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ABSTRACT: The local pH variation near the surface of CO,
reduction electrodes is important but hard to study. We develop a
continuous-flow Raman electrochemical cell that enables the first
experimental study of the local pH near a CO, reduction gas
diffusion electrode under reaction conditions. At zero current, CO,
chemically reacts with the 1 M KOH electrolyte at the interface to
form HCO;~ and CO;>". The local pH on the cathode surface is
7.2, and the HCO;™ concentration profile extends a distance of
120 um into the electrolyte, which verifies that the nominal
overpotential reduction from using alkaline electrolyte originates
from the Nernst potential of the pH gradient layer at the cathode/
electrolyte interface. The CO,—OH™ neutralization reaction and

aradiol Bulk alkaline
f

the pH gradient layer still persist, albeit to a reduced extent, at CO, reduction current densities up to 150 mA/cm’.

B INTRODUCTION

CO, electroreduction reactions are promising for producing
fuels and chemicals from cheap and abundant CO, resources
using renewable electricitz. Electrochemical conversion of CO,
to CO,"™ formic acid,é’ hydrocarbons,8_ll or alcohols™*™*
allows for the storing of renewable energy in fuels and lprovides
useful chemicals. Conventional three-electrode cells,”> where
the reaction is performed using CO, dissolved in the
electrolyte, are well-defined for studying electrocatalytic
properties of materials. However, the relatively low concen-
tration and sluggish diffusion of CO, in the solution phase
make it difficult to reach application-relevant high current
densities (>0.1 or even 1 A/cm?). Employing gas diffusion
electrodes (GDEs)'® in flow electrolyzers can greatly enhance
the mass transport of CO, by forming a gas—liquid—solid
three-phase interface and hence substantially increase the
diffusion-limited current density.'”'” While common CO,
electrolytic cells often use near-neutral aqueous solutions
such as KHCO; as the electrolyte," *° adopting alkaline
electrolyte solutions is found to significantly lower the
overpotential for CO, reduction.””~>""'* Current densities
greater than 1 A/cm? have also been achieved with alkaline
electrolytes.””** Despite the improved performance, there is
controversy regarding its origin. Some studies attribute this to
a simple pH effect assuming the catalyst works in the same
alkaline environment as the bulk electrolyte (Figure 1a).*
However, this hypothesis neglects the chemical reaction
between CO, and OH™ and cannot justify the same magnitude
of overpotential reduction experimentally observed for the
CO,-to-CO conversion (two-electron two-proton process)
catalyzed by Au and the CO,-to-formate conversion (two-
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electron one-proton process) catalyzed by SnO, (both ~60
mV/pH)."! We therefore postulated that the local environment
at the cathode surface is near neutral because of the CO,—
OH™ neutralization reaction (Figure 1b), and the pH gradient
across the cathode and the bulk alkaline electrolyte creates a
Nernst potential.' This can readily explain the voltage
improvement observed for all of our alkaline CO, electrolyzers
using different cathode catalysts for different products and is
supported by the observation that the electrolyte is indeed
gradually neutralized under continuous working conditions."
To further consolidate this postulation, it is necessary to
probe the local pH near the CO,-reduction GDE in a flow
electrolyzer under reaction conditions, which has not been
experimentally demonstrated to date. In addition to
mathematic models and simulations,' "> possible experimental
methods to study the local pH include pH-sensitive micro-
electrodes, rotating disk electrode (RDE) measurements, and
spectroscopic tools. Microelectrodes need to be positioned
near the catalytic electrode surface and thus inevitably invade
the local environment and disrupt the species fluxes there.”*™*’
RDE experiments could circumvent this issue and measure the
electrode surface pH during hydrogen oxidation/evolution
reactions,”””” but whether this method would be applicable to
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Figure 1. Designed flow cell for performing in situ Raman measurements under continuous-flow CO, reduction conditions to distinguish between
(a) an abrupt interface and (b) a gradient interface between the cathode and electrolyte. (c) Cell design with top and side views of the cathode

area.

CO, reduction reactions is not clear. Nondestructive Raman or
IR spectroscopy could directly probe pH-sensitive electrolyte
species such as carbonate (CO;*”) and bicarbonate (HCO;")
at the electrode/electrolyte interface, but almost all of these
studies are conducted on gas-impermeable electrodes, some of
which require the catalyst to be coated on a prism and hence
are not even compatible with the GDE and flow cell
configuration.””*?

B RESULTS AND DISCUSSION

Herein, we report the design of an alkaline CO, electrolyzer
that allows in situ Raman microscopy to be performed under
continuous flow and reaction conditions to unveil the pH
variation from the cathodic GDE surface to the electrolyte
bulk. Microarea Raman spectra are recorded to analyze the
concentrations of HCO;~ and CO,*” as functions of the
distance from the electrode surface into the electrolyte bulk,
which are extrapolated to the cathode surface assuming steady-
state concentrations and acid—base equilibria. The pH values
are then derived from the concentrations and equilibrium
constants. With 1 M KOH as the electrolyte, we find that
under open-circuit conditions the local environment at the
cathode surface is near neutral and the pH increases to >11
over a distance of 120 pm into the electrolyte, which is
attributed to the CO,—OH™ neutralization reaction. Applying
a reduction current raises the pH near the cathode surface and
narrows the pH gradient layer, largely due to the generation of
OH™ from the electrochemical CO, reduction reaction.
However, the generated OH™ at current densities up to 150

mA/cm® can still not balance the consumption from the
chemical reaction with CO,. These results confirm that the
overpotential reduction of alkaline CO, electrolyzers as
compared to neutral ones originates from the pH gradient at
the cathode/electrolyte interface.

We modified our previously developed flow electrolyzer’
to allow for examination using a confocal Raman microscope
under reaction conditions (Figure 1c). In this configuration,
the micrometer-size laser beam is parallel to the GDE surface,
which separates the CO, gas and liquid electrolyte. The
distance from the laser beam to the electrode surface is
controlled by the mechanical sample stage for line scan
measurements (Figure lc, top view). We chose HCO;~ and
CO,* as pH probes because (i) they are the products of the
CO,—OH™ neutralization reaction, which avoids any interfer-
ence from incorporating additional pH-sensitive species, (ii)
they have distinguishable Raman features and can be
independently quantified using calibration curves (Figure
S1), and (iii) the acid—base equilibrium between them can
be used to derive the pH.

We first studied the system at open circuit with 1 M KOH
electrolyte flowing at 0.5 mL/min and CO, flowing at 20 sccm.
This zero-current scenario corresponds to situations when the
cathode potential is more positive than the onset potential for
CO, reduction. As shown in Figure 2a, HCO;~ and CO;>~
peaks are recorded at 1012 and 1064 cm™’, respectively, when
the laser beam is positioned 10 ym away from the cathode into
the electrolyte (x = —10 um, where x denotes the distance
from the cathode surface and the negative sign indicates the
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Figure 2. (a) Raman spectra recorded at various distances from the GDE surface. Current density: 0 mA/cm? Electrolyte: 1 M KOH. (b) HCO,~

and CO;>~
with respect to the distance from the GDE surface.

concentrations derived from the spectra in (a). (c) Fitted concentrations of HCO;~, CO;*",

CO, (aq), and OH™ and (d) pH profile

direction from the cathode to the electrolyte). The existence of
HCO;™ and CO;*" unambiguously proves that CO, reacts
with the alkaline electrolyte, at least when there is no net CO,
electroreduction. As the laser beam is moved further away from
the GDE surface into the electrolyte, the detected HCO;~
concentration decreased from 0.22 M at x = —10 ym to 0.024
M at x = —120 um, and the CO,*~ concentration increased
from 0.065 to 0.20 M (Figure 2b). These trends indicate that
the HCO;™ originates from the CO,—OH™ neutralization at
the cathode/electrolyte interface and diffuses into the KOH
electrolyte where it is further deprotonated to form CO;*~
Note that the trends of concentration change for both
HCO,;™ and CO;*” are less well-defined in the region of —40
um < x < 0 um (Figure 2b). We believe this is due to the poor
spatial resolution of our Raman measurements in this region,
which is much worse than the optimal micrometer level
because (i) the laser beam is focused into liquid instead of on a
substrate, (ii) the electrolyte is flowing, and (iii) there is likely
interference from the nearby electrode. Therefore, the HCO;~
and CO,*” concentrations directly derived from the Raman
spectra need to be corrected. We consider that in our system
the region of interest can be treated as a quasi-one-dimensional
channel (Figure 1b). The concentrations of the species of
interest are dependent on x but are uniform along the y and z
directions.”** The concentration of HCO,™ at any given
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position x is influenced by both acid—base reactions and

diffusion:
626
Vo T2

d
% _p 0

Py + kygese, — kyep — kyciey + kyc,

(1)
where ¢;, ¢,, ¢, and ¢, are the concentrations of HCO;,
CO;*", OH", and CO,(aq), respectively, D; is the diffusion
coeflicient of HCO;™, and k4 ky,, k5 and k,, are the forward
and reverse reaction rate constants of the following two
reactions:

CO,(aq) + OH™ = HCO;~ (1)

HCO,” + OH™ = CO,*” + H,0 (11)

We assume reactions I and II are at equilibrium, which
means k¢3¢, = ki,¢; and kyeic3 = ky,0,. In the steady state, the
concentration of HCO;™ does not change over time, that is,
oc,
o
which suggests the concentration of HCO;~ should be linear
with respect to x. The same analysis applies to CO;>” and
CO,(aq). Therefore, we used the HCO,;~ and CO;*~
concentration data measured in the region of —120 ym < x
< —40 um to fit linear functions of x, because in this region

they are reasonably linear with respect to x and the detection is

2
= 0. Equation 1 can therefore be simplified to % =0,

https://dx.doi.org/10.1021/jacs.0c06779
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Figure 3. Measured HCO;™ and CO,>” concentrations with respect to the distance from the GDE surface at current densities of (a) 50 mA/cm?
and (d) 100 mA/cm? Electrolyte: 1 M KOH. (b and e) Fitted concentrations of HCO;~, CO;*, CO, (aq), and OH™ corresponding to (a) and
(d), respectively. (c and f) pH profiles derived from (b) and (e), respectively.

not disrupted by the electrode. As shown in Figure 2c, in the
region from x = —120 ym to x = —26 um, HCO; ™ and CO;*~
are dominant species, and the HCO;™ concentration increases
linearly with x from 0.022 to 0.18 M, while the CO,*~
concentration decreases linearly with x from 0.20 to 0.0012
M. In the region of —26 ym < x < 0 pum, the concentration of
CO,>" approaches zero, and the dominant species are HCO;~
and CO,(aq). The HCO;~ concentration increases from 0.18
M at x = =26 ym to 0.23 M at x = 0 um, and the CO,(aq)
concentration increases from 0.0028 M at x = —26 um to its
saturated level at x = 0 um, that is, 0.033 M.* As minor
species, the concentrations of CO,(aq) in the —120 ym < x <
—26 pm region, CO;*” in the —26 ym < x < 0 ym region, and
OH in the entire region can be calculated from the acid—base
equilibria (Figure 2c). More detailed analysis and fitting results
are available in the Supporting Information. As shown in
Figure 2d, the pH profile for the pH gradient region can be
divided into two regimes, one governed by the CO,/HCO;~
buffer pair and the other by HCO;™/CO,;*". At x = 0 um, that
is, the cathode/electrolyte interface, the pH is 7.2, which
suggests that the KOH electrolyte is almost completely
neutralized by CO,. The pH increases to >11 at x = —120
pum and starts to approach that of the bulk electrolyte.

The foundation of our analysis is the assumption of acid—
base equilibrium, which we made on the basis that the two
neutralization reactions, that is, reactions I and II, are fast with
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k=593 X 10°M™' s7 and ky = 1 X 10° M~ s™%. To further
confirm the validity of this assumption, we carried out two sets
of experiments. We noticed that the total concentration of
negative charges from HCO,™ and CO,*” in the scanned
region is approximately 0.4 M (Figure S2), which is
significantly below the concentration of the starting 1 M
KOH electrolyte. This raised a concern whether there is still a
high concentration of OH in this region. If so, reactions I and
II are not at equilibrium, which would violate our assumption.
To examine this issue, we replaced the 1 M KOH electrolyte
with a N(CH,),OH electrolyte of the same concentration so
that the cation concentration can be quantified by Raman
spectroscopy (Figures S3 and S4). Under identical operating
conditions, the N(CHj,),* concentration over —110 ym < x <
—10 pm is found to be approximately 0.4 M (Figure SS), in
good agreement with the total charge concentration of HCO;~
and CO;*". Because charge neutrality always prevails, this
result suggests that OH™ is indeed a minor species in the pH
gradient region and the acid—base equilibria hold. The
electrolyte concentration in this region is significantly lower
than that of the bulk because OH™ is almost fully consumed by
CO, and the formed HCO;™ and CO;>" diffuse. As evidence,
we found that the N(CH;)," concentration is around 1 M
when CO, is replaced with Ar (Figure S6). In another
experiment, we varied the flow rates of CO, and KOH
electrolyte independently. We first changed the CO, gas flow

https://dx.doi.org/10.1021/jacs.0c06779
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rate between S and 25 sccm at a fixed electrolyte flow rate of
0.5 mL/min. The result shows that at higher gas flow rates,
more CO, reacts with the electrolyte and the pH gradient
region is wider. At 5 scem, HCO;™ is detectable until x = —70
um; when the CO, flow rate is increased to 25 sccm, HCO;~
penetrates to x = —130 um (Figure S7). We also changed the
electrolyte flow rate between 0.6 and 0.1 mL/min at a fixed
CO, flow rate of 20 sccm. The pH gradient region becomes
wider at slower electrolyte flow rates (Figure S8). The
responses of the HCO,™ and CO;*” concentration profiles
to the gas and electrolyte flow rates again verify that our system
is not limited by the kinetics of the acid—base reactions.

We then operated the electrochemical cell at constant-
current CO, reduction conditions and performed in situ
Raman measurements to study the pH changes near the GDE
surface. In the current density range studied, the catalyst,
cobalt phthalocyanine molecules supported on carbon nano-
tubes (CoPc/CNT), converts CO, to CO with high selectivity
(Figure $9)."” The conversion of CO, to CO consumes
protons likely from H,O and thus generates OH™, which can
counter the effect of CO,—OH™ neutralization on the local
pH. At the current density of S0 mA/cm?® (Figure S10), the
HCO;™ concentration near the cathode surface (x = —10 pm)
is measured to be 0.23 M, which decreases to 0.029 M at x =
—80 um, and the CO;>~ concentration increases from 0.07 M
atx = —10 ym to 0.14 M at x = —80 pm (Figures 3a and S11).
The region where HCO;™ is detectable is 40 ym narrower at
50 mA/cm? than that in the open-circuit scenario (Figure 2b).
Fitting the experimentally measured HCO,;~ and CO,*~
concentrations as linear functions of x gives smooth
concentration profiles (Figure 3b), from which the pH profile
can be derived. As shown in Figure 3¢, the local pH at the
electrode/electrolyte interface is 9.05, much higher than that in
the open-circuit scenario (Figure 2d), and the HCO; region is
about 86 pm. When the current density is increased to 100
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mA/cm’ (Figure S12), the HCO;™ region further shrinks to 37
um (Figures 3de and S13), and the cathode surface pH is
determined to be 9.8 (Figure 3f). When the current density
reaches 150 mA/cm* (Figure S14), only CO;>" can be
observed at x = —10 um (Figure S15), which indicates a
cathode surface pH higher than 12. These findings confirm
that the electrochemical CO, reduction reaction indeed
produces OH™ at the cathode surface;'’” however, the
produced OH™ cannot fully offset the OH™ consumed by
the chemical reaction with CO, even at a high current density
of 150 mA/cm® In fact, as long as the one-pass CO,
conversion is not 100%, the unreacted CO, will react with
KOH at the interface.

The acid—base reaction between CO, and electrolyte occurs
even when a 1 M KHCO; aqueous solution is used as the
electrolyte. As shown in Figure 4a, both HCO;~ and CO;>” are
detected by Raman spectroscopy in the bulk of the 1 M
KHCO; electrolyte (purple highlight), whereas no CO;*~
signal is found near the cathode surface in the region of
—120 pym < x < —10 um. This is strong evidence that the CO,
gas reacts with the CO;>” in the electrolyte to form HCO;™.
When the electrochemical CO, reduction reaction proceeds at
50 mA/cm?* (Figure S16), both HCO;™ and CO;>” are present
in the region of —130 ym < x < —10 um. The CO;*"
concentration drops from 0.61 M at x = —10 ym to 0.18 M at
x = —130 pum, while the HCO;™ concentration increases from
0.11 M at x = —10 ym to 1.26 M at x = —130 pm (Figure 4b).
Fitting these measured concentrations into linear functions of
x gives concentration and pH profiles (Figure 4c,d), which
show that the local pH near the cathode surface is 11.9, much
higher than that of the electrolyte bulk. Note that under these
conditions, CO, will still chemically react with the electrolyte,
and the reaction rate would be even faster than that in the
zero-current scenario because the local pH is now higher.
However, the CO,-electrolyte neutralization reaction is not
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significant enough to balance the OH™ generated from the
electrochemical CO, reduction reaction, which is the driving
force of the basic local pH.

B CONCLUSION

We have demonstrated that in situ microarea Raman
spectroscopy is an effective tool for studying the local pH
near CO, reduction GDEs under working conditions. Applying
this technique, we have obtained experimental evidence that
CO, chemically reacts with alkaline electrolyte at the interface.
This neutralization reaction has significant influences on the
local pH and the electrochemical performance. This
continuous-flow Raman electrochemical cell could also be
applicable to other reaction systems involving GDEs. The
spatial resolution and Raman sensitivity might be limitations,
which could be overcome by techniques such as surface
enhancement.
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