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Abstract—The use of low-resolution Analog-to-Digital Convert-
ers (ADCs) is a practical solution for reducing cost and power con-
sumption for massive Multiple-Input-Multiple-Output (MIMO)
systems. However, the severe nonlinearity of low-resolution ADCs
causes significant distortions in the received signals and makes the
channel estimation and data detection tasks much more challeng-
ing. In this paper, we show how Support Vector Machine (SVM),
a well-known supervised-learning technique in machine learning,
can be exploited to provide efficient and robust channel estimation
and data detection in massive MIMO systems with one-bit ADCs.
First, the problem of channel estimation for uncorrelated chan-
nels is formulated as a conventional SVM problem. The objective
function of this SVM problem is then modified for estimating
spatially correlated channels. Next, a two-stage detection algorithm
is proposed where SVM is further exploited in the first stage. The
performance of the proposed data detection method is very close
to that of Maximum-Likelihood (ML) data detection when the
channel is perfectly known. We also propose an SVM-based joint
Channel Estimation and Data Detection (CE-DD) method, which
makes use of both the to-be-decoded data vectors and the pilot
data vectors to improve the estimation and detection performance.
Finally, an extension of the proposed methods to OFDM systems
with frequency-selective fading channels is presented. Simulation
results show that the proposed methods are efficient and robust,
and also outperform existing ones.

Index Terms—Channel estimation, data detection, machine
learning, massive MIMO, one -bit ADCs, support vector machine.

I. INTRODUCTION

HE development of wireless communications systems has
been moving toward the use of more and more anten-
nas at the transceivers. Massive Multiple-Input-Multiple-Output
(MIMO) technology is a result of this development and is now
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considered to be one of the disruptive technologies of 5G net-
works [1], [2]. The first and foremost benefit of massive MIMO is
the significant increase in the spatial degrees of freedom obtained
by combining tens to hundreds of antennas at the base station.
This benefit of spatial degrees of freedom helps improve the
throughput and energy efficiency by several orders of magnitude
over conventional MIMO systems [3], [4]. However, the use of
many antennas at the base station also poses a number of prob-
lems. More specifically, a massive MIMO system requires many
Radio-Frequency (RF) chains and Analog-to-Digital Converters
(ADCs) to support a massive number of antennas. This causes
significant increases in hardware complexity, system cost, and
power consumption.

Recently, low-resolution ADCs have attracted significant re-
search interest and are considered to be a promising solution for
the aforementioned problems. This is due to the simple structure
and low power consumption of low-resolution ADCs. As re-
ported in [5], the power consumption of an ADC is exponentially
proportional to its resolution. Hence, using low-resolution ADCs
can significantly reduce the power consumption of the system.
The simplest architecture involving 1-bit ADCs requires only
one comparator and does not require an Automatic Gain Control
(AGC). Thus, 1-bit ADCs are an attractive potential solution for
the problems of hardware complexity, system cost, and power
consumption.

One major drawback of 1-bit ADCs is the induced distortion,
since only the sign of the real and imaginary parts of the
received signals is retained. This severe nonlinearity makes
the channel estimation and data detection tasks much more
challenging. MIMO channel estimation with 1-bit ADCs has
been studied intensively in a number of papers with differ-
ent scenarios, e.g., [6]-[23]. Maximum-Likelihood (ML) and
Least-Squares (LS) channel estimators were proposed in [6]
and [7], respectively. The Bussgang decomposition is exploited
in [8] to form a Bussgang-based Minimum Mean-Squared Er-
ror (BMMSE) channel estimator. The work in [9] proposes a
BMMSE channel estimator for massive MIMO systems with
1-bit spatial sigma-delta ADCs in a spatially oversampled array
or for sectorized users. Channel estimation with temporally
oversampled 1-bit ADCs is studied in [10] and [11]. The use
of spatial and temporal oversampling 1-bit ADCs was shown to
help improve the channel estimation accuracy but requires more
resources and computations due to the oversampling process.
A channel estimation method based on Support Vector Machine
(SVM) with 1-bit ADCs, referred to as soft-SVM, was presented
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in [12]. Angular-domain estimation for MIMO channels with
1-bit ADCs was studied in [13]-[15]. Other scenarios involving
spatially/temporally correlated channels or multi-cell processing
with pilot contamination were investigated in [16] and [17], re-
spectively. For sparse millimeter-wave MIMO channels, the ML
and maximum a posteriori (MAP) channel estimation problems
were studied in [18] and [19], respectively. Taking into account
the sparsity of such channels, the 1-bit ADC channel estimation
problem has been formulated as a compressed sensing problem
in [20]-[22]. Several performance bounds on the channel estima-
tion of mmWave 1-bit massive MIMO channels were reported
in [23]. In this paper, we focus on a more general channel model
which is not assumed to be sparse without any oversampling.

There have also been several channel estimators proposed for
1-bit massive MIMO systems based on deep neural networks
(DNN), e.g., [24]-[27]. However, these DNN-based estimators
require a highly complicated offfine training process using alarge
data set. In addition, the DNNs do not provide physical meaning
or insights into the structure of the estimators. In this paper, our
approach is based on the use of an SVM, which not only has
low computational complexity but also provides an insightful
connection with likelihood-based channel estimators. Moreover,
the proposed SVM-based approach does not require training
data beyond what would typically be used in a standard MIMO
channel estimation method. It is also worth noting that the work
in [26] is restricted to systems with only one single-antenna
user and the work in [24] requires multiple OFDM symbols in
the training sequence. Our proposed methods are applicable for
multi-user systems and only one OFDM symbol is required in
the training process.

Data detection in massive MIMO systems with 1-bit ADCs
has also been studied intensively in the literature, e.g., [6], [28]-
[37]. The one-bit ML detection problem is formulated in [6].
For large-scale systems where ML detection is impractical,
the authors in [6] proposed a so-called near-ML (nML) data
detection method. The ML and nML methods are however
non-robust at high Signal-to-Noise Ratios (SNRs) when Channel
State Information (CSI) is imperfectly known. A One-bit Sphere
Decoding (OSD) technique was proposed in [28]. However, the
OSD technique requires a preprocessing stage whose computa-
tional complexity for each channel realization is exponentially
proportional to both the number of receive and transmit antennas.
The exponential computational complexity of OSD makes it
difficult to implement in large scale MIMO systems. Generalized
Approximate Message Passing (GAMP) and Bayes inference are
exploited in [29] but the proposed method is sophisticated and
expensive to implement. A number of linear receivers for mas-
sive MIMO systems with 1-bit ADCs are presented in [30] and
several learning-based methods are also proposed in [31]-[34].
The linear receivers in [30] are easy to implement but their per-
formance is often limited by an error floor. The learning-based
methods in [31]-[33] are blind detection methods for which CSI
is not required, but they are restricted to MIMO systems with a
small number of transmit antennas and only low-dimensional
constellations. Several other data detection approaches were
proposed in [34]-[37], but they are only applicable in systems
where either a Cyclic Redundancy Check (CRC) [34]-[36] or
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an error correcting code such as Low-Density Parity-Check
(LDPC) code [37] is available.

In this paper, we propose channel estimation and data de-
tection methods which are efficient, robust, and applicable to
large-scale systems without the need for CRC or error correcting
codes. Our work is based on SVM, a well-known supervised-
learning technique in machine learning [38]. Since SVM prob-
lems can be solved by very efficient algorithms [39]-[43], the
proposed methods can be implemented in an efficient manner.
There are several prior works on the application of SVM to
channel estimation and data detection problems, e.g., [44], [45].
However, these works consider either SISO or SIMO channels
with full-resolution ADCs. In this paper, we focus on massive
MIMO with one-bit ADCs. Our earlier work reported in [46]
examined SVM-based channel estimation and data detection
methods for 1-bit MIMO systems with independent and iden-
tically distributed (i.i.d.) and flat-fading channels. This paper
extends the study in [46] with further considerations of spatially
correlated and frequency-selective fading channels and presents
the following contributions:

® An SVM-based channel estimation method for uncorre-

lated channels is first proposed by formulating the 1-bit
ADC channel estimation problem as an SVM problem.
Unlike the soft-SVM method in [12], the proposed method
exploits the original idea of SVM by maximizing the
margin achieved by the linear discriminator. For spatially
correlated channels, we develop a new channel estima-
tion problem by revising the conventional SVM objec-
tive function. Numerical results show that the high-SNR
Normalized Mean-Squared Error (NMSE) floor of the
proposed channel estimation methods is lower than that of
the BMMSE method proposed in [8], which outperforms
other existing methods.

® We then propose a two-stage SVM-based data detection

method, where the first stage is also formulated as an SVM
problem. A second stage is then employed to refine the
solution from the first stage. Simulation results show that
the performance of the proposed method is very close to
that of the ML detection method if perfect CSI is available.
With imperfect CSI, the proposed data detection method
is shown to be robust and to also outperform existing
methods. We then consider an SVM-based joint Channel
Estimation and Data Detection (CE-DD) method where the
to-be-decoded data vectors and pilot data vectors are both
exploited to refine the estimated channel and thus improve
the data detection performance.

® Finally, an extension of the proposed methods to OFDM

systems with frequency-selective fading channels is de-
rived. Numerical results show that the proposed SVM-
based methods significantly outperform existing ones. For
example, the high-SNR NMSE floor of the proposed SVM-
based channel estimation method is about 3-dB lower that
of the BMMSE method.

The rest of this paper is organized as follows: Section II
introduces the assumed system model. In Section III, we present
linear SVM for binary classification and the proposed methods
for flat-fading channels. Extension of the proposed methods to
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Fig. 1. Block diagram of a massive MIMO system with K single-antenna
users and an N-antenna base station equipped with 2 N 1-bit ADCs.

OFDM systems with frequency-selective fading is presented
in Section I'V. Numerical results are given in Section V, and
Section VI concludes the paper.

Notation: Upper-case and lower-case boldface letters denote
matrices and column vectors, respectively. E[-] represents ex-
pectation. Depending on the context, the operator | - | is used
to denote the absolute value of a number, or the cardinality of
a set. || - || denotes the £5-norm of a vector. The transpose and
conjugate transpose are denoted by [-]7 and []¥, respectively.
The notation R{-} and &{-} respectively denotes the real and
imaginary parts of the complex argument. If R{.} and &{-}
are applied to a matrix or vector, they are applied separately
to every element of that matrix or vector. R and C denote
the set of real and complex numbers, respectively, and j is
the unit imaginary number satisfying j2 = —1. N(-,-) and
CN(-, -) represent the real and the complex normal distributions
respectively, where the first argument is the mean and the second
argument is the variance or the covariance matrix. The operator
blockdiag(A1,...,A,) represents a block diagonal matrix,
whose main-diagonal blocks are A;,..., A,.

II. SYSTEM MODEL

We consider a massive MIMO system as illustrated in Fig. 1
with K single-antenna users and an N-antenna base station,
where it is assumed that N > K. Let X = [%;, Za,...,Tk]|T €
CX denote the transmitted signal vector, where Ty, is the sig-
nal transmitted from the k™ user under the power constraint
E[z?)| =1, ke K={1,2,...,K}. Let H € CN*X denote
the channel, which for the moment is assumed to be block
flat fading. Let T = [y, 7a,...,7n]T € CV be the unquantized
received signal vector at the base station, which is given as

r=Hx+7, (1)
where z = [z, %2, ..., 2n]T € CV is anoise vector whose ele-
ments are assumed to be i.i.d. as z; ~ CA(0, Np), and Ny is the
noise power. Each analog received signal 7; is then quantized by

a pair of 1-bit ADCs. Hence, we have the received signal
y =sign(r) = sign (R{r}) + jsign (S{r}) )

where sign(-) represents the 1-bit ADC with sign(a) = +1 if
a > 0 and sign(a) = —1 if @ < 0. The operator sign(-) of a
matrix or vector is applied separately to every element of that
matrix or vector. The SNR is defined as p = 1/Ny. Recall that
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each user is transmitting at unit average power. In addition, we
assume that the norm of the channel from any given user to any
given antenna is also normalized to 1. Thus, the SNR definition
here is per-user per-antenna SNR.

III. PROPOSED SVM-BASED CHANNEL ESTIMATION AND DATA
DEeTECTION WITH 1-BIT ADCS

A. Linear SVM for Binary Classification

Consider a binary classification problem with a training data
setof Pdatapairs D = {(Xg,yg)}¢g=1,...,p Where X, isatraining
data point and y, € {1} is an associated class label. Note that
{xg4} here are vectors of real elements. The data set D is said to
be linearly separable if and only if there exists a linear function
f(x) = wTx +b such that Vg € {1,2,..., P}, f(xq) >0 if
Yq = +1and f(x4) < 0if y; = —1. Here, w and b are referred
to as the weight vector and the bias, respectively. In other words,
the hyperplane f(x) = wlx + b = 0 divides the space into two
regions where f(x) =0 acts as the decision boundary. The
margin of the hyperplane f(x) = 0 with respect to D is defined
as

2

mp(f) = Tl 3

The SVM technique seeks to find w and b such that the
margin mp(f) is maximized. The optimization problem can
be expressed as [38]

s 1 2
minimize  =||w]||

{w.b} 2 4)
subject to yq(WTX,;,—I—b) 2l g= 1;2 000

In case the training data set D is not linearly separable, a
generalized optimization problem is considered as follows:

1 P
SIWl?+C (&)

minimize
{Wnb:'fq} q=1
(5)
subject to g (waq +b)>1-&,

6{}201 q:]—12:"'1p'

Here, {£,} are slack variables and C' > 0 is a parameter that
“controls the trade-off between the slack variable penalty and the
margin” [38], and £(&,) is a function of £;. In the SVM literature,
two common forms of £(&,) are £(§,) =&, and £(&;) = Ef;,
which are often referred to as #;-norm SVM and /3-norm SVM,
respectively.

An illustrative example for the SVM problem is given in
Fig. 2. The larger the margin is, the farther the data points are
from the hyperplane and so the better the classification is. This
is the key point for the SVM approach, to find a hyperplane that
maximizes the margin, which is equivalent to minimizing the
norm of the weight vector.

The optimization problems (4) and (5) can be solved by very
efficient algorithms [39]-[42]. For example, if the weight vector
is sparse, the complexity of the algorithm in [39] scales linearly
in both the number of features (size of the weight vector w)
and the number of training samples |D|. For arbitrary weight
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Fig. 2.  An illustrative example of SVM. The hyperplane fo(x) = wr{x +
ba = 0 correctly classifies the data lpoints but its margin is not the largest
possible. The hyperplane f1(x) = w7 x + by = 0 not only correctly classifies
the data points and its margin is also the maximum, thus f; is the SVM solution.

vectors, the complexity of the algorithms in [40]-[42] scales
linearly in the number of features and super-linearly in the
number of training samples. A good review of efficient methods
for solving (4) and (5) can also be found in [43].

B. Proposed SVM-Based Channel Estimation

1) Uncorrelated Channels: First, we consider uncorrelated
channels where the channel elements are assumed to be i.i.d.
as CN(0,1). In order to estimate the channel, a pilot sequence
X € CK*T: of length T, is used to generate the training data

Y. =sign (HX + Z). (6)

For convenience in later derivations, we convert the notation
in (6) to the real domain as

Y. = sign (He X + Z), @)

e
X = lj};{{)—g} ;};Zﬂ = [Xt,1,Xt,2, - s Xp 21 ] (11)
Note that y7; € {+1}*?T, b, € RP>?X and 27, € RP?Tx
withi € {1,2,..., N } represent the i*® rows of Yy, Hy, and Z;,
respectively. However, X, , € R2X>*! withn € {1,2,...,2T}}
is the n*® column of X;.
It can be seen from (9) that estimating {h¢ ;}i—12 .~ is

equivalent to estimating H. Here, we formulate the channel

2089
estimation problem in terms of h; ;. Let
Yii= (730 yt,i_.ZTt]T and z; ; = AT Zt,,a',2Tt]T,
then we have
Yi,i,n = Sign (hE;Kt,n = zt,i_.n)- (12)

We stress that the estimation of h; ; in (12) can be interpreted
as an SVM binary classification problem. More specifically,
{Xt,n; Yti,ntn=1,. 27, plays the role of the training data set
D. The channel h, ; acts as the weight vector and 2z, ; ,, can be
viewed as the bias. Hence, we can follow the SVM classification
formulation to estimate h; ; by solving the following optimiza-
tion problem:

2T
1
minimize 3 hel|” + szl (én)
(13)
subject to yt,g;,nhg:,;xt?n > 1—&,
gﬂ.z(}} n:]-:?v"':ﬂ—lt'

Here, the bias is discarded because the {zt,g-,n} are random
noise with zero mean. In addition, at infinite SNR, (12) becomes
Ys,in = sign(hT X ,,), which has no bias.

Physical inrer'preration of (13): Recall from Section III-A
that minimizing the norm of the weight vector is equivalent to
maximizing the margin, and so (13) can be read as maximizing
the margin subject to the sign constraints. The larger the margin
is, the farther the data points (pilot vectors X; ,,) are from the
hyperplane h{ ,x = 0, and so the larger the terms y; ; nh ;X n
are. In other words, increasing the margin makes the sign con-
straints satisfied more strongly.

Let ﬁt,i denote the solution of (13). This solution provides an
estimate of the channel “direction,” but the magnitude of ﬁt,i is
determined by the definition of the SVM margin, which in turn
defines the sign constraints in (13). In fact, the instantaneous
magnitude of h ; is not identifiable [23] since ah;; for any
a > 0 will produce the same data set {y; ; n }:

Yt.in = Sign (h{sxt?n) = sign (ah{i){t.n), with a > 0.

Since in our model we assume that the 2 K elements of h; ;
are each independent with variance 1/2, we will scale the SVM
solution so that the corresponding channel estimate has a squared
norm of K:

A \/fflt.i
t.i = = — .
[Ihae i |

Here, we have assumed that the channel variance of 1/2is known
a priori, so that the scaling step above is possible. We have
found that this choice for the scaling provides the best estimation
accuracy.

It should be noted that (13) only depends on a single index ¢,
and so its solution is the estimate for the i*" row of the channel
matrix H, i.e., the channel vector from the K users to the ith
receive antenna. This means we have N separate optimization
problems of the same form (13), which is an advantage of
the proposed SVM-based method since these IV optimization
problems can be solved in parallel.

(14)
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Remark 1: The soft-SVM method in [12] does not maximize
the margin, but instead calculates h;; such that the condi-
tion yt,i,nh{ixt,n > 0 is satisfied for as many n as possible.
However, due to the noise component z;,, the condition
yt‘g-‘nh{ixt,n o OmaynotbesatisﬁedevenWiththetruechannel
vector hy ;. Our proposed method exploits the original idea of
SVM by maximizing the margin achieved by the linear discrim-
inator. The introduction of the slack variables in the problem
circumvents the strict constraint y; ; ,, h{sxtm > 0.

Remark 2: Without slack variables, the problem in (13)

S 1
minimize —[|ht1,~||2

{h::} 2 (15)
subject to yt‘,;'nh{ixt,n 21y w2 00020

is similar to the form in (4). For h ; ~ N(0, %I) we have

1
p(ht,i) = WEX'P{—”ht.,«;”z}a (16)

and hence the optimization problem in (15) can be read as maxi-
mizing the pdf of h, ; subject to the constraints yt‘,;‘lnhg;- Xt =
1forn=1,2,...,2T;. Thus, the SVM approach can be in-
terpreted as finding the channel hy; that attains the highest
likelihood under the constraints realized by the measured data.
We will use this observation next to modify the SVM-based
channel estimator when the channel is spatially correlated. Note
that the work in [12] only considers uncorrelated channels.

2) Spatially ~ Correlated ~ Channels: We let H=
[hy,...,hg], and so hy € CV*! is the k" column of H.
Here, we assume that the elements of hy are correlated, or in
other words that the channels associated with different antennas
are correlated. Let hy ~ CN(0,Cy) and h = vec(H), then
h ~ CN(0,C) where C = blockdiag(C;,Cs,...,Cg). We
assume that the covariance matrices Cy, are known a priori. In
practical systems, the covariance changes relatively slowly and
thus can be obtained by a sample covariance estimator [16].

The pdf of h is

1

KNy /det(C)

p(h) = (17)

<5 k}. (18)

K
1 -
———ep{—Y BIC'R
:rrKN\/det(C)exp{ kzzjl S

The exponent term in (17) becomes a sum in (18) because C
is a block diagonal matrix, whose main-diagonal blocks are

exp {—EHC_ll_l}

Cl, Cg, W }CK. Letting
= = i
1 Cmi{l_lk} and Cp = CUE{(_:R} {_Ck}
S{hx} HH{Cr} R{Ck}

the exponent term in (18) can be written as 31, hi C, 'hy.
To maximize the likelihood of h subject to the constraints
wiahl Xia > 1withs=1,2,... Nandn=1,2,...,2%,
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we follow the intuition in (15) to formulate the following opti-
mization problem:

K
5 g 1 T (-1
minimize - h, C, "h;
i 2; x Ci
i (19)
subject to i nhyg ;Xen > 1,

i=1,2,...,Nandn=1,2,...,2T;.

In the above optimization problem, it is important to note that
hy, € R*M*! represents the k*" column of H, but h{; represents
the i'" row of H. This means the objective function of (19)
depends on the columns of H, but the constraints depend on the
rows of H. Therefore, we cannot decompose (19) into smaller
independent problems. In other words, the whole channel matrix
H has to be jointly estimated.

We note that the margin h] C;'hy in (19) is measured
using the Mahalanobis distance [47] rather than the Euclidean
metric used in the standard SVM approach. The Mahalanobis
distance in this context is the distance from h; to the distribu-
tion A'(0, Cg). The optimization problem in (19) can also be
generalized by including slack variables as

N 2T,
minimize = ZhTC e +C) ) U&in)
{(Hibon} i=1 n=1
(20)
subject to yt,l?mht:g‘xt,n > 1~ Ei,n with gi,’n >0,
i=1,2,....Nandn=1,2,...,27;.

Since (20) is based on Remark 2, it can be interpreted as finding
the channel H that attains the highest likelihood under the sign
constraints realized by the measured data.

Although the form of the objective function in (20) is different
from that in conventional SVM problems, (20) can still be solved
efficiently since it is a convex optimization problem. Let H be
the solution of (20), then the channel estimate H is defined as

H = ,/trace{C} i
x|
where || - ||r denotes the Frobenius norm. This normalization
step is similar to that for the case of uncorrelated channels, except
a different coefficient vV KN is used since we jointly estimate
the whole channel matrix and E[|H||y] = VKN

C. Proposed Two-Stage SVM-Based Data Defection

In this section, we propose a two-stage SVM-based method
for data detection with 1-bit ADCs. We first formulate the
data detection as an SVM problem. A second stage is then
employed to refine the solution from the first stage. Let X4 =
[Xd,1,%4,2;---,Xa1,] € CEXT4 be the transmitted data se-
quence of length T§. The received data signal is given as

Y, = sign (HXq4 + Zq). (21)

The above equation is also converted to the real domain as

Yq =sign (HaXq4 + Za) (22)
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where

Y= zgjﬂ = [ya1,¥a2 -, Yamal, (23)
R igjﬂ = [RagsXazyss0 Xaml; 24)
Za= igg — [2d,1,24.2, - - - » Za,T4], and (25)
Hq= g% _%?;-{ﬁ}}] =[h4;1,hq2,...,hazn]". (26)

Here, Yam € {112V *, xq.m € RZE¥L and 74 ,, € RZV>1
with m € {1,2,..., Ty} are the m*™™ columns of Yg4, X4,

and Zg, respectively. However, hl, € RV2K with ' €

{1,2,...,2N} represents the i’"" row of H.

It can be noted that the real and imaginary parts in (8)—(11)
are stacked side-by-side, but they are stacked on top of each
other in (23)—(26). This is due to the exchange in the role of the
channel and the data matrices. In the formulation for channel
estimation in (8)—(11), each row of the channel matrix is treated
as the weight vector and the columns of the pilot data matrix
are used as the training data points. On the other hand, the data
detection formulation in (23)—(26) treats each column of the
to-be-decoded data matrix as the weight vector and the rows of
the channel matrix as the training data points.

It should also be noted that the pilot sequence and the data
sequence are assumed to experience the same block-fading
channel. Although the two channel matrices H; in (9) and Hq4
in (26) are constructed differently, they still depend on the same
channel H. Let

Yam = [yd?m,leyd,mj: cees yd,m,?N]T and

T
Zdm = [2d,m,1, Zd,m,2, - - -, Zdm2N]

then we have

Yd,m,i' — sign (hgj'xd,m -+ Zd_.m,_s')- (27)

It is observed that the estimation of X4 ,, can also be inter-
preted as an SVM binary classification problem. More specif-
ically, we can treat x4, as the weight vector and the set
{fld?,-f,yd,m?,-r},;le‘___‘gN as the training set, where l&d,ir is the
channel estimate of hg « obtained as explained above. The fol-
lowing optimization problem provides the first-stage in finding
Xd,m-

1 2N
minimize  —|[Xam|*+CY (&)
{xd,msEi’} 2 i'=1
i (28)
subject to yd‘m,,-rxg;?mhd__gf >1—¢&y,

£:>0, 9=1,2,...,2N,

where the bias is discarded as in the channel estimation problem.
Similar to the physical interpretation of (13), the detection
problem (28) can be read as finding a weight vector Xg ,,, that
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maximizes the margin subject to the sign constraints. The larger
the margin s, the farther the data points (channel estimates hg )
are from the hyperplane X;mh = 0, and so the larger the terms

-

yd,m'gfxgmh.d‘i’ are. In other words, the sign constraints are
satisfied more strongly as the margin increases.

Let X4, denote the solution of (28) and let Xq ., be the
normalized version of Xg4 ,, as

_ VEKXam

— xamll

m 29)
This normalization step is also used in [6] in order to make the
power of the estimated signal equal the power of the transmitted
signal.

Let Xd,m = [Td,m,1,---,Ldm2K]T, and define the first-
stage detected data vector Xg ,m = [£a,m 15 - -, Ed,m, k]L Ob-
tained using symbol-by-symbol detection as

Ed,m x = arg min |(Za,m k + jTd,m k+k) — T/, (30)

TEM
where k € K and M represents the signal constellation (e.g.,
QPSK or 16-QAM). The solution to (30) is referred to as the
stage 1 solution. To further improve the detection performance,
a simple but efficient second detection stage is proposed as
follows.
First, a candidate set &} for each I4 ., i is created using

Tdmk and Tam k + JTd m k+K aS
< 7}

(31
where v > 1 is a parameter that controls the size of Aj. Then
the candidate set X" for X4 ,, is obtained as

(Zd.m ke +ITd m s i) — E
Td,mk + JTd,mk+K) — Td,m k|

X":{‘EEM‘K

X = {[#1,%2,.... x| | £x € Xk, VE € K} . (32)

The above candidate set formation was introduced in [6].
However, the detected data vector in [6] is obtained by searching
over X using the ML criterion, and the resulting performance is
susceptible to imperfect CSI at high SNRs. This susceptibility
has been reported via numerical results in [32] and [31], but
no justification was given. We provide an explanation for this
issue in Appendix A. To deal with the issue, we adopt here
a different criterion referred to as minimum weighted Hamming
distance [28]. Suppose that X = {X1, Xz, ..., Xy} andletx; =
[R{%:}T,3{x;}7]|T withl € {1,2,...,|X|}. The second-stage
detected data vector X4 ,, is defined as X4 ,,, = X; where

i= argmin dy (Vamsign(Hax)).  (33)

1ef1,...,|x]}

Here, ﬂd is the channel estimate of Hy and dy(-,-) is the
weighted Hamming distance defined in [28]. Note that the
complexity of stage 2 depends on |X|, which is controlled by ~.
In particular, the complexity increases as -y increases. Therefore,
a proper value of -y should be chosen in order to keep || from
growing too large, but still remain large enough for A to have a
high probability of containing the true transmitted signal vector
so that the detection performance can be significantly improved.
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The minimum weighted Hamming distance criterion above
was shown to be statistically efficient [28]. However, the OSD
method proposed in [28] requires a preprocessing stage whose
computational complexity is proportional to 2™=| M |¥ for each
channel realization. Here Ny =2 N/G where G > 1 is an in-
teger. The exponential computational complexity of OSD is a
significant drawback in large-scale system implementation. The
proposed SVM-based data detection method in this paper can ad-
dress this complexity issue since the optimization problem (28)
can be solved by very efficient algorithms [39], [43], [48].

D. An SVM-Based Joint CE-DD

In 1-bit ADC systems, the channel estimation accuracy can
be improved by increasing the length of the pilot training se-
quence, but not necessarily by increasing the SNR [8]. For this
reason, we consider an SVM-based joint CE-DD method to
effectively improve the channel estimate without lengthening
the pilot training sequence. The idea is to use the detected data
vectors from the two-stage SVM-based method together with the
pilot data vectors to obtain a refined channel estimate and then
use this refined channel estimate to improve the data detection
performance.

Let X4 be the detected version of X4 using the proposed
two-stage data detection method and let

: R{Xa} S{Xa}| _ R
X Co— A -~ = P 34
d2 l_%{xd} R{X,) [Xaz,1;-- -, Xaz2ra], (34)
Yaz = [m{Yd}:g{Yd}] = [ya2,1,--- ,de‘N]T, (35)
where ya2i = [ya2,i,1,Ya2,i,2, - - -, Yaz,i2m4) "> i =1,...,N.

The channel estimate can be refined by solving the following
optimization problem:

2T, 2T,
Linin =|h C £ o
{ht:inft,:!tlcs%i,‘em} ” tw” + (Z ftn ik Z fl:lm )
subject to ytfi‘.ﬂht,jxt,n % 1— &-t?m

ydi!-.amh{arfidz‘m > 1—&,m,
61211120: n:]-,Q-,-...,QTt,

El:l,m 2 U, m = 1,2,...,21—':1.

(36)
In the optimization problem above, we use two sets of slack
variables {{;n} and {£aq .}, which correspond to the pilot
sequence and the data sequence, respectively. This is just for
notational convenience, as the two sets of slack variables play
the same role. The physical interpretation of (36) is exactly the
same as that of (13), the only difference here is that (36) involves
more training data points. The refined channel estimate obtained
by solving (36) can now be used for data detection again in (28)
and (33). Note that the channel estimate obtained by (13) can be
used as the initial solution to (36) so that the algorlthm will more
quickly converge to the optimal solution. Similarly, Xd can also
be used as the initial solution when solving (28) with the refined
channel estimate. Numerical results in Section V show that this

strategy will hit a certain performance bound as Ty increases.
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IV. EXTENSION TO OFDM SYSTEMS WITH
FREQUENCY-SELECTIVE FADING CHANNELS

In conventional OFDM systems with high-resolution ADCs,
the orthogonality of the received signals on different subcarriers
is preserved, so a full-resolution wide-band OFDM system can
be converted into multiple narrow-band representations thanks
to the use of the IFFT operation at the receiver side. Such a
conversion significantly simplifies the channel estimation and
data detection tasks. However, in one-bit OFDM systems, the
orthogonality in the received signals is not preserved due to
the severe non-linearity of one-bit ADCs [49]. Therefore, using
the IFFT to convert the one-bit OFDM system into multiple
narrow-band representations results in significant performance
degradation. This is the fundamental motivation for the use
of time-domain signal processing in one-bit OFDM systems,
for example as in [8], where the Bussgang decomposition was
utilized. In this section, we elaborate on how our SVM approach
can be used for channel estimation and data detection for one-bit
OFDM systems with frequency-selective fading channels.

Consider an uplink multiuser OFDM system with N, sub-
carriers. Denote XEP € CNe>1 as the OFDM symbol from the
k' user in the frequency domain. Throughout the paper, we use
the superscripts “TD” and “FD” to refer to Time Domain and
Frequency Domain, respectively. A cyclic prefix (CP) of length
Ncp is added and the number of channel taps Lap, is assumed
to satisfy Liap — 1 < N¢p < N. Itis also assumed that Liap, is
known. After removing the CP, the quantized received signal at
the i'" antenna in the time domain is given by

_ Slg‘ﬂ (Z GTDFH FD —TD) (3?)

where F is the DFT matrix of size N. x N¢; GIP is a circulant
matrix whose first column is g = [(h?)7,0,...,0]"; and
hi‘.k is the channel vector of the k' user containing the Lyap
channel taps which are assumed to be i.i.d. and distributed
as CN(0, ¢ ) We also assume block-fading channels where
the first OFDM symbol is used for channel estimation and the
other OFDM symbols in the block-fading interval are for data
transmission. Thus, the problem of channel estimation and data
detection are studied separately.

If silent subcarriers are considered, the representation in
equation (37) is still valid. This is because the sign operation
is performed in the time domain. The only difference this would
produce in our current model is that several elements in the
frequency domain signal vector iED can be nullified (set to zero)
for the guard subcarriers. Nevertheless, the SVM-based channel
estimation and data detection using the active subscarriers in the
time domain in the following derivations remain valid.

A. Proposed SVM-Based Channel Estimation in OFDM
Systems With Frequency-Selective Fading Channels

7TD _ pnH_FD
Denote ¢, = F"Xx;

i ~TD
culant matrix with first column equal to ¢,

5 g sv, =TD :
and the training matrix ®,~ as a cir-

. We can reorganize
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the system model in (37) as follows:

(38)

iy e L ; ;
where @, ;  is the matrix corresponding to the first Liap

colur_nns of ?:D i'Ltp [<I>1me @EENP,...,@};?LM],
and h;.m = [(hED) (hTD) ..... (hTD) ]T.
‘We also convert (38) into l:he real domain as
yI® = sign (812 hI® +2[) (39)
where
= Rz}, S{zF°Y7]"
hro. [m{hTD}T {l‘l'_I‘D}T]T
Z“TD [R{ZTD}T S{ TD}T] and
£ = TD
o _ [REL} —S(8.0)
o |S{@Ln, ) R{BL,. )
Denote  y; P = [y, y;rgD, <o Yign ]t and @me =

[(¢1P)7, (';f)TD T .. (#38)T]7, leading to the following
SVM problem for estlmatlng the OFDM channel using one-bit
ADCs:

2N,
ipjmize [} c3. ten)
itz [Ihy (1 + (én)
(40)
subject to ;- 5 (hTD) $nl >1— &,

&"nZO, n:1,2,...,2NC_

Denoting hP as the solution of (40), then we estimate hT™ as

[, TD
o - VEB @1)
[P
Frequency-selective channel estimation methods using one-
bit ADCs have been previously proposed in [8], [49], and [24]
based on the Bussgang decomposition, Additive Quantization
Noise Model (AQNM), and deep learning, respectively. The
deep learning method in [24] was shown to outperform the
methods of [8], [49] at low SNRs, but its performance tends
to degrade as the SNR increases. In addition, the method in [24]
requires a training sequence that contains many OFDM symbols,
which are required to be orthogonal between different users.
In our proposed method, only one OFDM symbol is used in
the training phase and all users send their training symbols
concurrently.
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B. Proposed SVM-Based Data Detection in OFDM Systems
With Frequency-Selective Fading Channels

In this section, we describe how SVM can also be used for data
detection in OFDM systems with frequency-selective fading
channels. We can rewrite the received quantized vector in (37)
as

770 = sign (GIPx"® + 2I°)

(GIPEY, ... GIR
bq W T]T is the transmitted symbol
vector from the K users over N, subcarriers. By stacking all

the received signal vectors {¥.10 },— 1,..,N in a column vector,
we have the following equation:

yTD == Sigﬂ (GFDXFD + ZTD) (43)

where yT° = [(yTD 732207, ..., (7a2)"]T and GFP =
[(GFD)T, (GFD) GFD )T] Let yTD GFD and XFD
be the real-valued versions of yTD GFD, and X*P, respectively.
Converting (43) to the real domain as in (23)(26), we can
formulate an SVM problem by treating the rows of GFP as
the feature vectors, the elements of y ™™ as the binary indicators
and x¥P as the weight vector. The solution of the SVM problem
then provides the detected data.

(42)

where GIP =
FD — [(=FP)T;--

FH] € CNexNK  ang

V. NUMERICAL RESULTS

This section presents numerical results to show the superi-
ority of the proposed methods against existing ones. For the
simulations we set C' = 1 and parameter -y for the second stage
of the SVM-based detection method as v = min{ {5 + 1.5, 3}
for QPSK and y = min{ 4 + 1.3, 1.5} for 16-QAM where p is
the SNR. These values of ~ are chosen empirically to make sure
that |X'| is not too large, but still large enough for &' to have
a high chance of containing the true transmitted signal vector.
The length of the block-fading interval is assumed to be 500 (i.e.,
T; + T4 = 500) unless otherwise stated. Such an assumption is
not stringent for the frequency ranges (e.g., FR1 and FR2) used in
5G systems even with high user mobility, since the high Doppler
will be offset by increases in bandwidth and sampling rate.

It should also be noted that the channels considered in all
figures of this section are i.i.d uncorrelated, except Fig. 6. For
flat-fading channel estimation, the & row of the training matrix
X, is the (k +1)™ column of the discrete Fourier transform
(DFT) matrix of size T} x T}. For frequency-selective fading
channel estimation, we use orthogonal pilot sequences similar to
those in [49, Eq. (23)]. Results in this section are obtained using
the £3-norm SVM formulation as we have found that it provides
better performance compared to the ¢;-norm formulation. For
solving the proposed SVM-based channel estimation and data
detection problems, we use the Scikit-learn library [50].

Fig. 3 presents a performance comparison of different chan-
nel estimation methods in terms of NMSE, defined here as
NMSE = E[|H — H||2]/(KN), where H is an estimate of
the channel H. It can first be seen that the soft-SVM method
performs worse than the other methods. The error floor of the
proposed SVM-based channel estimator is lower than that of
the BMMSE estimator in [8] and the error floor of the proposed
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Fig.3. NMSE comparison between different channel estimators with K’ = 4,

N =32, T} = 20, and Ty = 100.

TABLE1
COMPUTATIONAL COMPLEXITY COMPARISON OF VARIOUS CHANNEL
ESTIMATORS. HERE, Nji., IS THE NUMBER OF ITERATIONS AND £(-) IS A
SUPER-LINEAR FUNCTION

Method Complexity
Soft-SVM [12] | O(KNT;Niter)
BMMSE [8] O(KN2T)
SVM-based O(KNTk(T))
Semi-blind [17] | O(KN2T;, Niter)
E¥ kot O(KNTur(Th))
joint CE-DD

SVM-based joint CE-DD method is also lower than that of
the semi-blind channel estimator in [17]. It should be noted
that the semi-blind channel estimator is an extension of the
BMMSE estimator when the training data set is augmented with
some initially detected data vectors. The channel estimators
in [8] and [17] perform well at low SNRs. However, they are
outperformed by the proposed SVM-based channel estimators
at higher SNRs because they use the Bussgang decomposition
to obtain a linearized system model that assumes Gaussian
inputs to the one-bit quantizers, an assumption that is accurate
at low SNRs but less likely to be accurate as the SNR increases.
The computational complexity order of the channel estimators
studied in these examples is given in Table I.

In Fig. 4, we compare the NMSE of BMMSE with the NMSE
of the proposed SVM-based method for different values of 7.
It is observed that the high-SNR error floor of the BMMSE
method quickly reaches a bound as T} increases. However, the
performance of the proposed SVM-based method improves as
T increases. The error floor of BMMSE even with T; = 100
is still higher than that of the proposed SVM-based method
with a much shorter training sequence (7}, = 20). The results
in Fig. 4 show that increasing 7} can help improve the channel
estimation accuracy. However, the spectral efficiency of the
system is adversely affected as a result. Thus, the proposed
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Fig.4. NMSE comparison between BMMSE and the proposed SVM-based
channel estimator with K’ = 4, N = 32, and T} € {20, 40100}
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Fig.5. Effect of Ty on the NMSE of the proposed SVM-based joint CE-DD
with K =4, N = 32, and T} = 20 at p = 30 dB.

SVM-based joint CE-DD method can help improve both the
channel estimation performance and the spectral efficiency.

We study the effect of T on the NMSE of the proposed SVM-
based joint CE-DD method in Fig. 5. It can be seen that as
T4 increases, the channel estimation performance of the SVM-
based joint CE-DD method reaches a bound. It is also seen that
with a data segment of only about 150 time slots, the channel
estimation accuracy can asymptotically reach the bound, which
is much better than the performance of using only the training
sequence (the red star symbol). This observation suggests that
when T} is large, the complexity of the SVM-based joint CE-DD
method can be reduced by using only a portion of the data block
for refining the channel estimate without reducing the estimation
accuracy.

Fig. 6 presents channel estimation results for spatially corre-
lated channels. We use the same typical urban channel model
as in [8]. The power angle spectrum of the channel model
follows a Laplacian distribution with an angle spread of 10°.
The simulation results indicate the performance advantage of
the proposed SVM-based solution over the BMMSE method at
high SNR, and thus justify the SVM-based problem formulation
in (20).

Authonized licensed use limited to: Access paid by The UC Irvine Libranies. Downloaded on May 08,2021 at 22:53:10 UTC from |IEEE Xplore. Restrictions apply.



NGUYEN et al.: SVM-BASED CHANNEL ESTIMATION AND DATA DETECTION FOR ONE-BIT MASSIVE MIMO SYSTEMS

-2 T T T T T T T
—o— BMMSE [§]
-4 —{— proposed SVM-based | 1
2 6f
g
g _8 _
-10 |
-2k
-15 -10 -5 0 5 10 15 20 25 30
SNR in dB
Fig. 6. NMSE comparison between the BMMSE channel estimator and the

proposed SVM-based channel estimator for spatially correlated channels with
K=4 N =232 and T} = 20.
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Fig.7. Performance comparison between the proposed two-stage SVM-based

data detection method and ML detection [6] with perfect CSI, QPSK modulation,
and K = 4. The average cardinalities of A’ for N = 16 and N = 32 are 2.9352
and 1.6140, respectively.

In Fig. 7, the proposed two-stage SVM-based data detection
method is compared with the ML and nML detection methods
for the case of perfect CSI. It is observed that the performance of
the proposed method is very close to that of the ML method after
two stages. It should be noted that the ML method performs well
but it is an exhaustive-search method and so its computational
complexity is prohibitively high for large-scale systems. While
the nML method is applicable for large-scale systems, it is not
robust at high SNRs. This non-robustness occurs regardless of
the quality of the CSI, since nML depends on the gradient
of a fractional form whose numerator and denominator both
rapidly approach zero. It should also be noted that the aver-
age cardinalities of A for N =16 and N = 32 are 2.9352
and 1.6140, respectively. This means the second stage of the
proposed method is relatively simple to implement since it only
has to search over a few candidates.

For the case of imperfect CSI, a bit-error-rate (BER) compari-
son is provided in Fig. 8, where the estimated CSI is obtained by
the SVM-based channel estimator. Here, the SVM-based joint
CE-DD method can be compared with other methods because
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Fig. 8. Performance comparison between two proposed data detection meth-
ods and other existing methods with estimated CSL, QPSK modulation, N = 32,
K =4, T; = 20, and Ty = 480.

TABLEII
COMPUTATIONAL COMPLEXITY COMPARISON OF DATA DETECTION METHODS:
Ty, = Tt + T4, Niter 1S THE NUMBER OF ITERATIONS, k(N ) IS A
SUPER-LINEAR FUNCTION, AND GN; = 2N

Method Preprocessing Detection Stage
BZF [30 O(K*N
[30] (K2N) OKNT)

BMMSE [30] | O(max{KN?, N2:373})
0SD [28] o0@2Ns KN|M|K) D(KNG‘LTd)
ML [6] O(KN|M|K) D[N|M|KTd)
nML [6] - {“J(K N Nide)
SVM-based - (")(KNn(N)Td)
SVM-based

- O(KN::(Tb)Tb)
joint CE-DD

it also starts with CSI estimated by the SVM-based channel
estimator. Note that BZF and BMMSE are Bussgang-based zero
forcing (BZF) and Bussgang-based minimum mean square error
(BMMSE) linear receivers, respectively [30]. It is seen that both
the ML and nML detection methods are non-robust at high
SNRs with imperfect CSI. The susceptibility of ML was also
reported in [32] and [31]. An explanation for the susceptibility
of ML detection can be found in Appendix A. It is also observed
that the proposed SVM-based and OSD detection methods give
the same performance. However, the complexity order of the
proposed SVM-based method is much lower than that of the
OSD method as can be seen in Table II. Note that the OSD
method requires the choice of two parameters N and L. Here,
we set N; =8 and L = 8 since this choice provides the best
performance. The proposed SVM-based joint CE-DD algorithm
significantly outperforms other methods and its performance is
quite close to the performance of the ML method with perfect
CSLI. This performance enhancement is due to the refined channel
estimate obtained by solving (36).

Although the SVM-based and OSD methods give the same
performance, the computational complexity of the SVM-based
approach is much lower than that of OSD. This is illustrated in
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Fig. 9. Run time comparison between OSD and the proposed SVM-based
detection method with QPSK modulation, Ty = 500, N = 32, and K varies.
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Fig. 10. Performance comparison between two proposed data detection meth-
ods and other existing methods with estimated CSI, QPSK modulation, N = 64,
K =8, T, = 40, and Ty = 460.

Fig. 9. We calculate the average run time required to perform
data detection over a block-fading interval of 500 slots. Note
that the OSD method contains two stages: a preprocessing stage
and a detection stage. It is observed that the OSD method has
a low-complexity detection stage. Interestingly, Fig. 9 indicates
that the run time of proposed SVM-based method is comparable
to that of the OSD detection stage. However, the OSD method
requires a high-complexity preprocessing stage, which scales
exponentially with the number of users. This makes the total
complexity of the OSD method much higher than that of the
SVM-based method, as observed in the figure. For the simula-
tions of the OSD method in Fig. 9, we also set Ny = 8. The value
of parameter L that achieves the best performance is 4, 4, 8, 16,
and 32 for K = 2, 3, 4, 5, and 6, respectively.

Fig. 10 and Fig. 11 provide BER comparisons between the
proposed SVM-based data detection methods and other existing
methods with QPSK and 16-QAM modulations using the CSI
estimated by the SVM-based channel estimator. Due to their high
computational complexity, we are not able to provide the BER of
the ML and OSD detection methods. Instead, the performance
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Fig.11. Performance comparison between two proposed data detection meth-

ods and other existing methods with estimated CSI, 16-QAM modulation,
N =128, K =8, T, = 40, and T;; = 460.
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Fig. 12. NMSE comparison between different channel estimators for an

OFDM system in a frequency-selective channel with N. = 256, K =2,
N =16, and Ly, = 8.
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Fig. 13. BER comparison between different data detection methods for an

OFDM system in a frequency-selective channel with N, = 256, QPSK modu-
lation, K = 2, N = 16, and Ly, = 8.
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of the nML method and other linear receivers are provided as
alternatives. The proposed methods not only outperform the
existing methods but are also robust at high SNRs.

Finally, channel estimation and data detection results for
OFDM systems with frequency-selective fading channels are
given in Fig. 12 and Fig. 13, respectively. It is observed that the
BMMSE channel estimator [8] slightly outperforms the AQNM-
based channel estimator [49], but both of these methods have
higher NMSE than the proposed SVM-based channel estimator
at high SNRs. More specifically, the high-SNR error floor of the
SVM-based method is about 3-dB lower that that of the BMMSE
and the AQNM-based methods. In Fig. 13, data detection results
show that the SVM-based method considerably outperforms the
Regularized Zero-Forcing (RZF) of [49]. At high SNRs, the
BER of the RZF method even with perfect CSI is much higher
than the BER of the SVM-based method with estimated CSI.

VI. CONCLUSION

In this paper, we have shown how linear SVM, a well-known
machine learning technique, can be exploited to provide efficient
and robust channel estimation and data detection. We proposed
SVM-based channel estimation methods for both uncorrelated
and spatially correlated channels, a two-stage SVM-based data
detection method, and an SVM-based joint CE-DD method.
Extension of the proposed methods to OFDM systems with
frequency-selective fading channels was also derived. The key
idea is to formulate the channel estimation and data detection
problems as SVM problems so that they can be efficiently solved.
Simulation results revealed the superiority of the proposed meth-
ods against existing ones and the gain is greatest for moderate
to high SNR regimes.

APPENDIX A
EXPLANATION FOR THE SUSCEPTIBILITY OF ML DETECTION AT
HiGH SNRs WiTH IMPERFECT CSI

The ML detection method of [6] is defined as

Xy, = arg max H‘I’(\/_Pydmahd: )

xeMMe i=1

(44)

v

£(x)

where x = [R{x}T, 3{x}T]7, L(x) is the likelihood function,
and ®(t) = [*_ Vé—ﬁe""z/ 2dr is the cumulative distribution
function of the standard Gaussian random variable. It is clear

that as p — oo, we have

V2pyamhY x) = 0if yamHY x <0,
J%d:m,t-h{ix — 1if yd,m,ih{"{_ix > 0.

This means, as p —+ oo, £(x) = 0 if there exists at least one in-

dex i such that yd.m.,;flgix < 0and L(x) = 1if yd‘_m.iﬁgix >
0 for all i. ’ ’

Now suppose that a vector X* was transmitted and let

= [R{x*}7, 3{X*}7]". If the CSI is perfectly known,

ie., hd1 = hg ;, we have y4q,m, 1hd ;X" >0 for all 7 because

2007

Yd,mi = sign(h ,x*) = sign(fl{ix*) as p— oo. In other
words, L(x*) = 1if the CST is perfectly known at infinite SNR.
However, if the CSI is not known perfectly, i.e., ﬁd?,- # D
there is a non-zero probability that yg ., ; = sign(h] ,x*) #
sign(hT ,x*), which means yam sign(h] x*) < 0. This
causes L£(x*) = 0. For any x # x*, it is possible that yq m ; =
sign(hT ,x*) # sign(h7 ,x), which also leads to £(x)= 0.
Hence, detection errors occur. The above explanation is argued
at infinite SNR, but it is also valid for high SNRs because the
function ®(¢) approaches 0 very fast.

To remove the product in (44), one may argue to transform
the function £(x) into a sum of log functions as follows:

2N

X, = arg max Zlog@ (\/_p‘yd - A )

xeMNe !'_

(45)

-

ﬁ(X)

However, the function £(x) in (45) still depends on ®(-) and can
involve log(0). The proposed SVM-based data detection method
is robust against imperfect CSI since it does not depend on the
&(-) function and information about the SNR is not required
either.

We note that the OSD method in [28] is also robust against
imperfect CSI thanks to the use of the approximation 1 — ®(#) =~
1e-0:374%-0.7T7¢ for non-negative t. This approximation helps
remove the effect of log @(-) in (45) since log €* = a. However,
the OSD method has higher computational complexity than the
proposed SVM-based methods.
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