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Abstract—We analyze the performance of multiple-input
multiple-output (MIMO) links with one-bit output quantization
in terms of achievable rates and characterize their performance
loss compared to unquantized systems for general channel statis-
tical models and general channel state information (CSI) at the
receiver. One-bit ADCs are particularly suitable for large-scale
millimeter wave MIMO Communications (massive MIMO) to
reduce the hardware complexity. In such applications, the signal-
to-noise ratio per antenna is rather low due to the propagation
loss. Thus, it is crucial to analyze the performance of MIMO
systems in this regime by means of information-theoretical meth-
ods. Since an exact and general information-theoretic analysis is
not possible, we resort to the derivation of a general asymptotic
expression for the mutual information in terms of a second-order
expansion around zero SNR. We show that up to second order
in the SNR, the mutual information of a system with two-level
(sign) output signals incorporates only a power penalty factor of
/2 (1.96 dB) compared to systems with infinite resolution for
all channels of practical interest with perfect or statistical CSL
An essential aspect of the derivation is that we do not rely on
the common pseudo-quantization noise model.

Index Terms— Massive MIMO communication, broadband
regime, one-bit quantization, mutual information, optimal input
distribution, ergodic capacity, millimeter-wave communications.

I. INTRODUCTION

N THIS paper, we investigate the theoretically achievable
Irates under one-bit analog-to-digital conversion (ADC) at
the receiver for a wide class of channel models. To this
end, we consider general multi-antenna communication chan-
nels with coarsely quantized outputs and general communi-
cation scenarios, e.g. correlated fading, full and statistical
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channel state information (CSI) at the transmitter and the
receiver, etc.. Since exact capacity formulas are intractable
in such quantized channels, we resort to a low signal-to-noise
ratio (SNR) approximation and lower bounds on the channel
capacity to perform the analysis. Such mutual information
asymptotics can be utilized to evaluate the performance of
quantized output channels or design and optimize the sys-
tem in practice. Additionally, the low SNR analysis under
coarse quantization is useful in the context of large scale (or
massive) multiple-input multiple-output (MIMO) [4], [5] and
millimeter-wave (mmwave) communications [6]-[10], consid-
ered as key enablers to achieve higher data rates in future
wireless networks. In fact, due to high antenna gains possible
with massive MIMO and the significant path-loss at mmwave
frequencies, such systems will likely operate at rather low SNR
values at each antenna, while preferably utilizing low-cost
hardware and low-resolution ADCs, in order to access all
available dimensions even at low precision. Our asymptotic
analysis demonstrates that the capacity degradation due to
quantized sampling is surprisingly small in the low SNR
regime for most cases of practical interest.

A. Less Precision for More Dimensions: The Motivation for
Coarse Quantization

The use of low resolution (e.g., one-bit) ADCs and DACs is
a potential approach to significantly reducing cost and power
consumption in massive MIMO wireless transceivers. It was
proposed as early as 2006 by [11]- [14] in the context of con-
ventional MIMO. In the last three years however, the topic has
gained significantly increased interest by the research commu-
nity [15]- [47] as an attractive low cost solution for large vector
channels. In the extreme case, a one-bit ADC consists of a sim-
ple comparator and consumes negligible power. One-bit ADCs
do not require an automatic gain control and the complexity
and power consumption of the gain stages required prior
to them are substantially reduced [48]. Ultimately, one-bit
conversion is, in view of current CMOS technology, the only
conceivable option for a direct mmwave bandpass sampling
implementation close to the antenna, eliminating the need
for power-intensive radio-frequency (RF) components such as
mixers and oscillators. In addition, the use of one-bit ADCs
not only simplifies the interface to the antennas by relaxing
the RF requirements but also simplifies the interface between
the converters and the digital processing unit (DSP/FPGA).
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Fig. 1. Spectral efficiency versus energy efficiency for One- and Infinite-Bit

Quantization in AWGN channels.

For instance, the use of 10-bit converters running at 1 Gsps
for 100 antennas would require a data pipeline of 1 Tbit/s
to the FPGAs and a very complex and power-consuming
interconnect. By using only one-bit quantization the speed
and complexity are reduced by a factor of 10. Sampling
with one-bit ADCs might therefore qualify as a fundamental
research area in communication theory.

Even though the use of only a single quantization bit, i.e.,
simply the sign of the sampled signal, is a severe nonlinearity,
initial research has shown that the theoretical “best-case™
performance loss that results with a one-bit quantizer is not
as significant as might be expected, at least at low SNRs
where mmwave massive MIMO is expected to operate, prior
to the beamforming gain, which can still be fully exploited.
This is also very encouraging in the context of low-cost
and low-power 10T devices which will also likely operate in
relatively low SNR regimes. Fig. 1 shows how the theoretical
spectral efficiency versus energy efficiency (Ey/Ng) of a
one-bit transceiver that uses QPSK symbols in an additive
white Gaussian noise (AWGN) channel compares with that
of an infinite-precision ADC using a Gaussian input, i.e. the
Shannon limit log,(1 + SNR). In fact, the capacity of the
one-bit output AWGN channel is achieved by QPSK signals
and reads as [20], [49]

Cibi =2 (1- Hy(@(VSNR))) , )

where we make use of the binary entropy function Hy(p) =
—p -logy, p— (1 — p) - logy(1 — p) and the cumulative
Gaussian distribution ®(z). Surprisingly, at low SNR the loss
due to one-bit quantization is approximately equal to only 7 /2
(1.96dB) [49], [50] and actually decreases to roughly 1.75dB
at spectral efficiency of about 1 bit per complex dimension,
which corresponds to the spectral efficiency of today’s 3G
systems.

Even if a system is physically equipped with higher reso-
lution converters and high-performance RF-chains, situations
may arise where the processing of desired signals must be
performed at a much lower resolution, due for instance to the
presence of a strong interferer or a jammer with a greater
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dynamic range than the signals of interest. In fact, after sub-
tracting or zero-forcing the strong interferer, the residual effec-
tive number of bits available for the processing of other signals
of interest is reduced substantially. Since future wireless
systems must operate reliably even under severe conditions in
safety-critical applications such as autonomous driving, inves-
tigating communication theory and signal processing under
coarse quantization of the observations is crucial.

B. Related Work and Contributions

Many contributions have studied MIMO channels operating
in Rayleigh fading environments in the unquantized (infinite
resolution) case, for both the low SNR [50]-[55] and high
SNR [56] regimes. Such asymptotic analyses are very useful
since characterizing the achievable rate for the whole SNR
regime is in general intractable. This issue becomes even
more difficult in the context of one-bit quantization at the
receiver side, apart from very special cases. In the works
[1], [14], the effects of guantization were studied from an
information-theoretic point of view for MIMO systems, where
the channel is perfectly known at the receiver. These works
demonstrated that the loss in channel capacity due to coarse
quantization is surprisingly small at low to moderate SNR.
In [2], [3], the block fading single-input single-output (SISO)
non-coherent channel was studied in detail. The work of [25]
provided a general capacity lower bound for quantized MIMO
and general bit resolutions that can be applied for several chan-
nel models with perfect CSI, particularly with correlated noise.
The achievable capacity for the AWGN channel with output
quantization has been extensively investigated in [19], [20],
and the optimal input distribution was shown to be discrete.
The authors of [18] studied the one-bit case in the context
of an AWGN channel and showed that the capacity loss
can be fully recovered when using asymmetric quantizers.
This is however only possible at extremely low SNR, which
might not be useful in practice. In [57], it was shown that,
as expected, oversampling can also reduce the quantization
loss in the context of band-limited AWGN channels. In [21],
non-regular quantizer designs for maximizing the information
rate are studied for intersymbol-interference channels. More
recently, [28] studied bounds on the achievable rates of
MIMO channels with one-bit ADCs and perfect channel state
information at the transmitter and the receiver, particularly
for the multiple-input single-output (MISO) channel. The
recent work of [47] analyzes the sum capacity of the two-user
multiple access SISO AWGN channel, which turns out to be
achievable with time-division and power control.

Motivated by these works, we aim to study and character-
ize the communication performance of point-to-point MIMO
channels with general assumptions about the channel state
information at the receiver taking into account the 1-bit quan-
tization as a deterministic operation. In particular, we derive
asymptotics for the mutual information up to the second-order
in the SNR and study the impact of quantization. We show that
up to second order in SNR for all channels of practical interest,
the mutual information of a system with two-level (1-bit sign
operation) output signals incorporates only a power penalty of
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5 (—1.96 dB) compared to a system with infinite resolution.
Alternatively, to achieve the same rate with the same power up
to the second-order as in the ideal case, the number of one-bit
output dimensions has to be increased by a factor of 7/2 for
the case of perfect CSI and at least by 72 /4 for the statistical
CSI case, while essentially no increase in the number of trans-
mit dimensions is required. We also characterize analytically
the compensation of the quantization effects by increasing the
number of 1-bit receive dimensions to approach the ideal case.
This paper is organized as follows: Section II describes the
system model. Then, Section III provides the main theorem
consisting of a second-order asymptotic approximation of the
entropy of one-bit quantized vector signals. In Section IV,
we provide a general expression for the mutual information
between the inputs and the quantized outputs of the MIMO
system with perfect channel state information, then we expand
that into a Taylor series up to the second-order in the SNR.
In Section V, we extend these results to elaborate on the
asymptotic capacity of 1-bit MIMO systems with statistical
channel state information including Rayleigh flat-fading envi-
ronments with delay spread and receive antenna correlation.

C. Notation

Vectors and matrices are denoted by lower and upper case
italic bold letters. The operators (o), (o)™, tr(e), (#)*, Re(e)
and Im(e) stand for transpose, Hermitian (conjugate trans-
pose), matrix trace, complex conjugate, real and imaginary
parts of a complex number, respectively. The terms 0;; and
1,s denote the M -dimensional vectors of all zeros and all
ones, respectively, while I, represents the identity matrix of
size M. The vector x; is the i-th column of matrix X and z; ;
denotes its (zth, jth) element, while z; is the i-th element of
the vector © and Ty = [Tn, - -, Tm] . The quantity ||z||o
denotes the number of non-zero elements in the vector z. The
operator E[e] stands for expectation with respect to all random
variables, while the operator E4[e] stands for the expectation
with respect to the random variable s given g. In addition,
C, = E[zz"] — E[x]E[z"] represents the covariance matrix
of z and C,, denotes E[zy™]. The functions P(s) and
P(s|q) symbolize the joint probability mass function (pmf)
and the conditional pmf of s and g, respectively. Additionally,
diag(A) denotes a diagonal matrix containing only the diag-
onal elements of A and nondiag(A) = A —diag(A). Finally,
we represent element-wise multiplication and the Kronecker
product of vectors and matrices by the operators “o” and “®”,
respectively. Throughout the paper, low SNR expansions of
entropy and mutual information are given in nats.

II. SYSTEM MODEL

We consider a point-to-point quantized MIMO channel with
M transmit dimensions (e.g. antennas or, more generally,
spatial and temporal dimensions) and N dimensions at the
receiver. Fig. 2 shows the general form of a quantized MIMO
system, where H € CV*M s the channel matrix, whose
distribution is known at the receiver side. The channel real-
izations are in general unknown to both the transmitter and
receiver, except for the ideal perfect-CSI case. The vector
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Fig. 2. Quantized MIMO System.

x € CM comprises the M transmitted symbols, assumed to
be subject to an average power constraint E[[|:1:2||] < Pp. The
vector 1) represents the additive noise, whose entries are i.i.d.
and distributed as CA/(0, 0’%). The quantized channel output
r € CV is thus represented as

r=Q(y) = Q(Hz +1). @)

In a one-bit system, the real parts y; r and the imaginary parts
y;,1 of the unquantized receive signals y;, 1 < i < N, are each
quantized by a symmetric one-bit quantizer. Thus, the resulting
quantized signals read as

+1 if Yi.e Z 0

Tie = Q(yt’,-ﬂ) = sign(yi,c) = { —1 if y;.<0,

3)
forc e {R,I}, 1 <4< N. The operator Q(y) will also be
denoted as sign(y) and represents the one-bit symmetric scalar
quantization process in each real dimension. The restriction
to one-bit symmetric quantization is motivated by its simple
implementation. Since all of the real and imaginary com-
ponents of the receiver noise 7} are statistically independent
with variance cr%, we can express each of the conditional
probabilities as the product of the conditional probabilities on
each receiver dimension

-
P(r=sign(y)le,H)= [] []P(ricle, H)

ce{R,I}i=1
_ H ﬁ@ Ti?C[H:I:]‘E,C , (4]
ee{RI}i=1 03/2
!'2
where ®(z) = 712—17_]'_10(J e~z dt is the cumulative normal

distribution function. We first state the main theorem used
throughout the paper and then provide the asymptotics of the
mutual information for several channel models up to second
order in the SNR.

ITI. MAIN THEOREM FOR THE ASYMPTOTIC ENTROPY
OF ONE-BIT QUANTIZED VECTOR SIGNALS

We provide a theorem that can be used for deriving
the second order approximation of the mutual information.
It considers the 1-bit signal r = sign(ex + 77), where x is
a random vector with a certain distribution and 7 is random
with i.i.d. Gaussian entries and unit variance, while £ is a
signal scaling parameter.

Theorem 1: Assuming x € CV is a proper complex random
vector (E[zz™] = E[z]E[zT]) satisfying Ex[||z||;T°] < 4 for
some finite constants £, > 0 and 7 is i.i.d. Gaussian with
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unit variance, then the following entropy approximation holds
up to the second order in &2

H(sign(c + 1))
—9NI2— %sz B[] — &t (%tr ((nondiag(CI))z)

4 4
ot IEle] o Blo o w02l + o5 B[} ) + o(e")
(5)

where [|a||§ =", claic|? and [a o bl; = a; rbi r +jai rbi 1,
while the expectation is taken with respect to = and C; =
E[zx"] — E[z]E[z"] is the covariance matrix of x.

Proof: See Appendix A. O
From this theorem, we can deduce some useful corollaries.
Corollary 1: For any possibly non-deterministic function

g(x) satisfying Eg[[g(x)[3*] < 6 and E[g(z)g(2)T] =
Elg(z)]E[g(x™)] for some finite constants £, > 0, we have
the following entropy expansion to the second order in &2

H (sign(eg(x) +mn))
=2Nh2-— %s? [Elg()]ll3

=gt (%tr ((nondiag(cg(m))))2)
~ = |[Elg(x)] » Elg(x) o g(x) o g()]]
4oz [Elg(@]I}) + A (sign(eg(e) + )

where the remainder term AH (sign(sg(x) + 1)) is o(c*).

Corollary 2: For any function g(x) satisfying
Esllg(@)[i*] < & and Elg(z)g(x)T[z] = Elefz]
Elg(z)(z)T|x], we have the following second order
approximation of the conditional entropy

H(sign(eg () + n)|x)
—9NIn2- %ZEm[nEm(wnx]u%]

= 54Em[%tr ((nondjag(cg(m)im))z)
- L |Blg(@)la] - Elg(x) o 0(a) o g()la]}
+373 [Elg(@)all]| + AH Gign(eg(@) + ),

where the remainder term AH (sign(sg(z) + n)|x) is o(c?).

Proof: Corollary 1 is a direct result of Theorem 1, where
we just replace the random vector & by g(x) if the stated
conditions are fulfilled for g(x). For Corollary 2 we just
perform the expectation in Theorem 1 first conditioned on x,
to get the entropy for a given @ and then we take the average
with respect to @, again if the stated assumptions regarding
the distribution of g(x) are fulfilled. These results will be
used to derive a second order approximation of the mutual
information of quantized MIMO systems for the case of
perfect as well as statistical channel state information. The

condition Em[||g{:1:)||§+a] < « for some finite constants c,
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v > 0 ensures that the remainder term of the expansion
satisfies

|AH (sign(eg(2) + 1)|@)| =Exlo(llg() [} *)]< v B¥ 4+,
(6)

for some o’ €]0,a] and is therefore o( Zr), which follows the
explanation given in (109), Appendix A O

IV. MUTUAL INFORMATION AND
CAPACITY WITH FuLL CSI

When the channel H is perfectly known at the receiver,
the mutual information (in nats/s/Hz) between the channel
input and the quantized output in Fig. 2 reads as [58]

P(r|z,H)

P(r[H) |’ ™

I(z;r|H) = Ezpr |Y_ P(r|z, H)in

with P(r|H) = Ez[P(r|z, H)] and E.[] is the expectation
taken with respect to x. For large N, the computation of
the mutual information has intractable complexity due to the
summation over all possible r, except for low dimensional
outputs (see [28] for the single output case), which is not
relevant for the massive MIMO case. Therefore, we resort
to a low SNR approximation to perform the analysis on the
achievable rates.

A. Second-Order Expansion of the Mutual Information With
1-Bit Receivers for Deterministic Channels

In this section, we will elaborate on the second-order
expansion of the input-output mutual information (7) of the
considered system in Fig. 2 for a given channel matrix
H = H as the signal-to-noise ratio goes to zero.

Theorem 2: Consider the one-bit quantized MIMO sys-
tem in Fig. 2 under a zero-mean input distribution p(x)
with covariance matrix C,, satisfying p(z) = p(jz),
Ve € Cﬂ: (zero-mean proper complex distribution)! and

~ o
Ez[||Hz ‘ i ] < ~ for some finite constants a, v > 0. Then,
to the second order, the mutual information (in nats) between
the inputs and the quantized outputs for a particular channel
matrix is given by:

I(z;v|H = H)

= Eu(ff Czﬂ“)iz_[%u((nondiag(ﬁfcmf&‘“))?)
m J‘i’] VN
—.. T B
Hz| || = + Al(z;r|H = H),
4| od
n

®)

4 1
Rk L

where ||a||i = X b remainder term

i,c-%,ct

Al(x;r|H = H) is o(%)..

and the

I'This restriction is simply justified by symmetry considerations.
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Proof: We start with the definition of the mutual
information [58]

I(xz;v|H = H)
—H(rlH=H)—-H(r|z,H = H)
= H(sign(Hz +n)|H = H)

— H(sign(Hz + )|z, H=H), (9)
then we use Corollary 1 and Corollary 2 with =
g(x)
I(z;r|H = 131)

= L and
-~ n
= Hx to get the following asymptotic expression:

2
—2Nln2— 2o HE H
2

_ ari# (%tr ((nondiag(cﬁrm))?)

— 347r HE[EI:B] oE[fIa:off:r:ofI:r]Hi

E[ﬁm]uz]

= ”E[H:c]”j) —9NIn2+ %JL%E,,.[

( (nondiag(C ,—,mlm))z)

v ] ) ) _ 1
- — Bl Bl 0 Ha o Aol

i 2
=+ —4Eg_-,|:—2t1'
U‘i",' m

= HE[ﬂxh:]Hi] + AI(z;r|H = H)

SR

_ % (%tr ((nondjag(ﬂCIﬁH))z)
n
——“E Ha:]oE[H:conon]” +@E | Frefe) H4
S I
(10)

In the case that the distribution is zero-mean E[z] = 0, we end
up exactly with the formula stated by the theorem. Again,

the condition E, [HH;BH
4
a,~y > 0 ensures that the remainder term

+a
] < ~ for some finite constants

22 = 4 d4a’ .
|AI(@;7|H = H)| = Eao(| | Ha| L)) < o8t
4 Ty

for some o' €]0, ] and is therefore o(—;) which follows the
explanation given in (109), Appendix Al O

For comparison, we use the results of Prelov and Verdd [51]
to express the mutual information between the input x and the
unquantized output y with the same input distribution as in
Theorem 2:

I(z;y|H = H)
= - H
- eu 1l (HC,H)) 1 1
g L BECH VL Ly
o5 2 oy oy
(11)
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While the mutual information for the unquantized channel
in (11), up to the second order, depends only on the input
covariance matrix, in the quantized case (8) it also depends
on the fourth order statistics of & (the fourth mixed moments
of its components).

Now, using (8) and (11), we deduce the mutual information
penalty in the low SNR (or large dimension) regime incurred
by quantization for non-zero finite channels

I(z;r|H=H) 2

m = -, (12)
Sool(@yH=H) 7=

which is independent of the channel and the chosen
distribution.

In order to apply the ratio of the low-SNR maximum
achievable rate of the 1-bit system to the ideal capacity,
one must characterize the capacity- achlevmg dlSIIlbuthI'l and

check the validity of the condition E;,

H <oy i
apply the asymptotic analysis. In [19] it is shown that the
capacity-achieving input distribution of the AWGN channel
with finite resolution ADCs is, under an average power con-
straint, bounded and discrete. As a generalization, we show
in Appendix B that the capacity-achieving distribution of the
1-bit MIMO channel is bounded and therefore the conditions
of Theorem 2 are also valid for the 1-bit channel capacity.

Theorem 3: The capacity-achieving input distribution of the
coherent one-bit quantized MIMO system in Fig. 2 under an
average power constraint has bounded support.

Proof: See Appendix B. O

Bounded support is a very suitable property motivated
by practical limitations. By contrast, the ideal case with
infinite resolution requires a Gaussian input distribution with
unbounded support. Due to the boundedness of the capacity-
achieving distribution for the 1-bit case, the second-order
expansion (8) holds also for the capacity. Therefore, we obtain
the same ratio (12) for the capacity, i.e., the supremum of the
mutual information

Clit _2 13)
20 Coopit 7
]
These results can also be obtained based on the
pseudo-quantization noise model [15], [25] and it generalizes
the result known for the AWGN channel [49].

For a larger number of antennas, the summation in (7) may
be intractable. In this case, the second-order approximation
in (8) is advantageous at low SNR to overcome the high
complexity of the exact formula.

B. Capacity With Independent-Component Inputs for
Deterministic Channels

Lacking knowledge of the channel, the transmitter assigns
the power evenly over the components z; . of the input vector
x, ie., E[z? | = £, in order to achieve good performance
on average. Furthermore, let us assume these components to
be independent of each other (e. g. multi-streaming scenario).’

2Clearly, this is not necessarily the capacity-achieving strategy.
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Thus, the probability density function of the input vector @ is

p(@) =TI, . Pic(zic).’ Now, with
[ﬁm]*-ﬂ B Z[ai:j.RIj,R_fli,j.ij.f] ,  (14)
7
Elzj] 4M?
z = e d
Hj.c E[I?‘c]z P-%r E[-E;,-,c]: (15)

and the kurtosis of the random component z; . defined as
Kje = Hjc— 3, (16)

we get

E‘-'B[([Hm]i"ﬂ) 4M2 thjc i,3" c’+Z:‘u‘J efbi d.e

j.e.il e’
J.e)# (5 e)
P-%r = = H 2 34
Y . ([HH ]u) * Z njrch't',jm
' J.c

(17)

Similar results hold for the other components of the vec-
tor Hz. Plugging this result and C, = %_,nl into (8),
we obtain an expression for the mutual information with
independent-component inputs and C, = %I up to second

order:
™(z; r|H = H) = —U'(HH )Mgz
2 1 " i 2 h4
_ g(l—;) 3 tr((diag(HH )) )"‘Zﬁj‘chi?j,c
i,j,0
2
+ Zt((nonding(FL H”Z’] (375g) +otase
n

(18)

Now, we state a theorem on the structure of the near-optimal
input distribution under these assumptions.

Theorem 4: To second order, QPSK signals are capacity-
achieving among all signal distributions with independent
components. The achieved capacity up to second order is

2 ~ ~u Ppr
O|_bi|:;tl'(HH )M %

%(1_? 3 tr((diag(HLH")?) — 23 b

th

(;:: )2+o(1/o;§).

2
n

+ %tr((nondiag(ffﬁ}l))z)

(19)

. 1 L3 E[z{ ]
Proof: Since E[z; .| > E[z} ] T

3 > —2,Vi,c. Obviously, the QPSK distribution is the

, we have k; . =

3Note that p;c(xic) has to be an even function and p; p(zig) =
pi,1(ri 1) Vi, due to the symmetry (see Theorem 2) and convexity of the
mutual information.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 12, DECEMBER 2020

unique distribution with independent-component inputs that
can achieve the minimum value —2 for all indices {i,c}
simultaneously, i.e., k;. = kgpsk = —2 Yi,c, and thus
maximize ™ (z;7|H = H) in (18) up to second order. [

C. Ergodic Capacity Under i.i.d. Rayleigh Fading Conditions

Here we assume the channel H to be ergodic with i.i.d.
Gaussian components h; ; ~ CA(0,1). The ergodic capacity
can be written as

Ciay = Ex[Ciri]. (20)

We apply the expectation over H using the second order
expansion of Cipy in (19). By expanding the following
expressions and taking the expectation over the i.i.d. channel
coefficients, we have

En [tr(HC H")] =
Eg [tr ((nondiag(HC.H"))*)] =
Ex [|Hel}] =

The ergodic mutual information over an i.i.d. channel can be
obtained as

Ntr(C,)
N(N —1)tr(C?)

“NE. [jl21].

I(z;r|H)= Nr:r(Cx)Ei
‘”l'
- % ((N —)te(C2) + (7 — 1)Eq [Ilfcllﬂ) (%J—I%)z
—1—0(1/63).

(21)

Next, we characterize the capacity-achieving distribution up
to second order in the SNR.

Theorem 5: The ergodic capacity of the 1-bit quantized
ii.d. MIMO channel is achieved asymptotically at low SNR
by QPSK signals and reads as

2Py N((N+(@—-1)M-1) (2P
leh:N;J_TQ:_ ( oM )(Tr T:)—f— (1/%)

(22)

Proof: Since tr(C2)/M > (tr(C.)/M)? = PZ/M’
with equality if C, = £%I and E, [||:z:||§] >

2
”:I:HZL = P2, with equality if the input has a constant
norm of 1, the ergodic capacny is achleved by a constant-norm
uncorrelated input (C'y, = U’l and ||::t:||2 = Pry), which can
be obtained for instance by QPSK signals Finally, using (19)
we obtain the second-order expression for the ergodic capacity
of one-bit quantized Rayleigh fading channels for the QPSK
case. O
Fig. 3 illustrates the ergodic mutual information for a
randomly generated 4x<4 channel with entries drawn from
hi; ~ CN(0,1), QPSK signaling and total power tr(C,) =
Pr. = SNR.- ag, computed exactly using (7), and also its first
and second-order approximations from (22). For comparison,
the mutual information without quantization (using an i.i.d.
Gaussian input) is also plotted. Fig. 3 shows that the ratio %
holds for low to moderate SNR = %El

7
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2 T T T . -
— Exact formula '

=== First—order approximation -
—8— Second-order approximation
= = = |Jnquantized with i.i.d. Gaussian input

1.5}

Mutual Information in bpcu

0 0.1 0.2 0.3 0.4 0.5
SNR (llinear)

Fig. 3. Mutual information of a 1-bit quantized 4x4 QPSK MIMO system
and its first and second-order approximations. The channel is assumed to be
i.i.d. Rayleigh fading with unit variance. For comparison the capacity without
quantization is also plotted.

Compared to the ergodic capacity in the unquantized case
achieved by i.i.d. Gaussian inputs (or even by QPSK up to
the second order) [50]

2
P“ i) (—2) +o(1/0p),  (23)

I
the ergodic capacity of one-bit quantized MIMO under QPSK
Clsy incorporates a power penalty of % (1.96 dB), when
considering only the linear term that characterizes the capacity
in the limit of infinite bandwidth.

On the other hand, the second-order term quantifies the
convergence of the capacity function to the low SNR limit,
i.e. the first-order term, by reducing the power or increasing
the bandwidth [50]. Since the second order derivative more
negatively affects the capacity in the quantized case, i.e., the
ratio of the second order terms in (22) and (23) for equal first
order terms is larger than one

Ntlr=nM—1 __
.
N+M ’

it can be concluded that the low-SNR capacity of the quantized
channel converges to the asymptotic capacity at a slower rate
than the unquantized channel. Nevertheless, for M = 1 or
M < N (massive MIMO uplink scenario), this difference in
the convergence behavior vanishes almost completely, since
both second-order expansions (22) and (23) become nearly
the same up to the factor 2/ in SNR.

In addition, the ergodic capacity of the quantized channel
CT% in (22) increases linearly with the number of receive
antennas N while the number of transmit antennas M only
appears in the second-order term, which holds also for C®®.
For the special case of one receive antenna, N = 1, CT%,
does not depend on the number of transmit antennas M up
to the second order, contrary to C°®. On the other hand,
if one would achieve, up to the second order, the same ergodic
capacity at the same power with one-bit receivers as in the
ideal case by adjusting the number of receive and transmit

1< (24)
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1.6 ! ! !

0.9 i i i
0

Fig. 4. Required M;_p;/M to achieve ideal ergodic capacity up to
the second order.

antennas, i.e.,

Pr N(N+M 2 2 P
N._Tz‘r_%( 2) T
o5 2 o; T oy
~ Nibie(Vipie + (r — )My _pic — 1) (2 Py ;
2Mi it .o
(25)
then we can deduce by equating coefficients that
Ni_pit = %N,
N —2
Mi b M’— 26
1-bit — =M (26)

The one-bit receive dimension has to be increased by 7 /2,
while the behavior for the number of transmit antennas is
shown in Fig. 4. Clearly, when N > M, which corresponds
to a typical massive MIMO uplink scenario, we have
Mi_nit = M. This means that, at the transmitter (or user)
side, there is no need to increase the number of antennas up
to the second order in SNR, showing that the total increase
of dimensions is moderate.

V. MUTUAL INFORMATION AND CAPACITY WITH
STATISTICAL CSI AND 1-BIT RECEIVERS

We reconsider now the extreme case of 1-bit quantized
communications over MIMO Rayleigh-fading channels but
assuming that only the statistics of the channel are known
at the receiver. Later, we will also treat the achievable rate for
the SISO channel case for the whole SNR range.

Generally, the mutual information (in nats/channel use)
between the channel input and the quantized output in Fig. 2
with statistical CSI reads as [58]

(&) =H(?) —

ZP(r|x)ln

H(r|z)

P(r|z)

— P(r)

27
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where P(r) Ez[P(r|x)] and H(-) and H(:|-) repre-
sent the entropy and the conditional entropy, respectively.
If the channel is Gaussian distributed with zero mean, then
given the input x, the unquantized output y is zero-mean

complex Gaussian with covariance E[yy"|z] = o2 - Iy +
Eg[Hzz"H"Y), and thus we have
H(, 2 H z7H -1
exp(—y " (o7In + Eg[Hzz "H"])"'y)
p(ylz) = . (28)

N [ogIN + Eg[HzaHHY)|

Thus, we can express the conditional probability of the
quantized output as

P(r|z) = /ao/m p(y or|z)dr
5

exp(—(y o r)¥ (0 - Iy + E[Hza"H"]))}(y o r))d
N 'gg Ay + E[HzzHHY]

(29)

where the integration is performed over the positive orthant of
the complex hyperplane.

The evaluation of this multiple integral is in general
intractable. Thus, we consider first a simple lower bound
involving the mutual information under perfect channel state
information at the receiver, which turns out to be tight in some
cases as shown later. The lower bound is obtained by the chain
rule and the non-negativity of the mutual information:

En[P(r|z, H)]
> Blrie Heg P, H)]]

= I(H,r) —|— I(zr|H)—I(H;r|z)
> I(z;r|H) — I(H;r|x)

ZP(r|x:H)ln

I(er)y=E. 5

— e E[P(r|z, H)]

P(r|z) ]

EH[P(r|a:,H)]]

=Ez.n (30)

P(r|z, H)lIn——+=
Z P(r|H)
On the other hand, an upper bound is given by the coherent
assumption (channel perfectly known at the receiver)

—P(r|$’H)] . (3D

I(z;r) <Ezm P(r|H)

> P(rlz,H)-In

where we can express each of the conditional probabilities
P(r|z,H) as the product of the conditional probabilities on
each receiver dimension, since the real and imaginary compo-
nents of the receiver noise 7] are statistically independent with

power % in each real dimension:

N
II IIPCicl

P(r|z,H) =
ce{R,I}i=1
N
= H H(b('ri,c[le]i?c\/QSNR), (32)
ce{R,I}i=1
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where ®(z) = 2'.rr fIm e~ dt is the cumulative normal
distribution function. Evaluating the lower bound in (30),
even numerically, is very difficult, except for some simple
cases such as SISO block fading channels, as considered next.

A. The Non-Coherent Block-Rayleigh Fading SISO Case
Here we treat the block-Rayleigh fading SISO case in more
detail, where H = h-Ir, h ~ CN(0,1),and M =N =T
is the coherence time. For ease of notation we assume that
72], = 1, therefore we have without loss of generality SNR =
% = Pry. The covariance matrix E[yy™|z] = It + zz™ is
the sum of an identity matrix and a rank one matrix. Then,
we obtain the conditional probability of the 1-bit output as

P(r|z) = E4[P(r|z, h)]
T
:1/e—|m2H I e(a(hzdo)r,) - dk
mJc t=1cc{R,I}

i
- %/(36_|"‘|2H‘i’(‘/ﬁRe(hIt)Tt,R)@(\Ehl(hzt)rt,;)dh
t=1

: T
+DC/+W_ R
[ 2

H O((z,pu — Te,10)Te,R)
t=1

- B((z¢, RV + z¢, 1u) 71,1 )dudy,
(33)

where ®(z) = Jz_ i Sdt is the cumulative normal
T CK‘.

distribution function. The conditional probability (33) has the

following property

P(roz|zoz)= P(rlz),Vz € {£1,+j}T. (34

1) Achievable Rate With i.i.d. QPSK for the 1-Bit Block
Fading SISO Model: With the invariance property (34),
the achievable rate of the one-bit quantized SISO channel with
QPSK input in bits per channel use reads as

Pr|:1:
RIPSK(SNR) = ZZP(rml 15( )))
= TZP(ﬂm )log, (4T P(r|2®)), (35)
Here, x is drawn from all possible sequences of T

equally likely QPSK data symbols, ie, z € {vSNR,
—/SNR, j\/SNR —jVSNR}T and x" denotes the constant
sequence =¥ = \/SNR, t. The second equality in (35) follows
due to the symmetry of the QPSK constellation and since

P(r) = %ZP(:-@) = 4iT P | P(r|z’ o 2°)
T x'e{+1,+£j}
due to (34) 1 /
=7 Z P(z' or|z)
z'e{+1,+j}

1 1
=7 > PUllE) =g (36)
1'!
where we used the property P(r|xz o z) = P(ro z|x), Vz €
{£1,4j}T according to (34). We note that the rate expres-
sion (35) corresponds exactly to its lower bound in (30) due
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to the fact that in the i.i.d. QPSK case P(r|h) = P(r) =47 14 = e
and thus I (h;r) = 0. Furthermore, we use (33) to get a simpler = st‘aéeg;fepfﬁr.r:; 4
expression for P(r|z?) as i [PREER QPSK Rate for T=3 1
1 +oo 3 T ’3\ 1r 1
P(r|z®) =— / e—THq:(\/SNRrLRu)du 4
27 oo 2 0.8} :
P / H(I)(\/ SNRry yv)dv < o6t — »
—o = o
B (i
=P(Re(r)|z’ )-P(Im(T)I:I: ) (37) @ 0.4f S e Y .
Then (35) simplifies to ST ]
‘,.’I -
ole® : : : :
RYILL(SNR) = ®(VSNRru)du 0 2 4 6 8 10
T—bit ( )= ”: ﬂ \/—H ( tu) SNR (linear)

u?
Fig. 5. Achievable rate of the one-bit Rayleigh-fading SISO channel for

+rx3 __
x logs ( H(I)(V SNRT;U)dU) T=2T=3T=co.

\/_
Z( ) (/ <I>( \/SNRu)k(I)(\/SNRu)T kd% in (38) and we obtain
—ip Vor

PSK Lx . 3 : SNR
oo R uir=3(SNR) =3 ( 3 + 7 avesin( )
x logy [ 27 SNRu)*®(v/SNRu)T—*du |.
o V2 6 SNR
o logy [ 14+ = arcsm( )
4 1 (3 3 ( SNR ))
— | = — —arcsin
For the special case T = 2, we use the following closed form 3\2 w 1+ SNR
solution from [59] for the integral in (38) 2 SNR
logy [1— = arcsm( SNR)
1 00 ul 2 + (42}
— e 7 | | ®(VSNRry cu)du
= M 1L

A closed form solution for the integral in (37) for T > 3
is unknown and only approximations are found in the
literature [59].

In Fig. 5, we plot the achievable rate of the one-bit SISO
Rayleigh-fading channel per channel use over the SNR for
SNR two cases T = 2 and T' = 3. The coherent transmission rate
1+ SNR )) achieved by quantized QPSK, which is an upper bound on our

non-coherent capacity (see (31)), is also shown. It is obtained
-log, (1 S B 2 arcsin(——— SINR )) assuming that the receiver knows the channel coefficient A

| 2 ; SNR
=3 |:1 + - a;rcsm(m)n‘crg,c] . (39)

Thus (38) becomes

2
R s (BNR) = (l—l—;arcsm(

1+SNR (or T' goes to infinity). The average achieved by QPSK over
- L Earcsin( SNR ) the quantized coherent Rayleigh-fading channel is obtained
2 T 1+ SNR from (31):
2 SNR
- log, (1 = arcsm( T SNR)) RN = I(zir|h)
(40) =" l2 + ZZ P(r|z, h)log, P(r|z, h)]
And for the case 7' = 3, we substitute using again the B
corresponding formula from [59] =2 (1 - —/ E Hb(@(\' SNR - u))du)
(43)
\/_/ & TH@( VSNRr cu)du where we have used the binary entropy function Hy(p) =

SNR SNR —.p-logz p—(1 —p_) -logy(1—p), and we substituted H(r) = 2
= [1 Bep — (arcsiﬂ{m)ﬁ eT2.e+ a;rcsm{ it SNR) since all four possible outputs are equiprobable, and
R

SN o ) — Re[y]Re[hz] Im[r|Im[hz]
1T SNR TSNR )T2,.r37'3,.c)] (41) P(r|z,h) =@ ( 12 ) ¢ ( 12 ) . (44)
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Fig. 6. Achievable rate of the one-bit Rayleigh-fading SISO channel versus
coherence interval T' for SNR=10dB (dashed curve is for the coherent case
T — o).

In Fig. 6, we plot the normalized achievable rate of the
one-bit Rayleigh-fading SISO channel versus coherence inter-
val T' for SNR=10dB. The coherent upper bound is also
plotted.

2) Training Schemes for the 1-Bit Block Fading Model:
Training based schemes are attractive for communication over
a priori unknown channels, since the receiver task becomes
significantly easier. Therefore, most of the wireless communi-
cation standards use part of the transmission block for sending
a pilot sequence that is known at the receiver:

(45)

where @ is a fixed known, i.e., deterministic QPSK training
vector of length T+ < T. This transmit strategy based on
the separation of data and training symbols is in general
suboptimal from an information theoretical point of view,
but is beneficial from a practical point of view. Due to the
invariance property (34), the output entropy does not depend
on the particular choice of the QPSK training sequence,
e., the output entropy with a deterministic training vector
Ty = T is the same as with a random QPSK training
vector @7 that is known at the receiver:

H(T|$1:TT = :I:T)
= H(71:1p © Tfp, Tp41:T0 [T1:70 = TT © T),
Vol € {£1,+}7T

1 f !
= 71 > H(rigy oy, Tryps1.1p |[T10p =TrOTY)

T ere{41,45)7T

1

!

== Y, H(im, rropiml®ir = oo oh)

T pe{+1,4j}7T
= H(r|z117). (46)

Consequently, the achievable rate of this scheme with
joint processing of data and training can be written as

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 12, DECEMBER 2020

S!(R

Trainin

R

02 03 04 05 06 07 08 09 1
Tr/T

Fig. 7. Achievable rate as a function of the fraction of the coherence time
spent on training for T = 10 and SNR= 10dB.

follows:

Ry & = TH Vel —

= ~H(r) -

%H(ﬂ:r)

(@) — mH(r|)

= Rl—bit,T - Rl—bit,TT: 47)

where we have used the formula for the mutual information
I(zy.7p;7) = H(r)—H (r|®1.1:) = TR1_bit. 1r- The expres-
sion of the capacities with the coherence time can be obtained
from (38). In other words, we have taken the difference of
the entropy of the quantized output given the training part
xi.7 = @7. In fact, the rate per coherence interval is reduced
by an amount that corresponds to the rate (38) with coherence
time T:

g Ir

TkO

(?) /:G \/_@( VSNRu)*®(vSNRu) T~ kdu)

too —u2
-log, 2T/ £
i

2
V2T

Ri—vit,7r =

NRu)k@(\/SNRu)TT_kdu) :

(48)

It is worth mentioning that for the case where we fix one
symbol in the input sequence x as a training symbol, we can
get the same capacity since Rp,—=1 = 0. Therefore, in contrast
to the unquantized case, a single training symbol for the input
sequence x can always be used without any penalty in the
channel capacity. Fig. 7 shows the achievable capacity of
a SISO channel with a coherence length of 7' = 10 and
SNR= 10dB as a function of the training length Tr. Again,
we observe that only one symbol as training will not reduce
the capacity, while the curve then decreases with almost a
slope of —1. Therefore, we can see that choosing the training
length to be negligible compared with the coherence time is
necessary such that the penalty due to the separation of the
channel estimation from the data transmission is small enough.
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Fig. 8. Mutual information of the one-bit block Rayleigh-faded SISO channel
with coherence length 3.

B. Second-Order Expansion of the Mutual Information

In this section, we will consider more general channels and
elaborate on the second-order expansion of the input-output
mutual information (27) of the considered system in Fig. 2 as
the signal-to-noise ratio goes to zero, and where only statistical
CSI is available at the receiver. We state the main result and
we prove it afterwards.

Theorem 6: Consider the one-bit quantized MIMO system
in Fig. 2, where the channel matrix H is zero-mean and
circularly distributed, and assume E_,,,_.H[||H:c||§+€] < 4 is
satisfied for some finite constants £,6 > 0. Then, to second
order, the mutual information (in nats) with statistical CSI
between the inputs and the quantized outputs is given by

i reiN
I(z;r) == (——) tr {E [(nondjag(E[HmHHHp:]))?]
2 \mo}

—(nondiag(E[HE[zz"|H"] ))2} + Al(z;r) .
N,

(49)

1) Comments on Theorem 6: As an example, Fig. 8
illustrates the rate expression (42) and the quadratic approxi-
mation (49) computed for a block fading SISO model with
a coherence interval of 3 symbol periods (H = h - Is,
h ~ CN(0,1)) under QPSK signaling.

A similar result was derived by Prelov and Verdi in [51]
for the soft output y

I(a) =g gt {B [ (BlHa" B2

~(BHE )} +o(=),  (50)
n

where we identify a power penalty of 3 due to quantization
and we see that the diagonal elements of Ey[Hza™ H"]
do not contribute to the mutual information in the hard
decision system. This is because , with symmetric two-level
quantization, the amplitude of the received signal does not con-
tribute to the mutual information. That means that the channel
coefficients have to be correlated, otherwise Eg[Hzz® H"]

7625

is diagonal and the mutual information is zero up to the second
order. Nevertheless, in most systems of practical interest,
the correlation between the channel coefficients, whether tem-
poral or spatial, exists even in multipath rich mobile environ-
ments, thus Eg[Hxzx® H") is a rather dense matrix whose
Frobenius norm is dominated by the off-diagonal elements
rather than the diagonal entries. Thus the low-SNR penalty
due to the hard-decision is nearly 1.96 dB for almost all
practical channels. This confirms that low-resolution sampling
in the low-SNR regime performs adequately regardless of the
channel model and the kind of CSI available at the receiver
while reducing power consumption.

2) Proof of Theorem 6: We start again with the definition
of mutual information

I(xz;r) =H(r)— H(r|z)
= H(sign(He + 1)) — H(sign(Hz + n)|z), (51)

then we use, Corollary 1 and Corollary 2 with ¢ = J—Iﬂ and
g(x) = Hx to get the following asymptotic expression:

I(z;r)
21 2
=2NIn2— == |Ez u[Hx|;
m J’rj

1
9

—% |Ee,z[H®] 0 Bp gr[Hx o Ha o Hal||}

4 21
o3 ||Esz[H33]||i) —2 NIn2+=—E,[|[Ex[Ha]|3]
7e ?Tﬂ—n

2
+ %EE[%H ((nondia,g(EH [Hzz"HY )) )
= 3i |Eg[Hz] o Eg[Hz o Hx o Hz]||}
v
4 » 1
373 BaHal] +o )

. tr (E;,,[(nondiag(EH [H.I’:UHHH]))Z]

odq?

n
_ (Bondiag(Em,H[H:t:a:HHH]))Q) + 0(0_1%)7

where the last step follows from the fact that the channel
matrix H has zero-mean. We note that since H has a proper
distribution, then g(x) = Hx also has a zero-mean proper
distribution, fulfilling p(H ) = p(jH x). This yields the result
stated by the theorem and completes the proof. Note that the
condition Em,H[HH(:}:)HiJFE] < ¢ for some finite constants
€,0 > 0 ensures that the remainder of the expansion is
asymptotically negligible as shown in the coherent case (see
Section IV-A).

C. IID Block Rayleigh Fading MIMO Channels

We consider as an example a point-to-point quantized
MIMO channel where the transmitter employs M’ antennas
and the receiver has N’ antennas. We assume a block-Rayleigh
fading model [60], in which the channel propagation matrix
H' € CM'*N'" remains constant for a coherence interval
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of length 7" symbols, and then changes to a new inde-
pendent value. The entries of the channel matrix are i.i.d.
zero-mean complex circular Gaussian with unit variance. The
channel realizations are unknown to both the transmitter and
receiver. At each coherence interval, a sequence of vectors

Ti,...,or are transmitted at each time slot via the multiple
antennas. The transmitted and received signal matrices are
then related as follows (total dimensions: N = TN’ and
M=TM"

Y1 H 0 0 T T

Yz 0 H 0 T3 T2

: = ; ZE :

: 0 0 <0 : ;

Yr o 0 --- H Tr -

Y H T n
(52)

Then the expected value of the received signal conditioned on
the input is given by

E[Hza"H"|x]
E[H 'z, H™] E[H 'z zEH™]
E[H'z2xH'M] ... E[H'zoxlH™|
= . : . . (53)
E[H zraiH™] E[H zrzl H'™
Since H' is ii.d. distributed, it can be shown that

Exg [H’a:i:t:?H'H] = x [ - Ly. Therefore, we have
EHzz"HYz] = (X - X") @ I,

where the rows of the matrix X € CT*M’ are the vectors
for 1 <i < T. With this, (49) asymptotically becomes

(54

T
g7

I{Er)— N?! (Ei)z tr {E [{nondjag(X XH))Q]

T ag
—(nondiag(E[X - X™]) )2} - 0(0—14), (55)
n

in nats per coherence interval, while for the ideal case, we get
from (50) (see also [52])

I(z:y)
N{ix Hy2 Hyy2 !
-= (J—%)tr{E[(X Xy }—(E[X-X ) }+o(0—g).

(56)

Now, assuming i.i.d. Gaussian inputs with E[X X"] = Pp, Ir,
then we obtain finally (c.f. expectation (21))

N’ (2 n 1
I(z;r) = (;%) T~ 1) -E—o(g—%)
Nt 7B\ 1
I(z3y) =5 (g—?) T2+o(g—g). (57)

Evidently, in order for I(x;r) and I(z;y) to be equal with
the same power, we need to increase the number of one-bit
receive antennas N’ by roughly a factor of 72/4 when the
coherence interval satisfies T' > 1. The same result has been
obtained in [44], [45] with a pilot-based scheme and using the
Bussgang decomposition of the nonlinear quantizer.
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D. SIMO Channels With Delay Spread and Receive
Correlation at Low SNR

As a further example, we use the result from Theorem 6
to compute the low SNR mutual information of a
frequency-selective single input multi-output (SIMO) channel
with delay spread and receive correlation both in time and
space and obtain the asymptotic achievable rate under average
and peak power constraints. The quantized output of the
considered model at time % is

T = Q(Yy)
-1

Y=Y hltlzk s +m €CV, (58)
t=0

where the noise process {7, } is i.i.d. in time and space, while
the T fading processes {h[t]} at each tap ¢ are assumed to be
independent zero-mean proper complex Gaussian processes.
Furthermore, we assume a separable temporal spatial correla-
tion model, i.e.

E[hi[tlhe [t']7] = Ch - cu(k — K)oy 8]t — t']. (59)

Here, C} denotes the receive correlation matrix, cp(k) is
the autocorrelation function of the fading process, and the
scalars «; represent the power-delay profile. The correlation
parameters can be normalized so that

T—1
tr(Cp) =N’, cp(0)=1and Y a;=1.
t=0

(60)

In other words, the energy in each receive antenna’s impulse
response equals one on average. On the other hand we assume
that the transmit signal x; is subject to an average power
constraint E[|z|?] < Pr and a peak power constraint |z|? <
B - Pry, ¥k, with 8 > 1. It should be pointed out that a
peak power constraint constitutes a stronger condition than
necessary for the validity of Theorem 6, involving just a
fourth-order moment constraint on the input. We consider now
a time interval of length n (a block of n transmissions). Collect
a vector sequence ¥y, of length n into the vector y as

=y il

and form the block cyclic-shifted matrix H™ e C(NV'm)xn

(61)

Fn_1[0] B ifT=1] ©
H" = (62)
ho[T—1] © 0 ho[0]
With
2 = (B B0) g (63)

and 7/ and 7" defined similar to ¢/, the following quantized
space-time model may be formulated as a (loose) approxima-
tion of (58), where the resulting dimensions are N = N'n and

M=n
™ = Q) = Q (H2? + ). (64)
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1) Asymptotic Achievable Rate: Now, we elaborate on the
asymptotic information rate of this channel setting.

Proposition 1: 1f ¢ (k) is square-summable, then the mutual
information of the described space-time model admits the
following asymptotic maximum rate, under an average power
constraint E[|zx|?] < Pry and a peak power constraint |z|? <
B - Pre, Yk, with B > 1

lim

n—oo

max
p(=™)
s.t. power conslrajms

L= (25 wgro l )

n

(65)
where
up) = { g2 (ch-;)(ﬁ = Z?Srf(c +x) 2 2 (66)
= tr(C}, )Zch(kF (67)
and
x = 5tr((nondiag(C1)2)en(0). 68)

Proof: First, we establish the stated result as an upper
bound on the asymptotic rate for any distribution fulfilling the
average and peak power constraints, and then we show that
it can actually be achieved with an appropriate transmission
strategy. Due to the peak power constraints, the conditions
of Theorem 6 are satisfied; thus the second order approxima-
tion (49) is valid. A tight upper bound is obtained by looking at
the maximal value that can be achieved by the expression (49)
up to second order. We do this in two steps. We first maximize
the trace expression in (49) under a prescribed average power
per symbol ~y. The maximum can be, in turn, upper bounded
by the supremum of the first term minus the infimum of
the second term under the prescribed average power and the
original peak power constraint. After that, we perform an
optimization over the parameter y itself. That is

(2 1 ) {
max
770,2? 0<y<1

( [(nond_lag(E[ ™ ) o H .1

I(a®;r®) <

sup
|z 12 <8Py Yk

21))?])
E[[|a® ||?]=y Pre'n

= inf tr((nond.iag(E[H(n)E{“«m}w(ﬂ)"H]H(n)’H]))2)}
|og |2 <BPF, ¥k
B[l 13—y Pre-n
i
+0(0—%)-
(69)

Evaluating the expectation with respect to the channel realiza-
tions, we get

E[HO 22 EHOH] = D o C), (70)

7627
with
T—1
di e = cn(k—k') Y ayzp_izp,_, for kK € {0,...,n—1}.
= an
Therefore
tr ({nondiag(E[H{”)mf”)a:(“)’HH{“)‘H|$]))2)
. o T-1 2
= Z Z tr(Ch)en(k — K')* D avr_ezio_,
k=0 k'=o t=0
k'#£k
n—1 T—1 2
tr((nondiag(C#r))?)en(0) | Y~ as|zr—ef?
k=0 t=0
(72)

Using the Minkowski and Cauchy-Schwarz expectation
inequalities, i.e. E[|z1—|—z2| ]2 < E[|z1/2]% + E[|22/?]%, and

E[|z122|] < E[|21|?]2E]|22/|?]2, respectively, we have
g ) o A
E () oelzil Zat [lzee*]? ], (73)
=0
and

27 2

< (2 a; (E [|zk_m;:_t|2])%)

T—1 ; 2
< (Z auB [|zx—o[] ¥ B [Jow | ]4)
t=0
(74)

with equality if the variables are equal. In addition, E [|zx|*]
is a linear functional in terms of p(zx) and achieves its
maximum under average and peak power constraints at an
extremal distribution [61], i.e., a two-mass distribution at zero
and peak power. Therefore, the supremum of the first trace
term is achieved when all z; inputs take, simultaneously
during the considered time interval, either the value zero,
or the peak value 3 with a duty cycle of 4/3~1. On the other
hand, the infimum of the second trace expression is obtained,
under the prescribed average power, when E[zz!] = vPrI,.
Calculation shows that

1
— (™ -l
~ @)
o p\2T-1 s n1 g
= D<7<1(7r JT;) (§a9 %8 tr(C )Zl(l_;)ch(k)g
" 5:} 5
1
+HF =) §tr((nondiag(cn))z)%(ﬁf] ok )
x
(75)
Now, the maximization over -+ delivers
o = min{1, X, (76)

2x
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Thus, taking the limit n — oo yields ¢ — ¢ as in (67) and
by the normalizations in (60), we end up with the result of
the proposition as an upper bound.*

We next turn to the question of how to achieve the maximum
rate stated by Proposition 1 is achievable. A closer examination
of (69) demonstrates that the maximum rate could be achieved
if the input distribution satisfies the following condition, for
any time instants k and [ within the block of length n:

oxz) = aed¥kD, (77)

for some 2 # 0 and random a € {0,v/F- Pr}, while
having E[z®™ 2™ "] = ~Pp1, as already mentioned in the
proof of Proposition 1. Clearly an on-off frequency-shift keying
(OOFSK) modulation for the input, as follows, can fulfill these
conditions

oy =% -8 ke{l,...,n},

where Z takes the value \/BPr with probability yop:3~!
and zero with probability (1 — yope3~"), and 2 is uniformly
distributed over the set {%ﬁ, .. ,m} This is similar to
the results of the unquantized case [54], [62]. (|

2) Discussion: We notice from (76) that the average power
constraint E[|z|%] < Pry is only active when 3(¢ + x) > 1,
which means that it is not necessarily optimal to utilize the
total available or allowed average power especially if a tight
peak power constraint is present. In addition, if we impose
only a peak power constraint, i.e. 5 = 1, then if { < x the
on-off strategy with the zero symbol (a = 0) is required to
approach the capacity. We observe also from Proposition 1
that spreading the power over different taps does not affect
the low SNR rate, while receiver correlation is beneficial
due to two effects. First the mutual information increases
with y defined in (68) which is related to the norm of the
off-diagonal elements of C',. Second, under the normalization
tr(Cp) = N’, the Frobenius norm tr(C? ) increases with more
correlation among the receive antennas, and consequently,
higher rates at low SNR can be achieved due to relation (67).
In fact, both spatial and temporal correlations are extremely
beneficial at low SNR, even more than in the unquantized
case. Besides we note that the achievability of the rate stated
in Proposition 1, as discussed previously, is obtained at the
cost of burstiness in frequency which may not compatible with
the specifications imposed on some systems.> Therefore, it is
interesting to look at the asymptotic rate of i.i.d. input symbols

drawn from the set {—/BPr, 0, /BPr }. In that case it turns

out by (49) that
2 Pry\
0<y<1 \m 0'2

(78)

ll_m —IHD(:E(”) 7.(71))_ max

S0 Z o

T-1

2
+7(8—7)x (Z aa)

+o(1/op).  (79)

t=0

Here, we observe that, contrary to the FSK-like scheme,
the mutual information with i.i.d input is negatively affected

“4Observe that ¢ and  are indicators for the temporal and spatial coherence,
respectively.
INote that such observations hold also in the unquantized case [54].
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Ratio between i.i.d. rate and upper bound

Fig. 9. Ratio of i.id. rate (79) and maximum rate (65) vs. the spatial-

to-temporal coherence ratio % for 8 = 2 and uniform delay spread. i.e.
1

¥y — T

by the delay spread since Zt i a2 < 1 by the normaliza-
tion (60). Nevertheless for the case x > (, i.e. low temporal
correlation (high Doppler spread), the gap to the maximum
rate in Proposition 1 vanishes, as demonstrated in Fig. 9.

VI. CONCLUSION

Motivated by the simplicity of one-bit ADCs for sampling
large dimensional signals, we provided a general second-order
asymptotic analysis for the entropy of one-bit quantized vec-
tor signals. We used these results to evaluate the mutual
information around zero SNR for a wide class of channel
models. We have shown that the reduction of low SNR channel
capacity by a factor of 2/7 due to 1-bit quantization holds
for the general MIMO case with uncorrelated noise. We also
showed that QPSK is uniquely optimal at low SNR, in contrast
to the ideal case with infinite resolution, where any proper
zero-mean distribution is asymptotically optimal. In massive
MIMO, the capacity loss can be compensated, up the second
order in SNR by increasing the number of receiving antennas
by a factor of /2.

Furthermore, the non-coherent MIMO channel was studied
in detail. First, closed-form expressions were derived for
the non-coherent block-Rayleigh fading SISO with QPSK
signals. Then, it was shown that the 2/7 low-SNR loss due to
1-bit quantization still holds for all channels of practical inter-
est. Finally, the asymptotic performance of SIMO Channels
with delay spread and receive correlation was considered at
low SNR under peak and average power constraints, where
OOFSK modulation is shown to be optimal.

APPENDIX A
PROOF OF THEOREM 1

We aim at the derivation of the second order approximation
(Taylor expansion) of the entropy H (r), where r = sign(y) =
sign(ex + 1), with respect to . Thereby, we assume that
the vector 7 is i.i.d. Gaussian distributed with unit variance
and x has a general distribution. As will be shown in the
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following, this second order Taylor expansion is a function
of the moments of the distribution of @, which have to
fulfill certain conditions. For simplicity, we consider first the
real-valued case for the computation of the second order
approximation of the entropy H (sign(ex + 7)) assuming that
x has a real-valued distribution and 77 follows a real-valued
Gaussian distribution with variance % The generalization to
the complex case can be obtained based on the real-valued
representation of the complex channel and is performed at the
end of the proof. The probability mass function P.(r) of the
random vector 7 = sign(sx + 1) € {£1}V is given by

P(r)=P(roy eRY)=E; [ proyizidy, (0
T

where
—IIy—Em'Ili_

e

(81)

We also have the general expression of the entropy (in nats)
of random vector 7 as

H(r)=

pf(y| )_ NZ

Y, —P(r)mP(r (82)
re{+1}V

Next, based on the derivatives of the function —zInz,
we calculate the second order expansion of the entropy with
respect to e. For that, we first notice that the linear and cubic
terms of the Taylor expansion vanish due to the fact that the
entropy function H(sign(ex + 1)) is an even function with
respect to ¢ since H (sign(ex + 1)) = H(sign(—ex + n)).
Additionally, since P.(r) is a probability mass function,
ie, ), P:(r) =1, we have

> P®¥)(r) =0, (83)

for any k-th derivative of Pg(k)(r) with respect to . Based
on these observations, we get the following second order
expansion

2 P 4
Hir)= Z —Po(r)In Po(r) — & 2?3{()2») B (12}}3"(32)3
By(r )2 (r)  Pl(r)? P’(T)P(S) (r)
D4P0(r)2 + S_PD(T) L SPOEJ?“) = AH(T):
(84)
where
o) = / 2 Iy — 21 (85)
RY -

and Fj(r), Py (r) and P&(T)Pés) (r) are the first, second and
third order derivatives of P.(r) at ¢ = 0, which will be
derived in the following. To this end, we utilize the following

derivatives of the unquantized output distribution p.(y|z) =
L e ly—ezl|3

T 2
Ph(yl@) = =z ¥lz2yTa, (86)
% 2 IWIE oy T )2 2
Pi(yle) = —ze W2y ) — |lzll}),  (87)
3 4 z 2 2
Py (ylz) = —ze W2y (S (y @)’ — [l2]).  (88)
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Further, we express Pgtk)('r) in terms of pgk)(y), i.e., by
interchanging the derivative of (80) with respect to £ with
the integral operators. For that to hold, let us assume that
pgk)(y) is decaying sufficiently fast and thus integrable on RY
(a condition for the expansion (84) to hold with asymptotically
vanishing remainder term is discussed at the end of the
appendix)®. Then, by the dominated convergence theorem, we
evaluate the first order derivative as

1 2

2 2
P _ e £ 7]1 TRIzldy = — —7+TE
5r) = [, e o " Bleldy = g2l
(89)
while the second order derivative reads as
Py (r)
2
=T, ze 18 (2((r 0 y)2)? — |l2]]3) d
RY T
2
=E, el (2T (2(roy)(roy)T—1)z)dy
RY
' 4E 4 T
g [zTnondiag (rrT) z]
14
=N —rTnondiag (E[zz™]) r, (90)
where we used the following result
-/Rf “aN/2 (y“ ri)(ws - 75)dY = { %ﬁ- otherwise,
o1

and the relation tr(nondiag(A)B) = tr(Anondiag(B)) for
any two quadratic matrices A and B.
In a similar way, we calculate P( )(r)

P¥(r)
=Eq, / %e—ilv“b((r o y)Tx)
rY T

(92)

| (g(w A ||:cn§) i

_E/(

IIyIIz((rOy)Tm)S

e (o)) o]} dy
= sf e M o0y — g = Bl
= %;—;TTE[:B oxox]+ %T’T -E[||lz||3 - ]
+ j_ﬁi-#;f T %?‘TE[H;B”% 2]
- QLN\_/_;TTE[:B oxox| + ;_iﬂi%j#i;,—;irﬂﬂ [zizjz]

(93)

6Since x is bounded in the coherent case due to the resu]t in Appendix B

(also due to practical limitations as well), we have that p )(y) is bounded
and exponentially decaying with respect to y and thus integrable on ]R
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which follows from

8 iz
EmfN —e 11z (7 0 y)Tx)3dy =

= —E / _”9”2(2 riydzd +3 Z riylriry;;

L,jF1

+6 Z TiYiTiT5Y; T Tiyie ) Ay
JFiFl

ZT,\/_I —1—32 :c?j\/_

i,jF#i

+6 Z n\/—xarj \/—I;,-Tz\/—zz

JjFiFl
8

1 1 3 ]
e i | Ry S R o o g
IN < 2;7}\/}5"}"_2%—:'&7—3 ﬁlj

+6 T TiT TiT]—=I]
5

= —QiEz,(?‘TE[;B ocxox])+ %TT g E[ll"—””i -]
43 1
+ 2_7r2 Z E [rizirjzymz] - (®4)

JFEiiFEL T

Now, after the derivation of the derivatives Pj(r), P} (r)
and Pés)(r), we have to perform a summation with respect to
r € {—1,+1}" of the terms given in (84). For this, we make
use of the following properties:

2# Y rTAr=tu(A), (95)
re{—1,+1}V
and
QLN Z rTAr.rTBr
ref{—1,+1}N
= tr(A - nondiag(B + BT)) 4 tr(A)tr(B), (96)

which can be verified by expanding the left-hand side and
identifying the non-zero terms. We start by the second order
expression of (84)

Pi(r)? 2
,-e{_%l}w %{w)") = WE{_%;]}N N—N(TTE[m]T)z
~ 1§ 2N2_ " Ble]Blz]"r
re{—1,+1}V A
= 2 2. ©7)

Then, we consider the different terms of the fourth-order
derivatives, starting with

5 By(r)*

rE{L+1}N 12P0('r)3

- ¥

re{—1,41}V

W(?‘TE[w]T)4
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4
= Z aN . 32

rT E[z]|E[z]T rrT E[z]E[z]T r
N— S—

re{—1,+1}¥ A B
4 .
= —tr(nondiag(Elz]Bla]")?) + o B[]S ©O®)
On the other hand, we have
Z H(T)Q
A 8F(r)
2 .
= Z mrTncmdlag (E[zz™])
re{—1,+1}V

-rrnondiag (E[zz"]) r
4 ;
= Fur(nmdmg(E[m:T])z). (99)
Next, we get

2

re{—1,+1}V

= Z 2N4 5 r'nondiag (E[zz"])
re{—1,+1}V o

Py(r)*Py (r)
4Py (1)2

-rrTnondiag (E[z|E[z]") r
= %tr(nondjag(E[:I:]E[:I:]T)nondiag(E[a::I:T])). (100)
Further, we obtain
¥ Py(r)Pg” (r)
ref{—1,+1}N 6Fo(r)

:# ¥ (%TTE[:B]) (\_/_;(TTE[:I:OM:C])

re{—1,+1}¥
48 1
SN T Z ryrymE [1:1-3:3-1:;])
T2 jiarlizl
4
= —gE[m]T Elzox ox]

16
L Z Z rirjTireElzx]E [ziz; 2]

re{ 1N G AL #LE

_ AT
= 3WE[:I:] E[lz oz ox] +0. (101)

We plug the results from (97)—(101) into the expression for
the entropy in (84), to get finally

H(sign(ex +7)) = 2N In2 — 2¢2 [Efa]
_ gl (%tr ((nondjag{cm))2) + % ||E[9($)]||:

—% |E[x] o E[z o x o a:]||;) + AH (sign(ex +1)).
(102)

Now, for the complex-valued case, we easily obtain a similar
result, since any N-dimensional vector can be represented as a
real-valued 2N -dimensional vector, where we split the vector
into the real part and the imaginary part and write them as:

Re{z
= [ t=) } !

Tl (103)
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This implies that the vector norms can be defined as

lelis =" Re{zx}* + Im{zs}*. (104)
k

On the other hand, the covariance matrix can be written as

C. = E[zz"] — B[z]E[z"]. (105)
Under the assumption that x is circularly distributed,
i.e., E[zxT] = E[x][zT], then we have

1[ Re{Cy} Im{Cgz}
E I O B
Cyr =E[z"z"" ]| = 5 | Imges RefeL) | (106)
where we note that the matrix Im{C} is a skew-symmetric
matrix, i.e., In{CL} = —Im{C_} and has diagonal elements
equal to zero, thus we have

(nondiag(Cpr))?
= %{nondjag{Re{Cm}))2 = %(Lul{c,,,})f*
= %{nondjag{Re{Cm}))2 = %(nondia.g(lm{cz}))?

= %{nondjag{cm )2 (107)
Therefore, we can conclude that the formula remains
the same except that we replace (nondiag(E[zz™]))? by
% (nondiag(E[zz"]))?, and the norms retain their same
definition.

Now, we turn to the question of the conditions such
that the second order approximation is valid. The condition
Ea,[||:1:||j+ﬂ] < « for some finite constants o,y > 0 stated by
the theorem ensures, similarly to the unquantized case [51],
that the remainder term of the expansion given by

AH (sign(ez + 1)) = Ezfo(|lz[3e*)]  (108)

satisfies
lim AH (sign(ex + 1)) _

0
£4.0 gl !

since the fifth oder derivative with respect £ exists and
(similarly to the unquantized case in [51, Theorem 5])

|AH (sign(ex + 1))
= Eafo(|l[y€*)]
< E_—,,[(||x||i£4)1+07’], for some o' €]0,
< Eg[lz]l+Jet+
< Em[||$||i+°]%%’E““’(Hﬁlder’s inequality)
<yt

= o(e?). (109)

This yields the result stated by the theorem and completes
the proof.
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APPENDIX B
BOUNDEDNESS OF THE SUPPORT OF THE
CAPACITY-ACHIEVING DISTRIBUTION

For simplicity, we consider a real-valued system since gen-
eralizing the result to the complex-valued case follows directly
from its real-valued representation. Due to the concavity of the
mutual information, the sufficient and necessary Karush-Kuhn-
Tucker condition for an input distribution p*(x) to achieve the
capacity C under the average power constraint E[||z||3] < Pry
is that there exists A > 0 such that [63]

A(|[2|3 — Pr) +C — 3 P(r|z) log, Pgl‘?) >0, Ve,
(110)

with equality if p*(x) > 0. The idea for proving that the
optimal distribution has bounded support is to show that the
KL-distance
P(r|z)
D(P(r{z)|[P(r) = 3 P(rl) log ;s
r

(111)

is always finite and therefore the equality in (110) can only
hold with equality for finite ||x||3, in a similar manner to [47].
We bound this term as follows

3 P(rie)togs S

< +

3" P(r|z)log, P(r|z)

3" P(r[z)log, P(r)

<N +|)_ P(r|z)log, P(r)

<N+ ) log, P(r)
=N+ [logy P(r)|

=N - Z log, P(r)

—N-— FE{EW log, Ex [Hi‘;@ (r,-ﬁfa:/ 03/2)]

< N —92Vlog, B [Hi‘;lé (—|ﬁf:c|/ 02/2 }
< N~ 2" logy Bo [I0L,® (—[ullallell2/ /o3 /2)]

- N
<N —2Vlog, E, [‘I’(—(meIIhillz)llxllz/ 52/2) ]
(112)

where ﬁ:r is the i-th row of the channel matrix H. Using the
fact that ®(—,/p)™, p > 0 is a convex function, since

2&(—/p)N d®(—./p) 2 ”
S v - (S ey

e 5(1+p)

ENS(—ypN I TP
(VP

=0, (113)
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we obtain by Jensen’s inequality
Zp(rp:)]
i - N

<N —2"log, By [ (~(uuax e/ y/73/2) |

<N —2V1og, ® (—(m?x ||!1,-||z)\/Em[||m||%]/\/0%/2)N

=N —2" - Nlog, & (—(max |lhsl|2)v/2Pr/o)

< 00,

P(r|z)
%2 7P(r)

(114)

which is bounded if the channel is bounded. This ensures
that (110) holds, for A # 0, with equality only for finite |22
and thus the support of the capacity-achieving distribution is
bounded if the power constraint is active.

Now we consider the case A = 0, i.e., where the power
constraint is inactive, and we assume without loss of generality
that # ¢ Null(H) (null space does not contribute to the
information transfer). From (112), we have that, for the
capacity-achieving distribution, the output distribution satisfies
0 < P(r) < 1, since ) |logy, P(r)| is finite (see (112)

and (114)). Further, we write any possible input vector as
x = &x for some £ > 0 and & having finite > norm.
With larger input amplitude &, the support of the conditional

N ® (rah V2 g;t:/on)
0.5N—IIH2lo reduces asymptotlcally to the set of outputs
So = {r | nh;& > 0, Vi}, ie. since lim &(r) =
T]irgo &(—7) =0, and ®(0) = 1/2, we have

output distribution P(r|{Zx) =

Jim P(ri¢a) = Jim 1Y, (n ;-F\/ifﬁt/an)
0_5N—!|Hi'||u,
0

for r € &
otherwise.

7

Therefore, for £ > &y, with some sufficiently large &py,
we have, by uniform convergence, 0 < P(r|{Z) <
0.5N—IIHZllo P(7), ¥r ¢ Sy. Consequently, we have

D(P(r|¢x)|| P(r))

- ZP(ﬂga: gy T 12)

P(r)
0.5N—IIH2llo P(r|¢2)

:ZTIP(Tlﬁff)logz 0.5N— T2l P(r)
o~ P E
= —(N - |H&ljo) + ) P(r|é&)log, o_5N—|Eg§i)P(r)
P(riéx)

(N — &) + 3, Plrléd)logs ooz zrap, e

reSo
Ter‘lr'n 1
g P(r|ée)
# %; P(r|¢d) log, SE IR

TerTn 2
(115)
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Term 2 in (115) becomes strictly negative for £ > £y since
Vr € S, P(rlé2) < 0.5V lIHZloP(r). As a result, for
& > &pr, we obtain

D(P(r|€x)[|[P(r))lesgpy
- ” P(r|¢i)
< _(N — ”Hll?”o) +§0 P(T £a:) 10g2 0.5N_”_ﬁ';i;”0P(r)
1
Wil 0.5N—lIFZ0 |,
—(N — || H|lo) +Z; )

(since P(r|éx) < 0_5N—i|H="l=!|o)

- -
_ 3 05—tk g, DS
rESy P('P)

= lim D{B(ric®)IlP{x))

<C, (116)

where the last step follows due to the KKT condition (110)
for A = 0. Since D(P(r|éx)||P(r)) < C for & > &,
@ = £ cannot be part of the support of the capacity-achieving
distribution for co > £ > &y and & having finite £ norm.
This completes the proof for both cases A =0 and A > 0.
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