


Hysteresis in spreading and retraction of liquid droplets

on parallel fiber rails†

Fang Wanga and Ulf D. Schiller∗a

Wetting and spreading of liquids on fibers occurs in many natural and artificial processes. Unlike

on a planar substrate, a droplet attached to one or more fibers can assume several different shapes

depending on geometrical parameters such as liquid volume and fiber size and distance. This paper

presents lattice Boltzmann simulations of the morphology of liquid droplets on two parallel cylindrical

fibers. We investigate the final shapes resulting from spreading of an initially spherical droplet

deposited on the fibers and from retraction of an initial liquid column deposited between the fibers.

We observe three possible equilibrium configurations: barrel-shaped droplet, droplet bridges, and

liquid columns. We determine the complete morphology diagram for varying inter-fiber spacing and

liquid volume and find a region of bistability that spans both the column regime and the droplet

regime. We further present a simulation protocol that allows to probe the hysteresis of transitions

between different shapes. The results provide insights into energies and forces associated with

shape transformations of droplets on fibers that can be used to develop fiber-based materials and

microfluidic systems for manipulation of liquids at small scale.

1 Introduction

Liquid-fiber interactions play an important role in many natural

and engineered processes including wetting and drying of hair

or feathers1,2, wicking of fabrics3, coalescence filtration4, and

fiber coating5. Advances in fabrication of functional fibers also

make it possible to use droplet-fiber system as building blocks for

micro- and nanofluidic systems6–8. The wetting and spreading

of droplets on complex substrates is governed by surface interac-

tions, interfacial tension and capillarity. The driving mechanisms

have been extensively studied on flat homogeneous and patterned

substrates9, going back to Young’s work on liquid bridges be-

tween flat plates10. Although considerable progress has been

made9, a complete theoretical description of wetting transitions

remains challenging due to the inherent multiscale nature of the

contact line. On real substrates, contact angle hysteresis due to

surface roughness or chemical heterogeneity further complicates

the understanding even for flat surfaces. Recent advances in-

clude, for example, the study of wetting phenomena in triangular

grooves11,12 and wedge geometries13.
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The configuration of a liquid droplet adsorbed to a surface

is characterized by the contact line, i.e., the boundary between

the wetted and unwetted regions of the surface. On a homoge-

neous flat surface, a droplet will assume a spherical cap shape

with a radius determined by the contact angle and the line ten-

sion. The situation is more complicated on complex surfaces

and continues to attract theoretical and experimental studies of

various geometries including cylindrical fibers3,14–20, ribbon-like

fibers21,22, and spherical beads23–25. Droplets on fibers can as-

sume equilibrium shapes that cannot be realized on planar sub-

strates. The shape is in general not axisymmetric and cannot be

described by a single curvature radius. Hence, unlike on a planar

surface, a vanishing contact angle is not a sufficient condition for

spreading. A droplet on a single fiber can assume two distinct

equilibrium shapes: a barrel shape if the droplet volume normal-

ized by fiber radius is large or the contact angle is low, and a

clam-shell shape if the droplet size is small or the contact angle

is high26,27. McHale and Newton28 have used analytical and fi-

nite element calculations to determine the surface free energies

of droplet configurations and found that for large droplet volume

or small contact angle, the barrel shape is energetically preferred

while for small droplet volume or large contact angle, the clam-

shell shape has a lower energy. Their results suggest that the

stable barrel shape droplets are characterized by an inflection an-

gle where the curvature radius changes its sign. While both cur-

vature radii remain positive at the apex, at the contact line one

curvature radius changes sign to reduce the excess Laplace pres-

sure. However, the absolute stability of barrel-shaped droplets is
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ultimately still an open question as the accuracy of the energy

obtained from finite element calculations depends on resolution

making it difficult to precisely ascertain the region where barrel-

shapes have lower energy than clam-shells, as noted by McHale

and Newton28.

Fiber materials consist of many fibers and a liquid droplet can

be in contact with two or more fibers simultaneously leading to

competing surface interactions. A proto-model for the spread-

ing of droplets attached to multiple fibers is a parallel pair of

cylinders forming a “fiber rail”. For this arrangement it has been

observed that, if the spacing between the fibers is sufficiently

small, a droplet of wetting liquid will spontaneously spread out

in the inter-fiber space to form a liquid column of constant cross-

section29. This wicking transition is reversible, i.e., if the fiber

spacing is increased above a threshold, the liquid column will re-

tract into a droplet bridge. The first analytical description of the

shape of a liquid bridge between two parallel fibers with a small

spacing was given by Princen30, who determined the existence re-

gion of the column as a function of fiber distance. Similar to the

case of a single fiber, however, the regions of stability of differ-

ent liquid configurations described by Princen’s equation remain

unspecified.

Keis et al.6 have experimentally investigated the spontaneous

spreading or retraction of droplets on fiber rails. They deter-

mined the critical inter-fiber distance by a dynamic method and

found that the wicking kinetics can be described by the Bosan-

quet law31 at very short times and the Lucas-Washburn law32,33

at later times. Protiere et al.19 conducted experiments with paral-

lel fibers of varying fiber distance and radius, liquid volume, and

contact angle, and studied the transition between a hemispherical

drop shape and a liquid column. They found that the transition

depends on the geometry as well as the liquid volume, and ob-

served a region where both the barrel drop and the liquid column

are stable. This suggests that the transition from one morphol-

ogy to the other exhibits hysteresis. By comparing the surface

energy of a column to that of a spherical droplet, a curve above

which the droplet energy is smaller than the column energy can

be found for each volume. This curve estimates the boundary of

the region with stable droplets and it was found to be close to

the drop-to-column transition observed in experiments. Protiere

et al. hypothesized that the hysteresis is unrelated to contact line

pinning or elastic effects, however, the simple energetic model

cannot explain the origin of the hysteretic behavior or the size of

the hysteresis loop.

Several authors have presented numerical simulations of the

3D shape of liquid bridges between two fibers to predict the cap-

illary forces as a function of fiber distance17,20,34,35. Virozub et

al. employed the Surface Evolver package to minimize numeri-

cally the surface free energy per unit length of the liquid config-

uration. They used an analytical expression to calculate the re-

sultant forces, energies, and torques exerted by the liquid bridge

on the fibers. The results suggest that stable symmetric bridges

are favored at small fiber distance, whereas larger contact angles

lead to coexistence of stable asymmetric and unstable symmetric

configurations. The region of stability and transitions between

the shapes were not further discussed. Aziz and Tafreshi20 re-

ported experiments and numerical calculations of the mechanical

forces between two fibers connected by a liquid bridge. The de-

pendence of the force on fiber spacing was studied for parallel

and orthogonal fiber configurations, and the detachment force of

a pendant bridge was determined as a function of liquid volume.

The numerical simulations always started with a cuboid-shaped

droplet and the column to droplet transition was thus not ob-

served in this setup. Wu et al.17 and Bedarkar et al.35 extended

the surface energy formulation by McHale and coworkers to the

case fiber rails and also employed the Surface Evolver package

to investigate the wetting morphology of droplet for varying liq-

uid volume, fiber spacing, and contact angle. The results indicate

that the dependence of the wetting length on the contact angle

is strongly affected by the liquid morphology. Wu at al.17 consid-

ered an additional bridge state, where the droplet shape does not

engulf the fibers but only partially wraps the outside surfaces. The

critical droplet volume where the surface energy of an engulfing

barrel shape and the partially wrapping droplet bridge are equal

were determined using Surface Evolver. The numerical minimiza-

tion of the surface energy allows to express the critical condition

for absolute stability as a family of characteristic wetting curves

in the volume-distance parameter space. The partially wrapping

bridge state, which can exist for larger fiber distances, is different

from the liquid column observed in experiments6,19. Therefore,

the wetting curves obtained by energy minimization do not nec-

essarily capture the absolute minimum morphology. The transi-

tions between different liquid configurations and the associated

hysteresis thus remain incompletely understood.

An alternative to determining the stable liquid configuration by

minimization of the surface energy is to consider the correspond-

ing Young-Laplace equation. In a stable configuration, the excess

Laplace pressure is constant everywhere across the droplet sur-

face. Such a configuration is metastable if its surface energy is

higher than another stable morphology with the same volume. A

morphology transition is thus associated with an energy barrier

that corresponds to overcoming Laplace pressure. However, since

measuring excess pressure for small liquid volumes is challeng-

ing, the connection between the surface energy landscape and

capillary pressure in the context of morphology transitions has

not been investigated in detail in previous works.

To fill this gap, we use multicomponent lattice Boltzmann sim-

ulations to investigate the morphology of liquid wetting on a fiber

rail. The multicomponent lattice Boltzmann method36–39 belongs

to the class of diffuse interface methods, where the interface be-

tween immiscible fluid components has a finite width controlled

by the interaction strength between fluid components. The width

of the interface introduces a length scale that can take over the

role of the slip length, thus implicitly resolving the Huh-Scriven

paradox, i.e., the divergence of the dissipation rate that arises

from application of the no-slip boundary condition. The diffuse

interface width can also be reconciled with the scaling regimes

for moving contact lines40 and connects to the sharp interface de-

scription in terms of the Cox-Voinov relation41. Within the LBM,

The interfacial tension between the fluids and the contact angle

of the three-phase line can be controlled by tuning the interaction

parameters between different fluid species and the surface42. Ap-
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can have both convex and concave perpendicular cross sections.

The liquid column is flat in the parallel direction except near the

menisci, hence the cross section is nearly constant and one of

the principle curvatures vanishes. The previous approaches for

describing the shapes mathematically are typically based on the

functional relationship between the wetting length and capillary

pressure15,19,30. While the column morphology has been studied

in some detail in theory and experiment, there have been few at-

tempts to determine the wetting length and capillary pressure of

barrel shapes and droplet bridges on fiber rails.

2.2 Lattice Boltzmann method

The lattice Boltzmann method is a versatile multiscale method

for computational fluid dynamics beyond simple Newtonian liq-

uids44. Over the last few decades, various methods have emerged

that make the LBM applicable to complex fluids including mul-

tiphase/multicomponent fluids36–39. In contrast to traditional

CFD methods, the dynamics of the fluid is described on a kinetic

level and the Navier-Stokes equation emerges as the hydrody-

namic limit of an asymptotic expansion. The kinetic description

offers a way to dial in specific physico-chemical interactions at the

mesoscale which enables coupling of different fluid components

and molecular solutes. The dynamics of the fluid is described by

the lattice Boltzmann equation

fi(x⃗+ℎc⃗i, t+ℎ) = f
∗
i (x⃗, t)

f∗
i (x⃗, t) = fi(x⃗, t)−

∑

j

Λij
[
fi(x⃗, t)−f

eq
i
(�, u⃗∗)

]
,

(5)

where x⃗ are discrete positions in space on a cubic lattice with

lattice spacing a, ℎ is a discrete time step, and c⃗i are discrete ve-

locities such that ℎc⃗i connects lattice sites. The fi are local pop-

ulations representing the mass density of fluid associated with

velocity c⃗i, and the matrix Λij represents a collision operator that

relaxes the populations towards a discrete Maxwell-Boltzmann

equilibrium f
eq
i

. In this work, we employ the three-dimensional

D3Q19 lattice that uses 19 velocities connecting nearest and next-

nearest neighbors of the cubic lattice. The equilibrium distribu-

tion is taken as the third-order expansion

f
eq
i
(�, u⃗∗) = �wi[1+

c⃗i ⋅ u⃗
∗

c2s
+
(c⃗i ⋅ u⃗

∗)2

2c4s
−
u∗2

2c2s

+
(c⃗i ⋅ u⃗

∗)3

6c6s
−
u∗2(c⃗i ⋅ u⃗

∗)

2c4s
],

(6)

and the common Bhatnagar-Gross-Krook (BGK) collision oper-

ator Λij = �ij� with a single relaxation time � is used. The

method recovers the incompressible Navier-Stokes equation with

a kinematic viscosity � = c2s (� −ℎ∕2), where cs = 1∕
√
3 a∕ℎ is the

(pseudo-)speed of sound of the lattice. In the implementation

used in this work, the hydrodynamic variables are obtained as

moments of the post-collisional LB populations

� =
∑

i

f∗
i , (7)

�u⃗ =
∑

f∗
i c⃗i. (8)

The distinction between u⃗ and u⃗∗ is used to accommodate mo-

mentum source terms arising from interactions between different

fluid components as introduced in the next subsection.

2.2.1 Multicomponent lattice Boltzmann

Multiple fluid components can be incorporated in the lattice

Boltzmann method by using multiple sets of populations f�
i

where � indexes the components. Following Shan and Chen36,37,

the interactions between different components or phases are

modeled by a non-local interaction forces F⃗ �(x⃗, t) given by

F⃗ �(x⃗, t) = − �(x⃗, t)
∑

�̄

g��̄
∑

x⃗′

 �̄(x⃗′, t)(x⃗′− x⃗), (9)

where g��̄ is an interaction coefficient and  �(x⃗, t) = (��(x⃗, t)) are

the Shan-Chen pseudo-potentials representing an effective mass.

The sum over x⃗′ runs over the neighboring lattice sites that are

connected to x⃗ by a discrete velocity vector x⃗′ − x⃗ = ℎc⃗i. The

pseudo-potentials are monotonous functions of density that are

taken in the form

 �(x⃗, t) =  [��(x⃗, t)] = �0
(
1−exp[−��(x⃗, t)∕�0]

)
(10)

with a reference density �0. In the implementation used in this

work, the interaction forces are incorporated in the collision op-

erator by shifting the velocity in the equilibrium distribution by

Δu⃗�,∗(x⃗, t) = �
F⃗ �(x⃗, t)

��(x⃗, t)
. (11)

The post-collisional hydrodynamic velocity is shifted accordingly

by

Δu⃗�(x⃗, t) =
ℎ

2

F⃗ �(x⃗, t)

��(x⃗, t)
(12)

consistent with the usual half-step correction for the force. The

interaction coefficient g��′ controls the miscibility of the compo-

nents: a positive value represents repulsive interactions that lead

to demixing. The interaction potential implies a non-ideal equa-

tion of state of the form45

p(x⃗) =
∑

�

��(x⃗)c
2
s +

1

4

∑

�,�̄

g��̄
∑

x′

[ �(x⃗) �̄(x⃗′)

+ �̄(x⃗) �(x⃗′)](x⃗− x⃗′)2.

(13)

The interfacial tension between the two components, e.g. liquid

and vapor, arises from46


��̄ = ∫ (pn−pt)ds (14)

and can be calibrated to a desired value by adjusting the inter-

action strength g��̄ . It is worth noting that in the conventional

Shan-Chen model employed here it is not possible to tune the
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surface tension and the density ratio independently46. However,

this makes it possible to estimate the interfacial tension from the

density difference42


��̄ = g��̄
�� −��̄

2
. (15)

To describe liquid-solid interactions, it is convenient to treat the

solid as a virtual component and introduce a liquid-solid interac-

tion force analogous to the liquid-liquid interactions42

F⃗ �s (x⃗, t) = −gs,� �(x⃗, t)
∑

x⃗′

 (��s )(x⃗
′− x⃗)s(x⃗′, t), (16)

where s(x⃗′, t) is 1 if x⃗ is a solid site and 0 if it is a fluid site, gs,� is

the interaction strength between fluid component � and the solid

wall, and ��s is a virtual fluid density. The liquid-solid interfacial

tension can be calibrated by the interaction strength and a density

parameter Δ� such that ��s = �
�±Δ�, which leads to 
s,� =±gs,�Δ�

and42,47

cos� =
2(gs,� +gs,�̄)Δ�

g��̄(�
� −��̄)

. (17)

This provides a convenient way to tune the contact angle through

the virtual wall density. If the same interaction strength is used

for fluid-fluid and fluid-solid interactions gs,� = gs,�̄ = g��̄ , the es-

timated contact angle depends only on the density parameter Δ�.

It was shown in Ref. 48 that the contact angle � follows a linear

dependence on the parameter Δ�. In practice, the contact angle

can be calibrated through geometric measurements for a droplet

on a flat substrate or in a duct47.

In addition to the interaction force, mid-link bounce-back

boundary conditions are applied to obtain a hydrodynamic no-

slip boundary condition for the fluid velocity at the surface. For

details on the the pseudo-potential lattice Boltzmann model, we

refer the reader to the review by Chen et al.49.

2.2.2 Simulation setup

We used the parallel lattice Boltzmann code LB3D50 to perform

simulations of liquid droplets on fiber rails. The simulations were

performed in rectangular domain of 150 × 150 ×Nz lattice sites

with periodic boundary conditions in all directions. The fibers

were modeled as rigid cylinders of radius r = 10a with no-slip

boundary conditions employed through a standard bounce-back

scheme at the surface. The length Nz of the domain in the direc-

tion parallel to the fibers was chosen to accommodate the wetting

length and ranges from 600 to 1500 lattice sites. We have checked

that an increase of the domain size does not change the measured

final wetting length and shape of the liquid droplet.

The BGK relaxation time �� for both fluids was set to 1ℎ such

that there is no viscosity contrast between the liquid phases. The

Shan-Chen coupling strength g��̄ was set to 0.14 �0a
2∕ℎ2 to ob-

tain the desired phase separation while maintaining numerical

stability. This value leads to an interface thickness of around 6

lattice sites. The corresponding surface tension was determined

by preliminary simulations of a static droplet in a 1503 domain

and fitting Laplace’s law which yielded 
 = 0.1655 �0a
3∕ℎ2. The

contact angle was set by tuning the virtual wall density �s and

measuring the contact angle of a droplet on a flat surface. The re-

sults reported in this work are based on a contact angle � = 0 for

complete wetting. The fiber surfaces are smooth and chemically

homogeneous such that there is no contact angle hysteresis.

The main parameters that determine the liquid morphology on

fiber rails are the droplet volume V and the inter-fiber distance

d. We have used two initial conditions for the droplet configu-

ration, a spherical droplet and a column-like droplet. The initial

densities of the two fluid components were set to the values deter-

mined in the Laplace-test for a spherical droplet. The column-like

droplet is taken as a cylindrical column with spherical caps and is

placed such that it only wets the inside surfaces of the two fibers.

In order to compare the simulation results to experimental mea-

surements and theoretical expressions, we use the fiber radius r to

obtain dimensionless variables for the inter-fiber distance d̄ = d∕r,

droplet radius R̄ = R∕r and droplet volume V̄ = V ∕r3. The time

scale of the simulations is determined by the viscosity � of the LB

fluid. We use a viscous/capillary time scale to obtain a dimen-

sionless time t̄ = t�
∕(�r). It is worth noting that one could also

use an inertial/capillary time scale
√
�R3∕
, however, our main

focus is on the stable liquid morphologies where the choice of the

time scale is of lesser interest.

Since the multicomponent LBM is a diffuse-interface model, the

liquid interface spans several lattice sites. We define the position

of the interface between two fluid components as the location

where the order parameter � = �� − ��̄ is zero. When measuring

the liquid volume in the final configuration, we observed a slight

decrease compared to the volume of the initial droplet. This de-

crease was always less than 4% and therefore considered negli-

gible. During the simulations, we monitored the Laplace pres-

sure Δp and the surface free energy E. The Laplace pressure

is measured by taking the difference between the fluid pressure

Eq. (13) at the center of the liquid drop and the pressure at the

boundary of the simulation domain. Since the fluid densities are

constant sufficiently far away from the interface, this calculation

corresponds to the pressure drop across the diffuse interface. The

free energy is calculated based on the liquid-liquid and liquid-

surface interfacial areas. The areas are calculated by integrating

the lattice data over the � = 0 isosurface. We used the criteria

|
||
|

Δp(t)−Δp(t−1000ℎ)

Δp(t)

|
||
|
< 10−5

||
||

E(t)−E(t−1000ℎ)

E(t)

||
||
< 10−5

(18)

to determine that the final equilibrium configuration had been

reached.

3 Simulations of liquid spreading on fiber

rails

3.1 Spreading of spherical drop

To investigate the wetting behavior and the equilibrium morphol-

ogy of liquid droplets on fiber rails, we first consider the spreading

of an initially spherical droplet deposited on two fibers, as shown

in Fig. 2a. We varied the inter-fiber spacing d and the droplet vol-

ume V . Inspection of the final shape reveals three possible equi-
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librium configurations: liquid column, droplet bridge, and barrel-

shaped droplets as illustrated in Fig. 2b-d. During the spreading

process, the initially spherical configuration morphs quickly into

a barrel shape the consecutively continues to spread out on the

fiber rail. For the complete wetting case (� = 0) considered here,

the critical fiber spacing beyond which no column configuration

exists is dc =
√
2 ≈ 1.4119. For fiber spacings d = 1.0< dc shown in

Fig. 2b, we observe the continuous spreading of the liquid droplet

along the fibers, indicated by an increase of the wetting length

and a deformation of the cross-sectional shape of the droplet. As

d increases to 1.7, the liquid does not spread into a liquid column

but instead attains a droplet-bridge configuration for smaller vol-

ume V = 601.54, whereas the droplet remains in a barrel-shape

configuration for larger volume V = 1296.71.

The time evolution of the wetting length, surface energy and

Laplace pressure calculated from the simulation snapshots is

shown in Fig. 2e-f. Fig.2e shows the increase of wetting length

in the direction parallel to fiber rails. The capillary motion of liq-

uid droplet comes to rest when the Laplace pressure across the

curved interface is constant everywhere. The decay of the sur-

face energy and excess pressure is continuous for the cases that

reach a droplet bridge or a barrel shape as the final configura-

tion. The surface energy of the barrel shape is higher than that

of the droplet bridge due to the larger liquid interface ALV . For

the cases that reach a liquid column as the final configuration,

we observe noted increase of excess pressure following the ini-

tial decay. This is accompanied by a decrease of the principal

curvature in the direction perpendicular to the fiber orientation

axis, as illustrated by the cross-sections in the side view. Inspec-

tion of the cross-sections over time reveals that at time t = t2,

the cross section is circular and tangent to the two fibers, while

the interface in the parallel direction is nearly flat in the center.

Based on these observations, the peak Laplace pressure can be

estimated as Δp = 
∕(d+2r). We conclude that the peak pressure

corresponds to a disjoining pressure required to detach the liquid

interface from the outside of the fibers such that it can form a

contact line on the fiber surface leading to the final column con-

figuration. Following time t = t2, the excess pressure shows slight

oscillations that are associated with the decay of capillary surface

waves resulting from the detachment of the interface. The sur-

face energy continues to decrease monotonically and reaches the

stationary value sooner than the excess pressure. This suggests

that the pressure oscillations are in fact a transient effect result-

ing from the liquid motion. Since here we are primarily interested

in the stability of the final configuration, we have not investigated

these oscillations further.

3.2 Retraction of liquid column

To account for the possibility of metastable configurations, we

next consider the retraction of a liquid column. The initial config-

uration is a cylindrical column of liquid placed between the fibers

as shown in Fig. 3a. The liquid volume of the column matches the

droplet volume used in the previous section. We varied the inter-

fiber spacing d and liquid volume V over the same range. In-

spection of the final interfacial morphology reveals that the same

types of equilibrium shapes can be reached, as illustrated in Fig.

3b-d. During the retraction process, we initially observe a rapid

deformation of the menisci at the end of the columns driven by

the excess pressure. This is evident in the variation of the excess

pressure during the initial stage as shown in Fig. 3g. Following

this initial relaxation, the surface energy and excess pressure (Fig.

3f and g) vary slowly. The surface energy increases slightly as the

bulk energy decreases due to the change of the excess pressure

across the meniscus. This suggests that a liquid column config-

uration is reached shortly after the start of the simulation. We

do not observe a distinct signature of the transition from column

to droplet bridge. The retracting column either reaches a droplet

bridge with the interface attached to the outside of the fibers or

a barrel shape that completely engulfs the fibers with liquid. For

cases that reach a barrel shape configuration, the retraction of

the column proceeds slowly until at time t = t2, a barrel drop is

formed. We observe that the bridge is formed asymmetrically

as shown in Fig. 3d. An asymmetric liquid bridge was also re-

ported by Aziz et al.20 in both experiments and numerical en-

ergy minimization. Since we do not consider gravity forces in our

simulations, the observation suggest that the asymmetric shape

is energetically favorable at the given spacing and droplet vol-

ume. Non-axisymmetric capillary bridges can indeed form when

the volume of the liquid is greater than the volume required to

form an axisymmetric spherical bridge25. The transition from

the liquid bridge to the barrel shape thus shows some analogy to

the roll-up of a droplet on a single fiber into a clamshell shape28.

The formation of the barrel shape is evident in the evolution of the

wetting length, surface energy and excess pressure, which show a

sudden decrease around time t2. The observations suggests that

after the initial relaxation to a liquid column, the transition from

column configuration to liquid bridge occurs through slow recon-

figuration of the contact line and menisci, followed by a quick

wrapping of the liquid around the fibers when the barrel droplet

forms. The energy associated with the detachment of the con-

tact line from the fibers constitutes an energy barrier that we will

probe in section 3.4.

The

3.3 Equilibrium morphology

The two different initial conditions allow us to probe whether the

equilibrium configuration of the droplet depends on the starting

point in configuration space. In experiments19, two possible be-

haviors were observed when the fiber distance d was varied at

a given droplet volume V . For small volumes, the droplet shape

changes reversibly from a barrel droplet to a column configura-

tion. At larger volumes, the behavior becomes hysteretic with

two distinct critical distances for the drop-column transition upon

increasing the spacing and the column-drop transition upon de-

creasing the distance. In our simulations, we investigate the be-

havior for varying droplet volume V at a given fiber spacing d.

Using the two different intial conditions described above allows

us to probe whether the equilibrium configuration of the droplet

depends on the starting point in configuration space and at which

combinations of d and V both a drop and a column configuration
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to-drop transitions at d = 1.2 < dc for varying values of V . Below

the critical volume, only the liquid column morphology is stable.

Hence the equilibrium surface energy and excess pressure are in-

dependent of the initial configuration. During the transition from

droplet to column the excess pressure passes through a peak fol-

lowed by slight oscillations, as described before. For a liquid vol-

ume V = 1104.55 in the bistable region, the final morphology is ei-

ther a droplet or a column depending on the initial configuration.

Accordingly, the excess pressure evolution of the initial drop con-

figuration does not display the signature of the drop-to-column

transition. The surface energy of the column configuration (solid

line) is lower than that of the droplet configuration (dashed line),

which indicates that the barrel shapes are metastable and the col-

umn morphology is the globally stable configuration.

Fig. 6b shows a comparison of the drop-to-column and column-

to-drop transitions at d = 1.7 > dc . At V = 601.54 below the lower

critical volume, both the spherical drop and the column initializa-

tion lead to a liquid bridge with the same surface energy in the

final configuration. At V = 1296.71 above the upper critical vol-

ume, both initializations lead to a barrel shape in the final config-

uration, where the column-to-drop transition shows the signature

described before. At V = 1105.37 in the bistable region, the spher-

ical drop leads to a final barrel-shape while the column leads to

final liquid bridge. The surface energy of the barrel drop is slightly

lower than the liquid bridge, indicating that in the bistable region

above dc , the liquid bridge is metastable and the barrel-shape is

the globally stable configuration.

It is worth noting that the results are reported here for the com-

plete wetting case (� = 0) and it can be expected that the contact

angle will affect the boundaries between different regions and

the size of the bistable region. For instance, the analytical treat-

ment of the liquid column by Princen30, cf. appendix A, indicates

that the critical fiber spacing for the drop-to-column transition

decreases with increasing contact angle. Experiments conducted

by Sauret et al.51 suggest that for a partially wetting liquid, the

bistable region becomes larger as a larger contact angle hinders

the spreading of the liquid thereby increasing the hysteretic ef-

fect.

Experiments further suggest that within the bistable region, the

effect of gravity may play a role as the Bond number Bo = �gd∕


is generally larger than unity in this region. The gravity force can

prevent the spreading of the liquid into the column configuration

thus stabilizing the barrel drop configuration. Preliminary sim-

ulations for finite contact angle and with gravity forces seem to

confirm the experimental observations. However, comprehensive

simulations to quantify the effect of contact angle and gravity on

the morphology diagram and energy landscape are beyond the

scope of the present work.

3.4 Driven morphological transitions

The comparison of the surface energy of the different shapes in

the bistable region indicates that there is an energy barrier be-

tween the droplet-like configurations and the column-like con-

figurations. It is therefore interesting to characterize the energy

landscape of the liquid morphology on fiber rails. As we have

seen in Fig.4a and b above, the wetting length l is an appropriate

parameter to distinguish the possible equilibrium shapes. Hence

we plot the evolution of the surface energy E over the wetting

length l(t) in Fig. 7, where the time t becomes a parameter along

the curves, and a metastable shape corresponds to an end point

with a finite energy difference E −Emin. To estimate the energy

barriers associated with metastable states, we induce the shape

transition by applying an external force to the droplet as illus-

trated in Fig. 7e. To induce the drop-to-column transition, we

applied a constant compressive force of g = 7×10−5 �0a∕ℎ
2 to the

droplet in the direction perpendicular to the plane separating the

fibers. Conversely, to induce the column-to-drop transition, we

applied a tensile force of g = 2×10−4 �0a∕ℎ
2 to the liquid bridge.

This force is applied temporarily to increase the free energy until

the shape starts to relax spontaneously into a different configura-

tion.

Fig. 7a shows the surface energy at d = 1.2 < dc in the column

region for three different liquid volumes. In this region the liq-

uid column configuration is the absolute stable shape. For the

two lower volumes, the initial droplet transitions spontaneously

to the column configuration with a unique equilibrium wetting

length. As noted above, the surface energy increases slightly dur-

ing this process which is offset by the pressure contribution to the

bulk energy. For the larger volume, the initial droplet reaches a

metastable barrel-shape with a smaller wetting length than the

equilibrium column configuration. The metastable state can be

driven across the energy barrier as indicated by the dotted line

such that it reaches the stable column configuration at a larger

wetting length. The energy barrier is small compared to the en-

ergy difference between the barrel shape and the column config-

uration.

The energy landscape for d = 1.7 > dc in the droplet region is

shown in Fig. 7b for three different liquid volumes. Outside the

bistable region, both the spherical droplet and the column ini-

tial configurations transition spontaneously to the stable droplet

bridge or barrel shape morphology with a unique equilibrium

wetting length. For the liquid volume V = 1105.37 in the bistable

region, the initial column maintains reaches a droplet bridge con-

figuration. It can be driven across the energy barrier by a tensile

force that stretches the bridge into a bulge (cf. Fig. 7e) that can

then transition into a droplet configuration. Although the energy

difference between the droplet bridge and barrel droplet config-

urations is small in this case, the energy barrier indicated by the

dotted line in the figure is larger than the barrier for the drop-

to-column transition. This energy barrier is associated with the

bulge-like deformation of the droplet that is required to detach

the contact line from the outside surfaces of the fibers. The dif-

ference in the energy barriers together with the smaller region of

stability for the barrel-shape configuration suggests that column

configurations are easier to observe in experiments. The analysis

of the lattice Boltzmann results can thus provide insights into the

dynamical evolution of the surface energy during spreading and

retraction of droplets on fiber rails that can not be obtained with

conventional energy minimization techniques.
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4 Conclusions

We have studied the morphology of liquid droplets on fiber rails

using lattice Boltzmann simulations and compared the results

to semi-analytical model calculations. We simulated both the

spreading of an initially spherical droplet and the retraction of

an initial liquid column at various volumes and inter-fiber spac-

ings. The simulations revealed the existence of metastable shapes

and hysteresis of the transitions between drop-like and column-

like shapes. By analyzing the time evolution of the wetting

length, surface energy, and Laplace pressure we identified the

metastable and stable configurations in the parameter space. The

presented morphology diagram in the fiber-distance/volume pa-

rameter space is consistent with reported experimental results19.

In addition to previous results, we also found a bistable re-

gion in the droplet regime beyond the critical inter-fiber spac-

ing dc =
√
2. This new bistable region corresponds to transitions

between droplet-bridges and barrel-shaped droplets. We have in-

troduced a simulation protocol that allows to probe the energy

barrier and constructed an energy landscape by tracking the mor-

phology transitions in terms of the wetting length.

Our results provide a quantitative analysis of the shape tran-

sitions of liquid droplets on fiber rails. The insights can be used

to design enhanced fiber materials for filtration and separation

of liquids. For instance, hierarchical porous fibers with a mul-

tiscale pore structure could be developed to enhance wicking of

liquid into small pores while avoiding clogging of the large-scale

pore structure. The general principles of morphological transi-

tions and hysteresis may also find applications in soft robotics.

For example, the knowledge of the forces/energies required to

induce shape transformations can be used to develop fiber-based

manipulators for liquid volumes at small scale.
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A Analytical treatment of liquid column

To revisit the analysis of the liquid column19,30, we consider the

geometry shown in Fig. 8. Neglecting the distortion of the cross

section near the ends of the column, the wetting length l = V ∕A

can be obtained from the liquid volume V , which then allows to

calculate the surface energy of the column configuration30

Ecol =
4V

A


[
R
(
�

2
−�−�

)
−�r

]
, (19)

where the arc lengths of the segments have been expressed

through the fiber radius r, the radius of curvature R, and the

angle � between the connecting line of the fibers and the three-

phase contact line, cf. Fig 8. For a small increase dL in wetting

length, the surface energy Eq. (4) increases by

dE = 

[
4R

(
�

2
−�−�

)
−4�r

]
dl, (20)

The liquid column is characterized by the Laplace excess pressure

Δp



=

1

R
. (21)

By equating dE to the work done against the excess pressure, we

obtain the force balance

4�r−4R
(
�

2
−�−�

)
=
A

R
, (22)

where A is the cross-sectional area. The area A can be expressed

in terms of the angle � and the radius of curvature R through the

geometric relation

A = 4Rrsin� cos(�+�)

−2r2 (�−sin� cos�)

−2R2
[
(
�

2
−�−�)− sin(�+�)cos(�+�)

]
.

(23)

Another geometric relation exists between R, �, the fiber radius

r, and the inter-fiber spacing 2d

R =
r+d− rcos�

cos(�+�)
(24)

such that for given values of r, d and �, the solution for � can be

obtained from the condition

R2
[
(
�

2
−�−�)+ sin(�+�)cos(�+�)

]

+2rR [sin� cos(�+�)−�]

+ r2 (sin� cos�−�) = 0.

(25)

Eq. (24) shows that as the fiber spacing increases, the radius of

curvature decreases and changes sign, corresponding to the sur-

face changing from curved inwards to curved outwards. Eq. (25)

also determines the critical inter-fiber spacing dc beyond which

no stable liquid column configuration exists. Ref. 19 discussed

the case of zero contact angle � = 0, where dc =
√
2r.

If the height of the column varies over the wetting length, the

angle � will depend on the coordinate of the pinning point (x,y)
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