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ARTICLE INFO ABSTRACT

Keywords: Electrical Mobility is arguably the property upon which some of the most successful classification
Electrical mobility criteria are based for aerosol particles and ions in the gas phase. Once the value of mobility is
T"'mp“rf lfhmme“ empirically obtained, it can be related to a geometrical descriptor of the charged entity through a
St_oke_s_mdi'm size-mobility relationship. Given the multiscale range of sizes in the aerosol field, approaches that
Kinetic theory . . gt o .

s can provide accurate transformations from mobility to size are not straightforward, and many

Eraiisition et times rely on experimentally derived parameters. The most well-known size-mobility analytical

Free molecular regime expression covering the whole Knudsen range for spherical particles is the semi-empirical Stokes-
Millikan correlation. This expression matches Stokes’ drag friction coefficient in the continuum
regime and the friction factor for a predominantly diffuse reemission of the gas molecule in the
free molecular regime, as theorized by Epstein, with empirical slip coefficients chosen to agree
with Millikan’s oil drop experiments. Despite its success, the Stokes-Millikan correlation has its
shortcomings. For example, it needs to be modified to predict the mobility of non-spherical en-
tities and needs correction terms when potential interactions or reduced mass effects are non-
negligible. The Stokes-Millikan asymptotic behavior also fails to predict the gradual transition
from diffuse to specular reemission behavior that is observed for increasingly smaller ions within
the free molecular regime. Here we make an attempt at providing a comprehensive account of the
existing mass-mobility relations in the continuum, transition and free molecular regimes for both
spherical and non-spherical particles. Epstein’s diffuse interaction is critically explored experi-
mentally and numerically for different gases in the free molecular regime with the observation
that, as the size of the particle increases, a progression from specular to diffuse reemission occurs
for all gases studied. The rate at which this variation happens seems to differ from gas to gas and
to be related to the conditions for which diffuse reemission effects stem from a combination of
scattering and potential interactions.

1. Introduction

One of the most difficult challenges in the aerosol field is the classification of airborne particles due to their large disparity in mass,
size, shape, composition, and concentration. Although it only pertains to the charged portion of particles suspended in air, one of the
most successful classification criteria is that of separation by means of electrical mobility (Hoppel, Frick. & Larson, 1986; Knutson &
Whitby, 1975; Wiedensohler, 1958). Fortunately, most ordinary aerosols can be charged in the gas phase in a predetermined and
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controlled manner, which has allowed the technique to become widespread. Electrical mobility, Z,, as its name suggests, is a property
that refers to the ability of a charged particle to be transported through a buffer gas by means of an electrical field. In its simplest
one-dimensional definition, it is related to the electric field, E, through the drift velocity, vg4, as:

va=ZpE (1)

The electrical mobility is generally related to what is known as a mobility diameter which may then be compared to a physical size
of the particle. This comparison, while useful to interpret data in a clean way, does convey an inevitable loss of information that might
ultimately lead to wrong comparisons.

Among the complications surrounding particle classification within the realm of aerosols using electrical mobility, one of the most
challenging aspects is the large multiscale range of different sizes and shapes, which extends from the free molecular to the continuum
regime as shown in Fig. 1. In particular, much of the particulate matter is just as likely to be much smaller or much larger than the gas
mean free path, including all possible intermediate situations, which ultimately leads to a non-trivial characterization. While the
particle in the free molecular regime is assumed to not perturb the gas and follow deterministic formulations, the postulation
completely changes as the particle becomes larger and a compression/rarefaction process ensues in the transition to continuum re-
gimes. Because of such drastically different behaviors between the two different regimes, the difficulty resides in understanding how
electrical mobility transitions smoothly from one extreme to the other, or, in other words, discerning how the mobility behaves as the
particle size relates to the mean free path, i. The ratio between the two is referred to as the Knudsen number (Kn = 24/ dp), where for
Kn>>1 the particle does not perturb the gas and is considered to be in the free molecular regime whereas for Kn<<1, the particle is
considered to be in the continuum. Therefore, an intricate relationship between electrical mobility and Knudsen number unequivocally
must appear in the study of aerosols and its effect must be studied carefully.

A useful way to understand why molecular ions and macroseale charged particles behave in such different ways is to study how the
drag force, or rather the friction factor ff, behaves in the different regimes. The drag force, Fp, for a particle of mobility diameter d, in
the creeping flow continuum regime, without slip, is given by the well-known Stokes’ law (Stokes, 1851):

Fg = Sﬂ'f.l'dpvd =ﬁvd (2)

where 1 is the viscosity of the gas. The appearance of a constant v4 in eq. (2) suggests that a steady state condition has been achieved
between drag and electric force on a particle of charge ze (Fe = zeE), which allows a definition of the electrical mobility in the
continuum given by:
ze
anmr b 3’1."4‘,

(3

In the free molecular regime, on the other hand, an approximation to the electrical mobility, more commonly referred to as ion
mobility (and many times represented by K instead of Z,), is given through kinetic theory:

a2 ) @
Pfrean ™ 1 6n mrdkqu' ﬁl:!(qu)

which is known as the 2 temperature-theory Mason-Schamp (sometimes Mason-Viehland) equation (Edward A Mason & Schamp,
1958; Larry A Viehland & Mason, 1978). Here n is the gas number concentration, k is the Boltzmann constant, T is the effective
temperature, Myeq = MgaslThy,/ (Mgas +1w) is the reduced mass of the gas/charged particle system with g being the molecular mass of
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Fig. 1. Multiscale range of particle sizes in the field of aerosols including the different regimes assuming standard pressure.

the gas and m,, the molecular mass of the charged particle, and 2, ; (Tef) is the Collision Cross Section (CCS). The effective temperature
includes collisional heating due to drift, Tef = T+ mgv3/3k, where T is the equilibrium temperature of the buffer gas (Wannier,
1953). Under most scenarios pertaining to low velocity aerosols, the second term on the right-hand side, mgav2/3k, is negligible. For a
more detailed description of high field and effective temperature effects, a recent review is available (Larriba-Andaluz & Prell, 2020).

Given that viscosity does not depend on n, one of the major differences between continuum and free molecular considerations is
that the electrical mobility of charged particles is independent of n in the continuum regime but inversely proportional to it in the free
molecular regime. The necessity of reconciling the two behaviors via a smooth transition requires a parameter that compares size to
concentration leading naturally and once again to the appearance of the Knudsen number:

24 2 1 V.d,

Kn=—"=— _—__ 2%
"= ny/2nd:d, 32Ny Vg dy’

Here d; is the gas molecule diameter, 4 is the mean free path, V; is the gas molecule volume (assuming it is spherical), N4 is
Avogadro’s number, and V,, is the gas molar volume. The last Kn definition, although not generally used, suggests a dependence of
electrical mobility on the rarefaction (V,,/V;) of the gas as well as on the ratio of gas size to particle size (d,/d,), with the particle itself
being a plausible perturbing agent to the flow. Regardless of the obvious necessity, no one general theoretical formula exists that
unequivocally captures the evolution of mobility through the different regimes. The reason is most likely that the Knudsen number is
not the optimal physical quantity to use, despite the obvious influence, given that V,,, and consequently 4, is not necessarily constant
near the charged particle. For example, on one hand, in the free molecular regime, direct interactions of individual gas molecules with
the charged particle (or ion) are the prevalent cause of momentum transfer, making the electrical mobility inversely proportional to the
collision cross-section of the particle and the gas number concentration. Within the continuum creeping flow, on the other hand, the
particle perturbs the gas surounding the charged particle causing it to be compressed and rarified, leading to the mobility being
inversely proportional to a blurred characteristic size (direct impingements on the surface are not as prevalent and have a lower
contribution to the drag) and the viscosity of the gas. Therefore, the physical evolution between the two regimes should be trying to
account for how secondary gas to gas collisions (collisions that occur between incoming gas molecules and those reflected from the
surface that perturb the gas) affect momentum transfer (or equivalently the viscosity or the mean free path), something not simple by
any means.

There have been many attempts to provide estimates to the electrical mobility over the full Knudsen range. Perhaps, the most well-
known semi-empirical law describing the mobility of charged particles through the transition regime is known as the Stokes-Millikan
equation (although many other names for the same equation do exist) (Robert A Millikan, 1923b):
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where A; are dimensionless experimentally derived slip factor parameters which depend on the gas. Equation (5) is only meant initially
to be used for spherical particles and agrees with the continuum result of eq. (3) for vanishing values of the Knudsen number
(Kn= 24 /(dp +dg) ~ 24 /dp ) and, given an appropriate choice of the A; values, with diffuse-reflection conditions for the free mo-
lecular regime described in eq. (4). The Stokes-Millikan eq. (5) and its derivatives are surprisingly accurate despite the challenges they
present. They have been successfully employed in aerosol science (Ehn et al., 2011; Fang et al., 2014; Fernandez-Garcia & de la Mora,
2013; Jung, Han, Mulholland, Pui, & Kim, 2013; Ku & de la Mora, 2009), despite not completely satisfying the underlying complicated
physics of the phenomena. The fundamental theory leading to the semi-empirical relationship is far from complete and, as new more
capable experimental systems are surfacing, it is necessary to revisit our fundamental understanding and offer possible new initiatives
to tackle the electrical mobility problem (Hirsikko et al., 2011).

To assist in the above goal, this article offers a review of the approaches used in the field of aerosols to calculate electrical mobility
for a charged particle or ion of arbitrary shape and size for low Mach number and electric field strengths. As a comprehensive analysis,
it showcases how the flexibility and fluency in which experimental transport properties, such as diffusion or electrical mobility, may be
obtained is in contrast with the difficulty required to correctly understand the measured values. The discernment of a comprehensive
theory that accurately explains the measurements is nonetheless crucial due to the practical importance of aerosol transport properties
in a variety of fields and research disciplines such as nucleation, particle dynamics, atmospheric science, dusty plasmas, material
processing, pollution, particle reactors and combustion (Agarwal & Girshick, 2012; Alam & Flagan, 1986; Carbone et al., 2019; Davis,
Joshi, Wang, & Egolfopoulos, 2005; Girshick & Chiu, 1990; Gopalakrishnan & Hogan; Girshick, Chiu, & McMurry, 1990; Jr, 2012;
Kulmala et al., 2013; McMurry, 1983; Pratsinis, 1988; Rogak & Flagan, 1992). Due to the vast differences in the way the calculation of
electrical mobility is handled, one should distinguish between approaches used in the free molecular and transition/continuum re-
gimes, where the former can be handled from an aerosol perspective (momentum transfer approach) rather than using a full kinetic
theory approach. Although not addressed in this review, one can access plenty of relevant literature regarding flows at high Mach
numbers and/or high electric fields (Bowden & Harbour, 1966; Henderson, 1976; C.; Li et al., 2019; Z.-H.; Li, Peng, Zhang, & Yang,
2015; Loth, 2008; Edward A.; Mason & McDaniel, 1988; McCoy & Cha, 1974; Rose, 1964; Larry A; Viehland & Mason, 1975).

Given the broadness of the covered topics, the manuscript is organized in two main discussion sections. Section 2 pertains to the
methods used to calculate the value of the electrical mobility of charged particles of spherical shape in the entire range of Knudsen
numbers starting from the Stokes solution for the continuum regime. This first section begins with the discussion of the historically
relevant and simplest theories (i.e., some variations of the Stokes-Millikan law) before diving into the description of approaches based
on more fundamental principles that can be used for refined calculations in the free molecular regimes. The last part of section 2
introduces further corrections of the described methods to include the effect of potential force interactions between the charged
particle and the gas molecules and provide the tools to account for the experimentally observed transition from specular to diffuse
reflection of the gas molecules at increasing values of the Knudsen number. Section 3 introduces the adaptation of the Stokes-Millikan
based methods discussed in the previous section to infer the electrical mobility of particles of arbitrary shape. The results of these
modifications are compared to that of more sophisticated and modern approaches, including Monte Carlo simulations, specifically
designed to consider particles of any shape in the transitional regime. The last part of Section 3 focuses on the free molecular regime
and describes how the most modern modeling tools can be used to perform mobility calculation of entities with specified and detailed
atomic structure in which each atom of the structure is the center of an interaction potential with gas molecules. The surveyed
literature shows how such types of detailed calculations enable the possibility of predicting the mobility from first principles without
performing assumptions on the reflection type of the molecules upon collision with the charged particle. Short final remarks conclude
the manuseript content.

2. Mobility transport theories for spherical particles in the free molecular, and transition regimes
2.1. Origins of mobility transport theories for spheres of any size: The Stokes-Millikan equation

In the low field limit, the first deviations from the continuum regime to account for the effect of the Knudsen number were given by
Cunningham using a linear perturbation of the Stokes equation (egs. (2) and (3)) as(Cunningham, 1910):

ze 24
Z,=m(l +AZ), (6)

with A a constant intended to take into account the law of reflection of the gas molecules upon impingement of the charged particle
(slip correction). However, it was made clear that the value of A in eq. (6) had to vary with concentration in the transition region to
match experimental results. A semi-empirical formula was then devised by Knudsen and Weber and similarly by Millikan that focused
on correctly describing the transition portion (M Knudsen, 1950; Martin Knudsen & Weber, 1911; Robert A Millikan, 1923b). The
equation, which appears in the introduction as eq. (5) is labeled Stokes-(Cunningham-Knudsen-Weber)-Millikan equation (in no
particular order) and its more primitive version is provided here for convenience:
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Where A, B and ¢ have the same meaning as the A; coefficients in eq. (5). The equation agrees with the Stokes equation in the con-
tinuum regime and is somewhat reminiscent of the free molecular counterpart (eq. (4)) when the Knudsen number approaches infinity.
The A; coefficients have been derived in different ways, for different gases and through different methods, many of them coming from
Millikan and his pupils (Derieux, 1918; Eglin, 1923; Ishida, 1923; Lassalle, 1921; Lee, 1914; Silvey, 1916; Stacy, 1923; Van Dyke,
1923). For air, the most commonly used values are given by Davies as A; = 1.257, A> = 0.4 and A3 = 0.55 (Davies, 1945). While the
first two coefficients are dependent on matching the free molecular expression through the different modes of reflection, the third
coefficient, As, is empirically adjusted as no theoretical value is known and may vary up to a factor of 2. It is perhaps necessary to
explain the values chosen by Davies for the A; coefficients, as they are not based on theoretical results but rather on averages of
previously reported values. Based on results from Millikan, Mattauch, Monch and Knudsen, and Weber (Martin Knudsen & Weber,
1911; Mattauch, 1925; R. Millikan, 1920; Robert A Millikan, 1923a, 1923b; Ménch, 1933), Davies obtains the result for A; by
averaging the results from the first 3 authors and A» using all but Mattauch’s results. Lastly, A3 is obtained through the median of the
results from Millikan and Mattauch. While Davies’ results are the most commonly used, there are a plethora of published values which
seem to vary depending on the particle studied, e.g. solid vs liquid particles. A compilation of slip correction factors appears in Table |
(M. Allen & Raabe, 1982; M. D. Allen & Raabe, 1985; Annis, Malinauskas, & Mason, 1972; Buckley & Loyalka, 1989; N. A. Fuchs,
Daisley, Fuchs, Davies, & Straumanis, 1965; Metzig, 1984; Rader, 1990; Schmitt, 1959) for air and other gases. Most authors agree on
the universality of A; + A, for all gases with a value of approximately ~ 1.65 at standard pressure and temperature.

When eq. (5 (or equivalently 5)) is compared to its free molecular counterpart, eq. (4), for Kn>> 1, a relation between CCS and
mobility diameter may be inferred. If one assumes that m,, > Mgy (Myeg ~ M), Ter ~ T, and that the viscosity is given by 5 =

0.499nMge: AT = 0.499n44 .I'SR—TE (Larriba & Hogan, 2013b), the comparison yields:

9

9 T _
TA(A +4A,)

2
= A At

Q1.1 (Ty) PA=¢PA (7

where PA is the equivalent of a Projected Area for a hard sphere of effective diameter d; + d; and ¢ is the accommodation enhancement
factor. As its name suggests, £ is a measure of the effective increase of the CCS over PA due to momentum accommodation, i.e. how the
momentum transfer is adjusted due to gas molecule-particle hard sphere interaction upon a collision. If the results from Davies are
applied to eq. (7), it yields a value ¢ = 1.3578. As will be later derived, the value of ~1.36 is assumed to be caused by a predominantly
diffuse reflection of the gas molecules after impingement on the surface (Epstein. 1924). The diffuse reflection explanation is

Table 1

Several Slip Correction Factors published in literature for different gases. The values have been modified to reflect a viscosity of § = 0.499 M, AT and
standard temperature and pressure. Where only the values of A, are reported, consider using Cunnigham’s approximation eq. (6) or Rader’s
extrapolation to obtain A + B.

Source A /A A:/B Asfe A+ B/ Surface Gas
A1+ Az

Knudsen and Weber (1211) 1.103 0.572 1.143 1.675 Glass spheres Air
Millikan (1923) 1.234 0.414 0.876 1.648 Oil-drop Air
Mattauch (1923) 1.282 0.445 1.66 1.727 0il drop Nz
Monch, 1933 1.285 Tobacco Smoke Air
Davis (1945) 1.257 0.4 1.10 1.657 Derived Air
Schmitt (1959) 1.45 0.4 0.9 1.85 Silicon droplet Nz
Annis and Malinauskas (1972) 1.558 0.173 0769 1.731 Predicted Air
Metzig (1984) 1.2 0.432 1.039 1.632 Solid Air
Allen and Raabe (1985) 1.142 0.558 0.999 1.700 Solid /PSL/PVT Air
Buckley and Loyalka (1988) 1.099 0.518 0.425 1.617 Fit to low Kn Air
Rader (1989) 0.78 1.647 Extrapolated Air
Ishida (1923) 1.207 Oil-drop Air
Stacy (1923) 0.983 Machined Brass Air
Van Dyke (1923) 1.114 Cleaned brass Air
Ishida (1923) 1.277 Oil-drop He
Rader (1989) 0.92 1.647 Extrapolated He
Millikan (1923) 1.144 Oil-drop H2
Ishida (1923) 1.141 Oil-drop H2
Ishida (1923) 1.208 Oil-drop co2
Eglin (1923) 1.150 Oil-drop co2
Lasalle (1921) 1.160 Oil-drop co2
Van Dyke (1923) 1.142 Shellac Resin co2
Rader (1989) 2.0 1.647 Extrapolated co2
Rader (1989) Ay 1.647-A; ~0.85 1.647 Extrapolated All gases
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extensively used although its elusive theoretical justification is a subject of enormous debate, and not without reasons. In principle, the
expectation is that molecular collisions should eventually become more specular as the size of the charged particle becomes sufficiently
small (which will also be shown to yield £ ~ 1) contradicting the asymptotic results to the Stokes-Millikan (Z. Li & Wang, 2003a,
2003b; Tammet, 1995). This would suggest that an evolution from specular to diffuse must take place within the free molecular
regime, something not accounted for in Stokes-Millikan. To properly understand the results behind eq. (7), a more rigorous intro-
duction of the theory of eleetrical mobility in the free molecular regime is necessary and provided in section 2.2.

One must also reflect here on the meaning of the mobility diameter d,. Given that most aerosol particles are not perfectly spherical,
dp does not normally describe the physical diameter of the particle but rather a measure of the mobility of the particle. It should not be
compared to a physical mass diameter unless the charged particle is spherical, of a known density, and the effects of interaction
potentials are negligible or very well quantifiable. The non-spherical effects are addressed in section 3.

It is perhaps beneficial at this point to highlight the existence of other mobility calculations that encompass the free molecular and
continuum regimes but do not rely directly on the Stokes-Millikan equation. As an example, these include Basset’s solution to the
continuum equations with slip boundary conditions (Basset, 1353) and Goldberg’s as well as Liu and Sugimura’s approximate solution
to moments of the Boltzmann equation (Goldberg, 1954; C.; Liu & Sugimura, 1969; Sugimura, 1968). Perhaps the most used form is
that of Phillips who solves an approximation to six moments of the Boltzmann equation while matching the behavior of both con-
tinuum and free molecular regimes (Phillips, 1975):

v

_ze S+dckn+3(+ 1)K’ +6(c(c]+2)kn 2-a 1 i
T3md, S-ckntc8tn)(d+2k3 T @ 2T

with a being the percentage of molecules that have been thermally accommodated and which Phillips himself set to 0.895 guided by
Millikan’s work (Robert Andrews Millikan, 1911; Robert A Millikan, 1923b). The expression from Phillips reproduces the results from
Millikan’s oil drop experiments to within 2%.

Fig. 2 captures the variation of electrical mobility from continuum to free molecular as a function of the Knudsen number for a
spherical charged particle. The estimations from Cunningham (eq. (6)), Stokes-Millikan (eq. (5)) and Phillips (eq. (5)") are plotted
showing the validity of all the approximations to predict the full range of values. The results from eq. (4) are also plotted for the free
molecular regime with £ ~ 1.36 for diffuse reflection and ¢ = 1 for specular reflection. Note how Cunningham’s eq. (&) is sufficient to
correctly approximate, at least asymptotically, the free molecular regime for diffuse reflection when A is taken to be 1.657. Hence eq.
(6) may be used to provide a simple asymptotic equation for the free molecular as presented in the figure, with the ¢ variable being a
function of the Knudsen number. The blue shaded area in Fig. 2 shows how an appropriate choice of {could potentially yield values
anywhere between the specular and diffuse reflection scattering asymptotes. The diffuse and specular scattering limits depicted in
Fig. 2 may be considered to be bounds to the calculation at least until the interaction potentials become non-negligible (around 2 nm
for singly charged particles). Potential interactions are difficult to characterize due to their dependence on the charge and polariz-
ability of the charge. They can be represented by the yellow shaded area Fig. 2
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Fig. 2. Mobility as a function of Knudsen numbers from continuum to free molecular regimes showing Stokes-Millikan, Cunningham, and Phillips
approximations. On the free molecular portion, approximations for diffuse and specular scattering are represented.
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2.2. Calculations of electrical mobility in the free molecular regime

As noted in the previous section, in order to understand how diffuse/specular collisions affect mobility in the free molecular regime,
one must provide a comprehensive examination of how the drag force may be calculated in a deterministic fashion. The study of
transport properties in the free molecular regime dates back to Chapman and Enskog and their study of diffusion (Chapman & Cowling,
1970), and where the analysis of electrical mobility appears from its close connection with diffusion through Einstein’s relation
(Einstein, 1905; Smoluchowski, 1906). Upon the difficulty that studying the interaction between gas and charged particle entails, some
general assumptions must be considered prior to providing a suitable transport equation for the charged particle. The first, and
probably most important, is that the charged particle or ion (perhaps a more accurate description within the free molecular regime)
does not perturb the buffer gas, and thus every interaction of gas molecule with the charged particle is independent of the rest (Kihara,
1953). This allows for the gas velocity to assume a three-dimensional Boltzmann distribution:

1) = (2 exp - M) ®

with ¢2 = c? + ¢ + ¢ = cic; the square of the gas thermal velocity magnitude, and ¢; being any ith coordinate of such velocity.

The ion velocity distribution cannot be readily defined unless certain approximations are first established. The reason is that the
distribution is dependent on the external contribution of the field and hence a Boltzmann equation for the distribution must be first
constructed. Assuming that the charged particle concentration is much smaller than the concentration of gas molecules as well as small
enough so that charged particles do not interact with each other, a viable collision operator for the Boltzmann equation can be inferred.
Using this collision operator, a solution of the first few moments of the Boltzmann equation can be attempted, including the drift
velocity and hence the electrical mobility (Edward A. Mason & McDaniel, 1923; Edward A Mason & Schamp, 1958). This procedure is
known as the kinetic theory approach. However, discussing the moments of the Boltzmann equation is beyond the scope of this review,
but the solution to approximations of the first few moments have been provided by Kihara, Mason and Schamp and Viehland among
others (Kihara, 1953; E.; Mason & Hahn, 1972; Edward A.; Mason & McDaniel, 1983; Edward A Mason & Schamp; Jr, 1958; Larry A
Viehland & Mason, 1975; 1978). For the two-temperature theory, the first approximation to drift velocity moment leads to eq. (4)
where the first collision integral, or CCS, can be written from momentum transfer considerations in the form of a quadrature:

x x 2x oo o

- 1 o5l s

Qry (1, I)ZQ / fst'mp/ fg St ng fm@ —cos (¢, ))dbdfdpdy 9)
o o o o o

where ¢, # and 7 are the ion orientation angles with respect to the incoming gas molecules, g is a dimensionless relative velocity
between ion and gas molecule, b is the impact parameter, and 4y is the resulting deflection angle of the gas molecule due to the
interaction with the particle. The most interesting feature in this equation is that the quadrature can be analytically calculated if the
deflection angle y 4 is known. However, due to the intricate relations that affect the deflection angle, including potential interactions,
inelastic collisions, and scattering effects, this angle is generally calculated numerically under most circumstances. Nonetheless, the
deflection angle may be calculated analytically for relatively simple and convex geometries, e.g. spherical, as long as the potential
interactions are negligible or their contribution can be accounted for, e.g. a central force. It should be noted here that when the CCS is
averaged over all orientations in eq. (9), drift velocity, drag, and electric field have been assumed to be in the same direction, a
simplification that works well for small ions but does not necessarily have to be true in principle. Finally, higher-order approximations
to the Mason-Schamp equation do exist, but the error committed for using the first approximation is minimal for most if not all aerosol
particles and small fields/Mach numbers (Larry A Viehland & Mason, 1975, 1978; L. A. Viehland & Mason, 1995).

Despite the success of the solution to the moments’ method (kinetic theory approach), a different approach more akin to aerosol
science and focusing on direct momentum transfer is provided here (Epstein, 1924). The consideration of this slightly different
approach is based mainly on two reasons. The first consideration comes from the realization that solving eq. (9) when hard sphere
interactions are considered, yields Qrer(1,1) = %(dp + dg)®> = 1*PA, akin to specular and elastic interactions, which would be
insufficient to predict the necessary drag to match the experimental results provided by Millikan using oil drops, as was established in
eq. (7). It appears that a modification of the particle collision model is necessary to reproduce the asymptotic behavior of the
Stokes-Millikan equation. One simple modification to achieve this result considers the possibility that a fraction of all impinging gas
molecules is subject to inelastic and diffuse collisions. The second consideration is that, given that aerosols are seldom highly charged
and have masses much larger than gas molecules, the reduced mass and potential interaction effects may be safely ignored under most
scenarios. This second relaxation, as stated above, allows for analytical calculations to be performed when the particle may be
considered convex and not excessively complicated (Fernandez de la Mora, 2002; GarciaYbarra & Rosner, 1989; Ivanov & Yanshin,
1980), so a more suitable expression based on the wetted surface area of the ion would be preferred. As a result of these considerations,
a simplified calculation focusing on convex particles with inelastic collisions was the most logical approach to deal with aerosols. For
the sake of completeness, it should be noted that inelastic approaches to polyatomic systems are indeed possible within the kinetic
theory approach as well. The so-called Wang Chang-Uhlenbeck-de Boer (WUB) equation is akin to the Boltzmann equation but allows
for a semi-classical approach where internal states of both gas molecules and charged particles may change after a collision (Chang,
Uhlenbeck, & de Boer, 1964; Monchick, Pereira, & Mason, 1965; Monchick, Yun, & Mason, 1963).

It is customarily acceptable to assume a solution to the Boltzmann equation by providing a guess to the charged particle velocity
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distribution. It can be shown that, for a vanishingly small electric field to concentration ratio, E/n~0, and sufficiently massive ions
(my, > 4mgg;) (Kihara, 1953; Edward A Mason & Schamp, 1958), the velocity distribution of a charged particle or ion drifting with
velocity vq, may be given by:

N e 2 m(zi = Vi)

with z; the indexed velocity of a charged particle and where (z; — v4;)? is understood as the square of the magnitude of the resulting
vector difference. By means of egs. (2) and (10), one can proceed to calculate the drag force by calculating the excess momentum
transfer of gas molecules colliding with the drifting ion. Such calculation was attempted initially by Langevin and Cunningham
assuming only specular and elastic collisions (Cunningham, 1910; Langevin, 1905), expanded by Lenard and completed by Epstein
both of whom assumed other cases of reflection (Epstein, 1924; Lenard, Weick, & Mayer, 1920). For the sake of generality and
agreement with the analytical chemistry field, the calculations carried out here differ slightly from those of previous authors. The
reason is that in order to consider reduced masses, both the gas and ion velocity distributions (egs. (2) and (10)) must be taken into
account, as opposed to Epstein’s approach who directly assumed that the aerosol mass is much greater than that of the gas molecule,
indirectly neglecting the reduced mass effects. The end result however qualitatively agrees with that of Epstein and other authors such
as Waldmann (Waldmann, 1959).

To calculate the momentum transfer of gas molecules onto the charged particle, it is customary to initially calculate the number of
gas molecules per unit time colliding onto an infinitesimal surface of the particle dZ (which maybe expanded to include the diameter of
the gas) with normal n; and integrating over the whole surface (dropping the dependencies of the distributions f and F):

O=n ff /ng‘ 2 n,-|g‘_ _m_<0d3£';ds2.id):

where g = z; — ¢; is the relative velocity of the gas molecules impinging on the ion’s surface and the condition g - n; < 0 represents that
only gas molecules incoming from the outside of the particle are counted. d°c; and d®z; represent the integration over all three
components, e.g. dejdeades.

To account for inelastic collisions, the momentum transfer is separated between impinging and reflected molecules. The mo-
mentum transfer per unit time of the impinging gas molecules, p;” can be obtained straightforwardly by multiplying the flux of

impinging molecules by their momentum rmggc;:

P =n ff fmengjgr fil, . cod cid 2idE (11)
To make the calculation a little more tractable, a change of variables is performed from world variables c; and 2; to relative velocity
and the center of mass velocity (Kruger & Vincenti, 1965):
- MgasCi + MwZi
M Mgy, + My,

Given that d®c;d®z; = d®Widg;, one can then integrate the equations over the center of mass velocity yielding:

L mr 3;2 wyat(erra;}
pf = 2&';;‘ ff - 2 MyeaBi8i nilg, m‘<0d3gl'dz (]2)

Under the assumptions of low electric field and large masses, vz < g, the exponential may be linearized taking only the first two
terms of the expansion to yield some useful analytical relationships:

. 3;2
= kaT f/ ( = 31 Vi - )mr\sdgfgi'nf|gi."f<odsg;d): (13)

Although it may seem at first that the linearization is unnecessary, it allows for an analytical separation between the unperturbed (i.

e., the unit term) flow and its perturbation (i.e., Zg - v4). This becomes quite important for convergence, as the total momentum

transfer of the unperturbed flow is 0 and can be removed from the analysis. It can also be used to show that the drag force and electric
field are not assumed to be in the same direction as the drift velocity.
One can now integrate eq. (13) over all relative velocities. It is customary to separate the result into surface normal and surface
tangential projections and, assuming without loss of generality that g = g-m g2 = g tiyandgs = gt
the result for impinging momentum transfer yields:

Mred L [armed 1 1
= “mrzdﬂmf/(zﬂﬁ+Vd:""i’)"j""i(vdi'fli)flj+§(vdf‘f2.i)“2jd): a4

For the reflected gas molecules, one has to choose whether they are reemitted specularly or diffusely and whether elastically or
inelastically. Let us assume for now that a mixture of the two cases exists. For those molecules reflected diffusely, let us also assume
that the gas molecules become thermally “accommodated” to the particle temperature before leaving the swface in a random
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direction. If the accommodation coefficient a represents the fraction of reflected gas molecules that leave the surface at the surface
temperature, the momentum transfer of that fraction pj;f is given by:

3;2
Fii=ra(5z)” [ F mussipioni, wradgtz as)

where n, is the number concentration of gas molecules reemitted diffusively and the condition g - n; > 0 now refers to the gas mol-
ecules leaving the surface. The n, fraction is given by equating the fraction of the impinging flux that will become accommodated to the
equivalent reflected flux. Calculating the fraction of the flux of particles that collide with a surface differential per unit time yields:

m%sl 2 2kT
Qa—=fmf/e (1 _%& Vd.)gi nr|m ,.J<udgfdz f ( +Vdi'"i)d): (16)

AMped

This result must be equal to the number of particles that leave the surface diffusely per unite time (with g;-n; = g;):

i n, [2kT
Qu+="afff_‘ﬁ_gi'”i|g,-.n,->odgid):= f? m@: a7)

Comparing integrands yields between eqs. (16) and (17):

M.
na=an(l+1|' 2}:;".{;‘"&) (18)

Now, one is in a position to calculate the momentum transfer of the molecules that undergo diffuse reflections. Using egs. (15) and

(18):
p anm,; |2akT 2&T
P:‘;:ﬁ :T a P + Vgi-ny n}-a‘): (1 9]

The rest of the reflected gas molecules, 1 — &, are assumed to be emitted specularly. After the reflection, the relative velocity will be
given by g — 2(g:- n;)n; so that the momentum transfer is given by:

; 3,#2

o = (1= ()" f [ (120, Y 2 mmti o ol (20)
which if integrated yields:

,d:;c,-=(1—a)(—;‘:;-n.-n;+,é;-r:.-ra;+,a,-‘-rz.-r;;) 2D

The difference between the momentum transfer of the reflected and impinging gas molecules yields the total drag:

; i e 2%T a a
Fp, =P+ P — B = zm"dﬂxmmff[(l —54‘?”) nin; +Z(f1ff1;' +fzif2j)] - vgidZ (22)

Adding and subtracting Zn;n; and realizing that ny + ty;ty; + toity; = 1 leads to (Fernandez de la Mora, 2002):

| 2kT 3a an
FD —{an,-ml f ———+ ) +Z ]d):} Vdi (23)

Eq. (23) is the standard drag force expression for charged particles. After integration over the wettable surface area of the particle
(Z), a drag tensor By may be obtained (bracketed in eq. (23)), which, when multiplied by the drift velocity, will yield the drag force for
a particular orientation of the charged particle:

Fp, =Byjvy; with Fp, = zekE; @4

As expected, eq. (24) allows for the drag force and the drift velocity to be in different directions. To be able to obtain a single value
for mobility from eq. (24) instead of a tensorial expression, one has to make an assumption about the orientation of the particle subject
to the electric field. If all orientations are assumed to be equally probable, an average value may be obtained. A difficulty that arises is
whether the drag tensor or its inverse should be calculated to obtain a metric of the mobility that may be compared to experiments.
There has been much controversy surrounding the correct averaging. Based on results from Landau and Lifshitz and (Landau & Lifshitz,

1975), later on, Happel and Brenner (Happe!l & Brenner, 201 2), the mobility was primarily averaged using the inverse of the tensor so
that, once the tensor was diagonalized using the principal directions, the mobility would be given by:

ze 1 1 1
Z = e 25
PHAE = (B“+Bu+833) (25)
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However, the result of the mobility using eq. (25) does not agree with the results from Mason & Schamp in eq. (4) even for specular
collisions unless the charged particle meets certain criteria, e.g. being spherical. Upon revision of the results from Happel and Brenner,
however, it is clear that the displacement per unit time they calculated was in the direction of the “settling velocity™ (here called drift
velocity) and not its component in the direction of the drag or electric field; being the latter projection the only magnitude that can be
measured by an instrument. Hence the result from eq. (25) should not be compared to experimental results (Carlos Larriba-Andaluz,
Nahin, & Shrivastav, 2017). Conversely, performing the average of the drag tensor rather than its inverse gives the average
displacement in the direction of field and has been shown to agree exactly with the results from Mason and McDaniel (Carlos
Larriba-Andaluz et al., 2017), so that:

Typical Elastic or Dif fuse Collisions on a Sphere
in Free Molecular Flow

4 0,,=ra & B) ®

2,1 =1.39PA

7 ...
Molecule

Gas
Molecule

Specular Collision Diffuse Collision

Typical Potential Interaction due to
ion — induced dipole and Lennard — Jones potentials

C) Uyoon D) Uy 6-12]

Effective
diameter

Gas
; Molecule

4 — o Interaction Sphere 4 — 6 — 12 Interaction
in all — atom Structure

Fig. 3. Different possible gas-molecule particle interactions, including specular and diffuse as well as potential interactions. A) Specular reemission.
B) Diffuse Reemission. C) 4 — co interaction. D) 4-6-12 interaction with subunits of the particle.
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3ze

? =B + Bz + Br) o

should be used when the electrical mobility is calculated in the free molecular regime under the assumption of all orientations being
equally probable. Some authors have estipulated that the applicability eq. (26) (or seemingly eq. (4)) relies on the assumption that it is
only valid in the fast rotation limit of a small ion (M. Li, Mulholland, & Zachariah, 2014). However, given that no assumption regarding
the speed of rotation of the charged particle was ever provided in the analysis of Mason & Schamp (Edward A Mason & Schamp, 1958),
nor is it required to arrive at the results of eq. (4), this explanation cannot convey a rigorous physical portrayal of the phenomenon and
should be re-examined. In all, Eq. (25) is not incorrect, and, in fact, its results provide what may be regarded as the “true mobility” of
the particle (Carlos Larriba-Andaluz et al., 2017), to differentiate it from the “projected mobility” in the direction of the field. For
example, two particles with drastically different “true mobility” may be indistinguishable from each other in an instrument because
their projected displacement per unti time in the direction of the field is the same (Carlos Larriba-Andaluz et al., 2017). A final note is
that eq. (25) may still be used benefitting from the fact that for most globular ions, the difference between egs. (25) and (26) is only a
few percent. However, this difference becomes substantially larger for particles of high aspect ratios.

Egs (26) and (4) will yield identical results as long as the CCS is calculated in an analogous form to how momentum transfer is
considered for eq. (26), i.e. hard sphere interactions only. To understand the effects of inelastic vs. elastic or diffuse vs. specular
collisions, it is customary to use a sphere as the charged particle. However, the use of a sphere neglects secondary scattering effects of
gas molecules colliding more than once with the charged particle, which may increase the overall drag force. Equation (23) for a sphere
may be reduced, after integrating, to:

16 [kTmpeq an 16  [kTmpi—
FDj =?Pl T(I-I"T)PA'V‘;; =?Pl ?‘Q;__Ivvﬂ (231)

where 277 = (‘l +%) PA = {PA by means of comparing eq. (23.1), (26) and (4). One can now attempt to understand the result

conveyed by eq. (7), i.e. 2 = £PA ~ 1.36PA for a hard-spherical entity with no potential interactions. Different choices of a or different
reemission laws would provide different values of £. The issue at hand is that the exact reflection law is unknown so an informed guess
of how the reemission occurs must be suggested to match the empirical evidence. Three different scenarios will be assumed for the
reflecting molecules; elastic/specular, elastic/diffuse, and inelastic/diffuse with full accommodation at the surface temperature. Many
other reflection cases have been studied, however, as shown by Epstein, many of them violate thermodynamic principles and are only
shown for historical reasons (Epstein, 1924). A representation of the most significant gas-particle interactions used in literature are
given in Fig. 3. If all collisions are assumed to be specular and elastic, as depicted in Fig. 3A, the value of the accommodation coefficient
a must be set to 0. This yields a value of £ = 1, which is about 36% off the expected Stokes Millikan value. On the other hand, if one
considers only inelastic diffuse with full accommodation, as shown in Fig. 3B, @ = 1and the value of ¢ increasesto é = 1+ #/ 8 =
1.3927, a value very close to the one using the slip coefficients from Davies. If reflections are assumed to be elastic and diffuse, which
would require a small modification of the equations presented here, it would yield ¢ = 1.4445. In order to match the value provided by
Millikan in eq. (7), Epstein hypothesized that one tenth of the molecules should be reflected specularly while the rest would have a
diffuse inelastic reflection with full accommodation to the surface temperature, yielding the very common value used nowadaysof £ =
1+ az/8 = 1.3574 with a = 0.91.

Based on the results from Epstein and Millikan, Friedlander and Fernandez de la Mora employed similar expressions for the
scattering based on the accommodation coefficient £ = (1 +ar /8) and they showed that under most scenarios @ = 0.91 yields a more
than reasonable result for most of singly charged particles down to ~2 nm at least in air (de la Mora, De Juan, Liedtke, & Schmidt-Ott,
2003; Friedlander, 2000). The value of 0.91 is however an asymptotical result at best and fails to explain the mostly specular behavior
observed for very small ions, in particular when they are drifting in light monoatomic gases such as He (Gotts, von Helden, & Bowers,
1995; Z; Li & Wang, 2003b; Tammet, 1995). Undoubtedly, the value of a is a subject of tremendous debate for numerous reasons. The
seemingly artificial choice of 91% inelastic diffuse and 9% elastic specular is the first of such issues. While it may seem like a
reasonable choice for an ideal sphere, its applicability may be questioned for entities with resolved atomic structure and non-spherical
particles. How the transition occurs from diffuse to specular as the Knudsen number is increased is also incredibly hard to assess. One of
the main reasons is the complexity of the rationale behind the diffuse nature of the collisions, a problem accentuated by the fact that
the cause seems to differ from one substance-gas pair to another (B. E. Dahneke, 1973b; Phillips, 1975), having no universality on how
the collisions migrate towards becoming more specular. Given the variability of the accommodation coefficient a and its empirical
nature, its use should be steered mostly towards calculations for charged particles approaching the transition regime and should not be
trusted for very small ions (smaller than ~3 nm at atmospheric pressure). Perhaps a very good discussion on the nature of specular to
diffuse effects is given by Li and Wang (Z. Li & Wang, 2003a; 2003b). Given that a more precise calculation, one that includes entities
with resolved atomic structure and potential interactions, must be provided in order to better understand how the specular to diffuse
transition occurs, the discussion shall be continued when dealing with non-spherical particles below in Section 3.

A final point that needs to be addressed is the lack of any potential interaction in the treatment of eq. (23). The longest potential
interaction to consider is that regarding the mduced -dipole potential. While this potential interaction is negligible for singly charged
particles with diameters over 2 nm (Larriba et al., 2011), it could easily represent increases in the CCS of over 200% for small ions and
heavily charged entities (Canzani, Laszlo, & Bu.m. 2018; Fernandez-Garcia & de la Mora, 2014; Ku & de la Mora, 2009; Hui Ouyang,
Larriba-Andaluz, Oberreit, & Hogan Jr, 2013) in air or nitrogen, and has been shown to be critical in nucleation and new particle
formation (Gamero-Castano & de la Mora, 2002; Iida et al., 2006; Kusaka, Wang, & Seinfeld, 1995; Laakso, Mikela, Pirjola, & Kulmala,
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2002). While potential interactions will be addressed more carefully for non-spherical particles, most simple potential interactions can
be accounted for in the case of spherical charged particles through numerical integration of the deflection angle in eq. (9). For example,
for any central force with potential interaction ®(R), the quadrature to calculate the deflection angle is given by (lruger & Vincenti,
1965):

Ry
bdR
Xer =f—2f— (27)
R (.
Sl R e
g’

where R is the distance between force center and gas molecule and Ry is the apsidal distance. Overall, the effect of this type of
interaction potential can be regarded as an increase in the particle diameter. As such the effective diameter may be calculated as:

20(0)]”
4 ;)
§°Mpeg

oy =y [1 -~ (28)

Eq. (28) suggests for an additional parameter that modifies the CCS value to account for a potential interaction so that Q, ; (T,g) =

1/2
ZEPA, and where # lumps the effect of the potential interactions which could be loosely related to [] - gﬁ;’:}] but can also be

expanded to accommodate non-spherical particles with multiple charge locations. Fiz. 3C shows the typical effect of a central force
interaction between gas molecule and charge as an ion-induced dipole interaction and a hard sphere, labeled as a 4— oo interaction,
and where the outcome, in this case, may be regarded as an increased effective diameter. Many other potential interactions may be
added. As an example, Fig. 3D shows a 4-6-12 soft interaction, when dispersive attraction forces are incorporated by the sixth power
law exponent, and where repulsion is no longer considered to be infinite but is substituted by a repulsive twelfth power law. However,
such complex interactions are better implemented in entities with resolved atomic structure or coarse-grained structures, where the
contributions of different elements may lead to an effectively diffuse interaction as shown in the following sections. From all these
considerations, it is clear that further corrections to the Stokes-Millikan equation must be required when approaching the free-
molecular regime.

2.3. Further corrections to the Stokes-Millikan equation

With the knowledge acquired from free molecular regime considerations, one can envision certain modifications of the Stokes-
Millikan equation to understand the theoretical nature of its empirical parameters and to improve its predictive capabilities.
Indeed, there are a plethora of different kinetic theory approaches, with some of them being inconsistent (N. Fuchs, Stechkina, &
Starosselsldi, 1962), which can give more insight into the electrical mobility problem. The most rigorous treatments involve attempts
at solving the Boltzmann equation or the Bhatnagar-Gross-Krook simplification of it (BGK) (V. C. Liu, Pang, & Jew. 1965; Pao & Willis,
1969). Cercignani et al. developed a calculation based on the BGK model that is valid for all Knudsen numbers and axisymmetric bodies
(Cercignani & Pagani, 1968; CDCDP Cercignani, Pagani, & Bassanini, 1968). The variational procedure is quite cumbersome, but the
results closely resemble those of Millikan (eq. (5°)). One interesting result is that of Annis et al. which is based loosely on kinetic theory
(Annis, 1971; Annis et al., 1972). They assume that the motion of the particle can be described as a combination of a viscous and a
diffusive component so that:

zeE 5 zeE(n+ N)D

Va = Vi F Ve = 3a7d 5 (29)
p

where N is the number concentration of charged particles, p = nkT is the gas pressure, and D is the diffusion coefficient. From the drift
velocity, the electrical mobility may then be expressed as:

kT + 0 3and,D

3and kT @0

Z,=ze

which resembles Cunningham’s approach in eq. (6). The kinetic theory portion comes from the determination of the diffusion coef-
ficient using Chapman-Enskog’s approximation. Rather than just the free molecular approximation to diffusion, there must be an
additional effect due to the extra pressure that appears when leaving the free molecular regime. As such:

_ 2

D=
1-A

(31
where [D]; is the first approximation to the diffusion coefficient in the free molecular regime and A includes the correction from the
change in pressure (Hirschfelder, Curtiss. Bird, & Mayer, 1964). The first approximation [D]; at zero field for particles much larger and
heavier than the gas molecules is directly related to electrical mobility through the Einstein’s relation (zeD = Z,kT) which then reveals
from eq. (4):
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where in general (n>> N). The correction term A is composed of a series of complicated approximations. The first approximation may
be givenby A ~ ¢ (ﬁn) ar/5 and where { is a dimensionless constant dependent on the nature of the gas molecule’s scattering and ar

is the thermal diffusion factor, a parameter that relates the diffusion coefficient to the thermal diffusion coefficient (Annis, Mali-
nauskas, & Yun, 1970; E. Mason, Malinauskas, & Evans; Iii, 1967; Monchick et al., 1963). With all accounted for, an expression for the
mobility can be written as:

ROl

1443 ﬁ'
= 33
3 o (33)

And where the ¢; variables are given by:

4} =9—ﬁ ;§1=(Nanme')(pa;_);C3= (1 —’lCﬂ-'L)Cz (34a-c)
40, 5
Here € = (8kT/zm )"/? is the average gas thermal velocity and ag, and a; are the Lorentzian and quasi-Lorentzian values of the
thermal diffusion factor related to the thermal diffusion factor by: (N +n) /ar = N/ay + n/ag (E. Mason, Malinauskas, & Evans, 1967).
These values are also dependent on the nature of the scattering and therefore their value is difficult to assess except for particular cases,
e.g. specular collisions. In all, the {; parameters should be treated like adjustable constants. When compared to the A; parameters from
Stokes-Millikan, a correlation can be made:

Al +A
€1=A1252=ﬁ Z§3=1/A3

While Annis’s result does not seem to improve upon the result of Millikan, it presents an additional description of the parameters
that did not previously exist and gives further validity to the model.

Within the free molecular regime, further improvements may be implemented to increase the accuracy of the Stokes-Millikan
equation. To account for potential interactions, Mason and Chapman initially proposed an enhancement factor 2, ; = £PA(1+S/T)
where S is the Sutherland constant (Edward A Mason & Chapman, 1962). This concern was later picked up by Tammet (Tammet,
1995), who, taking into account the results from Epstein and Millikan, offered a correction for the collision cross section similar to eq.
(7), but with an enhancement factor. Given that the longest range interaction is that of the ion-induced dipole potential, with Upy = —

2ay(ze)?/zeo(dp + dg)* with @, being the polarizability of the gas, Tammet proposes a co — 4 potential correction for eq. (7) as:
Q1) = (¢+8,, —1)PA (35)

Here PA is now assumed to contain the non-negligible addition of the gas diameter d, for small particles, and where ﬁ;_ yisasa
function of the dimensionless potential ¢, = &

5 1.4691(¢,)'% — 0.341(¢, )} + 0.185(¢, )T + 0.059 ; if p, > 1
ﬂw4 i (36)
0.106(¢;,)" +0.263(4.)* +1: if §. < 1

with

=l ® if position r < d, + d,
U, if positionr > d, + d,

To get eq. (36), Tammet used the tables provided by McDaniel and Mason (McDaniel & Mason, 1973). Considering the reduced
mass, Tammet proposed a modified Stokes-Tammet-Millikan equation:

Lz 2  As(dy +dy)
Z”‘f“‘m(dpwg){‘+d,,+ag("“+’*“”‘”[ — 3 . D} @7

1/2
Here f, = ( 1+ ?E) and the second factor relates to the effects of scattering and potential interactions:
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(38)
(A1 +42) (&(dy + e, T) + Bt (1)~ 1)

Tammet used empirical data from Kilpatrick to get an expression for ¢ proving the validity of eq. (37) for a range of masses from
35.5to 2122 Da (Kilpatrick, 1971). Tammet also assumed a correction from mass diameter to mobility diameter through an additional
increment he labeled “extra distance™.

Larriba-Andaluz and Hogan proposed a similar correction to that of Tammet regarding the interaction potential (Larriba & Hogan.
2013b). They did so through their own numerical calculations, focusing only on the free molecular regime. They suggested a potential
correction # that takes into account the ion-induced ion potential providing the approximation:

0Q,,(T) =FEPA (39)

Where # is given by:

1 | JF | 4 ”
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=
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When compared to eq. (28), # also includes the coupling of scattering effects and potential interactions as well as the effect of
grazing gas molecules, i.e., gas molecules that do not directly impinge on the charged particle but are still deflected and cause a
momentum transfer. The results of eq. (39) have been shown to be in agreement with experiments for a series of tetralkylammonium
salts and other non-spherical ions.

3. Electrical Mobility of particles with arbitrary shape: Analytical and Computational approaches
3.1. Calculations of non-spherical entities in the transition regime

Prior to treating the electrical mobility of an arbitrary particle within the transition regime, it is perhaps beneficial to briefly
describe the process in the continuum regime. In principle, the mobility of a particle of arbitrary shape can be calculated in the
continuum regime by solving the Stokes (i.e., creeping flow) equations for the flow field around the particle and use the solution to
integrate the calculated viscous and pressure forces over the wetted surface to obtain the value of the drag force (Filippov, 2000;
Landau & Lifshitz, 1975). The latter naturally leads to the definition, via the Stokes Law in Eq. (1), of a hydrodynamic diameter (dy)
which is the diameter of a perfect sphere that would experience the same hydrodynamic drag force of the particle under investigation.
In theory and with sufficient computational resources to solve the Stokes equation, the approach could be extended to the
near-continuum portion of the transition regime, if one can pre-determine appropriate slip boundary condition at the particle wetted
surface. In reality, the applicability of the Stokes continuum approach is limited not only by the complexity of determining the (spatial
distribution of the) slip boundary conditions but also to the existence of multiple length scales when dealing with particles of arbitrary
geometry (e.g., fractals). Indeed the Stokes equation of motion of a continuum fluid may not be an acceptable model in some bay zones
of the particle whose size is comparable to the mean free path of the gas, even when the overall size of the particle is much larger and
well within the continuum regime.

Progressing into arbitrary particles well within the transition regime, one can no longer fully rely directly on the Stokes-Millikan
equation, despite its extensive success, as its validity is, at least in principle, limited to spherical particles. However, it is quite possible
that, with proper corrections, one could arrive at variations of the equation that may yield acceptable results. To understand the
corrections involved, it is necessary to first define at least one characteristic size for the arbitrary charged particle (DeCarlo, Slowilk,
Worsnop, Davidovits, & Jimenez, 2004). While many different definitions exist of such parameters, we shall limit ourselves here to
four different definitions, the physical diameter (d.), the volume equivalent diameter (dye), the mobility diameter (dy) and the hy-
drodynamic diameter (dy). The physical diameter, d., is the simplest characterization of a geometric parameter. Unless the particle is
spherical, d. does not have a precise definition. It may be defined as the diameter of a sphere that would yield the same size mea-
surement as the particle under consideration. This physical diameter will therefore depend on the type of measurement. The
volume-equivalent diameter, dye, is the diameter of a sphere that has the same volume as the particle in consideration. This volume is
quite useful in the sense that the resulting volume of the sphere relates mass and density through the well-known relationp = my/ V5.
The mobility diameter, dj, is defined as the diameter of a sphere with the same drift velocity as the charged particle migrating through
a buffer gas by means of an electric field. If employed in the continuum, e.g. eq. (3), d, agrees with the hydrodynamic diameter dy,
which establishes a physical descriptor of the object independent of the fluid properties (Chen, Wealliem, & Meakin, 1983; Hubbard &
Douglas, 1993). However, if d, is employed in the free molecular regime, it is better associated to the closest physical descriptor of the
CCS, which would be the orientationally averaged Projected Area (PA).

While the definition of dp may seem precise, this is far from being the case. The reason is that the value of d, depends on the type of
Stokes-Millikan approximation used to obtain it, and the set of conditions considered e.g., pressure, temperature, electric fields,
regime, etc ... When dealing with non-spherical particles, instead of using d, to loosely describe a particle with a particular electrical
mobility, it is reasonable that both dy. and dy could be used as a physical descriptor parameter within the Stokes-Millikan equation.
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With the inclusion of these physical descriptors, an additional correction is necessarily required, something that Tammet referred to as
the “extra distance”. To do so, a correction labeled the dynamic shape factor y,, initially discussed by Fuchs was introduced into
the Stokes-Millikan equation (N. A. Fuchs et al., 1965). The approach was subsequently explored by Dahneke through what he termed
adjusted sphere approximations (B. E. Dahneke, 1973a; 1973b; 1973c). The dynamic factor may be defined as the ratio of the drag
force of the non-spherical particle to the drag on the volume-equivalent sphere (Hinds, 1999):

Fp
Xn(Kn) =72 (40)
The Stokes-Fuchs-Dahneke-Millikan equation thus becomes:
- ze 21 e A3dve
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There are some interesting repercussions to this equation. If the dynamic shape factor y,, and electrical mobility are known, the
resulting diameter calculated from eq. (41) could be directly related to its mass and density. The difficulty in eq. (41) comes from
identifying adequate relations for y_, as the dynamic factor changes not only with particle shape and flow regime (Cheng, 1991), but
also with orientation (B. E. Dahneke, 1973a; Hinds, 1999). The orientation phenomenon itself is something very difficult to charac-
terize as it is generally accepted that streamlined nonsymmetrical shapes or charged particles with strong dipole moments may orient
themselves in the flow. Nonetheless, even in these simplest cases, the particle orientation would fluctuate around the preferred
spontaneous direction because of its unavoidable Brownian/thermal rotational diffusion.

A few numerical approaches have been proposed for modeling the mobility of non-spherical aggregates across the entire Knudsen
range. Given that two limiting physical descriptors in the continuum and free molecular regimes are the hydrodynamic diameter and
the PA of the particle, respectively, one can try to provide a universal law for all aggregates by making use of a modified Knudsen
number in the Stokes-Millikan equation (Zhang, Thajudeen, Larriba, Schwartzentruber, & Hogan Jr, 2012):

1+Knm(m+azexp(~g?m)) diad ixda
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The purpose of the modified Knudsen number is clear. It is meant to provide asymptotically correct descriptions of any aggregate
throughout any flow condition using a single equation. If Kiineq ~ 0, then the electrical mobility is given by Stokes law using the
hydrodynamic diameter. If on the contrary Krimea > 1, one arrives at the free molecular expression in eq. (4). This will happen as long
as the condition £2, ; ~ 1.36PA holds true in the free molecular region, something further addressed in the next section. Based on the
assumption that the modified Knudsen number Ardy/2PA must asymptotically match both the continuum and the free molecular
regime, perhaps one can propose an improvement of the Stokes Millikan equation that more closely follows the expected results of the
free molecular regime, for example considering a CCS of the type Q, ; ~ #¢PA. This correction would suggest a secondary expression
for the Knudsen number Kn,,, = Ady/2Q, ; that may be employed for a more universal characterization.

For this reason, the use of Kny,,q together with Stokes-Millikan in eq. (42) should work to numerically describe any aggregate’s
mobility that is assumed to have a predominantly diffuse reflection of the gas molecules. In fact, the calculation of dy and PA would
result in the same accuracy as the more theoretically convoluted methods described below.
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Fig. 4. A) Calculated slip correction factors for different aggregates as a function of the modified Knudsen number (eq. (42)) and where 8! = Z/
Zeontimum- Symbols refer to the DSMC results from Zhang et al.(Zhang, Thajudeen, Larriba, Schwartzentruber, & Hogan, 2012). Lines are results from
Corson et al. (Corson, Mulholland, & Zachariah, 2017). B) Shown as a color scheme is the ratio of drag force on an aggregate sphere to the drag force
on the same sphere isolated from the aggregate. Open and closed aggregates are shown for two different Knudsen numbers. Both figures have been
adapted from Ref. (Corson et al., 2017).
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A valid approach to describe the electrical mobility and other transport related quantities of non-spherically shaped particles is
through the use of Direct Simulation Monte Carlo (DSMC) simulations (Zhang et al., 2012). Zhang et al. show that the numerical
calculation of the drag through DSMC leads to a close agreement with eq. (42) (Zhang et al., 2012), as shown in Fig. 4A. Given that
DSMC is meant to be used in rarified gases, the calculation becomes rather computationally expensive for small Knudsen numbers and
might underpredict the results due to statistical errors as the continuum regime is approached. However, the simulations are quite
accurate for larger Knudsen numbers typical of transition and free molecular regime. The fact that different non-spherical particles can
be grouped into a single equation, suggests the broad applicability of a correction factor, at least to a degree.

Aside from DSMC simulations, there are a number of theories regarding the calculation for aggregates within the transition regime
(Melas, Isella, Konstandopoulos, & Drossinos, 2015, 2014; Sorensen, 2011). Perhaps, most prominent are those making use of the
Kirkwood-Riseman (KR) theory to calculate the drag on fractal aggregates composed of spherical elements. While the KR theory was
initially meant to be used within the continuum regime (Kirkwood & Riseman, 1948), it has been recently extended to be used in the
transition regime (Corson et al., 2017). The idea behind the KR theory consists in calculating the drag on individual spherical chain
elements and then adding them together. However, the drag on each element should necessarily depend on the surrounding elements
in such a manner that the interior elements may partially be hydrodynamically shielded from the outside flow and hence contribute
less to the overall drag. This shielding effect will depend on the Knudsen number and distance between spheres, with the shielding
efficiency decreasing with both higher Kn and relative distance. In general, the drag on the | element of an aggregate that is held in
place in a gas flowing with uniform velocity Us; maybe given by:

Fpy =fyvai = fr(vii— ) (43)

In the above equation, v, represents the velocity that the fluid would possess at the location of the [ sphere in the absence of the
sphere and uy; represents the velocity of the [ element with respect to the fixed position, i.e., the relative velocity due to the rotation or
flexible deformation of the aggregate. Assuming that the velocity of rotation is negligibly small and that the aggregate is rigid, an
approximation that is regularly done in aerosols is to consider 1y; to be 0, at least on average. The fluid velocity w; may be calculated as
the sum of the unperturbed velocity U,in the absence of the aggregate minus the sum of the shielding perturbations v, created by the
rest of the kth elements of the aggregate. To provide an expression for vy, one can use the Oseen tensor formula, which provides the
velocity perturbation on the surface of the lth element caused by the presence of the kth element drag force, Fp, (Burgers, 1933, p.
113). In all, the Fp;, may be rewritten as:

Fo, =fvi = fiUis = 3 Vi i Vi = Tag- Fpuj (43)
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where T is the modified Oseen tensor, a is the radius of the spheres composing the aggregates, ry, is the vector distance between the
centers of the [** element to the k™ element, and r is the magnitude of said distance. The original Oseen tensor was different from eq.
(44), and was equivalent to assuming a single point force (a— 0) in eq. (44). However, as noted by Rotne and Prager and Yamakawa, it
was not positive definite (Rotne & Prager, 1969; Yamakawa. 1970). When the force is distributed uniformly on a spherical surface of
radius a, the solution for the hydrodynamic interaction tensor requires a Taylor series around a — 0. If only a first order correction is
taken into account, the hydrodynamic tensor is very similar to that of eq. (44) but the second term is missing a factor of 2. The factor of
2 appears in the first order correction term when the interaction is considered to be between two spheres of radius a, instead of a single
sphere. Other authors have studied higher order corrections and multi-body interaction tensors as well (Carrasco & Garcia de la Torre,
1999; Goldstein, 1985; Mazur & van Saarloos, 19382; Reuland, Felderhof, & Jones, 1978).

Due to the convoluted nature of the shielding effects, the drag forces on each individual sphere must all be calculated simulta-
neously by solving a linear system of equation (43). The total drag force on the aggregate is then inferred by summing of all the forces
from individual spheres. Chen, Deutch and Meakin used these results to obtain the overall translational friction coefficient of the
aggregate (Chen. Deutch, & Meakin, 1984; Meakin, Chen, & Deutch, 1955) and where the individual friction factor ff was assumed
equal to the 6zna value expected in the continuous regime. However, the same approach may perhaps be expanded to include the
transition and free molecular regime conditions by using the friction factor frrepresented by the Stokes-Millikan equation of a single
sphere, and hence mobility and/or diffusion may then be calculated for the entire Knudsen range using an extended KR theory.
However, the modified Oseen tensor, which was inferred for the continuum regime, does not provide a correct interpretation of the
perturbations within the transition and free molecular regimes and a corrected perturbation tensor must be employed.

Instead of using the Stokes-Millikan equation to obtain f;, another option is to obtain the friction factor f; by solving the BGK

equation that describes a perturbed gas flow over a sphere. A numerical value of f; for a sphere using the BGK approach was obtained
by Loyalka et al. and by Takata et al. following the results of Cercignani (Law & Loyalka, 1986; Lea & Lovyalka, 1982; Takata, Sone, &
Aoki, 1993). The difference between the results for the friction factors of the two approaches is around 2-3% which validates the BGK
approach (Corson et al., 2017). Interestingly enough, the BGK approach allows one to describe the perturbation over a sphere as a
function of the Knudsen number. This perturbation may then be used as a substitute of v iand replacing the Oseen Tensor and force in
eq. (43). This perturbation is only for the presence of a single sphere and not for a sphere-sphere hydrodynamic interaction but the
similarity shown in the continuum between the two effects is sufficient to consider this approach. Corson et al. used the results from
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Loyalka and Takata together with the KR theory to obtain the drag on aggregates for any Knudsen number (Corson et al., 2017). The
results from Corson et al. are compared to those of Zhang et al. in Fiz. 4A for different aggregates to support the validity of both
approaches, so that the use of the modified perturbation seems to be an acceptable approximation. To visualize the effect that the
perturbation of the aggregate has on individual spheres, Corson et al. provides a ratio of the drag from eq. (43) to the drag corre-
sponding to each isolated sphere (first term of eq. (43)) as shown in Fig. 4B. One can easily observe how the flow interaction between
the different individual spheres becomes progressively less important as one gets closer to the free molecular regime.

It is interesting to note here that the work from Corson et al.‘s work makes use of eq. (25), instead of eq. (26), to provide an
orientationally averaged value for the mobility assuming that all orientations are considered to be equally probable. However, in the
presence of strong fields within the transition regime, the assumption that all orientations are equally probable is most likely no longer
satisfied. Corson et al. expanded on their work to calculate the mobility of a perfectly conducting particle by adding a polarizability
tensor to the calculation which would affect particle orientation (Corson, Mulholland, & Zachariah, 2018).

3.2. Use of the slip correction to calculate collision kernels for particles of arbitrary shape

An interesting use of the Stokes-Millikan approach that is worth mentioning here due to its success and broad applicability, is its use
in the calculation of collision kernels between particles in the transition regime. The existing calculations, however, are mostly based
on understanding coagulation between two aerosol particles rather than electrical mobility(Rogalc & Flagan, 1992). In the transition
and continuum regimes, the collision frequency, g, is defined using diffusion coefficients D; rather than electrical mobility:

By =4x(D;+ D;)dyx (Kn) ; D;=KkTZ,; [ ze (45a-b)

Where dj is an equivalent average diameter of the two colliding entities and y,(Kn) is a correction factor, similar to the dynamie
factor, that is a function of the Knudsen number or a seemingly related dimensionless quantity (Diffusion Knudsen or momentum
transfer Kudsen number). The exact values of the correction factor y,(Kn) are a subject of debate and multiple equivalent formulas have
been used. The factor was initially calculated by Fuchs through the flux-matching model (N. Fuchs, 1963; N. A. Fuchs et al., 1965). A
simpler approximation was provided later on by Dahneke (B. Dahneke, 1953). Other modifications have surfaced (Fuls & Sutugin,
1970; Veshchunov, 2010a, 2010b), including approximations in the free molecular regime, some of them quite complex but very
successful even for non-spherical entities (M Zurita-Gofor & Rosner, 2002). Gopalakrishnan and Thajudeen et al. provide the most
recent additions for collision kernels for the complete Knudsen range making use of the Langevin equation (Gopalalrishnan & Hogan,
2011; Gopalakrishnan, Thajudeen, & Hogan Jr, 2011).

3.3. Calculations of non-spherical ions and charged nanoclusters in the free-molecular regime

3.3.1. Background and discrepancies between aerosol and analytical chemistry fields

Due to the set of simplifications that arise in the free molecular regime, and the realization that the momentum transfer of each
individual gas molecule collision is independent of the rest, the calculation of electrical mobility for non-spherical ions is much more
feasible than in the transition regime. As such, there are plenty of different approximations to the calculation of mobilities using gas
kinetic theory. As previously introduced, two methodologies stand out which arise from the study of ion/electrical mobility from the
point of view of two different scientific fields, analytical chemistry, and aerosol science. While the results from the two approaches may
seem to differ at first, it turns out that many of the results from both fields are equivalent to each other, the largest disparities being
related to the distinet concerns of the two fields. It is sufficient to say at this point that while analytical chemistry focuses on small ions
with strong potential interactions and for which the diffuse accommodation assumption has been shown to break down (especially in
light gases such as He), aerosol science focuses on relatively larger singly charged nanoclusters, fractals, and particles, for which the
effect of interaction potentials and reduced masses are mostly negligible. Additionally, the diffuse reflection assumption is unequiv-
ocally and somewhat arbitrarily chosen so as to match the Millikan results in the transition regime. As a result, the perceived dif-
ferences between the two fields mostly originates from how the different approaches tackle the transition from specular to diffuse
collisions, although there is little doubt that the transition exists (C. Larriba-Andaluz, Fernandez-Garcia. Ewing, Hogan, & Clemmier,
2015; Z. Li & Wang, 2003a, 2005). How this transition occurs is a subject of debate although a majority agrees that the modality
depends on the buffer gas, the conditions of the electric field, the size of the ions, as well as the mass of the individual atoms compared
to the mass of the gas molecule.

In either case, the necessity of aerosol science to study nucleation, coagulation and surface growth in detail requires the charac-
terization of particles of ever-decreasing sizes, together with the necessity for analytical chemistry to provide more accurate and
efficient calculations for macro-ions and large biomolecules, has led to a greater interaction between the two fields and the pro-
curement of common ground. A detailed study of the approach from the analytical chemistry perspective is out of the scope of this
review but a brief summary is provided here for the sake of completeness although the reader is prompted to consult the relevant
literature, if required.

3.3.2. Free molecular mobility/drag analytical and numerical calculations for non-spherical particles

Equation (23) is one of the most general expressions that may be used when dealing with the calculation of drag in the free mo-
lecular regime. Since no potential interactions are used to obtain eq. (23), as long as the wetted area of the charged particle is known,
the equation can be solved analytically for a given accommodation coefficient, but not without certain complications. Following the
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Epstein’s approach, Dahneke produced an analytical study of different convex particles including discs, cylinders, prolate and oblate
spheroids and cubes (B. E. Dahneke, 1973b). Garcia-Ybarra and Rosner studied sphero-cylindrical particles (cylinders with spherical
caps at the end) (GarciaYbarra & Rosner, 1989), de la Mora made a comprehensive study of different convex polyhedra with a focus on
how the existence of principal axis of the molecule facilitates the calculation process (Fernandez de la Mora, 2002), and Larriba and de
la Mora provided analytical calculations for beads on a string configurations to study polymer structures in the gas phase (Larriba &
Fernandez de la Mora, 2012). Except perhaps for the bead on string polymerie studies, all the structures studied analytically are
convex. The reason for the prevalence of convex structures is that concave surface elements may prevent some of the surface area from
being accessible to gas molecules while also leading to the possibility of multiple scattering. Both effects are significantly difficult to
assess analytically but need to be considered in the calculation of the overall drag force. Perhaps the only available analytical solution
of a free molecular transport property for particles which can be locally concave has been given by Zurita-Gotor (Mauricio Zur-
ita-Gotor, 2006). Chan and Dahneke, on the basis of some results by Chahine (Chahine, 1961), observed that the analytical calculation
of such effects on concave structures is futile in a practical way (Chan & Dahneke, 1951) and proposed the use of a Monte Carlo
technique, previously described by Bird (Bird, 1976, p. 76), to deterministically predict the scattering within the concave regions. This
Monte Carlo approach led to a lot more flexibility on the types of structures that could be calculated and was later picked up by
Zurita-Gotor and Mackowski who applied it to fractals to calculate thermophoretic and electrohydrodynamic drag forees (Mackowsli,
2006; Zurita, 2004). In the Monte Carlo approach, the particle is fixed inside of a cuboid domain assumed to have a constant drift
velocity. The particle is not flexible and is not allowed to rotate. From the assumed velocity distributions (eqgs. (3) and (10)), fluxes of
gas molecules entering the domain through the walls of the cuboid are calculated analytically using higher order moments. With the
provided fluxes, hundreds of thousands of gas molecules are then statistically inserted in the domain and allowed to traverse and
interact with the particle until they leave the domain. The drag force is therefore calculated as the total momentum transfer (final
minus initial) per unit time of the sum of all the gas molecules studied:
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Here N, is the total number of gas molecules and 7, is the total time that it takes for all N, molecules to enter the domain. This
method of drag calculation has been known in other fields as the momentum-transfer theory for how the momentum balance plays an
important role in the calculation (Edward A. Mason & McDaniel, 1988). The calculation is repeated for three perpendicular directions
so that a drag tensor maybe provided akin to that of eq. (24) and appropriately averaged to obtain the mobility. Mackowski used the
algorithm to caleulate only diffuse or specular interactions for fractals. However, this Monte Carlo approach allows for potential in-
teractions to be added as well, which will become necessary when studying molecular and entities with resolved atomic structure. A
cartoon of the Monte Carlo domain approach is provided in Fig. 5A.

At this stage of the discussion, one may be able to appreciate some of the calculations that were performed in the field of analytical
chemistry which consider, almost exclusively, entities with resolved atomic structure that are strictly within the free molecular regime.
While, in principle, the quadrature in eq. (9) may be calculated analytically for very basic structures and potentials, the calculation of
the deflection angle y4 for complex structures is too cumbersome to be carried out efficiently. For this reason, eq. (9) is almost
exclusively calculated numerically using Monte Carlo simulations. As seen previously, a very simple calculation that replaces eq. (9)

CCS-calculation methods

Fig. 5. A) Depiction of the Monte Carlo domain approach to deterministically calculate the drag force and electrical mobility of a particle in the free
molecular regime by calculating the momentum transfer of gas molecules entering and exiting the cuboid. 5 B) Basic CCS calculation methods to
solve eq. (9), which include the Trajectory Method (TM), the Exact Hard Sphere Scattering (EHSS), and the Projection Approximation (PA). TM
Method considers a 4-6-12 interaction, EHSS considers elastic specular scattering, and PA only differentiates between collisions and fly-by un-
perturbed trajectories. Fig. 5B has been extracted from Ref. (Gabelica & Marklund, 2018).
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consists in assuming an averaged Projection Approximation (PA) for the ion (Von Helden, Hsu, Kemper. & Bowers, 1991). This would
exclude any scattering or potential interaction as depicted in blue in Fig. 5B. The calculation of the PA is equivalent to projecting the
shadow of the particle in multiple random directions and averaging the total result. When compared to eq. (23), PA would yield
equivalent results if @ = 0 and the particle was convex. If the particle were not convex, the results from PA would be equivalent to
calculating eq. (23) using the convex hull as the surface area and. @ = 0.

The first widely used calculator that took full advantage of eq. (9) was MOBCAL by Jarrold and co-workers (Shvartsburg & Jarrold,
1996). Aside from the PA method, two different calculations are possible in MOBCAL, the Exact Hard Sphere Scattering (EHSS) and the
Trajectory Method (TM) (Mesleh. Hunter, Shvartsburg, Schatz, & Jarrold, 1996). In the EHSS method, the all-atom structure is fixed in
space and oriented randomly, and gas molecules are sampled from randomly oriented plane assuming rectilinear trajectories
perpendicular to the plane. Collisions with the structure are assumed to be specular and elastic as depicted in Fig. 5B in light green.
Upon reflection, the gas molecules are allowed to collide with the structure again multiple times (referred to as multiple scattering).
The multiple scattering has an enhancing effect of the momentum transfer that most of the time increases the value of the CCS
compared to that of PA. After several gas molecules are sampled, the structure is re-oriented and the process is repeated. Once suf-
ficient orientations are considered, an average drag is calculated assuming all orientations are equally probable. Given that eq. (9)
comes from a quadrature where a condition of elasticity has been utilized, diffuse/inelastic collisions are slightly harder to implement
and hence no diffusive version may be performed within MOBCAL. EHSS has been shown to provide accurate CCS calculations for
Helium gas for a wide range of particle sizes but fails to produce reasonable predictions for heavier and diatomic gases, including
Argon, Nitrogen, and Air, which seem to require more inelastic and diffuse collisions. This suggests that the global modality of
reflection of gas molecules is different depending on the gas. Additionally, given that an accommodation coefficient of ~0.91 has been
used successfully for large charged particles even in He (Eglin, 1923; Ishida, 1923; Rader, 1990), it appears that, even within the same
gas, there must be an evolution from specular to “effectively” diffuse collision as the Knudsen number is decreased.

In the TM method, gas molecules are subject to interaction potentials with the different elements composing the ion or particle. The
interaction potentials ® were initially limited to the induced-dipole potential and Lennard-Jones (L-J) potentials (Mesleh et al., 1996):
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Here, r; = (x;.¥:,%) is the relative distance between the gas molecule and the ith atom/subunit/charge, a, is the polarization
constant of the gas, g; is the ith charge, n, is the total number of atoms/subunits, n, is the total number of charges, and ¢ and ¢ are the
zero cross and well-depth parameters for the L-J potentials. Similar to the EHSS case, the potential interaction is always elastic being
the deflection angle y ; the sole quantity obtained from the Monte Carlo simulation. The implementation of the TM to calculate CCS
from small to medium ions has been incredibly successful in gases such as He and Na. However, its success relies on the correct
determination of the parameters of the L-J potentials for every atom/subunit composing the ion or particle. When these parameters are
correctly optimized, the CCS results are regularly within 4% of the experimentally measured ones (Campuzano et al., 2012).

Given the diatomic nature of Ny, the effect of the quadrupole potential has been considered as an additional potential in eq. (47)
(Kim et al., 2008). In it, the diatomic nitrogen molecule charge is divided into three charges, with a negative charge of 0.4825¢ on each
nitrogen and a positive charge at the center of the molecule of 0.965e while assuming an interatomic distance of 1.0975 A. The
quadrupole interaction potential, when reducing the quadrupole tensor to one term due to the linearity of the charges, is given by:
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Here ry denotes the distance from any i atom to the one of the 3 j charges in the N3 molecule. Since the N2 molecule is constantly
rotating, the effect of the quadrupole is only important at very close range. An appropriately weighted parameter is used to take into
account the relative orientation of the nitrogen molecule. A basic depiction of how the TM method interacts with an all-atom structure
is represented using lime trajectories in Fig. 5B (Gabelica & Marllund, 2018).

An interesting approach would be to adapt the domain approach of Chan and Dahneke and of Mackowski while considering
interaction potentials. Larriba-Andaluz and Hogan followed Mackowski’s approach and created a software suite labeled Ion Mobility
Software (IMoS) with spherical as well as cuboid domains (Coots, Gandhi, Onakoya, Chen, & Andaluz, 2020; Larriba & Hogan, 20134,
2013b), and where interaction potentials and entities with resolved atomic structure are considered. Aside from the EHSS, TM and PA
calculations, IMoS is able to perform other multiple calculations, including rotational effects for diatomic gases (C. Larriba-Andaluz &
Hogan, 201 3). Since inelastic collisions may be introduced in the Monte Carlo domain approach, IMoS allows for a hybrid method that
includes induced dipole potential and diffuse inelastic hard sphere scattering which is referred to as the Trajectory Diffuse Hard Sphere
Scattering (TDHSS) method. When using this approach, the user can select the value of the accommodation coefficient a as well as the
distribution of reemission velocities. The flexibility of this adjustment, when compared with other methods and experimental results,
may shed light on how a varies within the free molecular regime and for different gases. The software was later parallelized and can
perform calculations of particles composed of hundreds to thousands of atoms in seconds to minutes (Shrivastav, Nahin, Hogan, &
Larriba-Andaluz, 2017a). When the same potential interactions are chosen with the same parameters, the results provided are within
1% of those of MOBCAL, but are obtained at a fraction of the computational cost.

To arrive at accuracies better than 4% for the prediction of CCS of entities with resolved atomic structure using the TM method, one
must use well-defined model structures and optimized L-J parameters. The model structures should be obtained through ab-initio
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calculations or Density Functional Theory (DFT) (Hohenberg & Kohn. 1964). The DFT model structures, together with carefully ob-
tained experimental CCS values, can then be used to optimize the L-J parameters for every gas-atom pair (Campuzano et al., 2012; Wu,
Derrick, Nahin, Chen, & Larriba-Andaluz, 2018). The tuned L-J parameters may then be used generally for similar substances. Once
reliable numerical calculations are widespread and most CCS can be inferred within a few percent of the experimental counterpart, one
has the possibility of testing the validity of the diffuse collision assumption of the Stokes-Millikan with relatively solid footing.
Regarding the diffuse assumption, given the suecess of elastic approaches within the TM, the first question that arises pertains to
how the accommodation coefficient a is related to the ion-induced dipole and L-J potential interactions. The fact that experimental
results for macromolecules in N, agree with TDHSS using a = 0.91 as well as with results of TMLJ (4-6-12 interaction) (Shrivastav,
Nahin, Hogan, & Larriba-Andaluz, 2017h), suggests that the collective effect of the attractive portion of the interaction potential on a
sufficiently large molecule, causes the reflection to be “effectively™ diffuse. This may be caricaturized as shown in Fig. 3D where atoms
adjacent to the one colliding with the molecule affect the gas trajectories through potential interactions resulting in a quasi-random
direction of emission and without the need of imposing an arbitrary diffuse direction as it is done through the use of a. If such is the
case, as the ion becomes smaller, the effect becomes smaller and the reflection becomes naturally more specular. In this deseriptive
framework, it is also possible that different gases — and different atoms-behave in different ways given that the interaction potentials
may be quite different from each other. The effects that different gases have on the CCS have been extensively characterized and Fig. 6
shows a few results comparing CCS of different ions for different gases and different temperatures (Gabelica & Marklund, 2018;
Leaptrot et al.. 2019; Matz et al., 2002). While part of the deviations between different gases may be associated with distinet polar-
izabilities, this cannot be the only factor providing the difference, especially for large singly charged entities. For example, Fig. 6A
shows the CCS as a function of the mass to charge ratio of several different types of analytes in He and Nitrogen gases. While the
polarizability effect should be quite important for small mass to charge values (—~100 Thomsons), it should become almost negligible
for larger values, expecting its value to be lower than 3% in N, compared to He for ~1000 Thomsons. A similar trend is also noticeable
in Fig. 6B. On the top of the figure, C60 fullerene CCS with 1 and 4 elementary charges are compared between He and N, gases as a
function of the temperature. While the discussion below only focuses on room temperature, similar arguments may be used for other
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Fig. 6. Comparison of different CCS from different gases. Figures were directly taken from Refs. (Gabelica & Marklund, 2018; Leaptrot, May, Dodds,
& McLean, 2019; Matz, Hill, Beegle, & Kanik, 2002). A) CCS in Helium and Nitrogen for different sets of ions. B} CCS for C60 and Ubiquitin Native
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Carbon Dioxide environments (see legend).
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temperatures. The contribution of the ion induced dipole potential for a singly charged C60 at room temperature is approximately
5-6% larger in N, compared to He as calculated by IMoS. This is in contrast with the large difference of 70% observed experimentally.
In the unlikely event that the 70% difference could be fully attributed to the ion-induced dipole potential, the same dipole effect would
require that the difference would be much larger than 125% when 4 charges are present. The effect may be noticed also in the bottom
panels of Fig. 6B, where the difference between the CCS in He and N3 is still about 20% even for a macromolecule such as Ubiquitin in
its compact state at room temperature. Interestingly enough, when comparing all the results in Fig. 6B, the difference between CCS in
He and N, seems to be quite smaller for larger macromolecules even when correcting for the effect of the ion-induced dipole potential.
This could indicate that the percentage of collisions that result in diffuse scattering becomes more similar for both gases as the size of
the particles increases. Finally, even though the ion-induced dipole potential is not the sole effect that differentiates gases, its effect
cannot be neglected especially for small molecules. As an example, Fig. 6C shows the difference in CCS for different amphetamines in
He, Ar, Ny and CO,.

Perhaps the best way to analyze how the scattering effect evolves in different gases is to employ a family of analytes that can be
studied for a large range of mobility sizes. Ionic liquids may be used for such a purpose with the advantage that they form relatively
spherical ions which may carry multiple charges. Studies by Larriba-Andaluz, de la Mora, and Clemmer using different Ionic Liquids in
He and Nitrogen environments investigated the diffuse scattering effect (C. Larriba-Andaluz et al.. 2015). One relevant result has been
reproduced in Fig. 7 for 1-3 Ethyl-Methyl-Imidazolium dicyanamide (EMIM-N(CN),) ion. Fiz. 7 plots the dimensionless CCS Q/ PA =
#¢ for EMIM-N(CN), as a function of the square root of the volume equivalent diameter in Helium and Nitrogen gases. In the plot,
within the resolved colored data, each of the vertical lines corresponds to an ion of a known mass (a certain number of neutrals and
charges). The purpose of the choice of the square root of the diameter was to try to increase the visual separation of the smaller ions
without the need to resort to logarithmic plots. When looking at the portion of the data measured in N, one can see that the value of Q/
PA remains fairly constant from 2 nm (d"/2 = 1.44) to 8 nm and where #¢ ~ 1.42. Given that the ion-induced dipole potential effect is
around 5-10% for the size/charge ranges being measured, the results suggests that £ ~ 1.33 — 1.36 which agrees with the expected
diffuse reflection from Stokes-Millikan and @ = 0.9 — 0.91. On the other hand, the #¢ value seems to decrease for charge states 1 and 2
in Nitrogen. Given that one would expect the effect of the ion-induced dipole to become increasingly more important with the
reduction of size, the results appear to give the impression that the collisions become more specular as the ion is reduced in size. This is
also corroborated by the numerical calculations done with IMoS and where TDHSS and TM agree to within 2-4% for the cases studied.

The results in Helium presented in Fig. 7 are quite different from those presented in Nitrogen. The first thing to notice is that £ ~
1.36 is not reached in the range of mass-equivalent diameter values accessed experimentally. Moreover, for singly charged entities and
ions close to 1 nm, the results seem to suggest #¢ ~ 1 and hence specular calculations or equivalently a ~ 0. The value of #¢ increases
steadily with the diameter of the ion hinting at an asymptotic value far from the observed experimental values. When compared to the
numerical calculations from IMoS, the experimental values seem to agree quite well with the regular EHSS with ion-induced dipole
interaction (TEHSS). Given that the potential interaction is minimal, most of the increment must be due to the increasing occurrence of
diffuse seattering, i.e. multiple collisions occur for the same gas molecule, most likely due to the increasing roughness of the surface of
the molecule. The numerical calculations performed suggest that the fraction of collisions resulting in diffuse scattering will continue
to increase with increasing size past our experimental data to a value of 1.3. Solely because of the multiple scattering on the surface,
one can predict that eventually, the interaction may be considered “effectively” diffuse, matching the prediction of Stokes-Millikan and
the asymptotic results for cases in the transition regime. Other authors, such as Li and Wang, have explained the specular to diffuse
collision behavior through gas molecule trapping on the particle surface as observed from Molecular Dynamics simulation (Z. Li &

Wang, 2005).
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The fact that TDHSS agrees with TM in N2 and that TEHSS qualitatively agrees with TM in He, seems to suggest that diffuse
scattering effects may be embedded into the L-J parameters without loss of generality. However, the diffuse scattering effects may
come in part from inelastic collisions (exchange of translational and ro-vibrational energies), especially in the case of N, and CO,
where the gas molecule is much heavier than most of the individual atoms of an organic molecule such as an Ionic Liquid. Upon impact
of a heavy gas molecule, it is very likely that the ion may deform in the region close to the collision, reducing the chances of a specular
collision. This raises the question of whether heavier atoms could lead to more specular collisions for the same gas. Ouyang et al.
studied this effect on alkali metal iodine salt clusters using cations of increasing mass in Ny. The results clearly show that, for very
heavy atoms such as those in Cs-I and Rb-I salts, the resulting collisions are more specular while for less heavy atoms such as Na-l, the
collisions become more diffuse (H. Ouyang, Larriba-Andaluz, Oberreit, & Hogan, 2013). This suggests that further studies using
Molecular Dynamics instead of the presently used fixed structures should be important to ascertain the effects of inelastic collisions
correctly.

The success of MOBCAL and IMoS has resulted in numerous other mobility calculators, mostly focused on optimizing and paral-
lelizing MOBCAL, such as Collidoscope, HPCCS and Mobcal-MPI (Ewing, Donor, Wilson, & Prell, 2017; leritano, Crouse, Campbell, &
Hopkins, 2019; Zanotto, Heerdt, Souza, Araujo, & Skaf, 2018). Mobeal-MPI changes the L-J parameters to a Buckingham type-based
repulsion in an attempt to improve the accuracy of the calculation. Other calculators stem from convex to concave shape factor ratios
such as the Projection Superposition Approximation (PSA), where the shape factor ratio directly multiplies the PA to give a relatively
good approximation to the CCS (Bleiholder, Wyttenbach, & Bowers, 2011). Interestingly, this shape factor for large macromolecules
varies around 1.3-1.39 on average, which suggests that, regardless of the gas or particle shape used, any appropriately large molecule
will have multiple scattering events on its surface that are sufficient to result in an effectively diffuse collision (Wyttenbach, Bleiholder,
& Bowers, 201 3). Molecular Dynamics caleulations in the presence of an electric field have been tested to calculate electrical mobilities
in order to try and incorporate ro-vibrational degrees of freedom of gas and particles into the caleulations (Lai, Dodds, & Li, 2018;
Tamadate et al., 20719). While the results from these simulations are not as accurate as those of the DFT calculations, once the modeling
parameters are optimized, they might become the new computational tool to study both the free molecular and transition regimes.

4. Conclusions

A consolidation effort to provide a coherent review of the various size-mobility relationships over the entire Knudsen range has
been attempted. Despite the clear success of the different relations for spherical and non-spherical particles, and in particular of the
Stokes-Millikan relationship, there is still a wide margin for improvements in accuracy and efficiency of the calculations, as well as in
the conditions of applicability of the results. This is exceptionally true within the transition regime, for which no definitive compu-
tationally viable theory rooted only in fundamental principles is known and where experimentally derived parameters are still
necessary to arrive at accurate mobility predictions. Given the success of numerical calculators within the free molecular regime and of
DSMC calculators for much of the Knudsen range, it seems logical that new calculators will soon become available with very accurate
predictions within the transition regime. As more computational power becomes available, it is also logical to expect complex elec-
trical mobility studies using Molecular Dynamics simulations that take into account the rotational and vibrational degrees of freedom
of both charged particles and gas molecules. These studies will very likely shed some light into the specular vs. diffuse unresolved
dilemma.

Overall, the study of electrical mobility and other transport properties in the field of aerosol science has reached a healthy maturity.
With the emergence of increasingly accurate instrumentation and the rising need to better understand nucleation, coagulation and
surface growth, as well as transport, filtration and toxicity of aerosol particles, aerosol science should make an effort to push the
boundaries of the fundamental understanding of gas phase transport phenomena in the free molecular to transition region, a feat that,
while not easy, is within the reach of the community.
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