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Abstract—Localization is one of the most interesting topics
related to the promising millimeter wave (mmWave) technology.
In this paper, we investigate joint channel estimation and localiza-
tion for a cooperative mmWave system with several receivers. Due
to the strong line-of-sight path common to mmWave channels,
one can localize the position of the user by exploiting the
signal’s angle-of-arrival (AoA). Leveraging a variational Bayesian
approach, we obtain soft information about the AoA for each
receiver. We then use the soft AoA information and geometrical
constraints to localize the position of the user and further improve
the channel estimation performance. Numerical results show that
the proposed algorithm has centimeter-level localization accuracy
for an outdoor scene. In addition, the proposed algorithm
provides 1-3 dB of gain for channel estimation by exploiting
the correlation among the receiver channels depending on the
availability of prior information about the path loss model.

Index Terms—Channel estimation, localization, mmWave sys-
tem, variational Bayesian inference.

I. INTRODUCTION

Millimeter wave (mmWave) communication is a promising

technology for future wireless communication systems [1].

Among various topics related to mmWave communication,

localization has attracted considerable interest in recent years

[2], [3]. The location information of the user enables location-

based services such as navigation, mapping, augmented reality,

intelligent transportation systems, and so on [4]. Localization

techniques can be classified into two main categories: direct

and indirect localization [5]. Direct localization uses the re-

ceived waveform to estimate the location of the user directly

[6]. By contrast, indirect localization exploits the channel

parameters, such as angle-of-arrival (AoA), to estimate the

position of the user. Due to the severe attenuation at high

frequencies, wireless channels over the mmWave band often

consist of only one or two paths. Hence, channel estimation

approaches that exploit channel models based on AoA have

better performance than those based for example on least

squares [7]–[9].

This work was supported in part by the National Key Research and Devel-
opment Program 2018YFA0701602 and the National Science Foundation of
China under Grant 61941104. The work of C.-K. Wen was supported in part
by the Ministry of Science and Technology of Taiwan under grants MOST
108-2628-E-110-001-MY3 and the ITRI in Hsinchu, Taiwan. The work of
A. Lee Swindlehurst was supported in part by the U.S. National Science
Foundation under Grants CCF-1703635 and ECCS-1824565.

Weighted least squares-based algebraic solutions for the po-

sition and velocity of a moving user using time and frequency

differences of arrival are investigated in [10]. Reference [11]

studied AoA localization with a sensor network, and proposed

a closed-form solution using AoAs that can handle the pres-

ence of sensor position errors. In [12], the authors investigated

localization with distributed antenna arrays and proposed a

closed-form positioning method based on the weighted least

squares method. Reference [13] investigated downlink posi-

tioning with a single reference station that requires both AoA

and angle-of-departure measurements which are obtained from

the beam training. In [14], the authors studied the localization

of users with variable velocities in mmWave systems based

on weighted least squares using hybrid AoA, time difference

of arrival, and frequency difference of arrival measurements.

However, the abovementioned works only consider the local-

ization problem and assume that the channel parameters such

as AoA are known at receiver side. Joint channel estimation

and localization for mmWave systems has not to date been

studied extensively.

In this paper, we focus on joint channel estimation and

localization for a cooperative mmWave system with several re-

ceivers. The proposed joint channel estimation and localization

algorithm consists of three steps. First, the AoA mean direction

and concentration parameters are extracted from the received

signal for each receiver using a variational Bayesian approach.

Secondly, we derive the minimum mean square error (MMSE)

and the maximum a posteriori (MAP) estimators to localize the

position of the user and refine the AoAs. Finally, the equivalent

channel is reconstructed with or without any available prior

information about the path loss model. Numerical results show

that the proposed joint channel estimation and localization

algorithm has centimeter-level localization accuracy for an out-

door scene. By exploiting the correlation among the receiver

channels, the proposed algorithm can provide 3 dB of gain in

channel estimation with prior information about the path loss

model, and 1 dB of gain without.

II. SYSTEM MODEL

We consider a mmWave system where a single antenna

user is served by L receivers, as shown in Fig. 1. The L
receivers are distributed along the x-axis, and each receiver has
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a uniform linear array (ULA) with M antennas. The position

of each receiver is known. We further assume line-of-sight

(LoS) transmission between the user and L receivers. Fig. 1

shows an instance with five receivers, and the lines between

the user and receivers represent the LoS paths. For the i-th
receiver, the received signal can be written as

yi = his+ ui = αia(θi)s+ ui = βie
jψia(θi)s+ ui, (1)

where hi is the channel between the user and the i-th receiver,

αi is the complex channel coefficient, βi is the path loss

factor, ψi is the phase rotation, s is the transmit symbol with

|s|2 = Pu, and ui is complex Gaussian noise with variance

vu. Assuming that the antenna spacing of each ULA is half

wavelength, the steering vector a(θi) is given by

a(θi) =
[
1, ejπcos(θi), · · ·, ejπ(M−1)cos(θi)

]T
, (2)

where θi is the AoA. In this paper, we use the free space path

loss model, and thus the path loss factor of the i-th receiver

is given as

βi =

√
GtGrλ2

16π2l2i
, (3)

where λ is the wavelength, li represents the distance between

the user and the i-th receiver, and Gt and Gr denote the

antenna gains of the user and receiver, respectively.

For channel estimation, the least squares estimate of hi

is given by ĥi = yi/s. However, since the channel has a

limited number of paths, one can do better by exploiting

the channel structure [9]. Specifically, we can obtain a better

channel estimate if the AoA and the complex channel gain

are directly extracted from the received signal. In addition,

we observe that the channels for different ULA receivers are

correlated. Correlation is present in the AoAs (θi) and the

complex channel coefficients (αi). From Fig. 1 we see that

the channels are fully characterized by the position of the user.

Given the position of the user (e.g., x- and y-axis coordinates),

we can infer the AoA of each ULA. Furthermore, we can use

any two AoAs to infer other AoAs, since two AoAs are able

to localize the position of the user. Finally, if the position of

the user is known, we can use any complex channel coefficient

to infer other complex channel coefficients on the basis of the

path loss model and the positions of the user and receivers.

In this paper, we focus on joint channel estimation and lo-

calization for the considered cooperative mmWave system. We

aim to extract the AoAs and the complex channel coefficients,

and use the geometrical constraints to estimate the position of

the user and improve the channel estimation performance.

III. JOINT CHANNEL ESTIMATION AND LOCALIZATION

In this section, we propose a joint channel estimation and

localization algorithm. The proposed algorithm has three steps:

a) Extracting the AoAs and the complex channel coefficients,

b) Localizing the position of the user, c) Reconstructing the
equivalent channel. In the following analysis, we detail each

step of the proposed algorithm.

position of user

ULA 3ULA 2ULA 1 ULA 5ULA 4

position of receiver

1 2 3 4 5

x

y

Fig. 1. Model of the considered cooperative mmWave system.

A. Extracting the AoAs and the Complex Channel Coefficients
Equation (1) is a special case of the the fundamental line

spectral estimation (LSE) problem. The LSE problem has the

following form

y = h+ u =
K∑
i=1

αis(φi) + u, (4)

where αi is the complex amplitude, u is a complex Gaussian

noise vector with independent elements of variance v, and the

sinusoid s(φi) ∈ C
M with φi ∈ [−π, π) is defined as

s(φi) =
[
1, ejφi , · · ·, ej(M−1)φi

]T
. (5)

Equation (4) consists of several sinusoids, where the complex

amplitudes (αi), the frequencies (φi), and the model order

(K) are unknown. LSE aims to detect the model order K
and recover the complex amplitude and the frequency of each

sinusoid from the observation y.
For step a), we use the VALSE algorithm [7] to extract

the AoA and the complex channel gain of each receiver. The

VALSE algorithm solves the fundamental LSE problem on

the basis of the probabilistic model and variational Bayesian

inference. It assumes that the frequency of each sinusoid

follows the von Mises distribution [15]

p(φi) = fVM(φi;μ, κ) =
1

2πI0(κ)
eκcos(φi−μ), φi ∈ [−π, π),

(6)

where μ and κ are the mean direction and the concentration

parameters, and Ip(·) is the modified Bessel function of the

first kind and order p. The von Mises distribution is of

significant importance among distributions on the unit circle,

and its role is similar to that of the Gaussian distribution

on the line [15]. When κ = 0, the von Mises distribution

degenerates into the uniform distribution on the unit circle.

The VALSE algorithm assumes that the complex amplitude

follows the Bernoulli-Gaussian distribution

p(αi| ρ, τ) = (1− ρ)δ(αi) + ρfCN(αi; 0, τ), (7)

where ρ is the active rate, δ(·) is the Dirac delta function, and

fCN(αi; 0, τ) is the complex Gaussian distribution

fCN(αi; 0, τ) =
1

πτ
exp

(
−|αi|2

τ

)
, (8)
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Algorithm 1 VALSE algorithm for LSE problem (14).

Input: Observation y, noise variance v.
Initialization:

1) Initialize the model parameter τ :

τ̂ =
1

M
yHy − v.

2) Initialize the frequency φ:

R =
2

Mv
yyH and zi =

M∑
k=1

Rk,k−i+1, i = 1, · · ·,M.

Use z as the input of the Heuristic 2 algorithm to obtain μ̂ and κ̂, and
compute

â =

[
1,

I1(κ̂)

I0(κ̂)
ejμ̂, · · ·, IM−1(κ̂)

I0(κ̂)
ej(M−1)μ̂

]T
.

while t < Tmax do
1) Infer the complex amplitude α:

ĉ = v
(
M +

v

τ̂

)−1
and ŵ =

ĉ

v
âHy.

2) Estimate the model parameter τ :

τ̂ = |ŵ|2 + ĉ.

3) Infer the frequency φ:

Use z = 2ŵ∗
v

y as the input of the Heuristic 2 algorithm to obtain μ̂
and κ̂, and compute

â =

[
1,

I1(κ̂)

I0(κ̂)
ejμ̂, · · ·, IM−1(κ̂)

I0(κ̂)
ej(M−1)μ̂

]T
.

Output: μ̂, κ̂, ŵ, and â.

where τ is the amplitude.

In the LSE problem, there are at most N (N ≤M ) possible

sinusoids, and only K (K < N ) sinusoids are active. Equation

(7) is a sparsity-promoting prior. Hence, we have

y = h+ u =
N∑
i=1

αis(φi) + u, (9)

and we have the following joint pdf

p(y, φ1, · · ·, φN , α1, · · ·, αN , ρ, τ, v)

= fCN

(
y;

N∑
i=1

αis(φi), vI

)
N∏
i=1

p(φi)p(αi| ρ, τ). (10)

According to the mean field approximation, we have the

following surrogate pdf

q(φ1,· · ·,φN ,α1,· · ·,αN |y) = q(α1, · · ·, αN |y)
N∏
i=1

q(φi|y),
(11)

where q(φi|y) and q(α1, · · ·, αN |y) are restricted to the

families of candidate pdfs:

q(φi|y) = fVM(φi; μ̂i, κ̂i), (12)

q(α1, · · ·, αN |y) = fCN

(
α1, · · ·, αN ; ŵ, Ĉ

)
. (13)

Using variational Bayesian inference, the VALSE algorithm

iteratively reduces the KL divergence between the joint pdf

(10) and the surrogate pdf (11) by updating the parameters

of (12) and (13). The model parameters ρ, τ , and v are also

estimated iteratively in the VALSE algorithm.

Since the considered model (1) only has one sinusoid, we

can formulate the LSE problem

y = h+ u = αs(φ) + u (14)

with the surrogate pdf

q(φ, α|y) = q(α|y)q(φ|y) = fVM(φ; μ̂, κ̂)fCN(α; ŵ, ĉ),
(15)

where the noise variance v is known. In addition, φ follows

the uniform distribution in [−π, π). Algorithm 1 details the

channel estimation procedure, which can be derived from the

original VALSE algorithm. In Algorithm 1, we have â =
E{s(φ)}, where the expectation is taken over the von Mises

distribution fVM(φ; μ̂, κ̂). In addition, the channel estimate is

given as ĥ = ŵâ. Note that we use the Heuristic 2 algorithm

of [7] to update the parameters μ̂ and κ̂. Please see Section IV-

D of [7] for details. Note that the prior distributions (6) and (7)

are defined for computation convenience. In practice, it does

not require the channel actually follows such prior distribution

model [7].

B. Localizing the Position of the User

The VALSE algorithm extracts the complex amplitude and

the frequency from the received signal by exploiting the

channel structure. According to (2) and (5), the estimate of

the AoA of the i-th receiver can be obtained as

θ̂i = arccos

(
μ̂i

π

)
, (16)

where μ̂i is the estimate of the frequency from Algorithm 1

given the received signal yi. However, Algorithm 1 not only

provides the mean direction μ̂i but also the concentration

parameter κ̂i, which describes the accuracy of the frequency

estimate μ̂i. Fig. 2 illustrates the von Mises distributions with

μ = 0 and different concentration parameters κ. We see that a

larger concentration parameter implies a better estimate of the

mean direction. The soft information provided by Algorithm 1

can help to localize the user. Using this information, we can

characterize the spatial distribution of the user along with the

geometrical constraints.

At first, we provide the deterministic geometrical constraints

among the AoAs of the receivers. As shown in Fig. 1, we

use ULA 1 to denote the left-most array at point (−d, 0) and

ULA L to denote the right-most array at point (d, 0). Other

ULAs are distributed between ULA 1 and ULA L. We use θ1
and θL to denote the AoAs of ULA 1 and ULA L, respectively.

Using the geometrical constraints, the AoA θi of the i-th ULA

at point (di, 0) can be derived as

θi = fθ(θ1, θL, di)

= arccos

⎛
⎝ d−di

2d cot(θ1) +
d+di

2d cot(θL)√
1 +

(
d−di

2d cot(θ1) +
d+di

2d cot(θL)
)2
⎞
⎠,

(17)
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Fig. 2. The von Mises distributions with mean direction μ = 0 and different
concentration parameters κ.

where −d ≤ di ≤ d. Equation (17) shows that we can use two

AoAs to infer other AoAs when the positions of the receivers

are fixed. The corresponding sinusoidal frequency is given as

φi = fφ(θ1, θL, di) = πcos(θi), (18)

where θi is defined as (17). Hence, the spatial distribution of

the user can be characterized by the joint pdf

pu(θ1, θL) =
1

C

L∏
i=1

fVM(fφ(θ1, θL, di); μ̂i, κ̂i), (19)

where 0 < θ1 < θL < π, μ̂i and κ̂i are the estimated

parameters of i-th receiver obtained from Algorithm 1, and

C is a normalizing constant. Based on the joint pdf (19), we

can localize the position of the user and refine the estimate of

the AoAs and steering vectors.

1) MMSE estimate: The MMSE estimate of the AoA is

given by

θ̂mmse
i =

∫ π

0

∫ π

θ1

fθ(θ1, θL, di)pu(θ1, θL)dθ1dθL. (20)

Given θ1 and θL, the position of the user can be derived as

xu = fx(θ1, θL) =
tan(θ1) + tan(θL)

tan(θL)− tan(θ1)
d, (21)

yu = fy(θ1, θL) =
2tan(θ1)tan(θL)

tan(θL)− tan(θ1)
d. (22)

Therefore, the MMSE estimate of the user position is given

by

x̂mmse
u =

∫ π

0

∫ π

θ1

fx(θ1, θL)pu(θ1, θL)dθ1dθL, (23)

ŷmmse
u =

∫ π

0

∫ π

θ1

fy(θ1, θL)pu(θ1, θL)dθ1dθL. (24)

Note that (20), (23), and (24) must generally be calculated by

numerical integration.

2) MAP estimate: The MAP estimate of the AoA is given

by (
θ̂map
1 , θ̂map

L

)
= argmax

θ1,θL

{pu(θ1, θL)}. (25)

Given θ̂map
1 and θ̂map

L , we can use (17) to obtain the MAP

estimates of other AoAs, and use (21) and (22) to obtain the

MAP estimate of the position (x̂map
u , ŷmap

u ) of the user. The

MAP estimates can be obtained by searching the grid points

in the region of 0 < θ1 < θL < π.

C. Reconstructing the Equivalent Channel

Step a) and step b) jointly localize the position of the user

and refine the estimates of the AoAs. In step c), we provide

two approaches to reconstruct the equivalent channel. First,

we reconstruct the steering vector a(θ̂i) according to θ̂mmse
i

or θ̂map
i , and then focus on the complex channel coefficient. If

the path loss model is unknown, we can use the least squares

estimate to obtain

α̂i =
1

M
aH(θ̂i)yi. (26)

If the path loss model is known, we can use the position of the

user to go further. The estimate of the path loss factor under

the free space path loss model is given as

β̂i =

√√√√ GtGrλ2

16π2
(
(x̂u − di)

2
+ ŷ2u

) . (27)

The phase rotation can be obtained using the least squares

estimate

ψ̂i = arg
(
aH(θ̂i)yi

)
, (28)

and we have α̂i = β̂ie
jψ̂i . Finally, the equivalent channel is

given as ĥi = α̂ia(θ̂i).

IV. NUMERICAL RESULTS

In this section, the proposed joint channel estimation and

localization algorithm is verified through computer simula-

tions. There are five receivers, where each receiver has 8

antennas and the positions of the receivers are d1 = −16 m,

d2 = −8 m, d3 = 0 m, d4 = 8 m, and d5 = 16 m. The

position of the user is uniformly randomly generated in a

rectangular region defined by −20 m ≤ xu ≤ 20 m and

5 m ≤ yu ≤ 40 m. The system operates at 28 GHz with a

100 MHz bandwidth, the power spectral density of the AWGN

is −174 dBm/Hz, and we have Gt = Gr = 1. Since the

MMSE and MAP estimates have nearly the same performance,

we only show the performance of the MAP estimate.

Fig. 3 shows the channel estimation performance of all

receivers for the different algorithms. For case I, we only

perform Algorithm 1, i.e. step a), for each receiver. For case II

and case III, we perform the proposed joint channel estimation

and localization algorithm, which includes step a), b), and

c), with and without knowledge of path loss model. Case

IV also shows the performance of the proposed algorithm,

but we use the exact complex channel coefficient α to obtain
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the equivalent channel in step c). We find that the proposed

algorithm can improve the channel estimation performance by

exploiting the correlation among the channels. Case II provides

approximately 1 dB gain. With knowledge of the path loss

model, case III provides nearly 3 dB gain. Compared with

case III, reconstructing the equivalent channel with the exact

α only slightly improves the channel estimation performance.

In addition, estimating the channel with channel structure in-

formation significantly outperforms the least squares estimate.

Fig. 4 shows the average localization error for two cases.

Case I is the proposed joint channel estimation and localization

algorithm. As a comparison, case II shows the localization

performance with a single receiver positioned at (0, 0). This

receiver has a ULA with 8×5 = 40 antennas. We assume that

the path loss model is known. We use Algorithm 1 to extract

the AoA θ̂i and the complex channel coefficient α̂i, and use

the path loss model to estimate the distance between the user

and the receiver

l̂i =

√
GtGrλ2

16π2|α̂i|2
. (29)

Although case II has a single ULA with much higher res-

olution, we find that case I can provide better localization

performance by exploiting the correlation. In addition, if the

path loss model is unknown, we cannot localize the position of

the user with a single ULA if we only utilize the information

from channel estimation.

V. CONCLUSION

In this study, we proposed a joint channel estimation and

localization algorithm for a cooperative mmWave system with

several receivers. We derived the MMSE and MAP estimators

to obtain the position of the user and refine the estimates of the

AoAs on the basis of the geometrical constraints and the soft

AoA information extracted from the received signals. Given

the estimates of the AoAs, the equivalent channel was recon-

structed with and without prior information about the path loss

model. Numerical results showed that the proposed algorithm

not only provides centimeter-level localization accuracy, but

also improves the channel estimation performance.
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