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Abstract Lavas that have erupted at near-axis seamounts provide windows into mid-ocean ridge
mantle heterogeneity and melting systematics which are not easily observed on-axis at fast-spreading
centers. Beneath ridges, most heterogeneity is obscured as magmas aggregate toward the ridge, where they
efficiently mix and homogenize during transit and within shallow magma chambers prior to eruption.

To understand the deeper magmatic processes contributing to oceanic crustal formation, we examine the
compositions of lavas erupted along a chain of near-axis seamounts and volcanic ridges perpendicular

to the East Pacific Rise. We assess the chemistry of near-ridge mantle using a ~200 km-long chain at
~8°20'N. High-resolution bathymetric maps are used with geochemical analyses of ~300 basalts to
evaluate the petrogenesis of lavas and the heterogeneity of mantle feeding these near-axis eruptions.
Major and trace element concentrations and radiogenic isotope ratios are highly variable on <1 km scales,
and reveal a continuum of depleted, normal, and enriched basalts spanning the full range of ridge and
seamount compositions in the northeast Pacific. There is no systematic compositional variability along the
chain. Modeling suggests that depleted mid-ocean ridge basalt (DMORB) lavas are produced by ~5%-15%
melting of a depleted mid-ocean ridge (MOR) mantle. Normal mid-ocean ridge basalts (NMORB) form
from 5% to 15% melting of a slightly enriched MOR mantle. Enriched mid-ocean ridge basalts (EMORB)
range from <1% melting of 10% enriched mantle to >15% melting of 100% enriched mantle. The presence
of all three lava types along the seamount chain, and on a single seamount closest to the ridge axis,
confirms that the sub-ridge mantle is much more heterogeneous than is commonly observed on-axis and
heterogeneity exists over small spatial scales.

Plain Language Summary Basalts erupted from submarine volcanoes (seamounts) near
mid-ocean ridges can provide key information about the composition and dynamics of Earth's upper
mantle. However, no existing studies examine long chains of seamounts built on the flanks of spreading
ridges like the East Pacific Rise as presented here. We measured major and trace element abundances

in conjunction with radiogenic isotope ratios to determine the source and origins of lavas from 8°20'N
seamounts. Our geochemical investigation of the seamount chain provides us with an opportunity to
determine the range of compositions of the mantle beneath a mid-ocean ridge, their distribution in

the mantle, and how and to what degree the mantle melts beneath these seamounts. We analyzed the
composition of about 300 rocks from the seamounts and found that the lava compositions on this single
chain compare well with the compositions of lavas erupted along the northern East Pacific Rise and from
many seamounts scattered about on the northeastern Pacific oceanic crust. We find that this chain is
extremely geochemically variable even within 22 km of the ridge axis on the scale of a few kilometers due
to different amounts of mixing and melting of a heterogeneous mantle.

1. Introduction

Understanding how and where magmas are generated, transported, and focused in the mantle before erupt-
ing at mid-ocean ridges (MORs) and seamounts is fundamental to determining how the majority of the
Earth's oceanic crust is formed. Most investigations of mid-ocean ridge basalt (MORB) geochemistry occur
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on-axis, as a means of determining the nature and evolution of upper mantle source heterogeneities, melt-
ing processes, and melt differentiation in the crust. Significantly fewer detailed surveys focus on trans-
form faults, individual seamounts, and abyssal hills (Allan & Batiza, 1987; Batiza & Vanko, 1984; Batiza
etal., 1990; Clague et al., 2000; Coumans et al., 2015; A. S. Davis & Clague, 2000; Fornari et al., 1988a, 1988b;
Gill et al., 2016; Macdonald et al., 1992; Niu & Batiza, 1997; Niu et al., 2002; Perfit & Chadwick, ; Perfit
et al., 1996; Pockalny et al., 1997; Reynolds & Langmuir, 2000; Sun et al., 2020).

MOR magmas form by decompression melting as the Earth's mantle upwells beneath the MOR axis (Carmi-
chael et al., 1974; Key et al., 2013; Langmuir et al., 1992; Mckenzie & Bickle, 1988). Normal mid-ocean ridge
basalts (NMORB), which are the dominant composition erupted at fast-spreading ridges, form by differen-
tiation and homogenization of a range of primitive melt compositions produced from variable extents of
melting beneath MORs. This results in relatively limited compositional variability (Batiza & Niu, 1992; Per-
fit et al., 1994; Rubin & Sinton, 2007; Stracke & Bourdon, 2009). Traditional models of melt generation and
transport beneath MORs propose that the onset of fractional melting occurs at a relatively constant depth
beneath a given ridge and extent of melting increases with the height of the melting column. Modeling has
suggested that the region of melting is ~100-200 km wide at its base (e.g., Forsyth et al., 1998; Langmuir
et al., 1992; Phipps-Morgan, 1987) and melting ceases when the upwelling mantle intersects the base of the
lithosphere (Hebert & Montési, 2010; Niu, 1997; Niu et al., 1996). This results in higher total extents of melt-
ing directly beneath the ridge axis and decreasing extents of melting off-axis with increasing lithospheric
thickness, resulting in a roughly triangular-shaped melting region (Batiza et al., 1990; Langmuir et al., 1992;
O'Hara, 1985; Plank & Langmuir, 1992). Magmas generated across the melting region ascend through the
mantle until they intersect a permeability barrier at the base of the lithosphere, are focused laterally upslope
toward the ridge axis (Phipps-Morgan, 1987; Sparks & Parmentier, 1991; Spiegelman & McKenzie, 1987),
and are eventually pooled in axial magma chambers. As a result, the range of geochemical signatures may
be obscured in lavas erupted on-axis, as these melts are aggregated during ascent and focused in the man-
tle beneath the axis (P. M. Gregg et al., 2012; Hebert & Montési, 2010; Katz, 2008; Keller et al., 2017; Niu
et al., 2002; Phipps-Morgan, 1987; Spiegelman & McKenzie, 1987) and further homogenized in shallow
crustal melt lenses (e.g., Perfit & Chadwick, ; Rubin et al., 2009; Sinton & Detrick, 1992). While shallow
magma chambers may promote moderate fractional crystallization, homogenization results in a relatively
limited range of trace element and isotopic compositions in lavas erupted on-axis at fast-spreading MORs
(Perfit & Chadwick, ; Perfit et al., 1994; Rubin & Sinton, 2007; Sinton & Detrick, 1992; V. D. Wanless &
Shaw, 2012).

The rarer eruption of enriched mid-ocean ridge basalts (EMORB) (Batiza & Niu, 1992; Perfit et al., 1994;
Reynolds et al., 1992; C. L. Waters et al., 2011) and1 highly depleted mid-ocean ridge basalts (DMORB)
suggests that homogenization is not always efficient and indicates a range of melt compositions can be
produced in the sub-ridge mantle (Allan & Batiza, 1987; Brandl et al., 2012; Gale et al. 2013; Katz & Weath-
erley, 2012; Lundstrom et al., 1999; Mallick et al., 2019; Niu & Batiza, 1997a, 1997b; Niu et al., 2002; Perfit
et al., 1996; Sims et al., 2002; M. C. Smith et al., 2001; C. L. Waters et al., 2011; Zindler et al., 1984). Unfor-
tunately, even the less abundant E- and DMORB are likely influenced by magma homogenization to some
extent, and thus the compositional range of primitive melts produced in the sub-ridge mantle is not well
constrained by investigations of on-axis lavas.

Off-axis volcanic features, such as ridge flanks and seamounts, are alternative windows into the up-
per mantle due to the absence of steady-state magma chambers (Batiza & Niu, 1992; Perfit & Chad-
wick, ). Studies of lavas erupted at near-ridge (5-30 km) and off-axis seamounts reveal greater compo-
sitional variability compared to lavas erupted on-axis (Allan et al., 1989; Clague et al., 2000; Coumans
et al., 2015; A. S. Davis & Clague, 2000; Fornari et al., 1988; Gill et al., 2016; Scheirer & Macdon-
ald, 1995). For example, some individual seamounts and short seamount chains in the northeastern
Pacific are comprised of lavas that range from DMORB to highly enriched EMORB, with significant
compositional variations observed on small (<5 km) scales and in greater abundance than is found
on-axis (Allan & Batiza, 1987; Batiza et al., 1989, 1990; Brandl et al., 2012; Gill et al., 2016; Niu &
Batiza, 1997a, 1997b; Niu et al., 2002; Shimizu et al., 2016; Zindler et al., 1984). These studies indicate
that near-ridge seamount volcanism is commonly sourced from the mantle that supplies the MOR
axis, but seamounts preserve a wider range of primary melts (Batiza & Niu, 1992; Perfit & Chadwick, ).
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Figure 1. Location and morphology of the 8°20’N seamount chain. (a) SeaSat 1-km gridded satellite altimetry data for the northeastern Pacific between

the Clipperton and Siqueiros transform faults (S. M. Carbotte et al., 2004) that bound the first-order segment of the East Pacific Rise (EPR). Location of
AT37-05 EM122 multibeam bathymetry over the 8°20’N seamount chain, gridded at 70-m node spacing shown in (b). (b) New MR1 bathymetry displays key
morphostructural features including well-defined ~ N-S lineated abyssal hill fabric north of the seamount chain. The southern area of the eastern half of the
seamount chain includes curvilinear NW-SE sweeping abyssal hill and constructional volcanic features, from approximately Coral seamount to the EPR axis.
Oscar is the seamount closest to the EPR axis. Associated constructional volcanic topography includes small-scale (<1 km diameter) cones, some with craters
and linear arrays of cones on some of the seamount flanks, with the southern extents orientated sub-parallel to the ~350° abyssal hill trend. Other prominent
volcanoes display calderas and breached calderas decorated with cones. Some of the seamounts have distinct morphological boundaries with respect to their
neighbors, while others appear to have a component of coalesced volcanism that has resulted in more ridge-like features with dominant orientations that are
either roughly N-S or E-W.

However, the limited (mostly single dredges with poor spatial constraints) and spatially disparate sam-
pling of off-axis volcanic features has left the spatial distribution and scale of chemical heterogeneity
in the near-ridge upper mantle unclear.

Here we present geochemical results of a multidisciplinary geochemical and geophysical investigation of
the 8°20’N seamount chain, a line of individual and coalesced volcanic edifices that extend ~200 km west
of the EPR near 8°20’N (Figure 1a). The spatial distribution of the volcanic cones, ridges, and mounds that
comprise this seamount chain provides a unique opportunity to examine volcanic/tectonic interactions
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in a fast-spreading MOR off-axis terrain proximal to a “leaky” transform (i.e., the Siqueiros Transform;
Fornari et al., 1989). The orientation of the seamount chain perpendicular to the ridge yields spatial con-
straints important for determining the scale of mantle source heterogeneity, and melting systematics in a
relatively well-studied MOR environment over a period that extends to ~2-3 Ma (Figure 1b). We system-
atically mapped the 8°20'N seamount chain using ship-based and autonomous underwater vehicle (AUV)
Sentry-based multibeam, and used the human-occupied vehicle (HOV) Alvin to collect well-located, in-situ
samples in addition to dredging. This study focuses on geochemical analyses of ~300 basaltic lavas collect-
ed from the 8°20’N seamount chain, and uses major and trace element abundances in conjunction with
radiogenic isotope ratios to determine the petrogenesis of seamount lavas. Analytical results are used in
petrologic models to investigate mantle components, melting systematics, and crustal magmatic processes
required to account for the range of basalt compositions erupted along the seamount chain and within each
seamount at small (<<1 km) spatial scales.

2. Geologic and Tectonic Setting of the 8°20’N Seamounts

The 8°20'N seamount chain is a ~200 km-long, east-west trending, linear array of volcanic constructs lo-
cated on the western flanks of the East Pacific Rise (EPR) axis near 8°20’N. The eastern end of the chain
is located ~20 km northwest of the western ridge-transform intersection (RTI) of the Siqueiros transform
with the EPR (Figure 1a). The swath of volcanoes and coalesced volcanic ridges that comprise the chain are
north of—and roughly parallel to—the western Siqueiros Fracture Zone (FZ) (Behn et al., 2002; S. Carbotte
& Macdonald, 1992; Scheirer & Macdonald, 1995). The 8°20’N seamounts follow a relative motion trend of
~260°, while other seamount groups or chains (most notably the Lamont Seamounts to the north (Allan
et al., 1989; Batiza et al., 1990; Fornari et al. 1988a, 1998b) are aligned along an absolute motion trend of
~330°.

On a regional scale, there are several important morphostructural features that dominate the fabric of the
seafloor on the Pacific Plate between the Siqueiros and Clipperton transforms (Figure 1). The presence
of intra-transform spreading centers in the Siqueiros transform (Fornari et al., 1989; Hebert & Monté-
si, 2011; Perfit et al., 1996) and the evolution and reorganization of the plate boundary in this area (Pock-
alny et al., 1997) have resulted in several generally E-W trending structural lineaments on the Cocos Plate
due east of the 8°20’N seamounts (Figure 1). These features are relicts of the northern Siqueiros transform
deformation zone and have formed as the transform migrated southward over the past 1-2 Ma (P. M. Gregg
et al., 2009; Pockalny et al., 1997). The seafloor fabric on either side of the EPR axis between Clipperton and
Siqueiros (Figure 1) is predominantly comprised of abyssal hill structures that are primarily aligned along
the ~350° trend of the EPR axis (Edwards et al., 1991; Goff et al., 1993). The exceptions to this are curved
structures and pseudo-faults that demark the trajectory of the 9°03’N overlapping spreading center (Car-
botte & Macdonald, 1992; V. D. Wanless et al., 2012).

Our recently acquired shipboard multibeam data also show the prominent association of EPR-parallel abys-
sal hill structures near the 8°20’'N seamounts; however, south of the chain there are large swaths of curvilin-
ear seafloor structures that bend southeastward into the western Siqueiros FZ (Figure 1). These curvilinear
structures are present from the RTI to ~100 km from the EPR axis and abut the southern flanks of all the
seamount volcanoes. South of the zone of curved seafloor fabric, there are packets of seafloor resembling
lozenges of spreading center terrain formed within the transform that have been rafted westward and now
occupy the northern margin of the Siqueiros FZ. These observations suggest dynamic, syn-tectonic volcan-
ism has dominated crustal construction in the area south of the 8°20’N seamounts over the past several
million years (Romano et al., 2017).

2.1. 2016 Research Expedition

A research expedition in November 2016 on RV Atlantis (AT37-05) sampled, mapped, and collected gravity
and magnetic data across the 8°20’N seamount chain. Bathymetric data were collected using the shipboard
EM122 multibeam system, magnetic data were collected using a surface-towed SeaSPY Overhauser Mag-
netometer System, and gravity data were measured using a BGM-3 sea gravimeter (geophysical results are
reported by Romano et al., 2017). EM122 multibeam data gridded at 75-m resolution were collected over the
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Figure 2. New EM122 bathymetry of the 8°20'N seamount chain with seamount names and sample locations (colored squares) recovered by Alvin and rock
dredges where purple symbols are EMORB, NMORB are blue, and DMORB are orange.

entire study area (Figure 1b). AUV Sentry near-bottom high-resolution multibeam (~1-m grid resolution)
data acquisition was focused on the summit and flank areas of several of the seamounts and provided the
fine-scale morphological and structural information used to plan Alvin dives and select locations for in-situ
sample collection. A total of 16 HOV Alvin dives and 19 rock dredges were conducted along the seamount
chain, resulting in a collection of ~300 basaltic lava samples (Figure 2). A follow-up cruise, during which
four additional Alvin dives along the 8°20'N seamount chain (AT42-06) were conducted, occurred in De-
cember 2018. Those data are not reported here.

2.2. Morphology of the Seamounts

The high-resolution mapping of the region allows insights into the range of morphologies of the seamount
chain. The 8°20’'N seamount chain is composed of a diverse array of volcanic constructs standing ~200-900 m
in height above the surrounding seafloor. The eastern edge of the chain is comprised of east-west trending,
nearly continuous ridges of coalesced volcanoes, with numerous smaller cones and mounds on the summits
and flanks (Figure 1b). The volcanic construct in the chain closest to the EPR is ~22 km to the west of the axis
(Oscar seamount). In addition to the coalesced ridges, there are deeper, EPR-parallel constructs that extend
south-southeast from some of the seamount summits (e.g., Hook Ridge; Figure 2). The volcanoes in the chain
that coalesced along E-W lineaments form constructional ridges, suggesting that the location and timing of
volcanism have been episodic in terms of erupted volume relative to spreading rate (Figure 1). The coalesced
ridges do not persist beyond ~125 km west of the EPR. Instead, the chain transitions to larger, more rounded,
individual volcanoes with craters (Figure 1). The westernmost seamount examined is Liona (~209 km west of
axis), one of the largest in the chain, but is offset significantly to the north.

Morphological and observational evidence suggest relatively recent volcanism persists along the chain,
even on edifices near the middle of the chain, nearly 100 km from the EPR axis. The intact pillow flows
are relatively fresh, with only thin Mn-coatings and limited sediment cover (Fabbrizzi et al., 2020). The
seamounts do not appear to systematically age with distance from the EPR, since evidence for recent vol-
canism persists across much of the seamount chain. Additionally, rift zone-like extensions of constructional
volcanism that trend S-SE from the main edifices in the eastern half of the chain (Figure 1b) suggest longer
term magmatic supply during which the central volcanoes grew and some developed the elongated (N-S)
shapes that were influenced by the stress field created by spreading dynamics as the seafloor was deformed
along the northern margin of the Siqueiros FZ.

3. Methods
3.1. Major Elements

Basaltic glass, chipped from the outer rind of each lava, was used for geochemical analyses. When present,
clean, phenocryst and alteration-free basaltic glass was selected. Three to five glass chips were handpicked
from each sample using a binocular microscope and were mounted in 1-inch epoxy disks for geochemical
analysis. The mounts were polished in 6, 3, and 1 um diamond grits, and then hand-polished using 1 um
alumina grit.
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Major element concentrations of the 281 lavas that contained glass were determined using the CAME-
CA SXFive-FE microprobe at the University of Florida and a JEOL 8800 electron microprobe at USGS in
Denver. The accelerating voltage in both labs was 15 kV, beam current was 20 nA, and beam diameter was
10 um. Count times varied for different elements. At the University of Florida and USGS, Na was analyzed
first for 10 s because of its volatile nature during analysis. Mg, Si, Al, Fe, Mn, and Ca were also analyzed
for 10 s each on all 281 samples. Ti, P, K, and Cl were analyzed for 20 s. Ni, Cr, and S were measured for
10 s during some of the initial sample analyses but were often below detection limits and thus unmeasured
on subsequent samples. 10 spots were measured on each glass and averaged. Secondary basalt standard
ALV-2392 (Perfit et al., 2012) was run for approximately every 10-15 samples to account for any instrument
drift. The measured standard values are provided in Supplement 1. A set of 52 samples was analyzed at
both the labs for interlab comparison, which—based on measured standards JDF-D2 and ALV-2392 (at the
University of Florida), and A99 and USNM (at USGS)—resulted in relative percentage corrections of —7%
for Na,O and —3% for CaO measurements from USGS. The remaining major element concentrations in the
glass standards in each lab measured within one standard deviation and required no adjustment. Duplicate
analyses are presented in Supplement 2. With the exception of Na,O (RSD % = 6.3), precision for all other
major elements was below 4 RSD%. Major element concentrations and uncertainties for analyzed basalt
glasses are reported in Table S1.

3.2. Trace Elements

Using the same glass chips analyzed by microprobe, trace element concentrations were determined on 148
samples using a Laser Ablation (UP213 Nd-YAG New Wave Research laser) ThermoElectron X-Series II
Quadrupole Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS) at Boise State University. The
instrument was calibrated using USGS and NIST610 glasses. The repeat rate was 10 Hz and dwell time 30 s
using ~0.278 mJ of energy. Each glass sample was ablated five times (three on one chip and two on another
where multiple chips were available for a given sample) using 80-110 um rounded spots and averaged. Glass
standards used included KL2, ML3B, StHls, T1, ATHO, BHVO, BCR, and BIR, with BHVO, BCR, and BIR
analyzed at every five samples. Precision was generally below 6 RSD% with a few exceptions: Tm, Lu, Ta,
Pb, Th, and U measured between 6 and 9 RSD%. Glass trace element contents are reported in Table S2 and
measured standard values are reported in Supplement 3.

3.3. Radiogenic Isotopes

Radiogenic isotopes were collected on 19 geochemically and spatially diverse basalts at the University of
Florida. Approximately 50 mg of fresh, phenocryst-free glass was handpicked using a binocular microscope.
To avoid any remaining alteration and manganese coating on these samples, the glass chips were cleaned
using a combination of leaching methods (Goss et al., 2010; Sims et al., 2002; C. L. Waters et al., 2011).
Glass chips were sonicated in DI water for 20 min and rinsed. The glasses were placed in capped Teflon
and leached in 35% H,0, for 15 min on a hot plate at 130°C. The samples were rinsed thrice in DI, then in
capped Teflon leached in 2 mL of 6 M HCL for either 30 or 60 min (depending on the amount of remaining
manganese coating) at 130°C. The samples were rinsed in DI and then sonicated for 15 min in DI before
rinsing thrice in DI water. The samples were then dried overnight in an oven at 50°C. Clean glasses were
digested in 3 mL HNO; + 1.5 mL HF, and after evaporated drying, dissolved in 6 N HCI and subsequently
evaporate dried. The dried residue was dissolved and separated for Pb, Sr, and Nd using column chemistry,
following the methods described in Goss et al. (2010): Pb was separated through 100 uL Teflon columns in
HBr eluent, then washed 3x in 1 mL 1 N HBr, and collected in 1 mL 3N HNOs;. Sr and Nd were collected
subsequently using 1 N HBr and purified for analysis. Biorad AG50W resin columns were used to separate
Sr from REE and Nd was separated from REE through columns of 2 mL of Ln-Resin. Pb, Sr, and Nd isotopes
were then measured at the University of Florida using a Nu-Plasma HR multicollector (MC) ICP-MS, using
the methods described in Kamenov et al. (2008) and Goss et al. (2010). Standards NBS-981, NBS-987, and
JNdi-1 were run every 5-6 samples for Pb, Sr, and Nd, respectively, and the averages are reported in Supple-
ment 4. Sr, Nd, and Pb isotopic ratios and uncertainty (2 sd) for the samples and several duplicate analyses
from the same sample aliquot are reported in Table S3.
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Figure 3. Incompatible element ratio variations and basalt classification
scheme of the 8°20’N seamount lavas using [La/Sm]y, Th/La, K/Ti,

and Nb/La ratios relative to existing classification systems (Arevalo

& McDonough, 2010; Perfit et al, 1994; Shimizu et al., 2016; Sinton

et al., 1991; M. C. Smith et al., 2001). Dashed lines represent approximate
boundaries for EMORB, NMORB, and DMORB compositions used for this
study based on these classification systems. Some samples do not perfectly
fall within each category every time, so in those cases, all of these systems
are combined to decide into which category they belong.

4. Geochemical Results

Samples collected from the 8°20'N seamounts are extremely heteroge-
neous on small scales. Each basalt is classified as a DMORB, NMORB,
or EMORB (Figure 3), primarily based on their Th/La ratio (Shimizu
et al., 2016) in conjunction with (La/Sm)y and K/Ti (100*[K,O/TiO,])
ratios (Arevalo & McDonough, 2010; Perfit et al., 1994; Sinton et al., 1991;
M. C. Smith et al., 2001). Because the lavas form a near-continuum rath-
er than distinct geochemical groups (Figures 3-5), these parameters are
used collectively to classify each lava. DMORB from the seamounts typ-
ically have Th/La, (La/Sm)y, and K/Ti ratios less than 0.035, 0.60, and
8, respectively, whereas EMORB ratios are commonly greater than 0.068
(Th/La), 1.0 ([La/Sm]y), and 16 (K/Ti), and NMORB fall between these
values (Figure 3). Based on this classification scheme, we analyzed 176
EMORB, 86 NMORB, and 19 DMORB lavas.

Individual seamounts have erupted multiple MORB-types (e.g., Oscar or
Coral; Figures 2 and 4), and in some cases DMORB and EMORB outcrops
are located <1 km from each other. For example, on top of the Oscar
seamount (located ~22 km from the axis), DMORB were recovered with-
in ~600 m of the most enriched EMORB lava flow. Lava compositions
across the entire chain form a continuum from mafic basalts (up to 10.25
wt% MgO) to evolved basalts (<5 wt.% MgO; Figure 4). Some lavas are
highly incompatible element depleted and enriched compared to some of
the most enriched and depleted basalts recovered from non-hotspot-re-
lated seamounts in the north eastern Pacific. The rather limited range
of SiO, contents (~47-51 wt%) in all of the samples (Figure 6) is nota-
ble considering the large range of total alkalis (Na,O + K,0 = 2.4-6.1
wt%). EMORB on average have lower MgO contents (~7.4 wt%) than the
NMORB (~8.6 wt%) and DMORB (~9.1), suggesting that the EMORB are
typically more evolved. Total alkalis exhibit a strong linear correlation
with K/Ti (r = 0.84). Only the most enriched samples (K/Ti > 45) are
slightly Ne-normative (<3 wt%).

4.1. EMORB

Based on incompatible element ratios, the majority (63%) of the sea-
mount lavas collected are EMORB (Figure 5), which is a high percent-
age compared to the adjacent 8°~10°N EPR ridge axis segment (<5%).
Relative to NMORB, EMORB are characterized by higher K/Ti ratios
(17-61), relatively low CaO/AlL,O; ratios (mostly between 0.50 and 0.75),
especially for the samples with less than 8 wt% MgO, and generally low-
er MgO contents (although they range from 4.61 to 9.01 wt%; Figure 4).
Mg# varies from 44 to 64 (see Supplement 5). At similar MgO contents
(or Mg#), EMORB Na,O contents are elevated relative to D- and NMORB
(2.40-4.29 wt%), whereas EMORB FeO (8.08-12.0 wt%) and CaO (10.8—

11.78 wt%) concentrations are relatively low compared to NMORB and DMORB. The ratios of light to mid-
dle rare earth elements (LREEs and MREEs) in EMORB lavas are high (i.e., [La/Sm]yx ranges from 1.0 to
2.8, with the exception of three samples with [La/Sm|y ratios as low as 0.74 but high Th/La), as are MREE
to heavy (HREE) ratios (i.e., [Gd/YDb]y ~ 1.1-2.2; see S6). The ratios of highly incompatible elements with
similar distribution coefficients (i.e., Nb/La ~ 0.97-1.7) are also higher than in NMORB and DMORB lavas.
Additionally, the EMORB have more radiogenic *’Sr/*Sr (0.702693-0.703198; Figure 7) and Pb isotopes
(i.e., *°Pb/***Pb 18.536-18.714, and less radiogenic *Nd/***Nd (0.512959-0.513104) than both DMORB and

NMORB (Figure 7).
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Figure 4. (a) MgO (wt%) versus K/Ti (100*K,0/TiO,) of the 8°20'N
seamount lavas color-coded by MORB type (EMORB purple; NMORB blue;
DMORB orange) as discussed in the text. On-axis 8°-10°N samples (solid
black circles) are glass analyses of basalts collected directly from the EPR
ridge axis between the Siqueiros and Clipperton transform faults. Off-Axis
Seamounts dataset (light gray circles) includes glasses from seamount lavas
within ~200 km of the ridge from ~5°-15°N (all references for samples
available in Supplement 7). Oscar seamount samples (bold squares) are
highlighted to show the variability on a single seamount ~22 km from

the EPR ridge axis. Note the near-continuum of data from most depleted
K/Ti (DMORB) to most enriched K/Ti (EMORB). (b) MgO (wt%) versus
Ca0/Al,0; of the 8°20'N seamount lavas compared with both on-axis EPR
and off-axis seamount datasets (as above). The 8°20’N seamounts have
distinctly lower CaO/Al,O; ratios and crystallization trends that differ
from typical EPR MORB .

4.2. NMORB

The second most abundant lava composition observed is NMORB (30%).
These lavas are similar to NMORB lavas observed on-axis at the EPR
(Figures 4, 6 and 7), but extend to more mafic compositions (Figure 4).
Seamount NMORB are characterized by moderate K/Ti ratios (6.7-16),
moderate to high MgO contents (6.65-10.6 wt%) and Mg# (53-68), and
elevated CaO/Al,O; ratios (0.60-0.85). NMORB Na,0O contents are lower
than EMORB but are comparable to DMORB (2.44-3.27 wt%) at the giv-
en MgO contents. Ratios of LREEs to MREE:s (i.e., [La/Sm]y ~ 0.59-1.0),
and MREEs to HREEs (i.e., [Gd/Yb]y ~ 0.99-1.4) are lower than those of
EMORSB, but closely resemble DMORB (Figure 5). FeO contents span the
same range as EMORB and DMORB (8.40-12.3 wt%). Ratios of highly in-
compatible trace elements with similar distribution coefficients (i.e., Nb/
La ~ 0.52-1.1) are lower than EMORB and generally higher than most
DMORB. The NMORB also have more radiogenic *’Sr/**Sr (0.702630-
0.702743) and Pb isotopic ratios (i.e., 2°°Pb/***Pb are 18.173-18.781) than
DMORB and have “*Nd/"*Nd ratios (0.513043-0.513119) more radio-
genic than EMORB but less radiogenic than DMORB.

4.3. DMORB

The least abundant lava composition sampled on the seamounts is
DMORB (7%), which are characterized by a strong depletion of the most
highly incompatible elements (Figures 4 and 5). They are generally more
mafic lavas than the EMORB and NMORB (with a narrow range of MgO
contents from 8.03 to 9.35 wt%; Mg# 58-67). The DMORB also have the
lowest K/Ti ratios (<8.5) (Figure 4). Similar to NMORB, DMORB have a
small range of silica contents (<49 wt%), CaO/Al,O; ratios (0.60-0.70),
and FeO contents compared with EMORB (7.80-10.6 wt%). DMORB
Na,O contents are lower than EMORB, but are comparable with NMORB
(2.34-3.29 wt%) at comparable MgO contents. DMORB LREE to MREE
ratios are lower than NMORB (i.e., [La/Sm]y 0.53-0.80), but the MREE
to HREE ratios are greater (i.e., [Gd/Yb]x ~ 0.86-1.5) and overlap the
more elevated EMORB heavy rare earth elements (Figure 5). As expect-
ed, DMORB highly incompatible element ratios are the lowest among
all the samples (e.g., Nb/La ~ 0.42-0.65). The DMORB consistently
have less radiogenic ¥Sr/**Sr (0.702333-0.702607) and Pb isotopes (i.e.,
206p /204ph 17.911-18.536) than EMORB and NMORB, and more radio-
genic '*Nd/"*Nd isotopes (0.513058-0.513211) (Figure 7). DMORB even

have notably less radiogenic ¥Sr/*Sr and Pb isotopes (and more radiogenic '**Nd/***Nd isotopes) than EPR
MOR samples from the nearby axial region (Figure 7).

4.4. Geochemical Trends

Geochemical comparisons and trends are useful for distinguishing parental magmas and subsequent petro-
logic processes that may be responsible for generating the heterogeneity observed in seamount lavas. The
large range in K/Ti (and other incompatible trace element ratios) together with variations in radiogenic
isotopes substantiate the existence of multiple parental basaltic magmas. The fact that there are very few
high K/Ti EMORB with mafic major element characteristics makes it difficult to determine early crystalli-
zation histories and liquid lines of descent (LLD). For example, EMORB that have a range of ~20-60 K/Ti
(Figure 4) contain subgroups with similar K/Ti ratios that have different major element trends as a function
of decreasing MgO contents. In general, with decreasing MgO, Al,O; contents in DMORB and NMORB de-
crease, but EMORB Al,O; contents remain relatively constant or increase only slightly, suggesting suppres-
sion of plagioclase crystallization (Figure 6). Based on these observations as well as preliminary fractional
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Figure 5. (a) Primitive mantle-normalized (Sun & McDonough, 1989) trace element diagram of the 8°20’'N

seamount lavas colored according to MORB type (EMORB purple; NMORB blue; DMORB orange) as described in

the text. Average EMORB, NMORB, and DMORB concentrations from Gale et al. (2013) are shown for comparison.
Note the relative slopes of the most incompatible trace elements (from Rb to Nd) for each MORB-type. DMORB are
characteristically more depleted in the most highly incompatible trace elements than NMORB (slight depletion) and
EMORB, while EMORB show variable degrees of enrichment—up to ~50 times that of DMORB. The less incompatible
elements show significantly less enrichment relative to DMORB and no overall heavy REE depletion. (b) Chondrite-
normalized (McDonough & Sun, 1995) rare Earth element (REE) diagram of the 8°20’N seamount lavas colored by
MORB type as described above.

crystallization modeling (Conrad et al., 2018), different LLD are necessary to characterize each MORB-type
(and subtype) differentiation trends, due to different conditions of crystallization (e.g., T, P, fO,, H,0) prior
to eruption.

5. Discussion
5.1. Comparison of 8°20'N Seamount Chain Basalts to Regional EPR Lavas

Studies of near-EPR seamount lavas have shown that the diversity of their compositions may indicate
tapping of melts that ascend vertically from the outer regions of the melting triangle, thus bypassing the
axial magma chamber and preserving a wider compositional range than is observed on-axis (Allan & Ba-
tiza, 1987; Batiza & Niu, 1992; Batiza et al., 1989, 1990; Brandl et al., 2012; Niu & Batiza, 1997a, 1997b; Niu
et al., 2002; Perfit & Chadwick, ; Shimizu et al., 2016; Zindler et al., 1984). Basalts erupted along the 8°20'N
seamount chain are chemically more heterogeneous and enriched in incompatible element ratios than lavas
erupted on-axis along the adjacent EPR segment (Figures 4, 6, and 7; References available in Supplement
7). For example, EPR MORB erupted on-axis (within 4 km) between 8° and 10°N (hereafter referred to as
“on-axis 8-10°N") have relatively limited major and trace element compositions (1-40 K/Ti, 0.31-2.3 [La/
Sm]y) compared to the seamount lavas (5-61 K/Ti and 0.53-2.8 [La/Sm]y) (Figure 4; S6). Average K/Ti and
[La/Sm]y ratios are far lower for on-axis 8°~10°N samples (~8 K/Ti and 0.72 [La/Sm]y) than the 8°20'N
seamounts (~24 K/Ti and 1.39 [La/Sm]y). These results support previous studies that suggest the nearly
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Figure 6. Major element bivariate diagrams of the 8°20’N seamount lavas colored by MORB-type. Local on-axis
8°-10°N samples (black circles), and data from other near-EPR, off-axis seamounts not from this study (light gray
circles) are shown for comparison. 8°20'N seamount EMORB lavas have notably lower FeO(total) and CaO but higher
AlO; and K,0 than DMORB and NMORB, including those from the EPR at given MgO contents. See Supplement 5 for
similar plots versus Mg#.

ubiquitous melt lenses on-axis are relatively efficient at homogenizing melts prior to eruption (Perfit &
Chadwick, ; Rubin et al., 2009; Sinton & Detrick, 1992) and highlight the role the axial magmatic system
plays in obscuring important chemical characteristics of the sub-oceanic mantle.

The 8°20'N seamount basalts span the entire range of major element, trace element, and radiogenic isotope
ratios of other northern EPR off-axis seamount lavas (Figures 4, 6, and 7; References available in Supple-
ment 7), hereafter referred to as “off-axis seamounts.” In some cases, the 8°20’N seamount basalts even
extend beyond the range of off-axis seamount lavas. Isotopically, the 8°20’N seamount lavas have a similar
range as on-axis (and off-axis) EPR MOR lavas (Figure 7), suggesting that they share common isotopic
sources. However, the high spatial resolution of sampling (<1 km scales) and the orientation of the 8°20'N
seamounts relative to the EPR allows the off-axis chemical variability to be examined in much greater detail.
Thus, we evaluate the influence of the variations in extents of melting and mantle heterogeneity over short
length scales and with distance from the EPR axis.

5.2. Compositional Variability with Distance from the Ridge Axis

Numerical and geochemical studies suggest that there may be a maximum distance (~20-40 km) over which
mantle melts can be efficiently focused and transported to the ridge axis (Figure 9; Behn & Grove, 2015;
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Figure 7. Radiogenic isotope (Pb, Sr, and Nd) ratios of the 8°20'N seamount lavas (triangles) colored by MORB type
compared with on-axis 8°~10°N samples (black circles) and off-axis seamounts (light gray circles). Mid-ocean ridge
mantle reservoirs EMM (Enriched MORB Mantle from Donnelly et al., 2004) and DDMM (depleted MORB Mantle
from Workman & Hart, 2005) are shown as mantle end-members for the seamount compositions. Binary source mixing
models (black line) between EMM and DDMM sources are shown with black plus signs, indicating 10% increments.

A.J. Turner et al., 2017; V. D. Wanless et al., 2014). Consequently, melts from the outer edges of the melting
region may be excluded from on-axis eruptions and instead re-fertilize the overlying depleted mantle (le
Roux et al., 2006; Plank & Langmuir, 1992), and/or become a source for off-axis volcanism (Figure 9; Perfit
et al., 1994). Variable extents of melting of a chemically homogeneous mantle source will result in varia-
ble ratios of trace elements with different incompatibilities during melting (Bo et al., 2018; O'Hara, 1985).
Thus, magmas produced by greater extents of melting directly beneath the ridge axis are expected to have
distinctly lower incompatible trace element concentrations and lower ratios of incompatible to less incom-
patible trace elements compared to magmas produced by lower extents of melting away from the ridge axis.
These observations combined with the shape of the melting regime suggest that there should be systematic
changes in melt compositions produced in the melting region with distance from the ridge axis, assuming
the source mantle is homogeneous, the seamounts are tapping melts produced in the mantle directly below,
and that the seamounts have not migrated significantly since emplacement of the lavas sampled.

There is no systematic variation in lava chemistry with distance from the ridge axis along the ~200 km sea-
mount chain (Figure 8). Instead, EMORB, NMORB, and DMORB lavas are observed along the entire length
of the chain, including the seamounts nearest the ridge axis (Figures 1 and 8). In fact, some individual
seamounts are comprised of lavas ranging in composition from DMORB to EMORB over relatively small
(<1 km) spatial scales (e.g., Oscar, only 22 km from the ridge axis). Thus, the seamounts are not synchro-
nously tapping melts produced in various parts of the melting triangle in a homogeneous mantle.

Alternatively, it is possible that individual seamounts are built over time from repeated eruptions as the Pa-
cific plate migrates away from the ridge axis across the length of the melting triangle, and thus sequentially
tapping different portions of the melting triangle over time (E. E. Davis & Karsten, 1986). In this case, the
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Figure 8. Spatial variation in 8°20'N seamount lava chemistry (Nb/La ratios), MgO (wt%), K/Ti ratios, and ***Nd/**Nd
ratios with distance from the ridge axis (longitude right to left) with seamount samples colored by MORB type. Vertical
black lines represent the location of the East Pacific Rise axis, and the yellow stars represent the average composition
on-axis for each element concentration or ratio. Dotted rectangles outline the two seamounts discussed in the text
(Oscar and Coral) to demonstrate extreme variability on single-seamount scales. There is no systematic variation in

the degree of incompatible element enrichment, major element concentrations or ratios, or radiogenic isotopes with
distance from the ridge axis. All lava types are found across nearly the entire length of the seamount chain. Seamount
NMORB compare best with the on-axis average for every element concentration/ratio.

composition of lavas erupted on each seamount should transition from more depleted at the base to more
enriched at the top with time (assuming central vent eruptions). However, the detailed sampling up the
slope of numerous volcanic constructs shows no systematic change in lava composition with recovery depth
on any of the seamounts (Supplement 8). It is possible that systematic changes are buried by later eruptions
or were not sampled; however, both D and EMORB lavas were sampled on the top of the same seamount
(Oscar), nearest to the ridge axis (Figure 8). This suggests that a range of lava compositions can be erupted
at a single seamount over relatively short timescales and relatively close to the ridge axis. Thus, the observed
spatial distribution of lava compositions suggests that the seamount chain was not produced simply by pas-
sively tapping magmas produced in the underlying the MOR melting triangle (Figure 9).

5.3. Mantle Source Variability in Seamount Lavas

Radiogenic isotope ratios, unlike major element concentrations and trace element ratios, are unchanged by
mantle melting and crystallization, and thus reflect mantle source compositions (McKenzie et al., 2004; Niu
et al., 1996; Stracke & Bourdon, 2009; Zindler et al., 1984). Globally, radiogenic isotope studies suggest that
the MOR mantle source is predominantly comprised of a depleted component; however, numerous studies
of basaltic MOR lavas suggest that there are additional components feeding the global MOR ridge system
(Batiza & Niu, 1992; Donnelly et al., 2004; Mallick et al., 2019; Perfit et al., 1994; Shimizu et al., 2016; C. L.
Waters et al., 2011; R. K. Workman et al., 2004). Studies that have examined the petrogenesis of EMORB
lavas erupted on or near the 8°-10° EPR ridge axis invoke melting of a small volume of an enriched com-
ponent, in addition to a depleted component, to account for the range of radiogenic isotope ratios observed
(Perfit et al., 2012; Shimizu et al., 2016; M. C. Smith et al., 2001; C. L. Waters et al., 2011). These studies
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Figure 9. Conceptual model for melting a heterogeneous mantle, evaluated using data from the 8°20’ N seamount
chain basalt compositions. The EPR axis and half-spreading direction are shown at the top. Colors of the seafloor
bathymetry of the chain of seamounts on the surface reflect compositions found along the seamounts (EMORB,
NMORB, and DMORB). The triangle on the lower right side beneath the ridge and seamounts represents the region

of mantle melting on a single side of the ridge. The DDMM component is represented by the continuum of purple,
blue, and orange background colors which reflect the compositions of mantle melts based on degrees of melting as a
function of the height of the triangle (i.e., the distance melts travel and therefore the extent of melting they undergo).
In this diagram, the purple background represents the lowest degrees of melting (resulting in incompatible element
enriched melts), blue represents intermediate degrees of melting, and orange represents the highest degrees of melting
(resulting in incompatible element depleted melts). The EMM component is superimposed as purple pentagons whose
melts are the purple arrows. The filled arrows represent initial melts of EMM that have not yet mixed with DDMM. The
open arrows represent EMM melts that have likely mixed with DDMM, obscuring their enriched signature (i.e., directly
beneath the axis these signatures are lost to mixing and high degrees of melting). Theoretical melt paths are shown as
arrows with dashed lines, indicating that some melts rise through the melt triangle, reach the top of the melt region and
focus toward the ridge (within ~20 km of the ridge), while others ascend vertically to the surface (by-passing on-axis
mixing).

combined with investigations of ultramafic rocks in ophiolites (e.g., Boudier & Coleman, 1981) and dredges
from fracture zones have led to the hypothesis that enriched signatures result from melting of pyroxenite
veins that are embedded in the upper mantle (Gill et al., 2016; Gleeson et al., 2020; Hirschmann & Stolp-
er, 1996; Mallick et al., 2015; Niu et al., 1999; Stracke et al., 1999; C. L. Waters et al., 2011; Yang et al., 2020).
However, the composition and physical distribution of this petrochemical component within the near-ridge
mantle has not been well constrained, primarily because the signatures are often obscured on-axis.

Lavas erupted along the 8°20'N seamount chain have a wide range of radiogenic isotope ratios compared
to the majority of lavas erupted on-axis (Figure 7), providing evidence for a heterogeneous mantle near the
northern EPR. Although other seamounts in the region also have variable isotope ratios, the 8°20'N lavas
span the entire range of lavas collected at all northern EPR off-axis seamounts combined (Figure 7). To
determine the source and extent of mantle heterogeneity, we compare seamount lava compositions to two
commonly used end-member MOR mantle components (Figure 7); Enriched MOR Mantle (EMM) from
Donnelly et al. (2004) and Depleted MOR Mantle (DDMM) from Workman & Hart (2005).

The DDMM component is representative of the most depleted end-member of the depleted upper mantle
(Workman & Hart, 2005). The commonly used average DMM (Workman & Hart, 2005) cannot account for
the most depleted (DMORB) lavas erupted along the seamount chain, suggesting that the regional mantle
is composed of a more depleted end-member (DDMM). By contrast, the EMM component is believed to be
representative of a reservoir composed of enriched material (more radiogenic Sr and Pb, less radiogenic
Nd) that is unrelated to a mantle plume (Donnelly et al., 2004). The addition of an enriched component in
the upper mantle without the presence of a nearby plume has been attributed to subducted and recycled
oceanic crust, lithosphere, and/or sediments, which through time are metasomatizing and/or mixing into
the depleted upper mantle (e.g. Niu & Batiza, 1997b; Niu et al., 2002; Shimizu et al., 2016; Yang et al., 2020).
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This results in a volumetrically small, but perhaps ubiquitous EMM component distributed throughout the
upper mantle (Sobolev et al., 2007; Stracke & Bourdon, 2009).

While some studies of mantle heterogeneity invoke a pyroxenite source to explain incompatible element
enrichment (Gill et al., 2016; Hirschmann & Stolper, 1996; Mallick et al., 2015; Niu et al., 1999; Stracke
et al., 1999; C. L. Waters et al., 2011; Yang et al., 2020; G. L. Zhang et al., 2012), only lherzolitic source
compositions are used here to model the geochemical variability. If any significant amount of garnet-bear-
ing pyroxenite or eclogite was partially melted in the source lithology, a heavy rare earth element (HREE)
depletion should be observed in erupted lavas. However, the (Gd/Yb)y ratios in the 8°20’N lavas change
very little in even the most enriched EMORB, indicating a lack of HREE depletion that would characterize
a garnet bearing source (Figure 5b; Supplement 6). Thus, a garnet signature from pyroxenite partial melt-
ing (Hirschmann & Stolper, 1996) is not required. Similarly, metasomatism is also commonly invoked to
explain major and trace element heterogeneity in ocean island and MOR settings (Niu et al., 2002, 2012;
Pilet et al., 2008, 2011). Low-degree melt metasomatism at the base of oceanic lithosphere can explain en-
richment of fluid-mobile incompatible elements; however, radiogenic isotopes require ancient origins (Niu
et al., 2002), potentially involving a subducted lithosphere component not clearly identifiable by radiogenic
isotopes in this study. Melting/mixing models using combinations of DDMM and EMM can, on a first or-
der, adequately explain the range of compositions, removing the need to include a pyroxenitic lithology or
metasomatic fluid interactions. To determine the mantle sources contributing to the range of compositions
observed along the 8°20’N seamount chain, we compare the isotopic ratios of the mantle end-members
with those of the seamount lavas (Figure 7). Several EMORB lavas have radiogenic isotope ratios similar
to the EMM end-member, while DMORB lavas are closer to the DDMM end-member (Figure 7). All other
seamounts have lava compositions that generally lie between these two end-member components. Binary
mixing models suggest that melting of a mantle composed of various mixtures of these two components
(or mixing of the primary melts from these sources) can account for a wide range of the isotopic signatures.
However, several lavas lie off this binary mixing curve, suggesting that a third enriched component may
be present. Regardless, multiple mantle sources are required to explain the radiogenic isotope ratios of
seamount lavas.

5.4. Constraining the Impacts of Source Versus Melting

Co-variation of incompatible trace element ratios with radiogenic isotope ratios can be used to evaluate
the effects of melting versus source composition (Figure 10). To differentiate and constrain the impacts of
melting versus source variability in the generation of off-axis lavas, trace element ratios ([La/Sm]y and Nb/
La) are used in forward melting models (Figure 11). (La/Sm)y ratios are sensitive to variations in extent
of mantle melting due to their distinct partition coefficients during melting (higher ratios indicate lower
extents of melting). However, this is not a perfect assumption since enrichments in the mantle may prefer-
entially melt and contribute to a greater extent to resulting melt-induced mixtures (Niu & Hekinian, 2004).
By contrast, Nb and La have similar partition coefficients during melting, but can vary with source; thus,
variations in Nb/La ratios can be used as a proxy for heterogeneity in the mantle in the absence of radiogen-
ic isotope analyses (Hofmann, 1997). If source variability is the only process controlling the composition of
8°20'N lavas, then trace element ratios should systematically vary with radiogenic isotope ratios (Figure 10).
While this is observed in some isotope-trace element ratio pairs (Nd isotopes and [La/Sm|y of EMORB and
NMORB), it is inconsistent across all trace element and radiogenic isotope ratios (Pb isotope ratios do not
consistently correlate with trace elements [La/Sm]y; Figure 10) unless they share common incompatibil-
ities (Nb/La correlates well with Nd isotope ratios; Figure 10). Interestingly, EMORB lavas have relatively
limited Pb isotope ratios, but vary in (La/Sm)y ratios. By contrast, NMORB and DMORB vary in Pb isotope
ratios and have limited in (La/Sm)y ratios. This suggests that source variability and melting processes be-
neath the 8°20'N seamount chain may influence MORB-types differently.

To model melting of a heterogeneous lherzolitic mantle source, we first determined the starting composi-
tions of the end-member mantle components and then calculated melt compositions of various mixtures of
those components using alphaMELTS (Figure 11). The trace element contents in mantle end-members may
be variable and are difficult to constrain using erupted lavas because they are highly influenced by both the
source mineralogy and melting process. To estimate trace element contents in both lherzolite end-members
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Figure 10. Radiogenic isotope compositions and incompatible trace element ratios for the 8°20’N seamount lavas
compared with on-axis basalts (black circles) and off-axis seamount basalts from the literature not included in this
study (gray circles). Radiogenic isotope compositions compared to incompatible trace element ratios show general
correlations between LREE enrichment [La/Sm]y in EMORB and more radiogenic Nd and Pb, but only slightly in

D- and NMORB. The effects of variable extents of melting and source variability shown by the arrows suggest both
have been present in the origin of the seamount lavas. The similarities in NMORB from both the EPR axial basalts and
seamount NMORB reflect the similarity of sources and processes that are operative beneath the seamounts.

at 8°20'N (EMM and DDMM), we compared radiogenic isotope ratios (Pb, Sr, and Nd) with ratios of trace
elements sharing common distribution coefficients (i.e., Nb/La vs. *Nd/***Nd ratios; Figure 10). Based
on this, trace element contents for the end-member components in the petrologic models were adjusted
slightly from reported EMM and DDMM in the literature (Donnelly et al., 2004; Workman & Hart, 2005) to
more closely match local end-members of the seamount lavas (S9). The new trace element concentrations
for each component were mixed in 10% increments to produce a suite of source compositions, which were
subsequently melted using alphaMELTs (P. M. Smith & Asimow, 2005). Water contents for starting com-
positions, based on H,O/Ce ratios of 112 and 200, respectively (Kovalenko et al., 2006; Michael, 1995; Saal
et al., 2002; Workman & Hart, 2005), were 100 ppm for DDMM and 400 ppm for EMM, and concentrations
between these values for intermediate mixtures. Melting models were run using isentropic, polybaric melt-
ing starting between 30 and 40 kbar and at 1300°C and 1400°C; however, the best-fit models were consist-
ently 1,400°C and 40 kbar.

Using the two-component lherzolitic mantle, the entire range of seamount lava compositions can be
explained by <1%-15% melting of a heterogeneous mantle composed of mixtures of DDMM and EMM
(Figure 11). In general, DMORB lavas are produced by ~5%-15% melting of predominantly DDMM (con-
taining up to 5% EMM). NMORB can be explained by 5%-15% melting of a slightly more enriched mantle
than DMORB (~5%-15% EMM). EMORB span a much wider range of melting extents and source
variability, ranging from <1% melting of a 10% EMM mantle to >15% melting of up to a 100% EMM man-
tle. These results suggest that the full range of compositions and elemental ratios in lavas erupted along
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Figure 11. (a) [La/Sm]y and Nb/La of all 8°20'N seamount lavas characterized by MORB-type. Models for melting change along the x-axis ([La/Sm]

x variability) and models for source mixing between a depleted MORB mantle and an enriched MORB mantle change along the y-axis (Nb/La variability).
Models assume a simple two-component lherzolite system. Horizontal lines represent melting models from compositions of the first melts of each source on
the right melted to 15% toward the left. Sub-horizontal lines are incremental mixtures of source compositions DDMM and EMM and sub-vertical lines are tie
lines between same melt fractions of different source mixtures, ranging from >0% to 15% melt. The grid demonstrates melting and source conditions that could
form each lava by either mixing the mantle sources and then melting those mixtures, or melting each source component, and then mixing those melts in the
mantle or crust. (b) [La/Sm]y and Nb/La of all Oscar seamount lavas compared with the petrologic models. Note how on Oscar seamount, lava compositions
span a wide range of source compositions (vertical variability) and melting degree (horizontal variability). (c) [La/Sm]y and Nb/La of all Coral seamount lavas
compared with the petrologic models. At Coral seamount, lava compositions span a wide range of source compositions (vertical variability) and melting degree
(horizontal variability). These models indicate that the heterogeneous mantle is melted to variable degrees beneath the seamount chain both along the entire
span of the chain, and below individual seamounts sampled in the study area.

the seamount chain are consistent with variable extents of melting of a heterogeneous lherzolitic mantle
source (Figure 9). However, it is possible that some variability could be related to a third unaccounted-for
enriched source.
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5.5. Magmatic Formation of 8°20’N Lava Compositions

An outstanding question regarding the petrogenesis of the 8°20’N seamount chain is the timing of forma-
tion. Unfortunately, the ages of the seamounts are unknown at present. However, there are several lines
of evidence that suggest the seamounts did not form on-axis. Magnetic polarity differences between the
seamounts and the underlying seafloor are consistent with the formation of the seamounts on older oceanic
crust away from the ridge axis (Scheirer & Macdonald, 1995), and potentially as far as 100 km from the ridge
axis (Romano et al., 2017). The large range of basalt compositions present along the 8°20’N seamount chain
as well as their proximity to each other is inconsistent with magmas evolving in well-mixed magma cham-
bers and instead points to independent plumbing systems—unlike those present beneath the EPR axis.

If the seamounts were formed from the vertical ascent of magmas created in the melting triangle directly below
each seamount, we would expect a systematic change in the melting extents reflected in lava compositions
along the chain (Figure 9). Assuming a constant melt production rate (<1% / 0.1 GPa) within the upwelling
region, current models place the highest extents of mantle melting directly beneath the ridge axis with pro-
gressively lower extents of melting occurring with greater distance from the ridge axis (Langmuir et al., 1992;
O'Hara, 1985; Plank & Langmuir, 1992). This change in total extent of melting from the center of the melting
triangle to its wings theoretically results in variable magma compositions due to the relative incompatibilities of
trace elements; higher extents of melting produce depleted incompatible trace element ratios and lower extents
of melting lead to enriched trace element ratios. However, no systematic change in lava composition is observed
with distance from the ridge axis (Figure 8). In fact, nearly the entire range of MORB compositions in the north-
east Pacific can be found on individual seamounts. Furthermore, there is no change in composition with depth
on the seamount edifice, suggesting that lava compositions have not changed systematically with time.

The wide range of lavas recovered from individual seamounts suggest that melting systematics and mantle
sources are variable on small spatial scales, a finding not unique to the 8°20’N seamount chain (e.g., Brandl
et al., 2012; Gill et al., 2016; Niu et al., 2002, Figure 9). This range of compositional variability is even ob-
served near the ridge axis (Figure 8). A combination of variable extents of melting and source variability
is required to explain the range of compositions erupted on this seamount (Figure 11), suggesting that
variability in these petrologic processes and sources occur over short length and timescales. This supports
our contention that EMM and DDMM mantle components are present in the sub-ridge mantle (Figure 9),
but their end-member signatures are diminished by large extents of melting and focusing beneath the ridge
crest and are overprinted by mixing in on-axis magma chambers.

Combined, these observations suggest that the seamount lavas are not formed by systematically tapping
different portions of the MOR melting triangle, as simpler models might predict. Instead, these models
suggest that the 8°20’N seamount chain formed from variable extents of melting of a heterogeneous mantle
that spans the range of compositions inferred to exist in the northern EPR region.

6. Conclusion

Geochemical studies of MORB recovered from the axial regions of fast-spreading ridges provide only limit-
ed information about the mantle from which they were derived due to efficient mixing and homogenization
of magmas in sub-axial melt lenses and across the entire melting region prior to eruption. The unique lo-
cation and orientation of the near-axis 8"20'N seamount chain provides an opportunity for detailed spatial
investigations of mantle heterogeneity and melting systematics near a fast-spreading MOR without the
obscuring effects of long-term magma focusing and mixing along the ridge axis.

The 8"20’N seamount lavas exceed the compositional range of major and trace elements and radiogenic iso-
topes of on-axis lavas, and instead are similar to the full compositional range of northeast Pacific non-hot-
spot basalts. This suggests that the EMM and DDMM mantle components are present in the sub-ridge
mantle, but are often overprinted at the ridge by mixing in on-axis magma chambers.

Based on geochemistry and petrologic modeling, mixtures of both very depleted (DDMM) and enriched
mantle (EMM) sources melted to variable degrees are required to explain the lavas erupted on the sea-
mounts. Generally, DMORB lavas are produced by ~5%-15% melting of DDMM, with the exception of one
DMORB sample with elevated Nd isotopes. NMORB can be explained by 5%-15% melting of a slightly more
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enriched mantle than DMORB (~5%-15% EMM). EMORB vary greatly from <1% melting of a 10%
EMM mantle to >15% melting of up to a 100% EMM mantle. These are mixed at all locations along the
chain.

Almost the entire range of compositions is observed on the summit of Oscar seamount, closest to the ridge
axis, suggesting that both mantle components are present and can be preserved very near to the ridge axis.
Thus, the distinct mantle sources from which the lavas were derived must exist over small (<1 km) spatial
scales, and the sub-seamount plumbing systems must remain separated from the on-axis system to avoid
mixing and homogenization.
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Erratum

In the originally published version of this article, the supporting information tables were missing. The
tables are now included in the supporting information. In addition, references to the tables in the article
and in the Supporting Information S1 file have been modified from Tables 1-3 to Tables S1-S3. This may be
considered the authoritative version of record.
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