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sive as calculating collision cross sections (CCS) within a few per cent Accepted 17 September 2020
and within a very reasonable time, the simplifications assumed in KEYWORDS

their estimations precludes them from being more precise, poten- lon; mobility; drif;
tially overreaching with respect to the interpretation of existing cal- two-temperature; kinetic
culations. With ion mobility instrumentation progressively reaching theory; free molecular
resolutions of several hundreds to thousands (accuracy in the range

of ~0.1%), a more accurate theoretical description of gas-phase

ion mobility becomes necessary to correctly interpret experimental

state-of-the-art separations. This manuscript entails an effort to con-

solidate the most relevant theoretical work pertaining to ion mobility

within the ‘free molecular’ regime, describing in detail the ratio-

nale for approximations up to the two-temperature theory, using

both a momentum transfer approach as well as the solution to the

moments of the Boltzmann equation for the ion. With knowledge of

the existing deficiencies in the numerical methods, the manuscript

provides a series of necessary additions in order to better simulate

some of the separations observed experimentally due to second-

order effects, namely, high field effects, dipole alignment, angular

velocities and moments of inertia, potential interactions and inelastic

collisions among others.
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1. Introduction

In its most formal definition, Ion/Electrical Mobility (IM) is a transport property that
describes the ability of an ion, i.e. charged molecule/cluster/particle, to traverse a gas
medium by means of the energy provided by an external electric field. As the ion trav-
els, the way it interacts with the gas medium varies substantially depending on the flow
regime and scale. When referring to IM in the ‘free molecular’ regime, it is also assumed
that the ion/charged entity does not ‘significantly’ perturb the gas, i.e. when the character-
istic size of the ion is much smaller than the mean free path of the gas. Under free molecular
flow, ion mobility is necessarily a function of the gas thermodynamic properties (pressure,
temperature, mass, size, internal degrees of freedom), those of the ion, any existing interac-
tion potentials (e.g. Lennard-Jones-like, ion-dipole, or ion-quadrupole interactions), and
the energy exchange involved in the process. As is normally the case for other transport
properties, the value referenced as IM is an average value for a large enough ensemble of
ions over many collisions rather than a value at any given instant. As the inertial force pro-
vided by the external electric field is balanced by the net collisional drag — a balance that
is achieved extremely quickly — a drift velocity is reached that depends on the mobility
through [1]:

Vg = K- E, (1)
where ¥, is the drift velocity, K is the mobility tensor and E is the electric field. K, in princi-
ple, may be assumed to be a second-order tensor since the drift velocity does not necessarily
have to be in the direction of the field. However, under most circumstances of interest for
small ions, i.e. when all orientations are equally probable, electric field and total average
displacement per unit time may be considered to be in the same direction, and thus ion
mobility can be described by a single value, K, instead of a tensor, i.e. {(vg) = (K) - E [2].

The most detailed calculations concerning Ion Mobility are performed by studying the
collision energy exchange between ion and gas molecules. In order to accurately calcu-
late this collisional interaction, it is necessary to know the velocity distribution function
of both ions and gas. Under the free molecular regime, the buffer gas distribution func-
tion may be assumed, while the ion’s distribution may only be obtained either through
an informed guess or by solving the Boltzmann equation (an integrodifferential equation
which contains a convoluted collisional term) [3]. To make the Boltzmann equation more
manageable, a series of reasonable simplifications are typically used. The most signifi-
cant of such simplifications, aside from the gas being perceived as having a well-behaved
Maxwell-Boltzmann distribution, is that the number density of ions is much smaller than
that of the gas molecules, i.e. ions are so far apart from each other that they do not interact.
This reduces the complexity of the collision term, which then has only a binary interaction
between gas molecule and ion and is directly related to the differential cross section and
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relative scattering of the pair. This modification alone is still commonly insufficient, and
further simplifications, such as fitted interaction potentials or elasticity of collisions, are
required to provide suitable estimates and approximations to the integral.

Even under such a plethora of simplifications, only a few different theoretical approaches
to solving the Boltzmann equation have been explored in detail, and many times the only
analytical solutions that exist are left as quadratures of particular moments of the distribu-
tion, i.e. the average velocity, or the kinetic energy of the ion, but not the distribution itself
[4]. Solving only the first few moments may not seem ideal at first, but it turns out that,
most experiments will provide the user with only a particular property of the ion that is
related to one of the moments of the distribution (the average velocity for example would
yield the mobility) and therefore there is no need to know the distribution function in full
detail. However, the resulting quadratures generally depend on the geometry of the ion,
the interaction potential, the strength of the field, and the scattering of the gas molecules
on the surface, and hence their calculation must be addressed numerically, except perhaps
for particularly simple cases [5]. Despite the intricacy behind the calculations and the sim-
plifications noted, numerically obtained solutions yield seemingly accurate mobility values
when compared to experimental results, notably when reasonable procedures are in place,
with some of the more computationally expensive methods reaching accuracies of a few
per cent( < ~4%); mainly under small to vanishing fields and parametrised interaction
potentials [6].

A problem that arises when comparing numerical and experimental results is that the
accuracy of experimental mobilities is difficult to define as it depends on the equipment
and method used, as well as on the type of molecule being analysed, e.g. the accuracy of
the same system may be different when dealing with flexible versus rigid molecules [7-10].
Nonetheless, with proper calibrations, it has been shown that experimental calculations can
be normalised to a degree even across different systems and laboratories [11,12]. Within
a single run, and based on shifts with respect to a given calibrant (which may have its
own uncertainties), recent experimental advances, however, demonstrate the ability of sys-
tems to achieve accuracies of less than 1% [13-19], or even less than 0.1% (resolutions in
excess of 1000) [20], transcending the accuracy of our state-of-the-art theoretically derived
approximations. Experimental achievements of this magnitude should not be overlooked,
as they open up the possibility of separation of ions with nearly identical structures, such
as stereoisomers, regioisomers, isotopologues, or even isotopomers [21-26], and where
separation of ions may only be possible through second- or higher-order effects (differ-
ence in potential interactions, high external fields, dipole moments, field alignment, charge
locations, difference in moments of inertia, . . . ). The key realisation here is that, with accu-
racies of a few per cent, the existing theoretical framework may often be insufficient to
provide a full explanation for IM separation of species observed in state-of-the-art and
futuristic experiments.

This review addresses three eras of IM theory: (past) an accurate description of the exist-
ing background knowledge on IM, (present) to establish the current state of the field from
a theoretical-numerical perspective, and (future) to establish the drawbacks of the existing
theory, how to overcome the existing limitations, and propose further advancement in ion
mobility calculations.

The theoretical background (past) includes a critical insight into collision cross section
calculations and includes several higher-order approximations to the Mason-Schamp
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equation, including and up to the two-temperature theory, so as to provide a more detailed
account of the simplifications leading to the equation. This section is supplemented with
three appendices that provide a comprehensive description of the theoretical approach. The
numerical description (present) accounts for the most relevant numerical approaches to
the calculation of ion mobility and collision integrals and weighs in on possible extensions
to the calculations. The last section is devoted to reinforcing the validity of the numeri-
cal calculations and establishing possible drawbacks to the existing theory and numerical
approaches. In particular, the relaxation of the equal orientation probability assumption is
discussed in detail to allow effects such as rotation, moments of inertia, dipole moments
and general alignments to be considered. In all, there is a need for a well-founded theory
to interpret and to understand the high separation achieved by novel systems.

2. Theoretical background

The purpose of this section is to provide the readers with ample critical insight to
understand the accuracy of the most common expressions used to calculate mobility of
ions/charged nanoparticles in the free molecular regime. For that, it seems helpful to make
a distinction between two contemporary fields pursuing the study of ion/electrical mobil-
ity: aerosol science and analytical/physical chemistry. The reason for the bifurcation into
two is that seemingly related interests in mobility calculations were somewhat isolated from
each other until the 1990-2000s with the work of Fernandez de la Mora and coworkers
successfully studying ions with tools mostly reserved to aerosol nanoparticles [27-31].
The separation between these two fields made sense at the beginning, as aerosol parti-
cles of interest were in general very large and mostly out of the free molecular regime.
As instruments became more precise and nanoparticles (i.e. within the free molecular
regime) started to be ubiquitously studied, both trends started converging with shared
interests. And although existing theories seemed to initially offer some disparate results, it
has become apparent that their results are indeed consistent if the premises are interpreted
correctly. From that perspective, this section will mostly focus on kinetic theory and ion
transport, traditionally used to understand smaller ions, with only brief inclusions from
aerosol physics. Given the multiple theoretical classifications involved in the study of Ion
Mobility, a summary of the most notable differences is provided in Table 1.

Before introducing the results of kinetic theory, it is conventional to bring up two other
theories which share qualitative results with kinetic theory: free-flight and momentum
transfer theories. Free-flight (sometimes referred to as free path) theory is based on the
notion of a mean time or distance travelled between collisions. Its largest exponent is Wan-
nier who produced some results that agree remarkably well with the more accurate kinetic
theory results [32-34]. In particular, Wannier’s energy formula was initially derived using
free-flight, and its repercussions will be discussed later on. By contrast, momentum trans-
fer theory is based on solving the collisional integral using an expansion in terms of pure
momentum exchange arguments (as shown in Appendix A). This theory dates back as far
as Maxwell [35], with Langevin being the first to provide a quantitative low-field mobility
theory [36]. Langevin’s results were later used by many authors, including Lenard, Cun-
ningham and Epstein [37-39]. Epstein, upon request from Millikan [40], provided a result
for ion mobility using laws of reflection and an ‘accommodation coefficient’ that has been
extensively used in the aerosol field.
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Table 1. Classification of theoretical approaches to ion mobility.

By Theoretical Model Momentum Transfer Theory. The idea behind the momentum transfer theory is to
calculate the momentum gained by the ion due to the presence of the field. This is done
by equating this momentum to the drag force caused by the gas molecule impingement
imbalance. Explained in Appendix A.

Mean Free Path Theory. The mean free path theory is a simplistic model based on the
notion of a mean time or distance travelled between collisions. Its largest exponent is
Wannier, who produced some results that agree remarkably well with the more accurate
kinetic theory results.

Kinetic Theory. Based on solving the first few moments of the Boltzmann equation or
a related equation (See the Wang-Chang-Uhlenbeck-De Boer (WUB) equation). For a
derivation of the one-temperature theory and two-temperature kinetic theories, see
appendices B and C respectively.

By Field Strength Vanishing Fields. This is the Chapman-Enskog linearised solution. Its maximum exponent
is Equation (2), which is only valid for E/n ~ 0.

Weak Fields. Kihara's extension of the Chapman-Enskog solution by including higher-
order approximations. It is equivalent to the one-temperature kinetic theory. It is
valid only for weak fields due to the poor convergence of the approximation terms
(see Figure 1(a)). Mason and Schamp modified how higher-order approximations are
calculated, and their result is shown in Equations (7)—(8) and in Appendix B.

Full E/n Range. There are many theories that cover the full E/n range. Among such
theories, one can name the two-temperature theory, three-temperature theory, and
WUB equation. The first approximations of the two-temperature theory appear in
Equations (12)—(13) and in Appendix C.

By Temperature ofthelon  One-Temperature Theory. Equivalent to Kihara's theory. The zeroth order ion distribution
function is chosen to be an equilibrium Maxwellian at the gas temperature. Only valid
for weak fields. See Equations (7)—(8) and Appendix B.

Two-Temperature Theory. The temperature of the zeroth order ion distribution
is assumed to be an adjustable parameter that may be different from the gas
temperature. Most of the time, it is assumed to be equivalent to the ion temperature
calculated through the mean ion energy and Wannier's relation Equations (9). See
Equations (12)—(13) and Appendix C.

Three-Temperature Theory. Similar to the two-temperature theory but it suggests that
ion temperature is different in longitudinal and transverse directions. Mainly useful for
heavy ions where the two-temperature theory fails. Not studied in this work.

By Mass Ratio Lorentz Model. Mass of the ion is much smaller than the mass of the gas (m >> M), e.q.
electrons. The analytical solution to ion mobility is known exactly for this case, and
hence it is commonly used as a reference to analyse other general expressions.

Rayleigh Model. Mass of the ion is much larger than the mass of the gas (M >> m), e.g.
aerosols. For cases of low fields, the ion distribution for the Rayleigh model is assumed
as shown in Appendix A.

By Type of Collision Elastic Collisions. The collisions between gas and ions are assumed to be perfectly elastic.
Only strictly valid for monoatomic entities (gas and ions).

Inelastic Collisions. There is an energy transfer between the different degrees of freedom
(including ro-vibrational) upon a gas-ion collision. For aerosols, Langevin, Lenard and
Epstein assume the effect of inelasticity through an accommodation coefficient (see
Equations 15a-b). For kinetic theory, inelastic collisions may be accounted for through
the WUB equation, which accounts for interactions of polyatomic ions and polyatomic
gases. The WUB equation is not studied in this work.

The use of kinetic theory to calculate ion mobility comes from its close relation with
diffusion through Einstein’s relation. Although progress in this area started with Maxwell
and Boltzmann [41,42], the rigorous derivations of transport properties came at the hands
of Chapman & Enskog [43], who were the first to provide suitable expressions for ion
mobility under vanishingly small electric fields. Their result, as recollected in the treatise
by Chapman and Cowling was left as a quadrature due to the difficulty arising from the
potential interaction relation between gas and ion, except perhaps for simplified, unrealis-
tic potentials. Hasse was pioneer in using a more reasonable 4-00 potential that accounted
for the polarisability of the gas and the hard sphere repulsion. This was later modified to
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a 4-8 potential to account for a softer repulsion [44,45]. Experimental results, however,
suggested that the repulsion was somewhere in between the two repulsion exponents and
that dispersion forces and even charge-quadrupole terms could be significant [46-48]. A
breakthrough was accomplished by Taro Kihara, who was the first to extend the Chapman-
Enskog theory to non-vanishing fields by providing approximations to the solution of
the velocity moment of the Boltzmann equation using modified Burnett functions [49].
Kihara’s approximation to the mobility for non-vanishing fields was explored by Mason
and Schamp using numerical predictions to investigate an attractive-repulsive 4 — n law,
with n ranging from 8 to infinity. This led to the more well-known version of Kihara’s first
approximation for zero field, the Mason-Schamp’s equation [50]:

3 zef 2w % 1
w0 =55 (r) wm ¥

Equation (2) represents the mobility of an ion of mass M and charge ze in a bath gas of
mass m and number density n. Here k is the Boltzmann constant, w is the reduced mass,
T is the temperature of the gas and ion (assumed to be the same), and Qr(1,1) is the
orientationally averaged collision cross section (CCS) integral, where the subscript T refers
to the fact that the CCS integral is calculated at temperature T. The orientationally averaged
CCS in this equation is given by [51]:

2w
Qr(1, 1)_—[ dﬁf smqbdqb dy (kT)f ge 'fidg

X [ 2b(1 — cos x(6,¢,y.g.b))db. (3)
0

In this equation, 8, ¢, and y are the 3 orientation angles of the ion, g is the relative
velocity, b is the impact parameter, p is the reduced mass, and x is the deflection angle.
x depends on the ion-gas interaction potentials, the relative velocity of the ion-gas, the
impact parameter, and the orientation of the ion as [3]:

- \/T

r is the ion-gas molecule distance, ry, is the distance of closest approach and ®(r) is the
ion-gas interaction potential. To reach the expression in Equation (4) (see Appendix A), the
interaction potential is assumed to be caused by a central force. Even when the interaction
potential ®(r) is known under such simplifications, Equation (4) cannot be calculated ana-
lytically except for the simplest cases, thus requiring the deflection angle x to be calculated
numerically.

It should be emphasised that, in Equations (2)-(4), a single temperature is used to
describe both the ion and gas. However, it is quite possible physically that the ion has a
different temperature from the gas, in particular when a high field is present and acting on
the ion. For this reason, the above theory is called the one-temperature theory, in contrast
to the two-temperature theory, in which the ion and gas have different temperatures, or to
the three-temperature theory, in which separate longitudinal and transverse temperatures
of the ion are also considered.

(4)

x(9,0,y,8,b)
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Equation (2) can be obtained in different ways, two of which are presented in the
Appendix. The first is through a momentum transfer approach (see Appendix A), and the
second is through kinetic theory and the one-temperature theory (see Appendix B). The
momentum transfer theory calculates the mobility by simple arguments of momentum loss
or drag force, Fp, required to reach equilibrium:

gE; = Fp; = Bjjvg; (5a-b)

where Bj; is the drag tensor and q(B,j)_1 = (K). The procedure to calculate (B;;) starts from
the presumption that the velocity distribution of ions can be represented by a Maxwell
distribution that is skewed by the drift velocity (see Appendix A for more details) [43]:

, (6)

M \3?  Mery?
ZsrrkT) ¢

Farsm(zi) = (

where z; is the (vector) velocity of the ion. This assumption of the ion velocity distribution
and the use of a single temperature for gas and ion is most valid for large ions and nanopar-
ticles (M >> m) in vanishing fields in what has been called the Rayleigh model in honour
of the work done by Lord Rayleigh for heavy particles in a light gas [52]. Mobility results
using a similar concept were already calculated by Epstein back in 1924 trying to match
results from Millikan’s oil drop experiments. In short, the imposed ion velocity distribu-
tion in Equation (6) is used to calculate the average number of collisions per unit time,
and with it the total average momentum, and hence the drag force. If a non-spherical ion
is assumed fixed in space during collisions, the resulting drift velocity may not be in the
direction of the field, making the calculation tensorial and requiring at least 3 perpendicu-
lar directions to obtain a symmetric matrix (Bj;) that needs to be averaged. The averaging
of the tensor product on the right-hand side of Equation (5b) has been the subject of a lot of
controversy, although some of it has been recently resolved [53]. It suffices to say here that
the general averaged result from Happel and Brenner used in aerosol science to calculate
mobilities does not match Equation (2) and should not be used to calculate ion mobility as
it calculates the average length of the path travelled in the direction of the velocity rather
than just its projection in the direction of the field. To avoid this difficulty, Appendix A
shows a non-tensorial version of the calculation of the drag force that matches Mason and
Schamp’s result.

While eye-opening, the results from Appendix A require one to make assumptions
about the ions’ velocity distribution. This assumption might lead to wrong conclusions
if the incorrect ion distribution is chosen. In fact, as it is shown in Appendix B, the ion
distribution provided in Equation (6) is only valid for vanishing fields and large ions, and,
without proper corrections (e.g. using the proper ion temperature), would fail to give the
correct value of ion mobility under other circumstances. Without proper knowledge of
the ion distribution, one must resort to the Boltzmann equation and its moments again.
Kihara’s method, with slight modifications from Mason and Schamp, may be then used
to obtain higher-order corrections to Equation (2) for non-vanishing fields. Appendix B
follows a detailed account on how to obtain these higher-order approximations under the
assumption of a one-temperature theory. For example, a third-order approximation may
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be given by [50]:

£\’ £\
(KYmr = (K)r |:0-'0 +C€1(m) +£¥2(am(1)) + .- ] , (7)

with £ = (eE/Mn)(M/2kT)'/? being the modified electric field strength. The a; terms are
functions of the a,(I) terms which themselves depend on collision integrals. For example,
the term «y is given by [50]:

ao1() ao(D) | an2() an()

app(1) a;1(1)  agg(l) axp(1) (8)

dp =

Here, the as(l) are the matrix coefficients used to evaluate the Lorentzian operator using
Burnett’s basis functions. The determination of the first 3 @; and some of the a,(I) coeffi-
cients is also given in Appendix B together with a table for the rest of the coefficients needed
in Equation (7).

There are a couple of important observations regarding Equation (7). The first one is
that higher approximations have a dependence on even powers of the field only. A second
one (which is addressed in Appendices B and C) is that the a,(I) terms depend on ratios
of ion and gas masses (M and m). This forces the description of Equation (7) to be done
in terms not only of different approximations but also of different m/M ratios. A third
observation is that a correction to mobility still exists even for vanishing fields (£ ~ 0) due
to the extra terms in «p. These terms provide a very small correction (up to a few per cent
for electrons but much lower for larger ions) that increases with the ratio m/M and is most
important for the Lorentz model (m > M) [54]. The second is that, while it might appear
that expression (7) is general for any field, it turns out that its convergence is very poor due
to the unbound nature of (£/(age(1)))", which increases as the field increases, requiring
higher and higher approximations for higher fields. Since the «; terms become increasingly
more difficult to calculate, it precludes any advantage of using Equation (7) for anything
but weak fields.

This poor convergence is shown in Figure 1(a) for the case m >> M (Lorentz model, i.e.
for electrons) as it is the only case for which an analytical solution is exactly known. In the
figure, a dimensionless drift velocity v is shown as a function of a dimensionless &* for

rigid spheres:
o 312\ (m+ M\'? [ zeE
-~ \ 16kT M n d?

- () ™

with d the diameter of the sphere of influence (radius of ion plus radius of gas). Neither the
2nd nor the 3rd approximation performs well as the field increases. Shown in the figure
is another third-order approximation used by Kihara, which differs slightly from the for-
mer in the way it is derived [49,55]. In order to compare results for other mass ratios for
which no exact solution is known, one would have to compare different degrees of approx-
imation to estimate the accuracy. Given the poor convergence of the one-temperature
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Figure 1. Comparison of results from different ion mobility models using dimensionless parameters.
The dimensionless drift velocity, v, is shown as a function of the dimensionless electric field to gas con-
centration ratio, £*, for rigid spheres for the case m/M > 1 (Lorentz model), which is the only case for
which the exact solution is known (solid line). The exact model is compared to (a) one-temperature the-
ory including the second (Mason & Schamp) and third approximations (Mason & Schamp and Kihara) and
(b) for the two-temperature theory including the 1st through 4th approximations (Mason & Viehland).

theory at higher fields, this comparison will be skipped for now and attempted for the
two-temperature theory below.

A major factor leading to the divergence of these approximation from the exact Lorentz
model at high field strengths is that these approximations assume a single temperature
describing both the ion and the gas. Appendix B also calculates the ion’s kinetic energy,
%M (z%)1, to a first approximation, which yields:

1 3 1 1
EM(ZZ)I = EkT + EM(vd)ﬁ + Em(vd)ﬁ, ©

where (vg); = (K)iE is the first approximation to the drift velocity. The result of
Equation (9) was produced for the first time by Wannier in the free-flight theory and seems
to hold well under all scenarios studied here. The first term on the right-hand side corre-
sponds to the thermal energy of the ion (%kT) in a bath gas at temperature T, the second
term corresponds to the added kinetic energy of the ion due to the presence of the field
(%M (va)?), while the last term corresponds to the increased energy due to gas-ion colli-
sions (%m (vd)%). Under most experimental scenarios with M > m, the two last terms are
negligible as v2 is very small, but care should be taken when they are not, i.e. when high
fields are present or ions have M ~ m.

Given the result of Equation (9), a possible improvement over the one-temperature
approximation is to allow for the gas and ion to have different temperatures [56,57]. By
assigning a temperature T}, to the ion different from the gas temperature T, one can try
to overcome the problems associated with the one-temperature theory. Intuitively, as the
ion’s drift velocity increases, its temperature will deviate from the gas temperature due to
the increasing overall energy of the ion. A natural choice for ion temperature T emanates
from Equation (9) so that %ka = %M (z%). The incorporation of the ion temperature leads
to the two-temperature theory which provides much better convergence than Equation (7)
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for any field, even when using its first approximation [57]:

1
3 ze 2 z 1
Kop)y = — 28 _ , 10
Ko IGM(ﬂkTeﬁ) Qp_(LD) (10)

which resembles Equation (2) but where T has been changed for the effective temperature

Te:
3 3 1 5
EkTgﬁ’ = EkT + Em(Vd)I (11)

In this equation, Q% eﬁ(l, 1) is calculated by Equation (3) using Tq instead of T. When
compared to T}, the effective temperature is the part of the temperature that directly affects
the momentum transfer, leaving out the energy pertaining to the field, %M (v4)?. Appendix
C provides a careful derivation of Equation (10) as well as of the second approximation as
provided by Viehland and Mason [57]:

1
3zef 2m \I 1+4+a*
K = —— = s 12
( ZT)H 16 n (P‘-kTeﬂ) Qa%eﬁ(l, 1) ( )

with a higher-order correction to the effective temperature as well:

3 3 1
kT = SkT + Em(w)?(l + BY). (13)

Equation (12) together with Equation (13) encompasses some useful theoretical results
without the need of overcomplicating the picture for mobility. Here &* and 8* are higher-
order corrections (with dependencies on even powers of the field as given in Appendix C),
and where the * represents that their calculation involves the use of Ty instead of T. Due
to the loss of symmetry of the Lorentzian operator (see Appendix C), a* differs from the
a; values in Equation (7). The introduction of Tef however gets rid of the convergence
problem of the one-temperature theory. In fact, Equations (10) and (12) have been shown
to be within less than 10% of the exact theoretical result for any field for the Lorentz model
(m > M), and Equation (12) provides a minor improvement over Equation (10) [56]. The
results are shown in Figure 1(b) using the first four approximations as well as the exact value
for the Lorentz model [55,56] in the same dimensionless variables as those of Figure 1(a).
First, it is clear that convergence is achieved for the whole range of field strengths regardless
of the approximation used. This happens because the ratio (£/(aj,(1)))" is now finite due
to the presence of the effective temperature on the denominator (which varies similarly to
the energy £ keeping terms from exploding). The insets of Figure 1(b) show that subse-
quent approximations overall tend towards the exact value, with the slight fortuity that the
first approximation is surprisingly accurate at high fields. While this result is important, the
accuracy of the first approximation is only high for the Lorentz case, for which the solution
is known exactly, and worsens rapidly for heavier ions. While no exact answer is known
for other cases, one can nonetheless test the approximations with respect to each other to
arrive at qualitative conclusions. Figure 2 shows the results for the first 4 approximations



INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY @ 579

a) b)

14 g
Rigid Spheres
12 .
M
I w1 ath__ o
Em ~ m & . ES—
= £ o
LR S O\ = E= 1 . - grd
£ "‘--,\\' £ L R
6 TS gd /‘/ -----------
NN~ 2nd H S e
Lot s et mmsnmcem———— Q -
4 I -
g exact \\ - & e
. % ra ] e
§ ' ~~. 3 P
§ 2 ~ Ez (/,a
1 . ,
: 0 15 & a4t & —-_"""-"\_“!/”'
of1 1 1 100
2 I\l
* 0 *
£ 0.1 1 £ 10 100
) 12 d)rs
T— T L
vl yri| o=
et 1 T g
10 LA ER—F £ M R
g M 7 . E — = 1000 R
- 5 a ™ - "
g —=4 5 2 g12 . P
: " /- : L7 |3
E N ‘ E10 s
£ L H 77
-é . c Fid
5 / £ s .
5 /II 5 /
2 o &, 4
&4 va B 14
: : : 7
; / : /]
H ~ /
2
5 |_— 15t . / 15t
0.1 1 o 10 100 0.1 1 e* 10 100

Figure 2. Shows the percentage deviation from the two-temperature theory approximations with
respect to the first approximation as a function of the E/n term £* for different mass ratios (a) M/m <« 1,
(b)M/m =1, () M/m = 4, (d) M/m = 1000.

as a function of different mass ratios M /m and where the y axis is now written as

(vidx — (v ‘
(Vi1

%deviation from first approximation = 100

where X corresponds to a given approximation [56]. Figure 2(a) is the equivalent result to
Figure 1(b) at low ion masses (M/m <« 1). The other three panels in Figure 2 correspond
to M/m ratios of 1, 4 and 1000. At first glance, results convey that, as the mass of the ion
increases, all approximations become increasingly accurate for small fields. This agrees
with the notion that zero field extra terms of g in Equations (7)-(8) and the zero field
terms of ¢ in Equation (12) are directly proportional to m/M, so that they disappear rather
quickly at large ion masses. Contrary to what happens with the Lorentz model, it seems
however that the error in the 1st approximation for high fields and large masses worsens
considerably. One might naturally expect that the 4th approximation is the most accurate,
but Figure 2 shows that the third approximation is within less than 1% of this value for all
fields and ions of interest, and the second approximation would be perhaps within 3-4% at
most, with the largest deviations occurring only at very high fields. Based on these results,
as a practical rule, at least the second approximation of the two-temperature theory should
be considered when dealing with small to large masses of ions except for very small fields.
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The two-temperature theory suggests that the ion distribution presented in Equation (6)
can be modified as follows to account for high fields and small ion masses, at least as a first
approximation:

3/2  MGi—vg)?
) e Mo (14)

Fa) = (2sz8§

Use of Equation (14) to calculate mobility and ion’s energy yields Equations (9) and
(10) (see appendix A, C). Despite the success of the two-temperature theory, there is an
obvious shortcoming. T,y requires the drift velocity to be known, but the drift velocity
is a function of Teg through the mobility. This convolution hints at the possibility of an
iteration procedure for accurate calculations, but the added difficulty often does not yield
sufficient improvement to make it practically useful.

Omitted in the above approximations is the possibility of inelastic collisions for poly-
atomic entities, as it has been assumed thus far that all collisions are elastic. However,
for polyatomic ions, realistic collisions may involve energy transfer to rotational and
vibrational degrees of freedom. This effect, or at least a simplification of it, is known as
accommodation of the gas molecule to the temperature of the ion and has been explored
extensively in the aerosol field (see, for example, Garcia-Ybarra and Rosner and others)
[58-60]. This accommodation also assumes that the ion collision is no longer exclusively
specular and considers that gas molecules are emitted diffusely. The resulting drag force,
Fp;, for this consideration, which involves tensors, is given by

2mniggs 3a am \—= as
iy = § 27 | (123450 T4 1] v =By 1sa)

where 77 and I are the normal and unit dyadics, a is the thermal accommodation coef-
ficient, h = m/2kT, and dA is the physical surface area of the ion. When employed for
singly charged aerosol particles (M > > m) with an accommodation coefficient of 90-91%
corresponding to a CCS enhancement of approximately ~1.36 [39], its result has been
shown to agree within a few per cent of experimental results [31,61-63]. Although this
coefficient may seem arbitrary at first, aside from the accuracy of its result, it likely par-
tially originates from the conversion of kinetic energy in the collisions to internal energy
of the ion. It has recently been shown that about 90% of the centre of mass frame colli-
sion energy is converted to internal energy when modelling Collision Induced Dissociation
[64]. Even though the theoretical quadrature in Equation (15a) does not carry any poten-
tial interaction, it can be shown that a numerical alternative to this calculation separating
impinging from reemitted gas molecules allows for long range interactions to be taken into
account. It is noteworthy to mention that a variation of the Boltzmann equation was pro-
posed for inelastic collisions and polyatomic ions, termed the Wang-Chang-Uhlenbeck-de
Boer (WUB) equation, but its use is limited, at least in analytical chemistry, due to the
difficulty that the collision dynamics entail [65-67].

A final projection is that, although there have been some further theoretical improve-
ments over the years, such as the three-temperature theory (to improve convergence for
diffusion) [67,68], quantum effects (with the largest effect coming from discrete values of
the angular-momentum quantum number) [69], or mixtures of gases (a small change in
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the moment equations would allow this effect to be incorporated) [70], most ion mobil-
ity calculations relevant to analytical chemistry to date can be performed using the above
formulas with only modest error (~ 10%).

3. Numerical approaches to the calculation of ion mobility and collision
cross sections.

It should be apparent at this point that, in order to obtain the CCS from Equation (3) or
any equivalent description of the gas-ion interaction, a numerical calculation under all but
the simplest calculations will be required. In order to do so, one must initially have an all-
atom model of the ion. This model may be obtained through molecular dynamics (MD),
through ab-initio/Density Functional Theory (DFT) calculations, or structures based on
condensed-phase x-ray crystal structures, cryoelectron microscopy data, or NMR data may
be used. This model will then be used to obtain the CCS. Many different methods exist, but
the most commonly used ones assume two things: (1) The atoms remain fixed in space dur-
ing the calculation and (2) all the orientations are equally probable. The first simplification
neglects vibrations and conformational heterogeneity of the ion as well as any rotational
effects (some approaches do attempt to account for conformational heterogeneity by com-
puting a distributions of CCS for static structures sampled from MD simulations [71,72]).
Any interchange between translational and rotational/vibrational degrees of freedom is
therefore ignored or embedded into a parameter (accommodation) and any secondary
effect from vibrations or rotation is also ignored. The second simplification neglects any
alignment effect from the field, whether it may come from the ion’s permanent dipole or
from purely aerodynamic effects. These effects are normally small, so their omission is
justified under regular scenarios of small ions (i.e. with dimensions much smaller than the
gas mean free path) and low fields. Unless specified directly all methods listed below follow
these assumptions.

For the purposes of this review, our discussion in this section revolves mostly around
state-of-the-art IM calculations. A list of the most common calculation methods is pre-
sented in Table 2. We again separate the discussion between the fields of analytical
chemistry and aerosol science, focusing on the former while making emphasis on com-
mon ground and consilience. Viehland was one of the pioneers in testing MonteCarlo
simulations for polyatomic ions using a simple inelastic model with some success [65].
Interestingly enough, however, the first seemingly accurate result for CCS of tens of atoms
was nonetheless obtained by a simple projection approximation (PA) algorithm proposed
by Edward Mack in 1925 for gaseous diffusion methods [73]. It was later picked up by Bow-
ers and coworkers [74]. As its name suggests, the calculation involves using a projection
or ‘shadow’ of the ion in different orientations and calculating the area of each shadow
using the atom models specified above. Atomic radii used for the projection are generally
VAW radii with little to no modification. The results from the basic form of PA are equiv-
alent to ignoring any type of potential interaction and assume, perhaps inadvertently, that
the collisions with gas molecules are specular, elastic and without any secondary scatter-
ing and, therefore, the resulting CCS would be the same for a solid ion as for a very thin
shell with the same exterior. Under this hypothesis, the results from PA should only be
reliable for gases with small masses and polarisabilities and for small ions with negligible
scattering. Indeed, direct results obtained from PA are only acceptable for small ions under
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Table 2. Classification of numerical approaches to CCS and ion mobility.

Projection Projection Approximation (PA) method. The ion's
Approximation ‘shadow’ is projected onto different planes and
Methods the projection area orientationally averaged to

yield an approximation of the CCS. The atoms
and gas molecules (which are incorporated in the
projection) use van der Waals radii.

Impact (lon Mobility Projection Approximation
Calculation Tool). A PA method that clusters
atoms in the ion into cuboidal sections yielding
a multilevel octree and improving performance
over regular PA. The accuracy is enhanced by using
a calibration constant.

PSA (Projected Superposition Algorithm). Similar
to the PA method but uses a shape factor to
account for the concaveness of the ion relative
to a purely convex ion of the same size. Other
corrections that consider potential interaction are

included.
Hard Sphere EHSS (Exact Hard Sphere Scattering). Monte
Scattering Carlo type simulation where gas molecules follow
Methods rectilinear trajectories directed towards the ion.

The gas molecules are allowed to collide multiple
times with the ion before the exiting the domain,
and collisions are assumed to be specular and
elastic.

DHSS (Diffuse Hard Sphere Scattering). Similar
to the EHSS calculation above but where the gas
molecule instantly accommodates to the surface
temperature of the ion. The reflection may be
regarded as diffuse and inelastic.

Trajectory Trajectory Method (TM). The TM method is similar
Methods to the EHSS methods, but a potential interaction

is used, and gas molecule trajectories are no
longer rectilinear. The most common potential
interaction used in TM is a Lennard-Jones 4-6-12
law, but Buckingham-type potentials have
also been used. For nitrogen environments, an
additional ion-quadrupole potential term has
been implemented in some approaches.

Trajectory Diffuse Hard Sphere Scattering
Method (TDHSS). It is similar to the TM method
above, but the interaction is instead a 4 — oo law.
Collisions can be chosen to be diffuse and inelastic
or specular.

Diatomic Trajectory Method (DTM). Similar to
the TDHSS method, but the rotational degrees
of freedom of the nitrogen molecule and
the conversion between angular and linear
momentum have been taken into account.

Molecular Full Molecular Dynamics calculations that include
Dynamics the ion and gas molecule interacting through all
Methods of their translational, vibrational, and rotational

degrees of freedom and where an electrical field
must be present.
Machine Learning MetCCS. Makes use of Machine Learning, Databases
Algorithms and Molecular Descriptors to make an informed
guess on the value of CCS of previously unknown
molecules.
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He environments for which attraction potentials are quite small. Nonetheless, PA can very
efficiently compute a CCS approximation, so it is still extensively used, in particular when
corrections from other effects are taken into account [75,76].

Soon after Bowers introduction of PA, Jarrold and co-workers made use of
Equation (10) to develop a suite of algorithms, MOBCAL, that would allow the CCS of
polyatomic ions to be calculated with surprising accuracy [51,77]. MOBCAL continues,
even to this day, to be one of the most widely used tools for these types of calculations.
Aside from the PA algorithm, MOBCAL is capable of performing two other types of Mon-
teCarlo calculations with the purpose of obtaining the deflection angle through the use of
different types of potential interactions so that Equation (3) (which may incorporate T if
necessary) may be integrated. The idea behind the algorithm is in reality quite simple: gas
molecules that obey the velocity distribution specified in Equation (3) are let lose at differ-
ent impact parameters (b) towards the ion. The gas then interacts with the ion depending
on the potential interaction, and the deflection angle y is recorded once the gas molecule is
sufficiently far from the ion. This is repeated a myriad of times for different impact parame-
ters, relative velocities, and orientations of the ion. Out of the two MonteCarlo calculations,
the simplest one is labelled Exact Hard Sphere Scattering (EHSS) which uses a 0 — 0o type
interaction, and therefore involves rectilinear trajectories together with specular and elas-
tic collisions. The gas trajectories can be subject to multiple collisions with the ion. EHSS
yields a very similar value to PA for small ions in He environments but performs better for
larger molecules as the scattering effect increases. The second of such calculations is known
as the Trajectory Method (TM or TML]J) which includes Lennard-Jones (L-]) interactions
between individual atoms and gas molecules as well as an ion-induced dipole potential.
The 4-6-12 potential employed in TMLJ for an ion-gas pair is given by [51]:

K 12 6
D(x,y,2) = 4e Z [(%) — (;) ]
i—1 i i

[/ K 2 K 2 K 2
ap (ze Xi Vi zZi
20 |(23) +(23) +(23) | o
i=1 1 i=1 1 i=1 1
ri = (xi, ¥i,zi) is the relative distance between each of the K atoms (and/or charges) and
the gas molecule, with &, being the polarisability of the buffer gas, and € and o are the
Lennard-Jones(L-J) gas-atom parameters corresponding to well-depth and zero potential
crossing, respectively. Figure 3(a) shows a representation of the calculation of trajectories
that depend on the impact parameter b, the relative velocity of the ion and gas particle,
and the deflection angle. When this calculation is done for multiple different orienta-
tions, Equation (3) may be calculated. When well-calibrated L-] potential pairs are used,
CCS predicted with TML] agreed quite well with empirically measured ones in He, even
when compared at different temperatures. While the TML] is extremely successful, the L-]
parameters (and polarisabilities) are distinct for each gas-atom pair, thus they need to be
separately calculated (or derived from combination rules) for each such pair.

As an increasingly greater number of mobility calculations were performed, it became
apparent that a systematic way of optimising L-J parameters is required for optimal mobil-
ity calculations, especially for the most used gases, N, and He. At the same time, a question
remained on whether a 4-6-12 potential was sufficient to study polyatomic gases. Kim and
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o b impact
Parameter

Figure 3. (a)Representation of the calculation done by MOBCAL/Collidoscope to obtain the result to
Equation (3) depending on the potential used. (b) IMoS interface with a representation of the calculation
using a 4-6-12 forcefield.

co-workers added an ion-quadrupole in order to study mobility in N, showing significant
promise [78]. However, in their work, Kim et al. used a universal forcefield to assign L-]
parameters to Ny, significantly affecting performance. Campuzano et al. used Kim’s force-
field but optimised the L-] parameters for organic substances (C, H, O, N, F) showing that
numerical calculations could be within 4% of their experimental counterparts for common
ions ranging between 70 and 720 Da [6]. In the meantime, calculations performed using
EHSS in N failed to give accurate results for any ion size, even when an appropriate gas
diameter for N, was used [61,79]. A possible reason relies on the questionable validity of
specular reemission for heavier gases. This hypothesis is indeed in contrast to the expected
inelastic and diffuse reemission that is observed from diffusion and mobility of very large
molecules and aerosol particles, and that had been predicted by Millikan, Epstein and even
Smoluchowski on gases colliding with surfaces [39,40].

At this point, it is relevant to describe some of the numerical accomplishments of mobil-
ity calculations that had been done in parallel for larger charged particles (from tens to
hundreds of nm). In the aerosol field, there had been many successful attempts at analytical
solutions of electrical mobility, as the particles could be represented by simplified mod-
els rather than all-atom structures. However, for particles that differed from geometrically
simple structures, such as soot-type fractals, theoretical approaches became intractable. In
1981, Chan and Dahneke used Monte Carlo simulations to study the drag force on chains
of spheres taking into account ‘parasitic’ interactions (i.e. scattering effects) [80]. Other
works followed; in particular Mackowski developed an algorithm that would sample gas
molecules into a control volume by assuming a skewed Maxwell distribution similar to that
of Equation (A.2) in Appendix A [81]. In the algorithm the ion is given an orientation, the
distribution is sampled, and gas molecules may enter the domain from any boundary and
in any direction much like as a ‘physical gas’ would, and the drag force is calculated from
the momentum transfer of all gas molecules divided by the total physical time it would take
to sample them. The trajectories inside the domain are rectilinear, and if the gas molecules
collide with the particle, reemission may be assumed to be either elastic or inelastic and
either specular or diffuse. The calculation is performed three times in three perpendicular
directions, enabling calculation of a symmetric drag tensor. In Mackowski’s algorithm, the
tensor is averaged through Happel and Brenner’s settling velocity theory, however it should
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be emphasised that the result is a quantity related to, but different from, the ion mobility
and should not be used to interpret IM experiments [53].

Larriba and Hogan expanded on Mackowski’s physical gas concept to create IMoS
[82-84]. IMoS is a suite of parallelised algorithms for IM computations that allows
potential interactions to be incorporated. The interface for this programme appears in
Figure 3(b), where an illustration shows how gas molecules appear from all directions,
in contrast to how Equation (3) is calculated in MOBCAL. IMoS includes both EHSS and
DHSS (Diffuse Hard Sphere Scattering), enabling the use of the accommodation coeffi-
cient a, and both inelastic and diffuse collisions are implemented. DHSS yields a better
approximation to the CCS in N, for larger singly charged particles and provides the
1.36 enhancement factor predicted by Epstein [84]. IMoS users may choose to add an
ion-induced dipole potential interaction to the DHSS and EHSS algorithms, resulting in
trajectory calculations labelled as TDHSS. The user can also choose to use a 4-6-12 poten-
tial interaction similar to that in MOBCAL as well as an ion-quadrupole potential proposed
by Kim and coworkers for calculations in N. IMoS has optimised some L-] parameters, and
it was shown that the ion-quadrupole potential can also be effectively embedded into the
L-] parameters without perceptible loss of accuracy [85]. It also has its own version of gas
molecule rotation using the moment of inertia of the diatomic nitrogen molecule, imple-
mented as the ‘Diatomic Trajectory Method’ (DTM), although no perceptible advantage is
gained from its addition when compared to the use of an average diameter or parameter
[86]. In all, IMoS results differ less than 1% from those of MOBCAL, proving the validity
of both suites of algorithms.

A couple of interesting outcomes have been produced using IMoS together with exper-
iments. Most interesting is the confirmation that elastic and specular collisions as well as
inelastic and diffuse collisions play important roles in the calculation of CCS [61]. For small
ions, gases like He seem to have dominantly elastic and specular interactions while heavier
gases like N» may be more subject to inelastic and diffuse collisions. As ions become larger
(in the kDa-GDa range), either due to multiple scattering at the surfaces, or to stronger dis-
persion interactions, reemission becomes effectively diffuse, regardless of the gas, matching
what is observed for micron sized particles, i.e. Q ~ 1.36PA [87-89]. Stemming from this
result, one can consider the CCS to be a combination of effects, e.g. Q@ = LEPA, where
& is the accommodation/scattering portion (~1-1.39), and £ is the enhancement due to
grazing and collision effects from interaction potentials.

Other numerical programmes have recently surfaced as a testament to the need to
enhance mobility calculations. Collidoscope is a great tool that has parallelised the algo-
rithms in MOBCAL, making its calculations as efficient as those in IMoS [90]. Taking into
account that the CCS integral has an inherent geometrical portion, corrections to PA sim-
ilar to L& PA above have been developed to make efficient predictions to mobility. Among
the most widely used are the Ion Mobility Projection Approximation Calculation Tool
(IMPACT) [75], which is an impressively fast tool for calculating large all-atom complexes,
and the Projected Superposition Approximation (PSA), which includes the calculation of
a shape factor reminiscent of the effect of the L& pair [76]. Even more calculators have sur-
faced as a testament of the necessity of these tools, such as Mobcal-MPI or HPCCS [91,92],
with only very minor modifications to the original MOBCAL code that focus on computa-
tional efficiency. A recent interesting approach is that of machine learning methods, such
as MetCCS, which makes use of molecular descriptors to make predictions on CCS. With
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enough data available, it could be the most efficient method for large data sets where very
high accuracy (~ 1-4%) is not required [93].

4. Future of numerical calculations

The ability of numerical methods to predict ion mobility to within a few per cent should
be commended given the complexity of the physical calculation. Nonetheless, with exper-
imental methods improving drastically and reaching accuracies far beyond our current
theoretical and numerical capabilities, the necessity of relaxing some of the simplifica-
tions to provide better models and understand the separation observed is paramount. The
idea behind this section is to showcase a few transcending experimental results in which
the above calculations are insufficient, followed by some plausible changes in the algo-
rithms and further developments. Some of these changes are already being considered and
should eventually bring corrections to the above theory and increase our confidence in
interpreting state-of-the-art IM data.

Over the past decade, the resolution achieved by Ion Mobility instruments has improved
more than an order of magnitude with recent experiments showing resolutions (K/AK)
of over 200 (0.5% confidence error) using different systems together with record-breaking,
perhaps still inconsistently, target resolutions of over 1000 (0.1%) [20]. These remarkable
resolutions are sufficient to separate extremely small changes in either structures, poten-
tial interactions, mass shifts or even dipole alignments, proving the validity of IMS for
isomer separation analyses [95]. Among some experiments, noteworthy are those of long
Drift Tubes [19], cyclic ion travelling wave devices [96], Trapped Ion Mobility Spectrome-
try (TIMS) [97,98], Field Asymmetric Waveform Ion Mobility Spectrometers (FAIMS) and
Structures for Lossless Ion Manipulations (SLIM) devices [95]. Shvartsburg and cowork-
ers have used FAIMS to separate diglyceride lipids that only differed in the double bond
orientation [99]. Moreover, they have shown the ability to fully separate isotopologues
and showed peak-broadening effects attributed to isotopomer discrimination [94,100,101].
Figure 4(a) has been extracted directly from their work to see the broadening occur-
ring when either a chloride isotope or a chloride and carbon isotopes are studied instead
of the base monochloroaniline. The broadening of the peak can only be attributed to
different positions of the heavy carbon isotopes. The SLIM IM board has been shown
capable of separating enantiomers using cyclodextrins [102]. More recently, SLIM has
been shown to discriminate arginine isotopologues not only through reduced mass shifts
in Equation (2) but through distinct additional relative mobility shifts [23]. These shifts
seem to be attributed to a change in the centre of mass of the ion due to the different
locations of the isotopic mass differential. A tetraalkylsalt study was performed, shown
in Figure 4(b) (extracted directly from their work) where the broadening of the peak can
only be attributed once again to different positions of the isotopic mass. This was further
corroborated through iodoacetyl isotopomer compounds, shown in Figure 4(c) (extracted
also from [23]) where the shift maybe perceived in the arrival time.

Most, if not all the separations depicted in the paragraph above, regardless of whether
the separation is due to ultra-high resolutions, high-fields, centre of mass shifts, dipole
moments, ... , would either not be separable through any of the above numerical algo-
rithms, or if they are, the separation provided should be critically inspected to make sure
that the discrimination observed numerically is the same as the discrimination observed
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American Chemical Society.

empirically. In what follows, a clear depiction of the most common difficulties in numerical
calculations is enumerated and, when possible, what sort of actions should be performed
to relax such simplifications:

(1) Calculations at higher field to gas density ratios (E/n). There are plenty of effects
that remain unknown when studying mobility toward the high E/n range. Leaving
aside possible alignments due to the field, or energy exchanges (addressed below),
this point focuses on the additional correction terms required. The Mason-Schamp
equation (Equation (2)) cannot be used at higher fields for obvious reasons, and its
correction using one-temperature theory terms for Equation (7) is not recommended
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except for cases of weak fields. The first approximation to the two-temperature the-
ory (Equation (10)) has been shown in the Lorentz model (m > M) to yield values
within about 12% for E/n up to several hundred Townsends. For other masses, i.e.
M/m > 1, the 1st approximation is adequate for most fields but may incur errors that
are unsatisfactory if one is not careful, as can be observed in Figure 2. Despite the
difficulty involved in calculating Equation (10), the end result is that, if the effective
temperature (T,g) is known, it could be used to approximate the mobility at any field.
In fact, MOBCAL, Collidoscope, Mobcal-MPI or IMoS may be used already without
any further change to achieve an approximation at higher fields. This is done by doing
the calculations at higher temperatures for the CCS and assuming that the higher tem-
perature refers to the effective temperature and not the temperature of the gas. Figure 5
uses IMoS to calculate the mobility at different E/n for small molecules in He as a
function of the reduced mobility Ky = % %K . These results are then compared to the
empirical results from Albritton and coworkers [103,104]. The accuracy of the result,
without any L-J potential modification, is almost shocking for a programme intended
for zero field calculations. The accuracy decays at increasingly high fields as is expected
and where additional correction terms may be added by using Equation (12) or higher
approximations. Interestingly enough, these results are able to predict all the different
types of behaviour proposed for FAIMS [105,106], e.g. whether the reduced mobility
increases or decreases with the field, and even an explanation for the behaviours can
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be extracted. Although it would seem from Figure 2 that the accuracy should be better
for H3 T than for the rest, one has to take into account that one could optimise the L-]
potentials so that the matching is greatly improved (see below).

Calculations at variable temperature. While the Mason-Schamp Equation (2) explic-
itly accounts for temperature, the contribution of temperature to the CCS is many
times not addressed experimentally, even though its effect may be quite important,
as observed from experiments that have taken into account temperature variations
[5,51,107-113]. From a numerical methods perspective, the calculations performed
for CCS at higher temperatures (higher T) are no different from those for higher fields
(higher Te). While the CCS is the same, the ion mobility results must in principle be
different because, for instance, the gas concentration n itself varies with temperature,
yielding different results if T vs. T,y is employed in Equation (12). While the effect of
concentration could be avoided by reporting reduced mobilities, other secondary phe-
nomena could complicate the picture. For example, inelastic collisions, which are not
accounted for in most numerical calculations, could behave differently at high tem-
perature and high fields. In fact, Viehland compared experimental reduced mobilities
for equivalent T and T, studies in heavy gases such as nitrogen [107]. His studies
revealed that the observed reduced mobilities yielded different results, in particular
for higher temperatures and very small ions, e.g. NO; . Viehland argued that the dif-
ference stemmed from the effects of inelastic collisions occurring at high temperatures
that were not present for high fields.

Determination of mobility-optimised Lennard-Jones parameters and embedding of other
effects. Unfortunately, while there are many numerical mobility calculation methods
available, the variations between systems, parameters used, temperatures, and pres-
sures make it difficult to systematically optimise Lennard-Jones parameters. This is
even more problematic when some of the effects of other simplifications (inelastic col-
lisions, ion-dipole and ion-quadrupole potentials, . ..) may be effectively embedded
inside the L-] parameters. Thus only a few optimisation algorithms and results have
been systematically proposed [6,85,114,115]. To provide L-J for more than the most
common gases and atoms, a standardised technique for the calculation needs to be
proposed. Most likely, the study should involve small and large molecules and should
focus on isolating outliers (ions with large dipole moments, flat molecules, malleable
ions) to determine accurate parameters.

Effects of inelastic collisions. Even though numerical and theoretical tools are avail-
able to account for the accommodation occurring from inelastic collisions (see
Equation (15)), the value of the accommodation is not known except perhaps asymp-
totically for large ions and heavy gases. This accommodation effect is completely
ignored in Equation (3) or any such related collision integral equation. To get accurate
solutions in heavier gases like N;, where some accommodation must occur for many
ions, some numerical calculations have embedded the effect into L-] parameters [61].
This has been quite successful, but it is likely that, nevertheless, some error is incurred.
For inelastic collisions to be studied in detail, vibrations and rotations must be incor-
porated into the calculation using molecular dynamics (MD), electron-gas models
[116], or quantum mechanics (QM) to accurately model energy exchange [117]. Semi-
classical and quantum approaches have been included in variations of the Boltmann
equation, such as the WUB equation and its variants [65-67], but no reliable numerical
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calculators stemming from these equations exist to date for analytical chemists. In the
presence of medium-high fields, it is expected that the energy of the collision should
also increase the temperature of the ion, an effect that should qualitatively agree with
Wannier’s modified formula (adding an inelastic collision similar to the one intro-
duced by Viehland addressed in point 2 [107]) and with the effective temperature of
the two-temperature approximation, but which might perhaps lead to deformations
of the ion which are not accounted for.

Speed of angular rotation and effect of the moment of inertia. Tied to the above sim-
plification, for the aforementioned calculations, the ion remains fixed in space when
numerical calculations are performed. Any effect that would come from the speed of
rotation is not considered, e.g. effects of different position of the centre of mass due
to ion conformation or isotope configuration. Upon a collision, the speed of rotation
will be determined by the moment of inertia of the molecule, thus ions with the same
molecular structure but very large disparity in the moment of inertia may be separable
using ion mobility [118].

Separation due to permanent dipole moments. There are two effects in play with dipole
moments: (1) charge symmetry vs. structure symmetry, and (2) preferential align-
ment. The first effect comes into play with highly polarisable gases (mostly N, and
CO3) and very non-symmetric molecules with large dipole moments. For those cases,
the position of the charges will have an effect even when all orientations are equally
probable. This effect allows separation of ions based on polarisability using different
gases, among which COj is particularly notable [119,120]. For the latter effect, one
must note that when Equation (3) is numerically calculated, it is assumed that no align-
ment exists. This condition must be relaxed together with (4) for the dipole alignment
effect to be considered fully as a function of the field.

Large particles and/or high fields: beyond the free molecular regime. As very high
fields are encountered, the high velocities acquired by the ion may perturb the
centre-of-mass-frame gas velocity distribution, invalidating the assumption of a
Maxwell-Boltzmann distribution for the gas. This is also true as the size of the ion
approaches the mean free path. Whether it is the ion size, the field strength, or a mix-
ture of both, there will be a point where the free molecular condition can no longer be
satisfied and the ion is considered to be in the transition regime, where the theoretical
framework described above is no longer be valid. There is some empirico-numerical
work in the transition regime with the empirical Stokes-Millikan equation and the
Cunningham correction factor [37,40,121].

Other effects. Effects such as compaction of ions structure upon transfer from aqueous
solution to the gas phase [122,123], molecule flexibility, gas geometry or gas molecule
rotation, quadrupole or higher-order moments, quantum effects, and aerodynamic
alignments, which are typically minor under most scenarios, could perhaps become
prominent in particular cases. If possible, and with critical insight, some of these
effects may perhaps be embedded into other parameters that allow computation of
the CCS without significant loss of accuracy.

Comprehensively, many of these effects are now being taken into account in second

generation calculators. For example, many algorithms now include MD to calculate trans-
port properties [124-126]. A second-generation calculator, IMoS 2.0, is being developed
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Figure 6. Numerical results obtained from a simulation of an ion inside a physical gas subject to an
electric field in the x direction. The ion has fixed atoms but may freely rotate and slow down (or speed
up) with each collision. (a and c) show the velocity of the ion in all three coordinates as a function of time
with the difference that (a) has no dipole moment while (c) has a strong dipole moment. (b and d) show
the angle of orientation of the ion as a function of time for the same cases as (a and c) respectively.

as shown in Figure 6. This algorithm explores the drift-diffusion of an ion in a modelled
gas that is subject to an arbitrary field in three dimensions. The ion’s orientation, angular
velocity and drift velocity become subject of the gas/ion collisions, the moment of inertia,
the reduced mass, the strength of the field, and the position of the charges within the ion.
Eventually, the ion reaches an equilibrium drift velocity which through non-linearised the-
ory can now be used to establish the mobility and CCS of the ion. Finally, vibration and
translation of the atoms within the ion can be modelled to explore multiple configura-
tions. To test the algorithm, Figure 6(a and b) show the trypheniline molecule (with atoms
fixed, although this can be modified to allow motion via MD), as it is accelerated by the
field. Collisions with the gas slow down the ion in the lab frame, as predicted [127] and
as is shown in Figure 6(a) with the field along the x direction. The moment of inertia and
angular-momentum conservation of the ion make it rotate upon collision about the angle
shown in Figure 6(b). Given the rotation axes of the ion in Figure 6(b), it is safe to assume
that all angles are equally probable for this ion as predicted by Equation (3). With suffi-
cient simulation time, a drift velocity may be extracted and a mobility or a CCS calculated
while the velocities in the y and z direction average to zero. As an experiment, one can
impose a hypothetical dipole moment of 100 Debye at 15 Townsends with the direction
as shown in Figure 6(c). This has the effect of imposing an orientation on the molecule as
shown in Figure 6(d), resulting in a much slower drift velocity and two constrained ori-
entations that slightly swing like a pendulum around the equilibrium position. Although
not as efficient as the previous algorithms (due to the difficulty imposed by new calcula-
tions), these types of calculators are expected to overcome some of the issues of preexisting
calculators.

IMoS 2.0 algorithm has been recently shown to separate the isotopomers described in
Figure 4(c). The separation occurs through the combination of different angular velocities
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of the isotopomers together with distinctive angular to linear momentum exchanges due
to the shifts in moments of inertia [128].

5. Conclusions

This manuscript is an effort to consolidate into one work an abridged summary of the most
relevant theoretical work pertaining to ion mobility within the free molecular regime. The
purpose of such an effort has been to critically outline the simplifications performed to
arrive at the different approximations and what must ensue to avoid overreaching when
describing the results of numerical calculations. The most prominent ion mobility calcu-
lators used nowadays are indeed impressively accurate and they are able to calculate the
drift velocity of nanometer-sized ions with errors of only a few per cent for most ions and
in seconds to minutes. To ensure that this continues to be the case as experimental systems
improve, it is necessary to fully understand existing simplifications and operate in a critical
manner, relaxing some of the restrictions if required.

In all, Ton Mobility Spectrometry is in its process of reaching maturity and has become
ubiquitous in the field of analytical chemistry. The development of more accurate tech-
niques is expected to continue with no foreseeable limit. Theoretical and numerical tools
must continue to evolve together with experimental techniques in order to understand the
observed gas-phase separation. Challenges remain and will continue to arise, together with
new solutions which will undoubtedly continue to improve IM further.
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Appendices

Appendix A. Theoretical calculation of ion mobility and the ion collision
cross section

Although the method employed in this section is not the most general method to calculate the mobil-
ity of ion in the free molecular regime, its conceptual significance should not be underestimated. The
method assumes that both gas distribution and ion distribution in the gas phase are known. The
result from this approach is only valid at zero fields and large ion masses but can be extrapolated to
small ion masses and high fields with a minor change (see Appendix C). Let us start by assuming
that we have a distribution of gas molecules of mass m which is based on the Maxwell Boltzmann
distribution. The probability density function of gas molecules with velocity ¢; at temperature T is
given by

m )3/’2 - mc

fle) = (m T, (A.1)

where k is the Boltzmann constant. Let us also assume that the ion is in thermal equilibrium with
the gas (one-temperature theory) and that it drifts with a constant drift velocity v4;. The probability
density function of an ion of mass M with velocity z; will be given by

3/2 2 3/2 . 2

M Mizj—vg;) M M2 IMzpvgy My
F(z;) = | —— — KT _ — — 2T + kT — T3kT A2
() (ZJrkT) € (ZJrkT) € ¢ ¢ (A2)

Note that the distribution of the ions is skewed due to the appearance of the drift velocity. Without
going into details about the reason for the change, a two-temperature theory description is also
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possible by changing the effective temperature of the ion probability density function to Te = T +
mv2/3k.

Given the ion and gas distributions, the idea is to calculate the drag force exerted by the impinging
gas molecules on the ion, which is assumed fixed at a particular orientation (although an averaging
will be done over all orientations at the end). This may be done by calculating the average momentum
transfer per unit time, which requires the exercise of calculating momentum exchange, final minus
initial, of the ion with all gas molecules that interact with it. The exchange will depend on the relative
velocity and interaction potential between each individual gas molecule and ion. Since the ion is not
necessarily spherical, the interaction might vary depending on the region of impingement within
the ion and gas and subsequent reemission (which could potentially be inelastic). In order to start
the interaction, one may calculate the collision frequency of ‘point’ gas molecules into a differential
of surface dX = dgﬁsinwdwde of a singular ion as depicted in Figure A1l with the colatitude and
azimuthal angles yrande as described. Here def is an effective distance that resembles the sphere of
influence of ion and gas molecule which is not necessarily constant and may depend on potential
interactions, e.g. the sum of radii for hard sphere interactions. To mathematically tackle the problem,
it is a good idea to use the relative velocity g; between gas molecule and ion which is given by

g§i=2zi—¢ (A.3)

In that case, one can assume the jon to be static and the gas molecule are point particles incom-
ing with velocity g; onto the sphere of influence of the ion. If ng,; is the gas number concentration,
the collision frequency of gas molecules impinging the differential of surface is given by those gas
molecules contained in the cylinder with a base area dX and a height corresponding to the compo-
nent of the relative velocity in the direction normal to the surface. As such, the collision frequency
probability of a gas molecule having velocities between ¢; and ¢; + dc; (with i between 1 and 3) col-
liding with an ion having velocities between z; and z; + dz; at the differential of surface dX is then
given by

Mgasgi * n;Igi,,,l.<0F(z;}f(c;}dcldc2dC3dzldzzd23d§f sinyr dirde (A.4)
where n; is the normal to the surface and g; - n; = gcosyr. The |g,.4,, <0 is to emphasise that only gas

molecules colliding with the outside of the surface (positive relative velocity) should be counted.
If the reemitted velocity after collision is given by c; (being z; the reemission velocity for the ion

after impact), the total momentum exchange Apgqs ; for every individual gas molecule can then be

Cylinder containing center
of molecule of class c;

Plane of collision

I* gdt

Line of centers
-
-~
FREE 3

v

v
-

Velocity g; of molecule
of class ¢; relative to
molecule of class z; at
instant of impact

Reference plane
parallel to Ji

Sphere of influence of
molecule of class z;

Figure A1. Reconstruction of the collision of gas molecules with a single ion. Adapted from from
Vincenti and Kruger.
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calculated as
Apgasj = m(c’} — Cj) (A.5)
And the momentum exchange probability distribution is therefore:
Ngast(cj — c})g; * 1l g.m <0 F(2i)f (¢;)dcydcydesdzydzydzs sinyr dyrde (A.6)

Given the existence of 3 inter-related velocities in Equation (A.6) it is customary and normally
easier to operate using the centre of mass velocity and the relative velocity as the variables of interest.
The centre of mass velocity is given by

W= LG E o%)
m+M
so that:
M m
ci=W;— gy and zj = Wj + ——— Y2 (A.8)
The change of differentials is given by the Jacobian:
3(.‘; 3(.‘;
awW;  ag
decidz; = az: 3§: dW,’dg,' =1- dW;dg,' (A.9)
GW,' ag,'
Upon the change of variables, one arrives at the following probability equation:
mM 32 emyw? MWy MMy pig—vg)?
Honet(Ci — o3 - 1ilo (—) - KT 'Lg__!'ﬂ"‘_
gas (} })g; ilg; nj<0 (ZﬂkT}z
x dgldggdg3dW1dW2dW3d§ﬁr siny dyrde (A.10)
mM

where u = ;57 is the reduced mass. To ease the results, the variable centre of mass velocity W; can
be integrated from —0o¢ to 00 as long as (¢j — cj) is independent of W; (as shown below), yielding
the following new probability distribution of relative velocity:

. 3/2 pg—vgp?
Hgasm(cj — Cj}g(ﬁ) E_T—dgldgzdg3d§f cosyr sinyr dirde (A.11)

Here, g; - n; has been substituted and ¥ must be integrated only from 0 to /2 to comply with
the positive velocity requirement.

Since df and the sphere of influence is not easily tractable for non-spherical ions and gas
molecules, it is easier to make use of the impact parameter b (see Figure A2) to describe a differential
cross section. From geometrical arguments, b = dg sinyy and db = dgcosyrdyrde and therefore:

dgﬁr siny cosyr dirde = bdbde = dP, (A.12)
Substituting:
, Wo\3/2 _pei-vg)’
Ngast(cj — cj)g(m) e ¥ dgydgydgibdbde (A.13)

where b can have values from 0 to 00 to account for positive relative velocities only. One would like,
at this point, to refer the momentum exchange (¢; — c}) of the gas molecules to the relative velocity
in order to be able to integrate the probability distribution. To do this, one can make use of the centre
of mass frame. The velocities of the ion and gas molecule (Zj and ;) in the centre-of-mass reference
frame are given by

z W, M i (A.14)
e Wi _ K _

i =G j m+M81 e

. m ©

5=5-Wi= o8 = md (A13)
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Figure A2. Transformation of azimuthal angle into impact parameter. Adapted from from Vincenti and
Kruger.

On the other hand, assuming conservation of momentum upon collision:

since the centre of mass is not modified upon collision. Equations (A.14) and (A.15), i.e. the
momenta are equal but opposite, establishes the following equalities to be used later:

mEj = sz (A.]G)
mE’j = MZ’J, (A.]7)

Moreover, assuming elastic interaction and conservative potentials, conservation of energy upon
collision gives:
1 1 1 1 1 1
“m@ 4 ~MZ 4+ ~(m+ MW? = —m&” + -MZ* + ~(m+ M)W? (A.18)
2 2 2 2 2 2
Substitution of the momenta equalities (Equations (A.14) and (A.15)) in the energy conservation
equation yields the only possible solution for the magnitudes:

g=g witht=¢ andz =7 and thusc = ¢

From the point of view of the centre of mass, the velocities are parallel but opposite, both before and
after the collision. This can be observed in Figure A3.

The deflection angle y may be defined in the centre of mass coordinates (see Figure A3) as the
deflection angle between impinging and reemitted trajectories and, as such, should only depend
on the impact parameter b, the relative velocity and the potential between the interacting particles.
Therefore x = x (b, g, ®), being ® the potential interaction. Using a vector parallel and perpendic-
ular (g; € to the initial relative velocity g; inside the plane formed by the line of centres k; and by

&j» the momentum exchange can be given from geometric considerations by
- o M .2 (X .
Hj—cjzdj—cj:M—M(Zg;31n (E)+g sm(x}ejJ_) (A.19)
Since 2sin? (%) =1 — cos(x) then:

m(c; — ¢j) = pgj(1 — cos(x)) + ugsin(x)ej | (A.20)
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Figure A3. Centre of mass representation of the molecular trajectories during a collision. Adapted from
from Vincenti and Kruger.

gi

/

Figure A4. Defining the deflection trajectory in 3D with respect to the centre of mass. Adapted from
from Vincenti and Kruger.

Using the € angle to describe the out of plane angle (see Figure A4), the cartesian coordinates of

ej, are given by
e, =,/1—g1/g?cosei (A.21)

cose + sine | -
ey =— | 88 88 j (A.22)

g8/e* &
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€3, = — £381Cos€ + ggrsine E (A23)

8/8* — gt

When equation (A.20) is introduced into our probability distribution, the second term on the
right-hand side, 21ge; | , will disappear after sampling over all possible € angles from 0 to 2. What
is left can be regarded as the momentum exchange of a gas molecule (may also be regarded as a
quantity of persistence in the direction of relative velocity) with the ion. Bringing the first term into
our probability distribution and integrating over €:

3/2 P"(SJ—‘"d!
) e & dgidgrdgs2mb(1 — cos(y))db (A.24)

U
st (37

The next step is to transform the cartesian coordinates into spherical coordinates as
dgidgrdgs = g* sinf, dgdfyde, (A.25)

where 6 and ¢, are the azimuthal and colatitude angles. The g; vector can be written in the spherical
coordinates as gj = g(cosb, sinfycosgy, sinf,sing, ). By doing so, one arrives at the expression:

—vyy?
Ngas ng (cosb sinf, sinl!?zé2 cosgy, sinl!?zé2 singy) (ﬁ) i e m{zﬁd } dgdfdpe2mb(1 — cos(y))db
(A.26)
One can integrate the angular components 8, from 0 to = and ¢, from 0 to 2. The problem here
however relies on the fact that the exponential still has to be transformed into spherical coordinates
and integrated which is not a simple task analytically. One can resort to linearising the exponential in
the equation prior to its integration. The assumption generally employed is that of small drift veloc-
ities (small Mach numbers) where it is assumed that vy <« g. This assumption is equivalent to the
linearisation employed by Chapman and Enskog to solve the Boltzmann equation. The exponential
can then be written as

e L(&!F;{IL =e Tf'lz' .ezwd ~e jf'lz'e?‘mvd =¢ 757' (1 +2—g,vd, + - ) (A.27)
2kT
where the relation e* = ¥ "7=0° x"/n! has been used to expand the last term of the second and
third equalities and vﬁ, <« g° is considered negligible. To make the calculation slightly easier, one
can assume that the drift velocity is in the x direction v4, = (v4,0,0) and gijvg; = (g1va +0 + 0) =
(gcosteva):

2m kT) / € %; (1 +2%g cosBgvg + - - )

x dgdfedee2mb(1 — cos(y))db (A.28)

NgasiLg (cosﬂg smﬁg,smﬂ cosr,bg,smﬂ smqﬁg}(

Now, in the expansion in brackets, (1 + 25%r8iva; + - -), the first term by itself corresponds to
the case where no drift velocity exists. As such, when trying to integrate over all possibilities, the
momentum exchange would be 0 on average.

A pause has to be made at this particular point to discuss the meaning of Equation (28) in terms of
the direction of the drag force with respect to the direction of the drift velocity. Under a non-spherical
ion, it could be expected that the direction of the drag force (namely the result of Equation (A.28))
does not necessarily have to be in the direction of the drift. This suggests that the mobility can be
regarded as a second-order tensor so that:

qEi = Fp; = Bjva, (A.29)

The prediction of the symmetric B;; tensor would require that the calculation of the drag force
is done in 3 perpendicular orientations of the ion which may be averaged afterwards. This may be
simplified as long as all orientations are equally probable, which then suggests that when averaging
only the resultant force in the direction of the field will be non-zero and that drift velocity and field
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will be aligned (on average):
q{Ei) = qE = (Bjj)(v4j} = Ffva (A30)
Under this assumption of equal probability of orientations, the momentum transfer per unit time

(drag force) is in the direction of the drift velocity (x direction in this case), and the equation reduces
to:

3/2  pg
ngasugs (ﬁ) / e_% (%Vd +-- ) dg coszﬁg sinf, dfedg2m b(1 — cos(x))db (A31)
hiq
One can now integrate the relative velocity angles 6, and ¢,. This integration yields:
A 3/2 ug?
?ngasp(ﬁ) gse_ﬁ (%V‘f + .- ) dg2mb(1 — cos(x))db (A.32)

To simplify the picture, a change of variable may be done using the most probable speed:

« & 2kT
=2, h= |— (A33)

With this change in mind and removing higher-order terms of the expansion:

8 *
3—ngasvdw ZkTJr,u,g*se_g ng*an(l — cos(x))db (A.34)
T

To get the total drag force of all gas molecules, one can integrate over all possible values of g*
from 0 fo 0o and all possible values of b from 0 fo co.

8 o0 * oo
Fp, = 3 NgasVd;+/ 2kTT o f g"‘se—g zdg"‘f 27 b(1 — cos(x))db (A.35)
T )} 0

For the result in Equation (A.35) to be correct, the underlying assumption is that all orientations
are equally correct. Using the Euler angles 6, ¢, y for the orientation of the ion, one can integrate
over all angles:

_ 8 1 o m 00*5_32*
FD;:Ffvd;‘:gngﬂsvdi ZkTHﬂ@fo [l] sm"b[u ’[0 8 € 8 dg

o0
xf 2rb(1 — cos(y))dbdédepdy (A.36)
0

When the orientations are introduced, the deflection angle gains a new dependency on the ori-
entation of the molecule. As such: y = x (b, g, ®,6, ¢, y). Here, the first approximation to the CCS
can be defined as

_ 1 2w T 2w 00 5 2 00
Q(,1) = — sing 2678 do* 2wb(1 — cos(x))dbdode¢dy (A.37)
- g g
8= Jo 0 0 0 0

From eq A.30, the mobility at low drift velocities may be calculated as

q ze
Kl=—=—, A.38
(K) B (A.38)
where g is the charge, e is elementary charge and z is the charge number quantity. When using
A.36-38, one finally arrives at (dropping the gas subindex for the number concentration):

o e [ 1 (1 1 P hr o (439)

~16n\ kTp Q(1,1) lén\m M kT Q(1,1) ’
This result agrees with the results from Kihara’s first approximation from the one-temperature
theory. As will be proven in Appendix B, this expression is only valid for large ion masses. However,

as mentioned previously, a small change by assuming an effective temperature, extends the result of
Equation (A.39) to all masses and high fields with reasonable accuracy.
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Calculation of the deflection angle x for a central force interaction

Although not required for most numerical methods, we consider here a proof for Equation (4) of
the main text which relates the deflection angle x to a central interaction potential between gas
molecule an ion. This study assumes a two-body problem and the derivation is done from the point
of view of conservation of energy (although it can also be done directly from momentum equations).
Imagine the interaction sketched in Figure A5 where a pair of interacting particles are viewed from
a reference fixed on one of the particles. The main goal is to calculate y as a function of the potential
interaction or central force of the dual particle system. The conservation of energy in the centre of
mass frame of the system is given by the potential energy plus the kinetic energy with respect to a
reference far away:

Bo=LIR + R+ o = £ (A40)

Noting that the angular momentum must be conserved (Ru, x Ryﬁr Uy = Rzyﬁr = constant), it is
easy to refer it to the initial angular momentum: bg. Thus, the equation above can be rewritten as

R? ¥ ®R
S =1-0- # (A41)
g R®  pg®/2
Given that R = g%% = g%%%, one gets:
dR\* R* ¥  OR
RY RN _2® (A42)
dyr b? R? b

Particle's
Trajectory

Figure A5. Centre of frame view of two particles with a central force.
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Table A.1. Variables used.

Variable Significance

flei) Gas velocity distribution

F(zi) lon velocity distribution

i Gas velocity

z; lon velocity

m Mass of the gas

M Mass of the ion

k Boltzmann's constant

T Gas buffer temperature

vd Drift velocity

Tef Effective temperature

2 Relative velocity

H; Mggs Gas number density

i Normal to surface

X Surface area

¥ Colatitude angle

€ Azimuthal angle

W; Centre of mass velocity

I Reduced mass

degy Effective diameter

b Impact parameter

Ap Momentum exchange

dP, Collision area differential

ci', z;, 4 Velocities after reemission

Gi zi Relative velocities with respect to centre of mass velocity
X Deflection angle

E; Electric field

q Electric charge

z Electric charge number/velocity magnitude

e Elemental charge

Fp, Drag force

Bijj Drag tensor

Ff Friction factor

Og, g Relative velocity angles in spherical coordinates
h Most probable speed

27,1 Averaged first collision cross section in units of area
0.6,y Euler angles of orientation

¥ Angular velocity

[ Potential interaction

Ej Kinetic Energy of the ion/gas pair

R Distance from force centre

aj Acceleration of z ion velocities

Wi Lorentzian operator

ﬁfr) Burnett basis functions

Py Lagrange polynomials

w Velocity of the ion in the direction of the field
S}') Sonine polynomials

QW Collision operator

@ Eigenvalues of Lorentzian operator for the Maxwell Model
ars(l) Matrix elements of the Lorentzian operator linearisation
£ Field over density dimensionless number

K lon mobility

Ko Reduced ion mobility

o; One-temperature theory coefficients

20 (n) Collision cross section flux

Q(l,n) Collision integrals

Ty lon temperature two-temperature theory
ay() Matrix coefficients for two-temperature theory

(continued)
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Table A.1. Continued.

Variable Significance

ey, d,f Mass dependent functions

Kar . Two-temp approximation mobility

2*(1,1); ﬂraf (1,1 First collision integral for two-temperature theory

o*, g* Two-temperature theory higher approximation coefficient

Which can be solved between infinity and the apsidal distance (R, ):

o Ko bdR
Yo = f dy = (A43)

2

Note that the relation between ¥ and y is: y = m — 29, hence:

_”_ZfRo bdR (A44)
x= N R2[1_%_ﬂ§1] .
D =

The apsidal distance R (effective diameter for a collision) can be calculated using equation
(A.41). Rearranging the equation and noting that R = 0 at the apsidal point Ry:

20 (Rp)
-2
Ry / Fom

(A.45)

The effective diameter d g can also be inferred for two hard spheres with an attractive potential. If
the apsidal distance Ry for given arm b, coincides with the sum of the radii of ion and gas molecule:

d = Tion + Tgas, then the effective diameter that will result in a collision will be given by the arm.
Thus:

20(d
& = [1 - ngu)] (A.46)

Appendix B. Kihara’'s approximation to mobility from Mason and Schamp’s
point of view

To understand Kihara’s approximation to ion mobility at high fields, it is indispensable that we
describe the ion distribution by using the solution to the Boltzmann equation for an ion in a buffer
gas. This is in contrast to our approach in Appendix A, where a distribution is already assumed for
ions of a known drift velocity. It turns out, however, that the distribution in Appendix A is only valid
for vanishing fields and a more general theory must be employed if one were to study the effect of
high fields. As such, the Boltzmann equation for an ion distribution F(z;) in a bath of gas is given by
(See Table A.L):

9F 9F  9F DF
oF oF ,of _DOF F — fF)gbdbdedc;, B.1
o s T = nfff(f’ fF)gbdbdedc; (B.1)



INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY @ 609

where dc; = dedcydcs corresponds to all gas molecule velocities between ¢; and dc;. To come up with
equation B.1, several simplifications have already been made. The most important one is to assume
that the number density N of ions is much smaller than the density of gas molecules n. It is indeed
small enough that we can neglect collisions of ions with other ions. Under such circumstances, the
only collision term appearing on the right-hand side is that of collisions of the ion with the gas of
distribution of f (c;), where the distribution f (¢;) for the gas is assumed to be Maxwellian as portrayed
by Equation (A.1). In the collision term, prime distributions correspond to those of molecules and
ions of velocities ¢} and z] which replenish velocities of class z; after a collision. If we assume that
our distribution F(z;) does not depend on position and that a steady state for our process has been
reached (a reasonable assumption in a drift tube for example), the first two terms on the left-hand
side can be dropped and the equation becomes:

qEj 9F  eE 3F fff g
——=— = - bdbdedc; B.2
Mn sz Mn ow ¢ B8 edc (B.2)

where the only non-negligible acceleration present for the ions of mass M and single charge e is that
of the electric field. In particular, if the field is constant in a known axis direction, the left-hand side
has only one term where w is now the velocity that axis direction (e.g. z; = w). Even under the cur-
rent simplified version, Equation (B.2) is by no means simple to solve. In fact, there is only a handful
of solutions for very specific approximations. Our single hope is to resort to solving moments of the
distribution. That is, multiply the above equation by a function of the ion’s velocity and integrate
over all z; velocities producing an equation that is averaged but possible to solve and which yields a
piece of information about the distribution, e.g. the average drift velocity, the ion energy ... which
more often than not would be the information one would seek if the full distribution was known.

Before we proceed with the moments of the equation, it is beneficial to write the right-hand side
in terms of an operator, .7, known as the Lorentz or Boltzmann operator. To do so, we can assume
without loss of generality that the ion population can be described in terms of F(%, the Maxwellian
equilibrium distribution in the absence of a field, as

3
M 7 2:)2
F=FOU1+o)=——) & - (14 @) (B.3)
2wkT

so that Equation (B.2) becomes (J (1) = 0):
eE oF
—— = _F97¢ B.2/

Mn ow J ( )

where the linear operator 7 for any particular function «(z;) of the velocity is given by

Ja :ffff(a—a'}gbdbdedc; (B.4)

and where the dependence on z; of & has been removed for brevity. Ideally, one would like to find
ways to solve the moments of Equation (B.2’). A moment that is particularly useful is that of the
velocity w in the direction of the field which can be related to the drift velocity and to the mobil-
ity of the ion. In general, to obtain a moment equation, all that needs to be done is to multiply
Equation (B.2’) by a function that depends on the ion velocity a(z;) and integrate overall possible
velocities. This yields:

eE aF
T f madz; = —fF(O)aJCDdz; (B.5)
Let’s define at this point the inner product of two functions as
@) = [ FOpyi ®6)

Let’s assume that the linear operator 7 is symmetric under this inner product (¢, Jy) =
(J ¢, ¥). While this symmetry was proven to be unnecessary to arrive at the same final equation
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as shown by Viehland and Mason, it is used here for the purpose of simplicity. Using integration by
parts on the left and the symmetry property on the right, one arrives at:

eE da
Both sides of the equation in B.7 represent average quantities (moments) of the equation.
Therefore:
eE (da
—\ — = {JW)AV (B.8)
Mn\ow/,,
In the particular case of @ = w, the velocity in the direction of the field, equation B.8 becomes:
eE
£ _ . B.9
Mn (Tw)ay (B.9)

where the only thing left to do is to calculate the average of the 7 operator in order to obtain an
approximation for the mobility, a task that is by no means arithmetically simple. Equation (B.9)
should be reminiscent of the Equation (A.6) as it relates the electrical force to a quantity that must
be related to the drag force of the ion (momentum transfer per unit time).

A general approach to solve Equation (B.8) is to find suitable o expressions that may be available
to solve the J operator in an effortless manner. This is usually obtained by choosing « to be a
complete set of functions. The most suitable functions presented to date, referred to as modified
Burnett functions, are generally specified as

1
Mz2\2 _ w Mz?
G (1)
=(—) p(=)s?, (— B.10
Vi (ZkT) f(z) f+%(2kr) (B.10)

Here P; are the Legendre polynomials, while S}r) are the Sonine (associated Laguerre) polynomi-
als. The reason these functions are chosen is that they correspond to eigenfunctions of the .7 opera-

tor in the Maxwellian model r—*, that is, when the collisional operator Qw = f z (1l — cost( x))bdb
is independent of the relative velocity g. Under such situation:

Tntaowen¥)” = 2y (B.11)

The importance of the result from Equation (B.11) should not be underestimated. It suggests that
the basis functions in Equation (B.10) are eigenfunctions of the operator Jjsewen and hence the
l}” are the eigenvalues. While the Maxwellian model will not hold true for real ions, it is true that
under most circumstances the r—* attraction term is the most important long-range potential which
suggests that the solution to a more general potential should be a perturbation to the result presented
in Equation (B.11). At this point, it would be possible to calculate the JLI(’) eigenvalues and provide a
solution to Equations (B.8)—(B.9). However, the estimations of )Lfr) values are simplified versions of
more complex calculations performed below and will not be pursued here. For completeness, Table
B.I provides some of the most common eigenfunctions y{rfm and eigenvalues )L?).

For a more general theory of mobility, one can assume instead that the solution to the operator
is a series of the Burnett functions that includes oft-diagonal terms. That is:

Tv” =" ashy, (B.12)

where the a,(I) coefficients can be calculated making use of the orthogonal inner product presented
above in Equation (B.6) as

a() = W, Tv @2, ) (B.13)
Using algebraic relations of Legendre and Sonine polynomials:

P |

%s(,:’(x} = S0P T%Pn(x) = XPp(x) — Pp_1(%)
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mSU (x) — xSu ) (%) = (m + m)SY) | ()5 21+ 1)xPy(x) — (1 + 1)Ppy1(x) = —nPp_1(x)
leads to:
1 2kT\? aw"’ 1 (n (r-1)
(I+E) MR(M) e f(1+5+r)w = A+ Dy (B.14)

where when using Equation (B.9), one can establish a relation between different eigenfunctions and
the operator:

( ){M"’mzs[f (f+§+r) WO — A+ DT ] (B.15)

¢E M\
e= (3% () (B19

Equation (B.15) is also extremely useful and will be used to provide successive approximations
to ion mobility. To start, let one introduce Equation (B.12) into Equation (B.15) to get:

1 s 1 r r
(s+ 5) ?am(mw} Nav=E [1 (:+ S+ r) () — (+ l}wfﬁ”m] i, =0

(B.17)

Given that the Maxwellian model assumes elastic reemission for an ion-induced dipole potential

(4 — 00), which is generally the strongest long-range potential, one can assume that a first approxi-

mation is to assume that the off-diagonal terms are negligible (similar to obtaining eigenvalues). As
such,

And where:

! T, 1 r r—
(1 + E) ar (DY ar = € [f (f +o+ r) W) ar — A+ D ”m] (B.18)

And, in particular, for g{r{o) (T) w, the above equation yields (omitting Av):
apM(Y ) =€ (B.19)

Or since (w); = vg:
1
(Kh =
Mﬂ auo(l}

where only ago(1) = (1,611{0), J l,d!l(o) Y/ (y&l{o), y{rl{o)} is left to calculate. The expression in Equation (B.20)
will be equivalent to that calculated in Appendix A once agp(1) is calculated. Other moments can

(B.20)

also be calculated. For example (to be used later in higher-order expressions) l,d!l(l):

3
("3’1(1))1 2 & I:w’{l)} W(U)}:I _%( £ )[5auo(1}+4auo(1}] (B21a-c)

3 ﬂoo(l) ago(1) a1 (0) ago(2)
(1) O 287
(Vo hr = 4 (0)(""’ " a11(0)ago(1)
© o, _ 28
W=7 (z)w = e @an®

Although complicated due to the operator, the result is a quadrature that can be tediously solved.
Before a calculation is attempted, let us calculate higher approximations. To calculate them, off-
diagonal terms must be considered in Equation (B.17). Given the difficulty of solving the general
expression, one can make use of previous approximations to provide successive ones. There are dif-
ferent ways to do this. In here, we take the method proposed by Mason and Schamp and not that
of Kihara although their solutions are equivalent. The equation for the nth approximation may be
given by

(1+ %) ar (DY) = € [r (1+ L r) WOnt — A+ 1><w§:”},,_1]
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( )Z(l 8r5)ars(D ("1 (B.22)

where Mason and Schamp also terminate the summation at s = n + r — 1 instead of 0o to keep a
consistent addition of subsequent square terms for each new approximation. The associated error of
neglected terms can be calculated. By repeated application of Equation (B.22), one can obtain higher
approximations to the mobility. For example, for the third approximation, one can write:

£\ g\
(K)in = (K)1lag +Of1(a00(])) -I-sz(m) +---] (B.23)

Here, each e, is a function that depends on different values of a,s(I). The different terms (in a
format that each successive approximation is easy to remember) can be calculated and are given by

ap1(1) ajo(1)  apa(1) azo(1)
apo(1) a;1(1) ~ ago(1) aza(1)

A€ [_ﬂ01(1) agz2(1) az (1) ]
VL aoo(D) 7 ago(1) aza(1)

@ I:_ apz2(1) n ag1(1) aia(1) $.. ] (B.24-26)

—_ ‘IJ
az 1 ago(1)  ago(1) ajp(1)

Where ll'l(") are closed dimensionless expressions (Equations (B.21a—c) have been used on B.27):

w® — (O (ﬂou(l)) _ 2400 [5ﬂuo(1} 4“00(1}] B27

Wit “3an L an©) | aw@ B27)
v® — (@ (ﬂou(l)) _ g2 a00(1) [7ﬂuo(1} 4“00(1)] B8
=T T U3 (D) | an0)  5an@) ®:28)

At this point, two things must be pointed out. The first is the series shows the dependence of
mobility on even powers of the field. Moreover, in the way Equation (B.23) is written, each new
approximation adds a new higher power of the field to the expression. The second is that even for
vanishing fields, £ = 0, Equation (B.23) is not equivalent to Equation (B.20) but carries higher-order
terms. These terms, when studied, become of increasing importance as the mass of the ion becomes
of the order or smaller than the mass of the gas (e.g. electrons).

In order to proceed, it is now necessary to transform the a,(I) into quadratures that require only
of the knowledge of the ion-neutral potential to be calculated; also known as collision integrals. To
do so, one can make use of the B.13 expression starting with the inner product of the denominator.
Using knowledge from the relations of the polynomials, the orthogonal inner product is given by

W, ) f FOyO YOy,

The numerator includes the 7 operator which complicates things. While there are some general
formulas to do the calculation, here the calculation is performed for a couple different a,(I) values
to understand the logic behind it and to compare our results with those from Appendix A. Initially
app(1) will be calculated to get the first expression for mobility, followed by a;;(0) which will be
shown to give the first approximation to the ion’s energy. Other values can be calculated similarly

and have been tabulated in Table B.IL. For agy(1), (l,dfl(o), l,dfl(o)} = 1/2, and assuming z; = w, the
equation becomes:

Ar1772 ,FU + 1+ 3/2)8imdsr (B.29)

ago(1) = 2y, J:,f;{“’)_zm f f f f FOfw(w — w')gbdbdedz;dc; (B.30)
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With the proper changes of variables to relative velocities g and centre of mass velocity W (revisit
Appendix A for full description of some of these equations):

zi=Wi+

gisci = Wi — i 8i = Zi — Ci

m
m+M m+M
dz,'dr:,' = dW,'dg;

m
+M

' m '
(W—W’)Z(Zl—zl)ZF(gl—gl): - 81(1 —cos(x))

M

3/2
#%:n*(%)”T%) S o e

one can write:
3/2
H 3y mN\3I2LM
1) = 2——73(— —
a0(l) =25 (ZkT) kT
xf[[fe_%ﬂiwze_ !ﬁgzwgl(l—cos(x)}gbdbdedW,-dg; (B.31)

Knowing that wg; = z181 = (WI + m_i_LMgl) £1, one can integrate over the centre of mass

velocity and over all € angles:

2 m _
aw{l}:Z%(%) — f f ¢~ BT822 (1 — cos())bdbdg; (B.32)

Changing the relative velocity coordinates to spherical with gj = g(cosf,, sinf; cosg,, sinf,singy)
with g1 = gcos, and dg; = g’ sinflgdgdfyd¢, and integrating over the angles:

8o no N2 om s
ano(l) = 55— mT) m+Mffe &°27(1 — cos(x))bdbdg (B.33)

Making g dimensionless through the use of the velocity h, = p/2kT, expression B.33 becomes:

(1)_8 2kT m
otV =3 T m+M

[ f 8" g*52m (1 — cos(x))bdbdg* (B.34)

To simplify the picture, one can introduce the definition of collision integrals which cannot be
integrated until the deflection angle (or more specifically, the potential interaction) is specified.
There are several equivalent ways of defining collision integrals, whereas here we present two very

common ones:
[ kT *

Qn) = f e~ 8" gt QD g (B.36)

Q¥ = f 27 (1 — cos'(x))bdb (B.37)

The collision integral in Equation (B.35) has units of volumetric flux while only of area in
Equation (B.36). Given these definitions, app(1) becomes:

16 m
)= ———0W B.38
ago(1) SmIM 1) ( )
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And a first approximation for mobility:

() = 3e |2m 1 (B39)
1= 16w WkT Q(1, 1) :

It suffices to say that this expression and that of Appendix A (Equation (A.39)) or that of Mason
and Schamp are equivalent with the only difference that the ion in this case is considered spheri-
cal. If the ion were not spherical, as is normally the case, one can assume that all orientations are
equally probable in which case, the collision integral can now be averaged over all orientation angles

(@, ¢, }"}1

_ 1 n pm 2 2
QL Dy = Q0,1 =1 = f f sin ¢ f f e 8 g°QVdg*dodpdy  (B.40)
= Jo 0 0

When compared to how the expression on Appendix A was obtained, one could initially consider
that since the Chapman-Enskog linearisation (v4 < kT/m) yields a solution where the mobility is
independent of the field (in a similar fashion to the 1st approximation here), it would seem plausible
that allowing more terms of the Chapman-Enskog expansion (in Equation (A.27)) would yield an
expression dependent on the field. However, in Appendix A, specifically Equation (A.2), a symmetric
ion velocity distribution was assumed so the question arises whether the symmetric ion distribu-
tion is also correct at higher fields. As will be seen later, the assumed distribution does not hold
for high fields so the validity of any results for non-vanishing drift velocities using a presumed ion
distribution may be questioned at this point.

One would like to generalise the results of the moment calculations by calculating yet another
ars(I) for the sake of completion, a;1(0). a11(0) is equivalent to calculating the ion’s energy at van-
ishing fields. When trying to calculate the value of {y{r(l)} 1= {g — %}g} 1= % — %(zz}; using
Equation (B.18), one arrives at:

1
Eau(mw&”}; = —Ely M, (BA1)
or
2 2
= (=) 2KNE” KT _ (f) 2 3 (B.42)
Mn) “a(0) M \Mn) ap(Dan(©) M

where only a1 (0) is needed to obtain the ion’s energy.
To calculate aq;(0), (g{r{l), y{rél)} = 3/2. Therefore:

_ 2,0 7.0 [fff (UJ( )ﬂ 2_ .
a11(0}—3(w Ty ') == fF 3~ T 2kT(z zY)gbdbdedz;dc; (B.43)

Considering that:
2 — 22 =72 — 22 4+ 2Wj(zj — 2)) = 2Wj(zj — z);since 2 = 7, (B44)

then Equation (B.43) becomes after integrating over e:

FO _
a1(0) = f[[ f(2 ZkT) ZkTZWJ(z} z}gZerdbdz,dc, (B.45)

Translating variables to relative velocity and centre of mass velocity as per usual, one arrives at:

2w m \32( M \'? m meM Y2 TR
0)=—"— ot Ve uTE
a0) = -3 (2nkT) (ZJ'rkT) m+ M ffe - o

3 M
S — (W o | | 2Wie:00W dW. do: B.46
* (2 2kT ( + (HI—I—M) 82+ miM }gj)) 818 Q iagi ( )
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Which, if integrated over the centre of mass velocity becomes:

8r?2 m \3 M 3 g w32 3 (D)
a11(0) = 3 (Zm'cT) (anT) (m+M) f 2(%)5;2 £'Q%dg  (B47)

Integrating over relative velocity angles and rearranging the equation:

kT  mM *2 32 mM 2M
a (0 el = 22 T oWy = 2 g0l
u@=- 271u(m—|—M)2f & = e W= ey e
(B.48)
And the ion’s energy therefore becomes:

2
(zz};— eE 2 ﬂ_ ﬁ (m+ M) _E:(m+M) w)zf—ﬁ
Mn

Mn) ap(Dai(0) M Maw()2 M M M
(B.49)
Or, the total energy of the ion is given by
1., 3 1 , 3 1 , 3
EM{Z = EkT+ E(m + M)(w)] = EkT+ E(m + M){vy); = Eka (B.50)

Equation (B.50) is an expression known as Wannier’s formula and has quite a strong repercussion.

It specifies that the ion’s energy is made up of the contribution of 3 very distinctive terms. The
total energy of the ion is given by the thermal energy (3/2kT) plus the energy of the drift motion
1/2M (v4)? directly from the field plus an extra energy term from the gas collisions due to this drift
which increases the ion energy by 1 ;‘Zm(vd) . This also suggests that the ion may be perceived with
a higher temperature than the gas and proportlonal to Tp, an effect that was the basis for the two-
temperature theory. An interesting consequence of this result is that it may be used to prove that the
ion distribution depicted in Appendix A is only valid under very particular scenarios. If one were to
calculate the ion energy using Equation (A.2), the result would yield:

1, 3 1 5

—M(z") a2 = -kT + —M{Vd}A;g (B.51)

2 2 2

Which when compared to Equation (B.50) is only true if m <« M (i.e. heavy ions in a hght gas)
and (vd} <& kT /m (i.e. low fields). It is also valid for any ion under vanishing fields, (va)? 1 =0upto
a correction, and hence applies as a first approximation for mobility as shown in Appendix A. Under
all other scenarios, the distribution of Equation (A.2) will not yield a correct interpretation. One can
also show that energy terms pertaining to velocities perpendicular to the direction of the field do
not yield the correct ion energy when using Equation (A.2). For example, in the u direction, when
sing Equation (A.2):
1 1 kT 1

—M{u? ——kT_—M———kT_O B.52
3 (u") a2 SM~ (B.52)

which is the expected Maxwellian result. When the first apprommation is used, however, the
result yields (using Equations (B.22) and (B.23)):

Ly — kr= — Lo © 252(1_1)
2M{h‘ ) ZkT_ W i+, = 320D \ a1 202 (B.53)

And using the tables from Appendix B:

1 282 16 m
—M(u?) — kT = — sMQM (1) + 3mQ® (2
M = S = S D @@ (15(m+M)2( (1) + 3meF=(2)
_ 16 mM oM )) 328 ( m?’ 9(2)(2)) >0
3 (m+ M)> 15a00(1)a11(0)ago(2) \ (m + M)? -

(B.54)
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which is positive in general. It would only be 0 if 2% = 0 or if M > m which is the same
criterion as that for the distribution of Appendix A, and clearly shows that kinetic ion energy per-
pendicular to the ion movement is larger than expected from a Maxwellian distribution for any ion
of non-infinite mass. In fact, if mobility is known, it should be possible to infer the mass from the
ion’s perpendicular energy.

As a final note, while it would seem that the results from Kihara’s one-temperature theory may
work for any field as long as a sufficient number of expansion terms is added, it turns out that the
convergency of the series is very low. In particular, when compared to Lorentz model (m > M), it
substantially deviates from exact results except for low to mid fields, hence the reason that Kihara’s
one-temperature theory is regarded as ion mobility for weak to mid-fields. A two-temperature theory
(at least) is required for higher convergence.

Appendix C. Derivation of the two-temperature theory

A big problem dealing with the one-temperature theory is its weak convergence at high fields. Even
when the third approximation is employed, its result quickly diverges. The reason for its divergence
is that the even powers of the field are directly proportional to E/n, which increases without bound
as the electric field increases. For example, the term o (E/n)? would require and additional oppo-
site sign term of higher order to correct the upset a3 (E/n)*. However, as the field increases further,
this term would very quickly require a new higher-order term to correct its imbalance and so on.
From a more careful look, the expansion terms are however not exactly proportional to E/n, but
to (£/ (ago(1)))2, which suggests a denominator proportional to temperature of the type T2(1, 1).
While this denominator would remain fixed as the field increases, a small change suggesting a depen-
dence on a temperature that increases with the field (for example the ion temperature T}, suggested
from Wannier’s formula) may lead to cancelling the unbound increase of the field. The main concept
therefore for the two-temperature approximation is to set the ion temperature to a different temper-
ature than that of the gas molecules. The idea is that the ion temperature Tj, is set to be close to the
mean ion energy, e.g. 5kTp = 1 M(z?%). While other similar temperature choices can be chosen for
T}, there are advantages to using this result. The inclusion of two temperatures brings more difficulty
than could have been expected at first as it makes the 7 operator no-longer symmetric. This turned
out not to be an unsurmountable problem, but it was one that held back the theory of ion-mobility
for over 20 years.

To calculate the collision integral quadratures, there is no requirement to know the exact value
T}, but its value is needed in order to fully integrate the quadrature. Since T} depends on the drift
velocity, this choice will couple the equations of drift and energy. To start, we may modify the ion
distribution at equilibrium using T} which becomes:

3 2
M \I _ Me)
FO — Ry c1
(mcn,) ¢ €

The process of calculating the moments of the equation are quite similar to those that have been
followed for the one-temperature theory. However, one must be careful mainly due to two rea-
sons. The first is that the a’,(I) coefficients, even though the definition remains the same as that
of Equation (B.13), the calculations are different due to the involvement of T}, in Equation (C.1). As
such we have added the * to differentiate the coefficients from those of the one-temperature theory.
The second, which is a consequence of the non-symmetry, is that not all off-diagonal terms are zero
even for the case of the Maxwell model (4 — 00). It can be shown that the off-diagonal terms a,(I)
values for the Maxwell model however vanish for s > r. This will add some new terms to the previ-
ously calculated approximations for the one-temperature theory. For example, using Equation (B.22)
instead of (B.18) for the first approximation, with the criteria that summation terms for s > r vanish
yields:

¥ (0 282 * (0
W = = ) — S0 fia >

a(0) af,(0ay()  afy(0)

(C.2)



Table B.1. Common eigenfunctions and eigenvalues of the Maxwell model (special case with independence of the collision integral on the

velocity).
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Table B.2. a,(I) expansion coefficients for Kihara's first temperature theory.
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1/2
E= (;Tb;a) (EMWE,) slightly modified from Appendix B. Equation (C.2) differs from Equation (B.22)

due to off diagonal terms. In all, however, the approximations for mobility are similar to those of
Appendix B with minor modifications. For the first two approximations, one gets:

e 1
(Kar)1 = Mo D) (C.3)

ag (1) [aje(D) E aio(0) ] ( £ )23 ap; (1) I:Saﬁo(l) n 4a30(1)]
at (1) Lajy()  3aj(0) ag(1) /) 3af (1) [ af,(0) agy(2)
(C4)

(Kar)ir = (K21)1 [1 +

Where the first approximation is equivalent to the one-temperature theory except for the need
to re-calculate af;(1) and the second one only has one additional term when compared to Kihara’s
one-temperature theory. What’s more important, both approximations C.3 and C.4 are within 10%
of the full numerical calculation for the whole range of fields when compared to the Lorentz model
(m > M) which fairs significantly better than the result from Kihara and makes the two-temperature
theory a much better recourse for high fields. To better understand the reason behind it, one must
first calculate some of the a,(I). For example, one can start with “30(1}- To do so, we follow a similar
approach to what has been done previously:

aso(1) =2\, Ty?) = 2% f f f f FOfw(w — w')gbdbdedzdc; (C.5)

Using typical relations for relative velocity and centre of mass velocity and:

g _ -3 M —B
Fof== (sz) (ZkT;,) ¢

B= m + M W2 4 2mM 1 1 Wigi + mM M+ m 2
=\ " T, m+M\2kT, 2kT) 87" mym? \2T " %7, )¢
m mT}, M(T, — T)

m+ M MT + mTy f=eu

C.6-10
n mTy ( )

one arrives at:

Me m32f M\
Go(1) = 2m 2ka(2kT) 2KT,
xff[fe_s(wl—|—e#g1)glg(1—cos(x})bdbdedW,-dg; (C.11)

To simplify calculations before we integrate the centre of mass velocity, one can do a change of
variables so that the exponential becomes a quadratic function:

mw'2 nﬁz
Lid

M = W; —fg,'; dW,‘dg; = dW;-'dg,'; B= e_m

where Tef = MIImD s an effective temperature of the gas-ion pair that will become crucial to
the determination of the collision integrals. Introducing the new change of variable in C.11 and

integrating over the new centre of mass velocity:

5/2
aw(l)_Zeun( ) f f f gzgu—cos(x})bdbded& (C.12)
27kT,,

Md _ I qone arrives at:
Ty — Teff

1/2
aﬁo(l)%e#(m"f ) f f f ¢ gt5QH gt = 22 (kT“‘f ) Q'L (CI13)

Integrating over relative velocity angles and using the relation =~
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where the * on Q*(1, 1) is to specify that its calculation depends on the effective temperature Tof
and not on the temperature of the gas T. The expression Q. (1, 1), as well as 27(1, 1), may also be
used with the same purpose. The first approximation to the mobility finally becomes:

o) — 3e( 2 )!' 1 i
T Ten\pkTy ) @5 (1L1) '

Other a},(]) can be inferred in a similar manner and have been provided in Table C.L
The effective temperature proposed here has a very clear physical meaning. Given that the mean
relative energy of collision is given by

1 1 1
(E) = E,u(gz} = 5ul(i— %)) = Emc’*} + (%),

and using the knowledge that %m(cz} = 3/2kT and the definition of T}, one arrives at:

w3 n3 3 mTy+MT 3
(E) = m2kT+M2ka_ 2k M _2kTef (C.15)
so that the mean relative energy of collision is described by the effective temperature. Another
interesting feature of Ty is that for cases where M >> m, e.g. large particles, the effect of the ion
temperature is much smaller and Kihara’s one-temperature approximation becomes accurate and
so does Equation (A.2) for the distribution. On the other hand, one could probe Equation (A.2)
with T,y as the distribution temperature instead of T. In that case, Equation (A.2) would become:

3/2  Mi—vg)?
) K (C.16)

Fla) = (2nkT£ﬁ

Interestingly enough, the ion’s energy when using the above distribution yields:

M) cis = KT + S Mvalbig = KT+ Zmlvalbg + sMUvalag = KTy (C17)
which is equivalent to the ion’s energy from Wannier’s formula. The new distribution is therefore
valid and a reasonable approximation for any ion mass and field (does not require in principle that
vqg & (kT/m)2). More importantly, it shows that T, represents the thermal energy (3kT/2) and
the collisional energy (1/ 2m{v4)?) which together with the field energy (1/2M (va)®), represent the
ion’s temperature Tp. Here the only term that is not exactly known is that related to the collisional
energy portion. The reason why the ion distribution C.16 works and not for example if one were to
use T}, instead of Ty relies on the fact that for the gas-ion relative interaction, which establishes the
mobility, the relative energy is given indeed by T and the additional field term 1/2M (v4)? does
not affect this interaction directly.

Despite this great outcome, it is reasonable, and expected, to incorporate higher-order approx-
imations to our result. In fact, our result would be exact — within the free molecule flight - if we
were to find the exact expression for the collisional energy term. What is the exact value of T?
Will the distribution remain symmetric for all fields? Until these questions are answered, one must
content himself with calculating approximations. This process, contrary to what happened with the
one-temperature theory, is convoluted as higher approximations do not only affect the mobility K
but the ion energy as well. If one were to add higher-order terms to the mobility approximation, it
would be unwise not to add them to the ion’s energy calculation, which would in turn affect the
result of T}, and hence of T, and indirectly on the mobility. The second mobility approximation
can be defined (after some work) as

1
3ef 2n \?2 14+a*
K =———] — C.18

(Kar)n lﬁn(ukTeﬁ) 0D (C.18)
with

3 3001,

EkTE = EkT—l— Em{vd}f(l + B8%) (C.19)



Table C.1. a},(I) expansion coefficients for the two-temperature theory. (Note the non-symmetry of the terms).
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105 [(6C" = H){7(d = 1) — 3} + (48" — 5) — 3¢, A" (BE* — 7)]

x

_ ﬁ'*(z,z)_B* s 4:‘2*(1,3)_0 _ Q*(Lz)_D* B s‘z‘(1,4)_9k B s‘z‘(z,z,)_.c* _ s‘z'(a,a)_? 29

T, Q1,1 T ax,n’ T (1 Q22 = 2*1,1) = Q*22)

T134d 'S TANY ZNVANY-vaY1D () z29
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And where (1 + ™) corresponds to the expression in brackets of Equation (C.4) and (1 4 8%) is
a correction to the collisional energy and comes from the calculation of the second approximation
to the ion energy (22)11. This tedious calculation will yield (approximated):

g* = g |:2 “31(1) {!!'fél)}r a}‘z(o) {wéﬁ)j ]

C.20
m | ahO gy e ), o

While better approximations may be obtained rather than Equation (C.18), our goal of showing
possible weaknesses of the Mason-Schamp equation ends here with (K;1)r leaving the main text to
foreshow some other simplifications that must be incorporated to study some effects not considered
in any theoretical calculation.
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