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Crops are continuously exposed to microbial pathogens that cause tremendous yield losses worldwide. Stomatal
pores formed by pairs of specialized guard cells in the leaf epidermis represent a major route of pathogen entry.
Guard cells have an essential role as a first line of defense against pathogens. Metabolomics is an indispensable
systems biology tool that has facilitated discovery and functional studies of metabolites that regulate stomatal
movement in response to pathogens and other environmental factors. Guard cells, pathogens and environmental
factors constitute the “stomatal disease triangle”. The aim of this review is to highlight recent advances toward
understanding the stomatal disease triangle in the context of newly discovered signaling molecules, hormone
crosstalk, and consequent molecular changes that integrate pathogens and environmental sensing into stomatal
immune responses. Future perspectives on emerging single-cell studies, multiomics and molecular imaging in the
context of stomatal defense are discussed. Advances in this important area of plant biology will inform rational
crop engineering and breeding for enhanced stomatal defense without disruption of other pathways that impact

crop yield.

1. Introduction

Metabolomics is the systematic study of all the low molecular weight
chemical compounds (commonly known as metabolites or small mole-
cules), including identification of their chemical structure, quantifica-
tion, and flux in a biological system such as cells, tissues or organisms
[1-4]. Metabolomics can be used to gauge cellular enzyme activities, the
status of key regulatory proteins, and the activities of signaling and
metabolic pathways [4-7]. Metabolomics has shown utility in bridging
the gaps between genotypes and phenotypes [8-12] because it repre-
sents a comprehensive view of metabolites, which often cannot be pre-
dicted based on genomics and proteomics alone [13]. Metabolites and
enzymes represent the physiological state of cells and have close links to
phenotypes [14-16]. In addition, metabolomics enables discovery of
new metabolites and novel metabolic pathways [17-20], and is a toolkit
for systems biology and synthetic biology approaches [21,22]. Plants are
exceptional biochemical factories, able to produce >200,000 metabo-
lites, many with essential roles in plant growth, development, environ-
mental interaction, and yield [11]. Therefore, plant metabolomics has

immense potential and impact.

Crops suffer tremendous yield loss worldwide due to microbial
pathogens. Many pathogens can be inhabitants of the phyllosphere,
residing on the leaf surface and using stomata as their primary means of
entry [23,24]. Stomatal pores formed by pairs of specialized guard cells
in the leaf epidermis open and close to regulate CO5 intake and tran-
spirational water loss. Plant pathogens have long been known to exploit
stomatal pores as major entry points to the intracellular leaf space,
especially bacterial pathogens with no other means of entry [25].
Conversely, plants have evolved immune mechanisms to limit pathogen
entry into the plant body. Efficient detection of pathogens and mounting
of timely defense responses are essential for plant survival and crop
viability. Upon detection of microbial pathogens, guard cells drive sto-
matal closure via decreasing cellular turgor pressure as an innate im-
mune response [24-29] (Fig. 1). The plant innate immune system
recognizes evolutionarily conserved microbial signatures, called
microbe/pathogen-associated molecular patterns (MAMPs/PAMPs),
and thus constitutes a first line of defense against pathogen invasion
[30-34]. PAMP-triggered stomatal closure creates an effective barrier
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against bacterial disease. The stomatal immune responses are regulated
by the defense hormone salicylic acid (SA) and its homeostasis with
jasmonic acid (JA) and abscisic acid (ABA), which together transduce
signals involved in H30, and NO production [35]. PAMP-activated
mitogen-activated protein kinase (MAPK) cascades and reactive oxy-
gen species (ROS) that trigger stomatal closure are essential components
in stomatal innate immune responses [29]. On the other hand, some
pathogenic species have evolved virulence factors (e.g., coronatine,
COR) to evade the innate immune system, reverse stomatal closure and
thereby gain access to the leaf interior, which provides nutrients that
favor pathogen proliferation [35-37]. For example, the plant bacterial
pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 and the human
pathogen Salmonella enterica can counteract stomatal immunity, actively
reopening stomata to facilitate entry [38-40].

Metabolites, including those elicited by microbial pathogens [41-44]
are known to play important signaling and metabolic roles in stomatal
movements. Although recent metabolomics efforts have increased the
number of identified guard cell metabolites from a few [45] to more
than 400 [46,47], the full size of the guard cell metabolome and the
metabolites associated with pathogen entry remain unknown. Similar to
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Fig. 1. A schematic diagram showing guard
cell signaling and metabolic processes in
response to environmental factors, especially to
flg22 and Pseudomonas syringae pv. tomato (Pst)
DC3000. Plasma membrane NADPH oxidase
K* RBOH mediates flg22/bacterial-induced ROS
production, followed by activation of down-
stream signaling components, MPK3/ MPK6
and crosstalk among multiple hormones (e.g.,
SA, JA, BR and melatonin), ultimately leading
to efflux of K™ and Cl~ and decrease of turgor
pressure and stomatal closure. Both ABA-
dependent and ABA-independent oxylipin
pathways are shown (right panel). In coun-
tering stomatal closure, Pst DC3000 secretes
coronatine (COR), which hijacks JA-Ile
signaling by binding to the JA receptor COIl,
leading to degradation of JAZ repressors. Next,
downstream NAC transcription factors are
activated, ABA and SA levels decrease, K™ and
Cl™ flow in, and turgor pressure increases,
stimulating stomatal reopening. Key environ-
mental factors mediate stomatal movement
include, but are not limited to, light (red and
blue), and CO; concentration. Red light co-
ordinates guard cell and mesophyll cell photo-
synthetic responses. Blue light mediates guard
cell volume increase through activating plasma
membrane HT-ATPases and driving K™ and CI~
uptake. Under low atmospheric CO, concen-
tration, OST1 kinase activities are inhibited,
promoting stomata opening (left panel). Ab-
breviations: Pst, Pseudomonas syringae pv. to-
mato; flg22, bacterial flagellin 22; 14-3-3, 14-3-
3 protein; FC, Fusicoccin; FLS2, flagellin sensi-
tive 2; RBOH, respiratory burst oxidase homo-
log; RBOHD, respiratory burst oxidase homolog
D; JA-lle, jasmonic acid-isoleucine; COR, coro-
natine; COI1, CORNATIVE INSENSITIVE 1;
JAZs, JASMONATE-ZIM DOMAIN; NAC, NAM-
ATAF-CUC2; PP1, protein phosphatase 1;
BLUS1, blue light signal 1; Phot, phototropin;
OST, OPEN STOMATAT1; ABA, abscisic acid; SA,
salicylic acid; CK, cytokinin; IAA, Indole-3-
Acetic Acid; BR, Brassiosteroid; JA, jasmonic
acid. (For interpretation of the references to
colour in this figure legend, the reader is
referred to the web version of this article.).
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the “plant disease triangle” [48], guard cell, pathogen and the envi-
ronment form the “stomatal disease triangle”. Past stomatal research has
mostly focused on one environmental factor at a time, e.g., CO3 [49,50]
or drought [51,52], and thus knowledge of responses to multiple
simultaneous environmental factors is lacking, particularly in the
context of pathogen invasion. Deciphering the metabolic interactions
between guard cells and pathogens under multiple environmental fac-
tors will provide a holistic view of the stomatal disease triangle [29,53].
This knowledge is essential toward enhancing crop defense in real-world
situations. However, to date metabolomics of the stomatal disease tri-
angle has been considerably under-studied. This review will highlight
and analyze new findings, integrating pathogen and environmental
sensing in stomatal immune responses with recently discovered
signaling molecules, hormone crosstalk, and related metabolic changes.
Advances in this important area of plant biology will aid the develop-
ment of crops with improved disease resistance through biotechnology
and molecular breeding.
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2. Biotic factors in the stomatal disease triangle

In both managed lab conditions and natural environments, stomatal
movements are affected by a number of external factors in conjunction
with pathogens and other naturally occurring biota. Stomata close after
sensing PAMPs/MAMPs (e.g., flagellin peptide). Flagellin peptide flg22
binds to its receptor FLAGELLIN SENSITIVE 2 (FLS2), which activates
downstream signaling components, leading to the stomatal immune
response (Fig. 1). The null mutant of FLS2 is defective in the rapid flg22-
dependent stomatal closure [32]. Pst DC3000 signaling represents the
best studied example of pathogen interaction with Arabidopsis stomata
[30,54]. COR, a phytotoxin produced by Pst DC3000, structurally
mimics jasmonic acid-isoleucine (JA-Ile) and helps circumvent the
innate immune response by causing stomata to reopen (Fig. 1). COR
hijacks the native JA-Ile signal transduction pathway and is perceived by
CORONATINE INSENSITIVE1 (COI1) (an F-box protein), causing poly-
ubiquitination and degradation of JAZ proteins, releasing their repres-
sion of JA-responsive transcription factors [55]. Similar stomatal
reopening following an immune response can be elicited by other bac-
teria, such as Xanthomonas campestris and Salmonella enterica, although
the latter is not a plant pathogen and does not produce COR [56,57].
This indicates that other metabolites from the bacteria may have similar
functions as COR in reopening the stomata, but their identities are
unknown.

Many pathogenic fungi utilize stomata and affect stomatal move-
ment. Fungi, especially the ones that cause rust diseases, have developed
specific mechanisms to target leaf epidermal structures such as guard
cells [58]. Arabidopsis has been shown to increase stomata density in
new leaves following colonization by powdery mildew, an effect com-
pounded by high CO5 and possibly other environmental factors [50].
There are multiple fungal pathogens that impact stomatal movement,
trigger immune responses, or utilize counteracting toxins. Plasomopara
viticola enters and sporulates through stomata and non-mechanically
locks them open, possibly through a toxin or through removing struc-
tural pressure from cells surrounding the guard cells [59]. Chitosan from
Blumeria graminis has been shown to act as a PAMP/MAMP, allowing the
plant to detect fungal hyphae [60]. Finally, fusicoccin (FC, a diterpene
glycoside) is a well-studied fungal toxin produced by Fusicoccum amyg-
dali during pathogenesis of peach and almond trees [61]. FC counteracts
stomatal closure by activating plasma membrane H*-ATPases, inducing
guard cell K*' and water uptake and thus stomatal opening [62]. FCisa
useful laboratory tool, acts on the stomata of all higher plants to cause
extreme stomatal opening and wilting and also irreversibly stabilizing
H'-ATPase complexes in both plants and animals [63]. Other fungi
reopen stomata by producing an excess of a given metabolite common to
both the plant and pathogen, such as Sclerotinia sclerotiorum which
produces oxalic acid, likely interfering with ABA-induced stomatal
closure [64].

The phyllosphere microbiome is the microbial community existing
on plants above the soil surface, both endophytically and epiphytically
[24]. It provides balanced atmospheric carbon dioxide and oxygen to the
most abundant habitats of microbial community. The phyllosphere has
not been well-studied in terms of how plants interact with phyllosphere
microbiota to prevent dysbiosis [65]. Many of the microbes reside in the
apoplastic space, which is also a route for pathogen invasion. Bacterial
community in phyllosphere health has shown a correlation with the host
plant PAMP signaling [65]. Host genotype affects the leaf microbiome,
which correlates with plant fitness/productivity [66,67]. Pathogenic
and non-pathogenic bacteria interact with hosts in a humidity-dep
endent manner [68], reinforcing the relevance of genotypes and envi-
ronmental factors in the stomatal disease triangle.

Some beneficial microbiota likely improve stomatal resistance to
pathogens, akin to rhizosphere microbes such as Trichoderma sp. and
Bacillus subtilis [69,70], both of which modulate stomatal movements in
an ABA and SA dependent manner. However, it is not known whether
ABA and SA move from roots to shoots to mediate this process, or
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whether there are mobile long-distance signaling molecules that trigger
ABA and SA biosynthesis in guard cells. In a recent study on Arabidopsis
dehydration response, a small peptide CLAVATA3/EMBRYO-SURROU
NDING REGION-RELATED 25 was found to transmit water-deficiency
signals through vascular tissues, and modulate ABA accumulation and
stomatal closure [71]. To search for the mobile signaling molecules,
metabolite profiling should include identification of peptides, including
those derived from microbes and pathogens. With an isotope-labeling
technique [61], bacterial pathogens can be grown on isotopically
heavy media and produce peptides and small molecules that can be
distinguished from plant metabolites in mass despite identical chemical
structures. Using this isotope labeling technique with untargeted/tar-
geted metabolomics will help elucidate the roles of various metabolites
produced by phyllosphere microbes vs. the plants themselves during
plant immune responses.

3. Abiotic environmental factors in the stomatal disease triangle

Stomatal pores play an essential role in gaseous exchange between
the leaf and the atmosphere, and represent a major route for transpi-
ration and CO5 uptake [72]. Guard cells constantly and rapidly adjust
stomatal apertures in response to COs, light, humidity, and other envi-
ronmental variables toward optimizing plant water use efficiency and
productivity [73-75]. Abiotic environmental conditions are significant
determinants of whether pathogens can successfully invade a plant. For
example, light promotes bacterial chemotactic infiltration through sto-
matal pores [76], and high humidity aids pathogenesis [77]. When
guard cells sense the bacterium Pst DC3000, stomata close as part of the
innate immune response [32,35,78]. However, high humidity limits this
immune response, thereby facilitating bacterial invasion [77]. In the
dark, stomata tend to close. COR secreted by Pst DC3000 can open
stomata in the dark [79,80]. Here we discuss the effect of the abiotic
factors on stomatal immunity, a topic that has received much more
attention than biotic factors.

3.1. COz

Guard cells enlarge stomatal apertures when intercellular CO, con-
centration (C;) decreases, and narrow apertures when C; rises [81]. High
CO., activates K" efflux channels and anion channels like Slow Anion
Channel 1 (SLAC1), driving ion and water loss and thus stomatal closure
[82] (Fig. 1). Arabidopsis thaliana mutants lacking two f-carbonic
anhydrases (CA1 and CA4) are hyposensitive to CO,, implicating bi-
carbonate as an important metabolite in the CO, response [83-85].
Elevated bicarbonate arising from high CO, concentrations activates
RESISTANT TO HIGH CO5 1 (RHC1), which inhibits HIGH TEMPERA-
TURE 1 (HT1) kinase, releasing the HT1 inhibition of stomatal closure
and thus promoting high COs-induced stomatal closure. In addition,
MPK4 and MPK12 also inhibit HT1 during promotion of stomatal closure
by elevated CO5 [86,87]. Because HT1 phosphorylates OPEN STOMATA
1 (OST1) and thereby inhibits the OST1 kinase activity, inhibition of
HT1 activates OST1, a kinase that activates the SLAC1 channel and thus
stomatal closure [88].

In response to changing atmospheric CO3 conditions, CA1l and CA4
alter disease resistance levels [89]. Under low CO5 when Pst was applied
on the leaf surface, CA activity was relatively low and Arabidopsis
wild-type plants showed resistance to Pst DC3000 [89], despite larger
stomatal aperture under low CO5 than under ambient CO; concentration
[47]. Consistently, when Pst was surface-applied, the Arabidopsis
calca4 double mutant exhibited enhanced resistance to Pst DC3000, as
evidenced by lower bacterial growth and increased expression of
defense-related genes [89]. In contrast, under ambient and elevated CO»
conditions, CA1 transcription increased compared to low CO», and the
wild-type plants were vulnerable to surface-applied Pst bacteria [89].

Is ABA signaling involved in the stomatal CO5 responses? Several
studies have shown that under elevated CO5, OST1 kinase activities were
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strongly induced by ABA, and stomata closed rapidly [90-92]. And the
ostl mutant showed impaired CO; induced stomatal closure [92]. These
results appear to indicate that OST1 is essential for high CO-induced
stomatal closure. However, recent results seem to contradict these
findings. First, high CO,-triggered stomatal closure is not prevented, but
is delayed in ABA biosynthesis or receptor mutants [93]. Second, high
CO, does not increase ABA levels in guard cells [94]. Third, recent
studies indicate that high CO2 does not activate OST1 kinase in guard
cells [93,94]. These results point to an ABA-independent pathway in
guard cell high CO, signal transduction. It is not clear what caused the
conflicting results even from the same laboratory [92-94] and whether
ABA-dependent pathway still plays a role in guard cell high CO,
response.

High CO3 levels usually maintain stomatal closure. Interestingly, in
the presence of the foliar pathogen Pst DC3000 and elevated COo, Ara-
bidopsis stomata reopened at 4 h [49]. This may partly explain the high
level of Pst infection compared to low CO, [68]. In addition, high CO4
increased leaf ABA levels, and ABA mutants aba2-1 and abil-1 were
resistant to Pst [49]. The result implies that the high leaf ABA levels
under elevated CO, may weaken plant defense. This contradicts the
general notion that ABA and high CO2 would close stomata and enhance
plant defense. Other hormones and metabolites were not profiled, so it is
not known how high levels of ABA change other metabolites relevant to
defense, such as SA and JA, or how cellular molecular networks are
altered by CO, and Pst in different cell types, highlighting the impor-
tance of single-cell and single cell-type metabolomics [43,46,47,95]. In
addition, sphingosine-1-phosphate (S1P) promotes stomatal closure and
increases in guard cells following ABA treatment [96,97]. However, S1P
may not be involved in stomatal CO5 responses, as it was not detected to
change in concentration in guard cells following a high CO5 treatment
[46,98]. Intriguingly, the G protein Ga mutant gpal is insensitive to both
S1P [96] and flg22 inhibition [32] of stomatal opening, while the G
protein Gf subunit functions downstream of the FERONIA receptor-like
kinase [99,100], which functions in pathogen response [101]. How S1P
plays a role in stomatal immunity is not clear.

3.2. Light

Light has important roles in both microbe pathogenesis and stomatal
defense. Stomata open and close following the circadian day and night
cycle. Pathogens and plants coordinate stomata interactions in response
to this photoperiod. For example, a fungal pathogen Cercospora zeae-
maydis infects maize leaves through stomatal pores, and light is required
for the fungus to perceive stomata, infect and cause gray leaf spot dis-
ease [102]. This finding has led to identification of a fungal blue light
photoreceptor, CRP1, that mediates stomatal tropism and infection
[102]. Darkness closes stomata, thus effectively limiting Pst infection by
stomata. In the dark, COR is usually required to reopen stomata and
infect Arabidopsis leaves, with the COR-defective mutant Pst DC3118
being incapable of inducing stomatal opening [103]. Moderate light
intensity can induce bacterial chemotaxis towards and penetration
through stomata, as bacteria traverse stomata along photosynthate
gradients, with enhanced infiltration in the presence of white, blue and
red light [76]. Moreover, light has a synergistic effect on stomatal
opening with the fungal toxin FC [104], which is dependent on guard
cell H™-ATPase and ion channel activities [32,105,106]. A higher con-
centration of FC even causes stomatal opening in the dark [104].

Although both red light and blue light promote stomatal opening,
they act through two distinct mechanisms. Blue light mediates guard cell
volume change by activating a plasma membrane HT-ATPase, with
consequent membrane hyperpolarization driving K and Cl~ uptake
[107]. Red light acts through photosynthesis [108,109]. A stomatal red
light response occurs when intercellular CO; is experimentally held
constant and also occurs in isolated epidermal peels absent of mesophyll
cells [95,110], suggesting that there is a direct guard cell response to red
light. This direct response presumably functions in addition to guard cell
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response to decreasing intercellular CO, from the red light-driven
mesophyll photosynthesis [111]. Red light-induced stomatal opening
in epidermal peels is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethy-
lurea, implicating photosynthesis in guard cell red-light perception
[110,112]. The guard cell mechanisms downstream of red-light
perception are largely unknown, although recent research shows that
red light-activation of the H* ATPase is possible [62].

The contribution of photosynthetically-derived osmotica to red light-
induced stomatal opening has been under debate. Guard cells are
acknowledged to have an intact Calvin cycle [113], thus sugars derived
from guard cell photosynthesis could be the osmotica driving stomatal
opening under red light [109,113]. However, tobacco with antisense
reduction in ribulose-1,5-bisphosphate carboxylase/oxygenase small
subunit or cytochrome b6f showed normal stomatal light responses
[114,115], while antisense plants with reduced sedoheptulose-1,
7-bisphosphatase showed more rapid and larger stomatal responses to
red light than control plants [116]. These results suggest that the guard
cell Calvin cycle is not a necessary source of osmotica or signal. In the
antisense plants, stomatal apertures under red light are proportional to
products of the light reactions (ATP and NADPH) [116]. To address the
sources of osmotica and/or signaling metabolites that regulate red
light-triggered stomatal opening, Zhu et al. (2020) recently conducted a
metabolomic study and identified Arabidopsis guard cell metabolic
signatures in response to red light in the absence of the mesophyll cells
[95]. Out of the 223 quantified metabolites in Arabidopsis guard cells,
104 were found to be red light responsive. It is interesting that a
decrease in guard cell ABA and an increase in JA play important roles in
the guard cell red light signaling process. Knowing the specific mecha-
nisms of guard cell light response will help determine how pathogens
manipulate and circumvent the normal guard cell light responses.

3.3. Water and humidity

Stomatal modulation of leaf water potential can impact water
availability to foliar microbes and pathogens [117]. Guard cell percep-
tion and response to changes in vapor pressure difference (VPD) remain
enigmatic, with both hydroactive and hydropassive stomatal move-
ments having been proposed [118]. High relative humidity (RH) in-
creases plant susceptibility to pathogens in the phyllosphere by
facilitating pathogen proliferation and spread [77]. Bacteria can syn-
thesize extracellular polymeric substances that become hydrated within
the phyllosphere [119], in addition to producing biosurfactants that
alter phyllosphere wettability [120]. RH not only affects microbial
survival, but also influences phyllosphere nutrients, especially fructose
and sucrose [121].

The drought hormone ABA is important to guard cell-pathogen
interaction [122]. Under drought, ABA increases and promotes stoma-
tal closure, but overall plant pathogen defense responses are suppressed
[123]. In line with this result, ABA biosynthetic mutant aba3-1 exhibited
reduced susceptibility to Pst infection, whereas overexpression of ABA
biosynthetic genes, such as NINE-CIS-EPOXYCAROTENOID DIOXYGE-
NASE 5 (NCED5) caused enhanced disease susceptibility phenotype
[124]. With increased NCED5 expression, ABA strongly accumulated
during the Pst infection [124]. Interestingly, ABA-modulated stomatal
closure can be enhanced by a Pst effector, HopAM1, in response to
phyllospheric water deficit [125]. HopAM1 may aid Pst infection and
suppress Arabidopsis defense responses by helping close stomata under
drought stress, protecting bacterial colonies inside the leaves from
dehydration [125].

Studies of stomatal responses to water stress often utilize ABA
biosynthesis mutants and are useful to investigate ABA’s role in VPD
responses. Under decreased atmospheric humidity, ABA biosynthesis
mutants showed a decreased stomatal conductance leading to the hy-
pothesis that ABA may not be involved in humidity signaling in guard
cells [79,80]. Conversely, ABA synthesis mutant aba2 and ABA (and
possibly CO3) signaling mutant ost1 have shown reduced VPD responses
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[80]. The ABA-regulated guard cell transcriptome and low RH-induced
transcriptome do not completely overlap [126,127], indicating
ABA-dependent and ABA-independent roles in stomatal movement
[128]. To investigate the role of ABA production in different cells,
cell-type dependent restoration of function was created for ABA
biosynthetic mutants in guard cells and phloem companion cells [129].
These results indicate the redundancy of ABA sources in either com-
panion cells or guard cells is adequate in regulating VPD-induced sto-
matal closure [129]. However, ABA and other metabolite changes in the
guard cells of the ABA deficient mutants and rescued lines in response to
different VPDs were not measured.

Bacteria-triggered stomatal closure as an innate immune response
could be compromised under high RH. When Arabidopsis was inocu-
lated with Pst DC3000 or COR-defective mutant Pst DC3118 under low
RH conditions, Pst DC3000 caused a typical increase in stomata aperture
over Pst DC3118 due to the presence of COR in the former. In contrast,
under high RH, stomata showed large apertures when treated with
either bacteria, similar as with mock treatment, indicating that the
stomata were insensitive to the presence of the pathogens [77]. The
expression of JA-response genes was more rapidly induced in 95 % RH
than in 60% RH. High RH also suppressed SA production and
SA-responsive genes expression in guard cells, and promoted stomatal
opening [77]. Given that plants impaired in SA responses are deficient in
Pst-triggered stomatal closure [23], higher RH may aid Pst infection by
altering plant JA and SA responses in the pathogen’s favor.

4. Hormone signaling and crosstalk in stomatal immunity

Studying hormone signaling and crosstalk in the stomatal disease
triangle is essential for understanding stomatal immunity [130]. The
biosynthesis and signaling pathways of phytohormones in guard cells
have not been fully elucidated, partly due to technical limitations in
hormone analysis in single cells [35]. ABA, SA and JA were reported to
mediate ROS production and induce stomatal closure [131-133]. Other
hormones involved in stomatal closure include brassinosteroids [134]
and strigolactone [135,136]. No one hormone can likely explain sto-
matal response to pathogen infection under specific temporal and spatial
conditions [137]. Hormonal crosstalk requires components of multiple
hormone signaling pathways. Here we discuss potential hormone
crosstalk in stomatal immune responses.

Using reverse genetics with ABA synthesis and signaling mutants,
ABA was found to be a key regulator in PAMP signal transduction
through activation of G-protein-dependent K* channels, SLAC1-type
anion channels and OST1 kinase, leading to stomatal closure [32,78,
138]. Bacterial flagellin flg22 invokes PAMP triggered inhibition of
light-induced stomatal opening [78]. In null mutants of the FLS2 re-
ceptor, the flg22 regulation of stomatal movement and K' currents is
abolished [78]. In addition, the flg22 inhibition of inward K" channels is
eliminated in a mutant of G-protein o subunit (gpal), leading to the
conclusion that G proteins are important in transducing the PAMP signal
[32]. Furthermore, null mutants of SLAC1 and SLAH3 channels showed
no flg22-induced anion channel activities and lack of stomatal closure in
response to flg22 or ABA [129], indicating the essential roles of the
anion channels in flg22-induced rapid stomatal closure. Moreover, sto-
mata of plants lacking OST1 failed to close in response to the elicitor
flg22 as well as to intact Pst DC3000 [78]. These above results support a
role for the ABA-dependent pathway in the stomatal immune response.
A separate study identified an ABA-independent oxylipin pathway [40],
wherein flg22-induced stomatal closure is mediated by MPK3 and
MPKB®6, lipoxygenase 1, oxylipin and SA [23,38,40,78,139] (Fig. 1).
Strong evidence for the ABA-independent pathway was that the mutants
of ostl and aba2-1 responded to the exogenously applied flg22 and
closed stomata [40]. This result seems to contradict the earlier study
[78]. However, it should be noted that the flg22 concentration used was
much higher than that used for stomatal closure in the wild-type. The
authors concluded that the ABA-independent pathway and
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ABA-dependent pathway converge at the SLAC1 component of the ABA
signaling pathway [40]. It is not known whether OST1-independent
activation of anion channels through other signaling mechanisms con-
tributes to the stomatal immune response.

Recently, using in-gel kinase assay, MPK4 isolated from Arabidopsis
leaves overexpressing a FLAG-tagged MPK4 was found to be activated
by flg22. The overexpression plants showed hypersensitivity in flg22-
induced stomatal closure and ROS production, indicating that MPK4
plays a positive role in stomatal immune response [140]. Over-
expression of MPK4 led to decrease of JA-Ile, but no change of SA,
indicating the ratio of SA to JA, not the absolute amount, is important in
pathogen defense [140,141]. The role of JA in stomatal response has
been controversial. Most studies have shown that JA induces stomatal
closure [46,133,142-148]. However, a recent study suggests that red
light-induced stomatal opening is associated not only with declining
ABA but also with increased JA, and JA-deficient mutants exhibited
impaired stomatal opening [95]. In addition, the P. syringae type III
effector protein AvrB that induces stomatal reopening requires the JA
receptor COI1 and conserved NAM-ATAF-CUC2 (NAC) transcription
factors [149]. One hypothesis for the inconsistency of stomatal JA
response is that basal ABA levels vary between different studies and
influence stomatal apertures [35]. The endogenous ABA threshold may
influence JA-induced stomatal closure. Conversely, JA can stimulate the
expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3, encoding an
important enzyme in ABA biosynthesis. When ABA level passes the
threshold, stomatal closure can be observed [150]. Alternatively, the
stomatal response to JA may be dose-dependent, with high concentra-
tion of MeJA promoting stomatal closure [133,143,146], and low con-
centration of endogenous JA-Ile inducing stomatal opening [35]. In
addition, SA is critical for PAMP/MAMP-triggered immunity against
bacterial pathogens, activating antimicrobial genes and suppressing
antagonistic hormones like JA-lle [151]. Biosynthesis of SA was induced
through transcriptional activation of a SA biosynthetic gene encoding
isochorismate synthase within first hour after plant exposure to flg22
[152]. Whether SA is produced in the guard cells or transported from
other cells remains unclear. Measurement of pathogen-induced changes
of SA and other hormones in guard cells may resolve these contradic-
tions. Similarly, despite evidence for involvement of metabolites such as
cyclic GMP and cyclic ADP-ribose in ABA signaling [153], with respect
to pathogen attack these metabolites have not been fully characterized
in guard cells.

Melatonin, a newly discovered phytohormone [154,155] was shown
to down-regulate ABA biosynthesis genes and up-regulate ABA catabolic
genes, thus reducing ABA levels and promoting stomatal opening [156].
Exogenous application of melatonin to Arabidopsis seedlings increased
invertase activity, enhanced sucrose metabolism, and reinforced cell
wall structural barriers. These changes may partially account for the
observed increase in resistance to Pst DC 3000 infection [157]. Mela-
tonin also induces nitric oxide (NO) production and expression of
SA-related genes (e.g., ENHANCED DISEASE SUSCEPTIBILITY, PHYTO-
ALEXIN DEFICIENT 4 and PATHOGENESIS-RELATED PROTEIN (PR)) in
Arabidopsis leaves in response to Pst DC 3000 infection [158]. Whether
these changes apply to stomatal immunity is not known because the
metabolite and gene expression changes in guard cells were not
measured.

In terms of the stomatal disease triangle, stomatal responses to
multiple abiotic and biotic stimuli simultaneously involve crosstalk
among different hormone pathways. For example, a plant growth-
promoting soil bacterium Bacillus amyloliquefaciens FZB42 restricted
pathogen-mediated stomatal reopening caused by Phytophthora nic-
otianae in tobacco leaves through increasing the contents of ABA and SA
in the leaves [159]. Meanwhile, expression of SA and JA/ET responsive
genes such as PR-1, LIPOXYGENASE and ETHYLENE RESPONSE FACTOR
1 was induced in the leaves [159]. This result highlights the importance
of hormone signaling networks in stomatal and/or apoplastic defenses.
They also indicate a potential biocontrol application using soil
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rhizobacteria/microbiota to control foliar diseases. High humidity is
another environmental factor that weakens stomatal immunity through
inhibiting JA responses by an ABA-dependent JA degradation pathway
[77,160]. When studying multiple environmental factors, it can be
challenging to understand the integration of hormone signaling net-
works in stomatal biotic versus abiotic responses. This area of research is
currently lacking, and exciting outcomes will be highly relevant to
real-life agricultural applications.

5. Specific metabolites in stomatal movement and immunity

Crosstalk between various hormone signaling and metabolic path-
ways affords numerous metabolites some degree of control over sto-
matal aperture and immunity, whether through potentially novel,
independent pathways or well-described pathways such as ABA
signaling [161-163]. Some hormones and metabolites have established
roles in different plant tissues, but have only recently been associated
with guard cell functions.

Low CO generally causes stomata to open; conversely, higher COy
causes stomata to close [46,47]. This likely occurs through the crosstalk
of different hormones. Under high CO2, JA pathway metabolites were
increased in guard cells, and JA was clearly associated with stomatal
closure [46], in addition to potential involvement of ABA [88,92].
Interestingly, under low CO5-induced stomata opening, JAs in the guard
cells did not decreased as expected, and instead were found to remain at
a constant level. However, traumatic acid rose significantly in the guard
cells under low CO5 [47]. Since both JA and traumatic acid are derived
from linolenic acid, this result indicates the alternate synthesis of trau-
matic acid over JA, as has been demonstrated before in rice leaves [164].
Traumatic acid, along with JA, is a product of the oxylipin pathway and
a known plant hormone [165].

Glucosinolates are a group of specialized metabolites in Brassicales.
Together with their degradation enzymes, myrosinases, these metabo-
lites are part of a well-regulated “mustard oil bomb”. This system has
been well-described as a defense mechanism against insect pests and was
recently shown to also play an important role in plant defense against
bacterial pathogens [166,167]. Since pharmacological treatment of
plant epidermal peels with a glucosinolate degradation product iso-
thiocyanate caused stomatal closure, it is reasonable to hypothesize that
the “mustard oil bomb” in guard cells may promote stomatal closure and
inhibit reopening following Pst infection [167]. This hypothesis was
supported by a recent study. The Arabidopsis glucosinolate degradation
enzyme (myrosinase), p-thioglucoside glucohydrolase 1, (TGG1) over-
expressed in broccoli was shown to be involved in the stomatal defense
against Pst DC3000 [167]. When the epidermal peels were incubated
with Pst DC3000, the TGG1-overexpression plants showed accelerated
stomatal closure and reduced reopening. Compared with the wild-type,
the overexpression plants had heightened stomatal closure in response
to exogenous ABA or SA [167]. However, the guard cell glucosinolate
degradation and hormone level changes were not measured. Thus, the
biological relevance of the impact of these exogenous treatments is not
clear.

It is known that degradation of starch and triacylglycerols [168,169],
sucrose catabolism [170,171], and guard cell chloroplast lipids [172]
are involved in stomatal responses to light and CO,. For example, starch
can be rapidly degraded into sugars and organic acids upon light
exposure of guard cells, increasing turgor pressure and promoting sto-
matal opening [173,174]. Several fatty acids (FA) and lipids play an
important role in plant defense signaling [175]. Monounsaturated FA
(18:1) decrease in Arabidopsis leaves can stabilize a nitric oxide asso-
ciate 1 protein, leading to increased NO synthesis and thereby enhancing
NO-mediated signaling and resistance to bacterial pathogen invasion
[176]. The role of this FA and NO signaling is worth exploring in guard
cells in the context of stomatal immunity. In similar studies focused on
tomato leaves, increased levels of polyunsaturated FAs (18:3) were
associated with resistance to P. syringae [177] and increased FAs (16:1)
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were found to be important for resistance to powdery mildew [178].
Another lipid-derived metabolite, phosphatidic acid produced by
phospholipase Dal, stimulates plasma membrane respiratory burst ox-
idase homolog (RBOH) activity and lead to ROS production in
ABA-mediated stomatal closure [179]. How these metabolites are
involved in pathogen-triggered stomatal movement is unknown and
would benefit from metabolomics/lipidomics studies.

Melatonin is newly discovered plant regulator that has been impli-
cated in many different physiological functions [155] and is starting to
be studied in guard cells. Melatonin has primarily been studied through
exogenous pharmacological application; few studies have been reported
that use biosynthetic mutants, and no mutant has been identified that
does not produce melatonin. The first purported receptor for melatonin,
CAND?2 was recently described [180]. CAND2 was reported as a mem-
brane protein that interacts with a heterotrimeric G-protein, stimulating
H30, production and stomatal closure under certain melatonin con-
centrations [181]. A contrasting report indicated this may not be the
case, as many known melatonin-mediated responses still occur within
the cand2 mutants [181]. In any case, the pathway(s) by which mela-
tonin may influence guard cell functions, including immune response,
requires further investigations. Specific environmental conditions or
pathogen infections that cause a change in guard cell melatonin have not
been reported. Knockouts of a melatonin biosynthetic gene, serotonin
N-acetyl transferase, have been reported to result in increased suscep-
tibility to an otherwise avirulent Pst strain. These infected plants also
exhibited high SA levels [182]. Melatonin may be involved in stomatal
immunity, but further studies will be required that test whether bacte-
rial entry through stomata is altered in various melatonin signaling and
biosynthetic mutants.

As mentioned above, guard cell ABA-triggered signaling is one of the
best understood plant signaling cascades. ROS, reactive nitrogen species
(RNS) and redox regulation play important roles in guard cell ABA
signaling [161]. Under Pst invasion, PAMPs/MAMPs bind to different
cell surface pattern-recognition receptors (e.g., FLS2), which may con-
vergently activate a cytoplasmic botrytis-induced kinase (BIK1). BIK1
phosphorylates RBOH to produce ROS. Guard cell anion channels are
then activated, leading to stomatal closure [138]. Production of
ROS/RNS and perturbation of cellular redox homeostasis are conspicu-
ous features of the immune response. Glutathione (GSH) and ascorbate
are well-known redox buffers in plant cells. It was shown that increase of
ABA led to decreased concentration of GSH in guard cells [183], and a
GSH-deficient mutant had increased ROS in guard cells treated with ABA
[75]. In addition, many specialized plant metabolites act as antioxi-
dants, affecting the cellular redox state. For example, in Arabidopsis,
flavonols accumulated in guard cells, acted as ROS scavengers and
inhibited stomatal closure [184,185]. How guard cells regulate GSH,
ascorbate and other antioxidant metabolites during pathogen infection
is unknown but could be addressed by metabolomics [186].

6. Future perspectives on the stomatal disease triangle

In the past two decades, great progress has been made in studying
how environmental factors affect plant defense outcomes. Obviously,
research on the role of biotic factors in the stomatal disease triangle is
still in its infancy. Studies on stomatal movement under multiple envi-
ronmental factors that integrate underlying molecular processes in
guard cells have also been scarce. It is critical to enhance this area of
research in guard cell innate immunity and foliar pathogen defense. It
should be emphasized that, within the stomatal disease triangle, path-
ogen counter-attack mechanisms in the presence of multiple environ-
mental factors also should be considered.

Metabolomics of stomatal movement and the disease triangle is a
new and fascinating area of exploration. The stomatal disease triangle
encompasses many different metabolites, pathways, and environmental
contexts. Given a rapidly changing climate and increasing agricultural
demands, a better understanding of the disease triangle will be
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important to limit diseases in many crops. Areas of study in the plant
disease triangle, previously unexplored in guard cells, are likely to have
increased prominence, as are new technologies that allow more detailed
study of metabolomes in guard cells and many other types of cells.
Metabolomics together with reverse genetics is an increasingly useful
means of identifying new metabolites previously unassociated with
guard cell function. Previous work was only able to assess about 100
guard cell metabolites [187], but newer studies have been able to
identify 400+ metabolites and 1300+ proteins in this specialized cell
type [46,47]. Although these newer studies analyzed guard cell re-
sponses to CO,, similar studies are feasible to study pathogenesis, guard
cell defense, environmental interactions, and other components of the
disease triangle. Novel technologies are emerging in plant metabolomic
analysis that will offer increased sensitivity and high resolution, as well
as integration of metabolomics with other ‘omics.

Single cell methods are particularly vital in the study of guard cell,
epidermal cell, mesophyll cell, or other cell-type specific metabolic
functions in the stomatal disease triangle. Mass spectrometry imaging
(MSI) is a promising tool for imaging an array of metabolites in situ
across a two- or three-dimensional space (Fig. 2). Ionization methods,
including matrix-assisted laser desorption ionization (MALDI) and laser
ablation electrospray ionization (LAESI) have achieved sufficient reso-
lution for single-cell molecular imaging [67,188]. MSI techniques have
been successfully utilized in mammalian metabolomics and lipidomics
[189,190], but have not been widely employed in plants. Two limiting
factors in MSI and metabolomics are limited metabolome coverage and
differentiation between isobaric compounds. Recently developed mass
spectrometers remedy this issue by integrating trapped ion mobility
separation (TIMS) [190]. TIMS accumulates ion and produces an
adjustable “ramp” to separate different ion species based on their size,
shape and charge [191], providing higher sensitivity and an additional
dimension to MS data. In addition, hyphenated metabolomics platforms
including gas chromatography, liquid chromatography and capillary
electrophoresis MS can enhance metabolome coverage [46,47]. Their
integration with TIMS is very powerful. Alongside with MSI, they may
be utilized in single-cell studies through laser-capture microdissection
[192]. High resolution MS, particularly using MSn, provides confident
compound identification and has become a critical component of
untargeted metabolomics [193]. Improvements in metabolite spectral
libraries (e.g., mzCloud) will continue to enhance MS spectra interpre-
tation and MSI functionality. By applying these novel tools, cell-specific
metabolomic responses to a given condition can be measured with deep
coverage and in a high throughput manner. The contribution of each cell

and the interactions of cells surrounding the guard cells in the stomatal
disease triangle can be characterized. In a similar vein, multiomics,
particularly using single cell or single cell-type information, can inte-
grate data across the central dogma and reveal specific molecular
mechanisms that were previously opaque. A better understanding of
these mechanisms will be important to limit disease in crops and
enhance food production for sustainable agriculture.
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