could produce via multiple
passes of substitution. One source of future work here would be
in separating out the source of obligations to focus negotiation on
administrators whose needs are involved in a conflict.

Human Factors. There are numerous human factors issues that
need to be addressed to make this work effective for administrators.
We expect that giving partial configurations should be straightfor-
ward, since these require only marking areas of potential change
in a default configuration. Other issues remain, such as:

Presentation In the revision phase, the administrator iteratively
refines their candidate configuration based on feedback from
the envelope. What form should this feedback take to use-
fully guide the administrator?

When goals or configurations are rejected, how should this
be presented to help and not mislead the administrator?
There are logic-based options, such as unsatisfiable cores [49],
which can highlight portions of the envelope that are in con-
tradiction with candidate settings. But ultimately adminis-
trators may need to understand the content of the envelope;
how best can they be presented? Would a textual translation
(as in fig. 5) help? Might a graphical presentation help? In
particular, we are mindful of past research in formal meth-
ods that shows seemingly helpful output modes can actively
mislead users [11].

Another option, which we explore here, is to adapt ideas from
target-oriented model finding [10]. The resulting system
would not outright reject goals or configurations, but rather
return a minimally-edited “counter-offer”. This may need to
be wedded to principled output forms like “why” and “why
not” modalities [39].

Semantics The impact of disobeying the envelope varies between
domains. The way in which configuration fragments com-
bine (e.g., does deny override?) are also specific to domains.
Thus, envelopes may need to become at least partially domain-
specific. In the microservices example, obeying the envelope
ensures predictable behavior for all parties, but ignoring it
can lead to unpredictable behavior unless it is accompanied
by enforcement. Analogous ideas from programming lan-
guages, related to types and safety enforcement, could be
relevant here.

ACKNOWLEDGMENTS

We are grateful to Shriram Rajagopalan for discussions and for
allowing the use of his quote. Rodrigo Fonseca, Theophilos Gian-
nakopoulos, Howard Reubenstein, John Emhoff, and the anony-
mous reviewers provided valuable feedback.

This work was partly supported by the US National Science Foun-
dation. This research was developed with funding from the Defense
Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL). The views, opinions and/or findings
expressed are those of the authors and should not be interpreted
as representing the official views or policies of the Department of
Defense or the U.S. Government.

REFERENCES

(1]

(2]

(3]

[12]

[13]

[14]

[17]
(18]
[19]

[20

[21

[22]

[23

[24

[25]

[26

[27]

[28

R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In
Formal Methods in Computer-Aided Design, 2013.

G. Aschemann and R. Kehr. Towards a requirements-based information model
for configuration management. In International Conference on Configurable
Distributed Systems, pages 181-188, 1998.

R. Beckett and R. Mahajan. Putting network verification to good use. In Workshop
on Hot Topics in Networks, 2019.

R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker. Don’t mind the gap:
Bridging network-wide objectives and device-level configurations. In Conference
on Communications Architectures, Protocols and Applications (SIGCOMM), 2016.
R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker. Network configu-
ration synthesis with abstract topologies. In Programming Language Design and
Implementation (PLDI), 2017.

R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. Vechev. Config2Spec: Mining
network specifications from network configurations. In Networked Systems Design
and Implementation, 2020.

M. Bravetti, S. Giallorenzo, J. Mauro, I. Talevi, and G. Zavattaro. Optimal and auto-
mated deployment for microservices. In International Conference on Fundamental
Approaches to Software Engineering, 2019.

M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Feature interaction:
A critical review and considered forecast. Computer Networks, 41(1):115-141, Jan.
2003.

A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. Parameter synthesis with IC3.
In Formal Methods in Computer-Aided Design, 2013.

A. Cunha, N. Macedo, and T. Guimaraes. Target oriented relational model finding.
In International Conference on Fundamental Approaches to Software Engineering,
pages 17-31. Springer, 2014.

N. Danas, T. Nelson, L. Harrison, S. Krishnamurthi, and D. J. Dougherty. User
studies of principled model finder output. In Software Engineering and Formal
Methods, 2017.

C. Diekmann, J. Naab, A. Korsten, and G. Carle. Agile network access control
in the container age. IEEE Trans. Network and Service Management, 16(1):41-55,
2019.

C. Diekmann, S. Posselt, H. Niedermayer, H. Kinkelin, O. Hanka, and G. Carle. Ver-
ifying security policies using host attributes. In Formal Techniques for Distributed
Objects, Components, and Systems, 2014.

A. El-Hassany, P. Tsankov, L. Vanbever, and M. T. Vechev. Network-wide con-
figuration synthesis. In International Conference on Computer Aided Verification,
2017.

A. El-Hassany, P. Tsankov, L. Vanbever, and M. T. Vechev. NetComplete: Practi-
cal network-wide configuration synthesis with autocompletion. In Networked
Systems Design and Implementation, 2018.

A. Felfernig, G. E. Friedrich, D. Jannach, and M. Zanker. Towards distributed
configuration. In KT 2001: Advances in Artificial Intelligence, pages 198-212, Berlin,
Heidelberg, 2001.

J. D. Guttman. Filtering postures: Local enforcement for global policies. In IEEE
Symposium on Security and Privacy, pages 120-129, 1997.

A.Hubaux. Feature-based Configuration: Collaborative, Dependable, and Controlled.
PhD thesis, University of Namur, Belgium, 2012.

Istio forum user bappr. Istio RBAC - 1.1.5 - K8S. https://discuss.istio.io/t/istio-
rbac-v1-1-5-k8s/2543, 2019. Accessed June 11, 2020.

Istio forum user bappr. Istio RBAC requires mTLS? https://discuss.istio.io/t/istio-
rbac-require-mtls/2797/2, 2019. Accessed June 11, 2020.

Istio forum user claudiobizzotto. Network Policy not taking effect. https://discuss.
istio.io/t/networkpolicy-not- taking-effect/3341, 2019. Accessed June 11, 2020.
Istio forum user courcelm. Ingress gateway IP whitelist with Autho-
rizationPolicy. https://discuss.istio.io/t/ingress-gateway-ip- whitelist-with-
authorizationpolicy/5558, 2020. Accessed June 11, 2020.

Istio forum user Fredrik. AuthorizationPolicy and namespaces. https://discuss.
istio.io/t/authorizationpolicy-and-namespaces/5399, 2020. Accessed June 11,
2020.

Istio forum user jebinjeb. AuthorizationPolicy not allowing health endpoint. https:
//discuss.istio.io/t/authorizationpolicy- not-allowing- health-endpoint/6242, 2020.
Accessed June 11, 2020.

Istio forum user magic. Multicluster control options for gateway. https://discuss.
istio.io/t/multicluster-control-options-for-gateway/6064, 2020. Accessed June
11, 2020.

Istio forum user MarioPeck. Authentication policy origins JWT - internal vs
public access. https://tinyurl.com/istio-mariopeck, 2020. Accessed June 11, 2020.
Istio forum user obelisk. Istio and kubernetes network policies. https://discuss.
istio.io/t/istio-and-kubernetes-network-policies/4858, 2020. Accessed June 11,
2020.

Istio forum user Peter_Flanagan. RBAC returns either 403 or 302 for each route
randomly. https://tinyurl.com/istio-peterf, 2019. Accessed June 11, 2020.

I
20,

&
=

™
=

™~
=2

[41]

[42]

[43

S
&

[45

[46

[47

[48

N
)

[50

[51]

[52

(53]

Istio forum user rlljorge. Restrict access by gateway/service using source
ip. https://discuss.istio.io/t/restrict-access-by-gateway-service-using-source-
ip/6588/3, 2020. Accessed June 11, 2020.

Istio forum user sethokayba. Openshift Istio ServiceEntry. https://discuss.istio.
io/t/openshift-istio-serviceentry/4247, 2019. Accessed June 11, 2020.

Istio forum user Steven_O_brien. Application roles and RBAC. https://discuss.
istio.io/t/applications-roles-and-rbac/4006, 2019. Accessed June 11, 2020.

Istio forum user y0zg. Jwt tokens propagation between multiple clusters. https://
discuss.istio.io/t/jwt-tokens-propagation-between-multiple- clusters/6604, 2020.
Accessed June 11, 2020.

Istio forum user yuzisun. RBAC denied for connection check. https://discuss.
istio.io/t/rbac-denied-for-connection-check/3627, 2019. Accessed June 11, 2020.
D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2
edition, 2012.

D. Jannach and M. Zanker. Modeling and solving distributed configuration
problems: A CSP-based approach. IEEE Transactions on Knowledge and Data
Engineering, 25(3):603-618, 2013.

S. Krishnamurthi and T. Nelson. The human in formal methods (invited talk). In
International Symposium on Formal Methods (FM), 2019.

M. Mendonga, D. Cowan, W. Malyk, and T. Oliveira. Collaborative product
configuration: Formalization and efficient algorithms for dependency analysis.
Journal of Software, 3:69-82, 01 2008.

S.Narain, G. Levin, S. Malik, and V. Kaul. Declarative infrastructure configuration
synthesis and debugging. J. Netw. Syst. Manage., 16(3), Sept. 2008.

T. Nelson, N. Danas, D. J. Dougherty, and S. Krishnamurthi. The power of “why”
and “why not”: Enriching scenario exploration with provenance. In Foundations
of Software Engineering, 2017.

T. Nelson, N. Danas, T. Giannakopoulos, and S. Krishnamurthi. Synthesizing
mutable configurations: Setting up systems for success. In Workshop on Software
Engineering for Infrastructure and Configuration Code, 2019.

K. Newcomer. Securing a multi-tenant Kubernetes cluster. https://www.infoq.
com/presentations/securing—kubernetes—cluster/, 2019. Accessed June 26, 2020.
Y. Permpoontanalarp and C. Rujimethabhas. A unified methodology for veri-
fication and synthesis of firewall configurations. In S. Qing, T. Okamoto, and
J. Zhou, editors, Information and Communications Security, pages 328-339, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee, C. Clark, Y. Ma,
P. Sharma, and Y. Zhang. PGA: Using graphs to express and automatically
reconcile network policies. In ACM Computer Communication Review, page
29-42, 2015.

M. Reitblatt, M. Canini, A. Guha, and N. Foster. FatTire: Declarative fault tolerance
for software-defined networks. In Workshop on Hot Topics in Software Defined
Networking, HotSDN ’13, 2013.

S. Saha, S. Prabhu, and P. Madhusudan. NetGen: Synthesizing data-plane config-
urations for network policies. In Symposium on SDN Research (SOSR), 2015.

A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat. Combinatorial
sketching for finite programs. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2006.

R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster. Managing the network
with Merlin. In Workshop on Hot Topics in Networks, 2013.

stack overflow forum user: Leonardo Carraro. Kubernetes Network Policy -
Allow specific IP. https://stackoverflow.com/questions/53617527/kubernetes-
network-policy-allow-specific-ip, 2018. Accessed June 11, 2020.

E. Torlak, F. S.-H. Chang, and D. Jackson. Finding minimal unsatisfiable cores of
declarative specifications. In International Symposium on Formal Methods (FM),
2008.

E. Torlak and D. Jackson. Kodkod: A relational model finder. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 632—647. Springer, 2007.

M. Turner. Walk-through: Debugging an RBAC problem in Istio (but without the
swearing. https://tinyurl.com/kubecon-turner-k8s, 2019. Accessed June 11, 2020.
Y. Wang, C. Jiang, X. Qiu, and S. G. Rao. Learning network design objectives
using a program synthesis approach. In Workshop on Hot Topics in Networks,
2019.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint sat-
isfaction problem: formalization and algorithms. IEEE Transactions on Knowledge
and Data Engineering, 10(5):673-685, 1998.

S. Zhang, A. Mahmoud, S. Malik, and S. Narain. Verification and Synthesis of
Firewalls using SAT and QBF. IEEE International Conference on Network Protocols
(ICNP), 2012.

https://discuss.istio.io/t/istio-rbac-v1-1-5-k8s/2543
https://discuss.istio.io/t/istio-rbac-v1-1-5-k8s/2543
https://discuss.istio.io/t/istio-rbac-require-mtls/2797/2
https://discuss.istio.io/t/istio-rbac-require-mtls/2797/2
https://discuss.istio.io/t/networkpolicy-not-taking-effect/3341
https://discuss.istio.io/t/networkpolicy-not-taking-effect/3341
https://discuss.istio.io/t/ingress-gateway-ip-whitelist-with-authorizationpolicy/5558
https://discuss.istio.io/t/ingress-gateway-ip-whitelist-with-authorizationpolicy/5558
https://discuss.istio.io/t/authorizationpolicy-and-namespaces/5399
https://discuss.istio.io/t/authorizationpolicy-and-namespaces/5399
https://discuss.istio.io/t/authorizationpolicy-not-allowing-health-endpoint/6242
https://discuss.istio.io/t/authorizationpolicy-not-allowing-health-endpoint/6242
https://discuss.istio.io/t/multicluster-control-options-for-gateway/6064
https://discuss.istio.io/t/multicluster-control-options-for-gateway/6064
https://tinyurl.com/istio-mariopeck
https://discuss.istio.io/t/istio-and-kubernetes-network-policies/4858
https://discuss.istio.io/t/istio-and-kubernetes-network-policies/4858
https://tinyurl.com/istio-peterf
https://discuss.istio.io/t/restrict-access-by-gateway-service-using-source-ip/6588/3
https://discuss.istio.io/t/restrict-access-by-gateway-service-using-source-ip/6588/3
https://discuss.istio.io/t/openshift-istio-serviceentry/4247
https://discuss.istio.io/t/openshift-istio-serviceentry/4247
https://discuss.istio.io/t/applications-roles-and-rbac/4006
https://discuss.istio.io/t/applications-roles-and-rbac/4006
https://discuss.istio.io/t/jwt-tokens-propagation-between-multiple-clusters/6604
https://discuss.istio.io/t/jwt-tokens-propagation-between-multiple-clusters/6604
https://discuss.istio.io/t/rbac-denied-for-connection-check/3627
https://discuss.istio.io/t/rbac-denied-for-connection-check/3627
https://www.infoq.com/presentations/securing-kubernetes-cluster/
https://www.infoq.com/presentations/securing-kubernetes-cluster/
https://stackoverflow.com/questions/53617527/kubernetes-network-policy-allow-specific-ip
https://stackoverflow.com/questions/53617527/kubernetes-network-policy-allow-specific-ip
https://tinyurl.com/kubecon-turner-k8s

	Abstract
	1 Introduction
	2 Motivation: Microservices
	3 Muppetby Example
	4 Envelope Extraction and Use
	4.1 Solver-Aided Conformance Model
	4.2 Solver-Aided Negotiation Model
	4.3 Algorithmics

	5 Muppet
	6 Related Work
	7 Discussion
	References

