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Abstract: Systemic Acquired Resistance (SAR) improves immunity of plant systemic tissue after local
exposure to a pathogen. Guard cells that form stomatal pores on leaf surfaces recognize bacterial
pathogens via pattern recognition receptors, such as Flagellin Sensitive 2 (FLS2). However, how
SAR affects stomatal immunity is not known. In this study, we aim to reveal molecular mechanisms
underlying the guard cell response to SAR using multi-omics of proteins, metabolites and lipids.
Arabidopsis plants previously exposed to pathogenic bacteria Pseudomonas syringae pv. tomato DC3000
(Pst) exhibit an altered stomatal response compared to control plants when they are later exposed
to the bacteria. Reduced stomatal apertures of SAR primed plants lead to decreased number of
bacteria in leaves. Multi-omics has revealed molecular components of SAR response specific to guard
cells functions, including potential roles of reactive oxygen species (ROS) and fatty acid signaling.
Our results show an increase in palmitic acid and its derivative in the primed guard cells. Palmitic
acid may play a role as an activator of FLS2, which initiates stomatal immune response. Improved
understanding of how SAR signals affect stomatal immunity can aid biotechnology and marker-based
breeding of crops for enhanced disease resistance.
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1. Introduction

Systemic acquired resistance (SAR) is an inducible defense mechanism that is activated
throughout the plant after a localized pathogen infection. It confers resistance to a broad
range of pathogens in systemic tissues. SAR occurs when the plant delivers mobile signals
from the primary site of infection to the remote, uninfected tissues [1–5]. Upon receiving
the mobile immune signals, the remote tissue mounts a defense against the pathogens in a
robust manner. This mechanism is called “priming” and those uninfected remote leaves are
said to be “primed” for pathogen response. SAR priming endows the plant with a broad-
spectrum resistance, including to pathogens that cause cell death and tissue necrosis [6–8].
The SAR molecular mechanisms may be evolutionarily conserved and are found in a wide
range of dicotyledon and monocotyledon plant species [9]. Upon pathogen attack, plant
pattern recognition receptors (PRRs), first identified in rice and Arabidopsis (XA21 and
FLS2, respectively), recognize conserved pathogen-associated molecular patterns (PAMPs)
(e.g., flagellin peptide), and activate PAMP-triggered immunity (PTI) [10–12]. Plants
also contain immune receptors that recognize a great variety of pathogen effectors via
nucleotide-binding site and leucine-rich repeats (NBS-LRR) proteins to induce effector
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triggered immunity (ETI) [10]. Activation of SAR in systemic tissue is associated with
increased transcript abundance of pathogenesis-related (PR) genes and accumulation of a
defense hormone salicylic acid (SA) [13]. In Arabidopsis thaliana, the receptor for SA during
SAR has been identified as the protein non-expressor of pathogenesis related-1 (NPR1), a
master regulator in SAR [6,14–17].

SAR response is typically studied on a whole-plant or whole-leaf level, masking
specific responses of different cell types. Guard cells form stomata on leaf surfaces, and their
primary function is to open and close the stomata for gas exchange. Guard cells are highly
responsive to a number of environmental cues, such as atmospheric CO2 concentration,
blue and red light, and pathogens [18–21]. Initial work from Melotto et al. [20] showed that
guard cells close stomata upon perception of bacteria, and that a pathogenic bacterium
Pseudomonas syringae pv tomato (Pst) DC 3000 was able to re-open the closed stomata. Pst
secretes a toxin called coronatine (COR), which is a chemical mimic of the active form
of the plant hormone jasmonate-isoleucine (JA-Ile). COR binds to the JA-Ile receptor
coronatine-insensitive 1 (COI1) and initiates a signal cascade triggering guard cells to open
stomata [22–24].

Plant reactive oxygen species (ROS) signaling and redox-regulated proteins in SAR
have been reported in a number of publications, e.g., [25–31]. The roles of ROS in plant
immune responses have been summarized in recent reviews [32,33]. ROS can serve as
signaling molecules that are needed for activation of defense response. Toum et al. [34]
found that COR inhibits nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-
dependent ROS production and stomatal closure induced by abscisic acid (ABA), the
flagellin peptide flg22, and darkness. However, COR did not prevent SA-induced ROS
production through peroxidases [34]. As SAR increases SA concentrations in cells of primed
leaves, it would be reasonable to predict that the increased SA in guard cells could induce
ROS production, leading to an altered stomatal immune response to COR. Different classes
of lipids are involved in plant defense and ROS signaling. For example, galactolipids
monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) play a
role in regulating cellular ROS levels [35]. During SAR, DGDGs contribute to the nitric
oxide (NO) cellular pool and induce SA biosynthesis. In addition, MGDGs regulate
the biosynthesis of the SAR signals azelaic acid (AzA) and glycerol-3-phosphate (G3P)
downstream of NO [35]. AzA is derived from the oxidation of C18 unsaturated fatty acids
(FAs), a process activated by ROS. The NO-ROS-AzA-G3P signaling operates in parallel
with SA to activate SAR [35].

Here we aim to identify specific SAR responses in guard cells and putative molecular
mechanisms underlying the guard cell SAR response. We report stomatal movement and
guard cell molecular changes underlying stomatal immune responses to SAR. Through
multi-omics of proteins, metabolites, and lipids from guard cells of uninoculated leaves
of primed Arabidopsis plants, we found that ROS and FA signals are activated in the
primed guard cells, and we also identified proteins, lipids, and metabolites with previously
unknown functions, which may be involved in the systemic stomatal immune response.

2. Results
2.1. Stomatal Movement in Response to Priming Correlates with Reduced Bacterial Colonization

For the priming experiments, Pst (0.02 OD600 in 10 mM MgCl2) or 10 mM MgCl2
(mock) was infiltrated into one mature rosette leaf. After 72 h, the opposite rosette leaf
was exposed to the Pst (0.2 OD600). As previously reported by Melotto et al. [20], the
basal immune response of the mock-treated stomata closed after 1 h exposure to Pst, and
then re-opened after 3 h. Surprisingly, the primed leaves did not exhibit such stomatal
immune responses (Figure 1A). They maintained a small stomatal aperture during the
entire period of Pst exposure. There was no significant difference in the stomatal aperture
from the primed leaves taken at 0, 1, and 3 h after Pst exposure (Figure 1B). It can be noted
that due to the perception of PAMPs, the 1 h mock and primed apertures are similar. To
examine if the stomatal apertures affected bacterial entry into the leaf apoplastic space, we
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conducted bacterial entry assays. As expected, after 3 h exposure to Pst, significantly more
bacteria entered the mock leaves compared to the primed leaves (Figure 1C). To examine
overall susceptibility to Pst, we measured bacterial growth in the leaves. Significantly more
bacteria colonized the mock leaves than the primed leaves. (Figure 1D).
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Figure 1. Pathogen entry and growth assays revealed enhanced stomatal immunity in primed
Arabidopsis leaves. (A) Images showing representative stomatal apertures in mock and primed
Arabidopsis leaves after 0, 1, and 3 h after secondary exposure to Pst DC3000. (B) Quantitative
measurements of 150 stomata from three replicate experiments. Statistically significant differences
were marked by a and b. (C) Pst DC 3000 entry results obtained from nine biological replicates of
primed and mock plants. The data are presented as average± standard error. (D) Pst DC 3000 growth
results obtained from nine biological replicates of primed and mock plants. The data are presented
as average ± standard error. ** p < 0.01, * p < 0.05.
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2.2. Differentially Abundant Proteins in the Primed and Mock Guard Cells

To ensure that guard cell samples used for multi-omic experiments were highly
enriched, we conducted a purity assay of the guard cell samples using RT-qPCR with
primers for guard cell-specific transcripts. Relative expression levels of these genes were
very high (Figure 2A). Purity was further confirmed by low chlorophyll levels in the guard
cell samples compared to the leaves (Figure 2B). In addition, guard cells appeared viable
based on neutral red (Figure 2C) and fluorescein diacetate (FDA) staining (Figure 2D).
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unique peptide (1% FDR) (Table S1). Of the identified proteins, 55 showed differential 
abundances in the primed guard cells compared to the mock guard cells (Figure 3A). Two 
large groups of the differential proteins (mostly increased after priming) were related to 
metabolic processes (39 proteins) and responses to stimuli (36). Transport proteins (13), 
regulation of biological processes (11), and cell organization and biogenesis (9) were also 
increased overall in the primed guard cells compared to the mock samples. In addition, 
defense response (8 proteins), and cell communication (4) also mostly increased in the 

Figure 2. Enriched guard cell (GC) purity and viability assays. (A) Transcript abundances of six genes based on their fold
differences in guard cell samples compared to leaf samples. Standard error of the mean was calculated from three biological
replicates and three technical replicates. OST1, open stomata 1; GORK, guard cell outward-rectifying potassium channel;
HT1, high temperature 1; KAT1, potassium channel; PYL2, pyrabactin resistance-like 2; and PGC, promoter guard cell 1
(At1g22690). (B) Chlorophyll contents in four replicates of leaves or enriched guard cells. The data are presented as average
± standard error. (C) Neutral red staining of the enriched guard cells. (D) Fluorescein diacetate (FDA) staining of the
enriched guard cells isolated with a blender.

Proteomic analysis of mock-treated versus primed guard cell samples taken from
uninoculated leaves after Pst treatment identified 587 proteins, each with more than one
unique peptide (1% FDR) (Table S1). Of the identified proteins, 55 showed differential
abundances in the primed guard cells compared to the mock guard cells (Figure 3A). Two
large groups of the differential proteins (mostly increased after priming) were related to
metabolic processes (39 proteins) and responses to stimuli (36). Transport proteins (13),
regulation of biological processes (11), and cell organization and biogenesis (9) were also
increased overall in the primed guard cells compared to the mock samples. In addition,
defense response (8 proteins), and cell communication (4) also mostly increased in the
primed guard cells (Figure 3B). The molecular functions of these proteins were categorized
and the most abundant groups were catalytic activity (31), protein binding functions (22),
metal binding functions (12), and RNA binding proteins (10). Other protein functions in-
cluded proteins with structural molecule activity (9) and transporter activity (5) among the
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differential proteins related to priming (Figure 3C). Of these differential proteins, 27 were
mapped to Kyoto Encyclopedia of Genes and Genome (KEGG) pathway. Interestingly,
four glutathione-S-transferases (GSTU19, GSTF9, GSTF7, and GSTL3) were all increased in
the primed guard cells compared to the mock. Also of interest was the identification of a
SA-related legume family protein that was increased about two-fold in the primed guard
cells. In addition, the following three proteins showed largest increases in the primed
guard cells compared to the mock (Table 1): an endoribonuclease family protein involved
in cellular response to stimulus, a rotamase cytochrome P(CYP) 3 (ROC3), and a GST
F7 in glutathione metabolism related to defense responses to bacteria and fungi (Table
1). Furthermore, three proteins were only identified in the primed guard cells: a glycosyl
transferase family 35 protein (PHS1) and a calcium-dependent lipid-binding (CaLB domain)
protein involved in response to stimulus (such as hypoxia stress), and a stress-responsive
Tudor-SN protein 2 (Tudor2) with RNA binding activity (Table S1).
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Table 1. List of proteins (top), metabolites (middle), and lipids (bottom) with more than two-fold changes in guard cells after systemic acquired resistance (SAR) priming. (The protein IDs are from
TAIR database and the compound IDs are from PubChem. The ratios are Primed/Mock).

Protein/Compound ID p-Value Ratio Biological Function

ROC-rotamase CYP3 AT2G16600 0.03 2.52 ROS, response to stimulus/pathogen
Glutathione S-transferase (GST) 7 AT1G02920 0.004 8.63 ROS, defense response, response to stimulus/pathogen

Endoribonuclease L-PSP family protein AT3G20390 0.03 4.09 Isoleucine biosynthesis, response to stimulus/stress
Salicylic acid 338 0.02 3.85 Defense response, biosynthesis of antibiotics
Decenoic acid 5282724 0.02 0.20 Lipid signaling, biosynthesis of fatty acids/metabolites

Hexadecanedioic acid 10459 0.02 0.04 Lipid signaling/oxidation, related to fatty acids
Benzaldehyde-2,4-DNPH 9566364 0.003 25.33 Lipid signaling, lipid peroxidation

4-Oxo-4-(3-oxo-3,4-dihydro-1(2H)-quinoxalinyl) butanoic acid 3146205 0.03 3.02 Lipid oxidation, fatty acid synthesis
N-(1,3-benzodioxol-5-ylmethyl)-2-methyl-6-

(trifluoromethyl) nicotinamide 2811293 0.04 3.63 Stress response, protection against cell leakage/DNA damage

5-Methyl-7-phenyl-6,7-dihydro-1H-1,4-diazepine-2,3-dicarbonitrile 2763570 0.03 0.06 Stress response, biosynthesis of secondary metabolites, ubiquinone
and terpenoid-quinone

Octoxynol 24775 0.02 0.28 Stress response, linolenic acid/hormone metabolism
Didodecyl-3,3-thiodipropionate (DLTDP) 31250 0.047 0.14 Oxidation-reduction, antioxidant

Pentaethylene glycol-n5 62551 0.008 0.21 Unknown function
NP-015468 - 0.03 0.16 Unknown function

Triphenylphosphine oxide 13097 0.04 0.20 Unknown function
Di-tert-butyl dicarbonate 90495 0.03 0.18 Unknown function

{1-Methyl-6-[(1-methyl-1H-benzimidazol-2-yl)methyl]-5-
oxodecahydropyrrolo[1,4]

diazepin-2-yl}-N-(2-thienylmethyl)propanamide
- 0.04 0.14 Unknown function

1792084-C15H29NO3 - 0.02 0.29 Unknown function
Sym-triaminotrinitrobenzene 18286 0.002 0.30 Unknown function

[4,4′-Bipyridine]-3,5-dicarbonitrile, 2,6-dihydroxy 95562431 0.02 0.27 Unknown function
Isoxazolecarboxylic acid, 5-methyl-,

2-benzyl-2-(5-methyl-3-isoxazolylcarbonyl)hydrazide 5334020 0.03 3.22 Unknown function

2-Propenoic acid, 2-methyl-, oxydi-2,1-ethanediyl ester 16891 0.01 0.18 Unknown function
1-methyl-N′-[(E)-(4-nitrophenyl)methylidene]-6-oxo-1,6-dihydro-3-

pyridinecarbohydrazide - 0.03 3.22 Unknown function

6,7-Benzomorphan 182394 0.02 3.06 Unknown function
Calcitriol 5280453 0.04 0.15 Oxidation-reduction, vitamin D, calcium regulation

Ergosterol 444679 0.04 0.2 Response to pathogen, antifungal, membrane integrity, biosynthesis
of metabolites

PE(18:0/18:1(11Z))-(2R)-3-{[(2-aminoethoxy)
(hydroxy)phosphoryl]oxy}-2-(pentadecanoyloxy)propyl stearate 9547031 0.03 0.37 Lipid signaling or oxidation, fatty acid synthesis, biosynthesis

of phosphatidylcholine
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Table 1. Cont.

Protein/Compound ID p-Value Ratio Biological Function

PE(16:1(9Z)/18:1(11Z))-(2R)-3-{[(2-Aminoethoxy)(hydroxy)
phosphoryl]oxy}-2-[(9Z,12Z,15Z)-9,12,15- octadecatrienoyloxy]

propyl (15Z)-15-tetracosenoate
0.04 2.31 Lipid signaling or oxidation, fatty acid synthesis

Palmitic acid (hexadecanoic acid) 985 0.02 2.63 Lipid signaling/oxidation, fatty acid synthesis, secondary
metabolites, lipid rafts

9-PAHSA (9-palmitic acid hydroxystearic acid) 72189985 0.03 10.59 Lipid signaling or oxidation, lipid rafts
3-[(11E,15E)-11,15-Dotriacontadien-1-yl]-5-methyl-2(5H)-furanone 101949817 0.03 0.50 Unknown function

Dodecanamide, N,N′-1,8-octanediylbis 3273664 0.047 0.49 Unknown function
[4,4′-Bipyridine]-3,5-dicarbonitrile, 2,6-dihydroxy 95562431 0.02 0.27 Unknown function

3,5-Dibromoisonicotinonitrile 42553006 0.02 0.43 Unknown function
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2.3. Differential Metabolites in the Primed and Mock-treated Guard Cells

Using untargeted metabolomics, a total of 769 metabolites were identified in the guard
cell samples. Per the Metabolomics Standards Initiative [36], 689 metabolites were identi-
fied at level 2, i.e., being structurally annotated based upon their fragmentation spectral
similarity with public/commercial spectral libraries. Another 80 metabolites were identi-
fied at level 3, i.e., being putatively identified based upon characteristic physicochemical
properties of a chemical class, or by accurate precursor mass. After statistical analysis,
22 metabolites showed significant changes after the priming treatment (Table 1, Table S1).
They are involved in defense responses (including ROS), lipid signaling and oxidation,
and biosynthesis of secondary metabolites. Among the differential metabolites was SA,
which was increased by 3.9-fold in the primed guard cells compared to mock samples
(Figure 4A). Benzaldehyde-2,4-dinitrophenylhydrazone (DNPH), a metabolite involved
in lipid peroxidation, was increased nearly 25-fold in the primed samples compared to
the mock (Figure 4B). Two metabolites involved in fatty acid synthesis decreased in the
primed guard cell samples compared to the mock samples. They are hexadecanedioic
acid (related to palmitic acid, decreased 25-fold in primed guard cells) and decenoic acid
(decreased 0.5-fold). This result indicates a role of fatty acids in guard cell priming. Thirteen
differential metabolites have no known functions (Figure 5B, Table 1, Table S1).
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Figure 4. Metabolites involved in biotic stress response, lipid peroxidation, and a palmitic acid ester increased in the
primed guard cells. Chromatograms, MS1, and MS2 spectra (from left to right) for (A) salicylic acid, (B) Benaldehyde-2,4-
dinitrophenylhydrazone (DNPH), and (C) 9-palmitic acid hydroxy stearic acid (PAHSA). Chromatograms showed increases
of these metabolites in the primed guard cells (orange lines) when compared to mock guard cells (blue lines). MS1 spectra
for precursor ions and MS2 spectra for fragment ions allowed for quantification and identification of the metabolites.
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Figure 5. Proteomic, metabolomic, and lipidomic analyses revealed potential roles of reactive oxygen species (ROS) and fatty
acid signaling in guard cell SAR. (A) Differential proteins, metabolites and lipids with known functions were categorized by
functions and numbers that increased (red) or decreased (green) in the primed guard cells. A 2-fold change and a p-value of
<0.05 from a student’s t-test were used. (B) All identified proteins (gray), metabolites (blue), and lipids (yellow) identified to
be differentially abundant in primed versus mock guard cells were categorized based on functional classification.

2.4. Differential Lipids in the Primed and Mock Guard Cells

A total of 1197 lipids were identified in the guard cell samples. Based on the Metabolomics
Standards Initiative [36], 712 were identified at level 2 and 485 were identified at level 3. After
statistical analysis, 18 lipids showed significant changes in guard cells after the priming
treatment (Table 1; Table S1). Their functions fall into two main categories: antioxidants and
fatty acid synthesis/lipid signaling (Figure 5). Related to redox processes in the cells are two
lipids: didodecyl-3,3-thiodipropionate (DLTDP) with antioxidant properties and calcitriol, a
physiologically-active analog of vitamin D involved in calcium regulation [37]. Another lipid
with antioxidant properties, tocopheryl acetate, was also identified as differentially abundant
in primed guard cells. Related to fatty acid synthesis, two phosphatidylethanolamine (PE)
lipids showed altered abundances in the primed guard cells. Additionally, both palmitic acid
and the palmitic acid ester (9-palmitic acid hydroxy stearic acid (PAHSA)) increased in the
primed guard cells by 2.6- and 10.6-fold, respectively, compared to the mock (Figure 4C).
Palmitic acid (i.e., hexadecenoic acid) has been shown to be an agonist of Toll-like receptor
2 and 4 (TRL2 and TRL4) in animal cells. FLS2, the PRR for flagellin peptide in plant cells,
shares a similar structure and function with TRL5 from human cells. If we apply a less
stringent statistical criteria for significance (p < 0.1), 7 additional lipids were identified at level
2, and 4 at level 3. Interestingly, some of these increased lipids were also related to palmitic
acid, including ethyl palmitoleate, palmitoyl ethanolamide, and oleic acid (Table S1).
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3. Discussion
3.1. Significance of Guard Cell Metabolic Responses to SAR

This study highlights the importance of identifying guard cell responses to bacterial
pathogen invasion because stomatal pores are the entry ports that mount a first line of
defense. Typically, SAR immune responses have been studied using whole leaves [38–41],
but this can mask the response of low abundant cells like guard cells, and the changes of
metabolites, lipids, and proteins in these highly specialized cells can be overlooked. Also of
note is that by analyzing proteins, lipids, and metabolites together, we were able to have a
correlated analysis with evidence at different levels. For example, four differential proteins
related to pathogen response were consistent with the increase of SA, a key regulator of
pathogen response (Table 1, Table S1). In addition, the redox changes in the primed guard
cells were supported by the abundance changes of two proteins, four metabolites, and
two lipids with known functions related to oxidation and reduction (Table 1, Table S1).
A recent report on metabolite responses to biotic and abiotic stresses focused on sample
collections from whole plants, apoplastic fluids, cell walls, phloem, leaves, stems, roots,
and flowers [38], but did not sample guard cells, which are known to perceive and respond
to bacterial pathogens and abiotic stresses. A recent protocol by Rufian et al. [39] serves as
an example of the two factors overlooked in SAR research. Firstly, they used infiltration to
deliver the bacterial pathogen into apoplastic space, which completely bypasses stomatal
immunity. The second is that it only focuses on the response of entire leaves, which
overlooked specific responses of specialized cells like guard cells.

In leaf systemic signaling, several proteins and metabolites have been studied. For
example, NPR1 is well-known as a SA receptor and is redox-regulated [42–44]. Cytoplasmic
oligomers of NPR1 are reduced to monomers that move to the nucleus and bind with
transcription factors (TFs) to activate PR genes [15,45]. Another key protein in SAR response
is defective in induced resistance 1 (DIR1), a lipid transfer protein (LTP) that binds two
molecules of long-chain fatty acids with high affinity [46–49]. DIR1 may enter the phloem
via companion cells and act as a long-distance chaperone to systemic tissues for three other
long-distance SAR signaling molecules, glycerol-3-phosphate (G3P), dehydroabietinal (DA),
and azelaic acid (AzA). DIR1 interacts with AzA-induced 1 (AZI1), and both DIR1 and
AZI1 are required for G3P- and AzA-induced SAR [50–53]. In addition, the presence of
DIR1 and AZI1 enhanced sensitivity to DA [54–56]. Pipecolic acid (Pip) was found to
increase during SAR, and its biosynthesis is controlled by two proteins with homologies
to eukaryotic lipases, namely enhanced disease susceptibility-1 (EDS1) and phytoalexin
deficient-4 (PAD4) [57–61]. Pip and N-hydroxypipecolic acid (NHP) have been identified
as two essential metabolites for establishing SAR [62]. We may expect that some of these
SAR signaling mechanisms also exist in guard cells, or alternatively that guard cells have
different signaling mechanisms. Here, some similarities and differences between whole
leaf SAR and guard cell SAR were identified. One similarity is the increased SA found
in the primed guard cell samples compared to the mock samples. Results from leaves
also showed SA increase, which is typically correlated with activation of SA biosynthesis
genes [40]. Additionally, Pip and NHP also increased in uninfected leaves to amplify SA
biosynthesis [40]. Wang et al. [30] observed that Pip increased at 48 h post infection (hpi) in
injected leaves. It was also found in phloem exudates and increased in uninfected leaves
at 48 hpi. Similarly, Bernsdorff et al. [57] reported that Pip and SA levels increased in
uninfected leaves at 48 hpi. In our results, SA levels increased in systemic guard cells,
but Pip did not change after initial infections. Another example of metabolic differences
between leaves and guard cells appears to be the role of indolic metabolites in SAR immune
response. Stahl et al. [63] found that the levels of indol-3-ylmethylamine (I3A), indole-3-
carboxylic acid (ICA), and indole-3-carbaldehyde (ICC) were increased in leaves during
SAR. By contrast, our guard cell samples did not show increases in these indolic metabolites.
It is possible that these metabolites were not increased in guard cells but increased in other
cells in the uninfected leaves after priming.
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3.2. Increased SA in Primed Guard Cells Enhanced Systemic Defense through Stomatal Immunity

The primed guard cells in uninoculated leaves narrowed stomatal apertures and
reduced entry of Pst into the leaves (Figure 1), indicating guard cell SAR in response to
long distance immune signals. This result is consistent with a recent report [57] where
decreased transpiration rates in primed Arabidopsis leaves were observed and related to
decreases in photosynthesis-related transcripts in the primed leaves. Previously, we have
identified increases in SA in primed guard cells compared to mock guard cells using
targeted metabolomics [64]. Here we were able to reproduce this result using untargeted
metabolomics. The increase of SA in the primed guard cells may account for the observed
stomatal SAR phenotype because SA is essential for SAR [65,66]. When SA accumulation
was inhibited in NahG plants expressing a salicylate hydroylase, SAR was abolished [13]. SA
biosynthetic mutants also fail to establish SAR [67,68]. SA was reported to induce stomatal
closure by activating peroxidase-mediated ROS that are integrated into a Ca2+/calcium
protein kinase-dependent ABA signaling branch, but not the OPEN STOMATA 1 (OST1)-
dependent signaling branch in Arabidopsis guard cells [69]. In this study, the increased
levels of SA in the primed guard cells may be due to transport of methyl SA (MeSA)
from mesophyll cells followed by conversion to SA [13]. Alternatively, SA could be de
novo biosynthesized, since Attaran et al. [70] demonstrated that an increase in MeSA
was not required for SA accumulation and SAR, and de novo synthesis of SA occurred
in the leaves. In addition, MeSA appeared to be a mobile signal in dark, rather than in
light [71]. Furthermore, SA could be converted from inactive glycosylated SA to induce
stomatal closure.

3.3. Redox Changes may Mediate SAR in Guard Cells

Based on the differential redox-related proteins and metabolites and lipids (Figure 5;
Table 1, Table S1), we propose that the narrowed stomatal apertures may be attributed to
redox changes in the primed guard cells. ROS play an important role in basal stomatal
immune response that is associated with SA and changes in ion transport in the guard
cells [21]. Here we show that elements of stomatal immune response overlap with systemic
immunity, e.g., ROS, SA, and redox-responsive proteins (e.g., fumarase 1, ROC3, GSTF9,
GSTL3, GSTU19, and GSTF7). In addition, three lipid metabolites with antioxidant proper-
ties (didodecyl-3,3-thiodipropionate, tocopheryl acetate, and calcitriol) were significantly
decreased in the primed guard cells (Table 1, Figure 6, Table S1). Our results from guard
cells do not match exactly the proteins and metabolites found in leaves [72], but they share
similar functions as antioxidants. Excessive production of ROS causes oxidative stress
and cells must ameliorate the detrimental effects of ROS. Antioxidant metabolites, such as
ascorbate, glutathione (GSH), and α-tocopherol counteract stress-induced overproduction
of ROS [72].

GSTs are a ubiquitous group of proteins involved in cellular redox regulation and
detoxification by conjugating GSH to a variety of compounds [73–75]. In A. thaliana, the
GST superfamily is composed of 53 members, which respond to different abiotic and biotic
stimuli [76]. Since SA can activate transcription and translation of multiple GSTs [76],
the increase of four GSTs in the primed guard cells may be attributed to the increased
SA levels in the primed guard cell samples. GSTs are known to be involved in basal
and systemic defense response that is redox-regulated [77]. Carella et al. [78] employed
proteomic analyses from phloem taken 24 and 48 h after Pst inoculation of Arabidopsis
leaves and revealed enhanced proteins that are similar to our primed guard cell results.
For example, a chitinase (CHI/AED15) and a GST accumulated in the phloem during SAR,
similar to the result obtained in our primed guard cells with increased chitinase family
protein and GSTs (Table S1).
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Figure 6. Overview of the roles of ROS, lipid signaling, and phytohormones in guard cell SAR. Guard cell SAR overlaps with
basal immune response, which involves recognition of pathogen-associated molecular patterns (PAMPs) by receptors such
as flagellin-sensing 2 (FLS2) and brassinosteroid insensitive 1-associated kinase 1 (BAK1), activation of Botrytis-induced
kinase 1 (BIK1). BIK1 then activates respiratory burst oxidase homologs (RBOH) D/F to generate ROS. Palmitic acid,
an activator for Toll-like receptors TLR 2 and 4, may also activate FLS2. Additionally, systemic immune signals activate
biosynthesis of salicylic acid (SA), promoting H2O2 production via peroxidases. SA biosynthesis starts in the plastids and
pathway intermediates are transported by enhanced disease susceptibility 5 (EDS5) to the cytoplasm to produce SA. SA
binds to its receptor non-expressor of pathogenesis-related (NPR1), a key regulator of SAR. Abscisic acid (ABA) can also
activate RBOH, adding to ROS signaling. Ultimately, both SA and ABA act on membrane anion channels, driving water to
move out and stomatal closure. Primed guard cells showed decreases in octoxynol-2, related to linolenic acid, an essential
fatty acid found in chloroplasts, from which 12-oxophytodienoic acid (12-OPDA), a precursor for jasmonate (JA) is derived.
JA is a precursor for jasmonic acid isoleucine (JA-Ile) which binds to coronatine-insensitive 1 (COI1) and the COI1/SCF
complex blocks RBOH D/F generation of ROS. During pathogen-induced stomatal opening, the Pst toxin coronatine
(COR) structurally mimics the JA-Ile and binds to COI1. COR also represses SA synthesis, leading to reopening of stomata.
Intercellular accumulation of ROS leads to oxidative stress and membrane alterations. Oxidation of fatty acids and lipids
helps to reduce oxidative stress. Cellular redox perturbation regulates key signaling proteins including mitogen-activated
protein kinases (MPKs), NPR1, and lectin receptor kinases (LECRK). Glutathione (GSH) is important for the glutathione
redox cycle and detoxification involves GSH peroxidase, GSH reductase, and glutathione S-transferases (GSTs).

It is well established that SA signaling during basal defense response to pathogens is
preceded by apoplastic bursts of H2O2 generated by membrane-localized NADPH oxidases
and cell wall-localized peroxidases [26,79]. Cellular redox changes trigger transcriptional
regulation, SA biosynthesis, and signaling, leading to programmed cell death and stomatal
closure [79]. A list of Arabidopsis genes that have been proposed as potential ROS-mediated
regulators of SA-biosynthesis include TFs that regulate isochorismate synthase 1 expres-
sion (e.g., SAR deficient 1 and WRKY8/28/48 TFs) [35,80,81], or upstream PAD4/EDS1
expression (e.g., calmodulin-binding transcription activator/signal-responsive 1 and zinc-
finger protein 6) [82,83]. However, we did not observe significant changes in these SA
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biosynthesis-related proteins in primed guard cells, indicating low abundance and/or
potential posttranslational regulations.

3.4. Lipid Peroxidation and Signaling are Important in Guard Cell SAR

In this study, we identified lipids and fatty acids (FAs) related to lipid signaling
and lipid peroxidation (LPO) that had altered abundances in primed guard cells, e.g.,
palmitic acid, 9-PAHSA, decanoic acid, hexadecanedioic acid, phosphorylethanolamine
(PE, 18:0/18:1), and PE(16:1/18:1) (Figure 6; Table 1). ROS can induce LPO during the
interaction between Arabidopsis and Pst, and LPO predominantly occurs in galactolipids
and triacylglycerides proceeding programmed cell death [84]. It should be noted that this
response represents a basal immune response, which induces fragmentation of galactolipids
and formation of pimelic acid and AzA, a SAR mobile signal for priming [84]. ROS-
mediated LPO is usually viewed as deleterious, a signal for cell death. However, it may
work in parallel with the generation of reactive electrophile species (RES) in a beneficial
manner for cell defense [85]. RES and jasmonates mediate oxylipins and reprogram
expression of genes encoding detoxification enzymes, cell cycle regulators, and chaperones.

Our results suggest that LPO in the primed guard cells serves a beneficial function
in response to SAR signals. In addition to fatty acids, we found phospholipids with
altered abundances in primed guard cells. Phospholipids are structural components of
membranes that can also produce signaling molecules [86]. We detected increases of
palmitic acid (hexadecenoic acid) and the palmitic acid ester 9-PAHSA in the primed guard
cells. Different FAs including palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1),
linoleic (18:2), linolenic (18:3), and palmitoleic acid (16:1) are found in plants and can be
modified to form oxylipins (including JA, α-linolenic acid (18:3), and butyric acid) in plant
defense. Increased levels of unsaturated 18:2 and 18:3 FAs, and decrease of 18:1 led to
plant resistance to bacterial and fungal pathogens [87]. FAs also serve as precursors of
phenolic lipids with antioxidant and antimicrobial properties that aid in plant defense.
Some resorcinolic lipids contain SA as their phenolic group, and it is possible that free
cellular SA can be derived from resorcinolic lipids [87]. Such a dynamic conversion in
stomatal defense or in general plant defense has not been studied. However, our results
demonstrate that increases in SA and fatty acids in primed guard cells are part of the guard
cell responses during SAR.

As palmitic acid is known to activate PRR signaling pathways in human cells [88,
89], the significant increases of palmitic acid and the related 9-PAHSA in guard cells
(Table 1, Figure 5) may lead to activation of the plant PRR signaling via FLS2, a human
TLR5 homolog. Guard cells have the PRR FLS2 that perceives the flagellin peptide of
bacteria (e.g., flg22) and activates a signaling cascade involving ROS, MAP kinases, and
plant hormones to close the stomata and prevent bacteria from entering the leaf apoplastic
space [5,11,22,90]. Increased fatty acids in human cells lead to formation of lipid rafts
and recruitment of TLRs into the lipid rafts for ligand-independent dimerization of the
receptors [89]. This mechanism can allow non-ligand molecules to modulate TLR-mediated
immune responses. Based on our findings, we propose that in plant guard cells palmitic
acid or 9-PAHSA could play a similar role to mediate the long-distance immune response
of FLS2. Although our data have laid a foundation for this new hypothesis, further
experiments need to be conducted to test the hypothesis. In addition to compounds such
as palmitic acid and 9-PAHSA with known functions, we also identified 40 metabolites
and lipids with unknown functions (Figure 5B, Table 1, Table S1). These compounds
provide an important resource for the community, and they could be used for follow-
up pharmacological studies to determine guard-cell defense response and aid in the
identification of crop protection strategies [91].
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4. Materials and Methods
4.1. Plant Growth and Bacterial Culture

A. thaliana Col-0 seeds were obtained from Arabidopsis Biological Research Center
(Columbus, OH, USA). They were suspended in deionized H2O and vernalized at 4 ◦C
for two days before planting. The seeds were cultivated in soil and grown in controlled
environmental chambers in short day (8-h light/16-h dark) environment. The temperatures
during the light and dark periods were 22 ◦C and 20 ◦C, respectively. Incandescent bulbs
capable of emitting 140 µmol m−2·s−1 at the leaf surface were used in the growth chambers
with a relative humidity of about 60%. A dome was placed over the flat until seeds began
germination. After 2 weeks of growth, seedlings were transferred into individual pots.
Plants were watered weekly, kept in the chambers until mature rosette (stage 3.9), and
observed at 5 weeks of age [92].

Pseudomonas syringae pv. tomato DC3000, the model pathogen for Arabidopsis SAR
induction [22,39], was used for the experiments. Agar media plates were made using
King’s B media protocol. A 1-L solution was made, containing 20 g Protease peptone No. 3,
1.5 g K2HPO4 (s), 0.75 g MgSO4 (s), 10 mL glycerol, 15 g agar, and deionized H2O King’s B
Media was autoclaved, and antibiotics Rifampicin (25 mg/L) and Kanamycin (50 mg/L)
were added once the solution was cooled. Solution with agar was used for plates and Pst
colonies were streaked on this medium and incubated for overnight at 28 ◦C. Pst colonies
were grown in the same King’s B media without agar in solution overnight, pelleted by
centrifugation, and used for treatment of Arabidopsis plants.

4.2. Stomata Aperture Measurements

Primary inoculation occurred via needleless syringe injection, where the plants were
either primed with Pst DC3000 (OD600 = 0.02) suspended in 10 mM MgCl2 or mock-treated
with 10 mM MgCl2. At 3 days post inoculation, the leaf opposite to the injected leaf was
detached for a secondary treatment. In the secondary treatment, the leaves were either
floated in 10 mM MgCl2 or in Pst DC3000 (OD600 = 0.2) solution in small petri-dishes. Three
leaves were used for each time point and secondary treatment group, and only one leaf
was collected from each plant. Stomatal apertures were measured at three time points: 0 h,
1 h, and 3 h. At each time point, the leaves were collected and peeled using clear tape. The
abaxial side of the leaf was then placed on a microscope slide and images were collected
using confocal microscopy. This experiment was repeated 3 times to image 50 stomata from
each replicated treatment and a total of 150 stomata measurements from 3 independent
replicates were analyzed for each time point. Stomatal apertures were measured using
ImageJ software (National Institutes of Health, Bethesda, MD, USA).

4.3. Pst DC3000 Entry and Growth Assays

To measure how much bacteria entered the apoplast after 3 h, 9 independent biological
replicates of Arabidopsis plants were grown to 5 weeks and prime-treated via injection with
either Pst DC3000 (OD600 = 0.02) or mock-treated with 10 mM MgCl2. Three days after the
infection, the leaf opposite to the one infected was detached and floated in Pst (OD600 = 0.2)
solution for both mock and primed plants. After three hours of floating in solution, leaf was
placed in Falcon tube with 0.02% Silwet, vortexed for 10 s, dried with sterile Kim wipes,
wrapped in clean aluminum foil, and taken to Laminar flow hood for aseptic treatment. In
the hood, an autoclaved hole-puncher was used to obtain one disk from each leaf (0.5 cm
diameter), and the disk was placed in 100 µL sterile H2O. Each leaf disk was then ground
using an autoclaved plastic grinding tip, and 10 µL of the solution was collected to make a
1:1000 serial dilution. From the dilution, 100 µL was collected and plated on agar media
containing Rifampicin (25 mg/L) and Kanamycin (50 mg/L). After 2 days of incubation at
28 ◦C, the colonies on the plate were counted. The experiment was repeated 3 times with
3 replicates of each treatment and the bacterial counts of 9 replicates were used to calculate
mean and standard error.
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Pst growth experiment determines how much bacteria grow in the apoplast after
3 days. Arabidopsis plants (9 independent replicates) were grown to 5 weeks and either
mock or prime-treated. After three days of treatment, the upper and lower rosette leaves
were sprayed with Pst DC3000 (OD600 = 0.2) and a dome was put on top for 24 h. After
24 h, the dome was removed and the plants were left in growth chamber for another 48 h.
One opposite leaf of each plant was then detached and washed in 0.02% Silwet, and one
disk was taken from leaf to make a 1:1000 serial dilution and plate it on media. Colonies
were counted to determine how much bacteria were able to grow in the apoplast. The
experiment was repeated 3 times with 3 replicates of each treatment and the bacterial
counts of 9 replicates were used to calculate mean and standard error.

4.4. Isolation of Enriched Guard Cells for Multi-omics Experiments

Enriched guard cell samples were prepared as previously described [64]. Briefly, for
each sample, 144 upper uninfected leaves were collected from 36 individual plants (i.e.,
four upper primed leaves per plant). After removing the midvein with a scalpel, the leaves
were blended for 1 min in a high-speed blender with 250 mL of distilled deionized water
and ice. The sample was then filtered through a 200 µm mesh filter. This process was
repeated 3 times to obtain intact guard cells, which were collected immediately into 15 mL
Falcon tubes, snap frozen in liquid nitrogen, and stored in −80 ◦C.

Freshly collected guard cells were resuspended in 1 mL of deionized distilled water
in a 1.5 mL tube, then 100 µL of 0.03% neutral red working solution was added. The tube
was gently mixed and incubated at room temperature for 5 min. Samples were spun down
and washed twice with deionized distilled water. After washing, samples were observed
on a light microscope (Leica DM 6000 B, Buffalo Grove, IL, USA) for imaging. Viable cells
accumulate neutral red in the vacuoles, thus are stained red. Ten images of 174 guard
cells were randomly selected and guard cells were scored for viability. This process was
repeated for staining with non-polar fluorescein-diacetate (FDA). The procedure is the
same as the neutral red staining, except 100 µL 2.5 µM FDA was added to the guard cells.
After washing with deionized distilled water, fluorescence microscopy was used to image
the cells using a filter cube that allows an excitation wavelength of around 460 nm, and an
emission wavelength of around 525 nm (e.g., with a 450–490 nm bandpass excitation filter
and a 500–550 nm bandpass emission filter) (Leica DM 6000 B, Buffalo Grove, IL, USA).
Images were obtained under both bright field and fluorescence excitation. FDA enters
live cells and is hydrolyzed by esterases in the cell producing fluorescein. From the FDA
staining, 10 images of 134 guard cells were randomly selected for viability assay. Those
that contained the FDA fluorescence were counted as viable and those that did not were
counted as non-viable. Based on both neutral red and FDA results, the guard cell viability
was 80%.

4.5. Chlorophyll Assay and RT-qPCR of Guard Cells and Leaves

Chlorophyll was quantified from leaves and enriched guard cells as previously de-
scribed [93]. Briefly, four replicates of leaves or guard cells of mock or primed plants were
obtained with four mature leaves in each replicate. Samples were frozen in liquid nitrogen
and then ground to a fine powder using a mortar and pestle. Material fresh weight (FW)
was weighed, and 1.5 mL of 80% (v/v) acetone was added, vortexed, and placed in dark
for 30 min. After centrifugation at 13,000 g for 15 min to pellet debris, the supernatant
was removed and measured at 663 nm (chlorophyll a) and 646 nm (chlorophyll b) using a
spectrophotometer. Total chlorophyll a and b was determined using the following formulae:
(12.7 × A663 − 2.69 × A646) × volume/weight = Chl a mg/g FW and (22.9 × A646 − 4.86
× A663) × volume/weight = Chl b mg/g FW.

To determine the expression level of guard cell specific genes in different samples,
RNeasy Plant Mini Kit (QIAGEN, Germantown, MD, USA) was used for total RNA ex-
tracting. PrimeScript RT reagent Kit (New England Biolabs, Ipswich, MA, USA) was used
for cDNA synthesis. The 2× SYBR Green qPCR Master Mix kit (Bimake, Houston, Texas,
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USA) was used for qRT-PCR with a CFX96 171 Touch™ Real-Time PCR Detection System
(Bio-Rad, Hercules, CA, USA). Three biological replicates and three technological replicates
were carried out for each sample. Relative expression levels of the genes were analyzed
using the 2−44Ct method. ACTIN2 was used as the internal reference (Figure 2A). The
real-time primers used are as follows: OST1 F: CGATAACACGATGACCACTC, OST1
R: CCAAGCTTCCTGTGAGGTAA; GORK F: GATCACCGCTTCATCTTGCAG, GORK R:
TTGTCCTGCTTTCACAGCCT; HT1 F: ATCGTTCAGTTCATTGCGGC, HT1 R: GGTCTC-
GATCGAAAGCGAGT; KAT1 F: CCTCTCTGCCGATCTTCTACC, KAT1 R: CACATCTC-
CCACGCTCTGTA; PYL2 F: AAGCGTCAGAGAAGTGACCG, PYL2 R: AGAACACG-
GTGGTCGTCATC; PGC F: TTCTCAGGTACTTGCAGAGTTGTC, PGC R: GGTTCTCGT-
CATTCGTCTGAG; ACTIN2 F: CGTACAACCGGTATTGTGCTG, ACTIN2 R: AGTAAGGT-
CACGTCCAGCAAG.

4.6. 3-in-1 Protein, Metabolite, and Lipid Extraction Method

A biphasic methanol and chloroform method adapted from Bligh and Dyer [94] was
used to obtain proteins, metabolites, and lipids from 100 mg of freeze-dried guard cells
harvested from the mock and primed plants. Guard cell samples were quickly immersed
in glass tubes with 3 mL pre-heated 75 ◦C methanol (MeOH) and 0.01% butylated hy-
droxytoluene (BHT) for 15 min. Internal standards were added for proteins: 60 fmol
digested bovine serum albumin (BSA) peptides per 1 µg sample protein; for metabolites:
10 µL 0.1 nmol/µL lidocaine and camphorsulfonic acid; and for lipids: 10 µL 0.2 µg/µL
deuterium labeled 15:0–18:1(d7) phosphatidylethanolamine (PE) and 15:0–18:1(d7) diacyl-
glycerol (DG). For extraction, 6 mL chloroform and 2 mL water (3:1, v/v) were added to
each tube, then 500 µL MeOH was added to replenish the methanol that evaporated during
boiling. Samples were vortexed and then agitated at 4 ◦C for 1 h. For phase separation,
extracts were centrifuged for 10,000 rpm for 10 min at 4 ◦C. The upper (metabolite in
MeOH) phase was collected into the plastic 2 mL centrifuge tubes and the bottom (lipid in
chloroform) phase into glass tubes, leaving the middle (protein) layer for further protein
collection. To improve component collection, 2 mL chloroform/methanol (2:1 v/v) with
0.01% BHT was added again and then the tubes were shaken for 30 min at 4 ◦C. Extracted
liquid was combined into the glass centrifugal tubes and the extraction procedure was
repeated one additional time to obtain complete extraction from tissue samples. The lipid
extracts were dried under nitrogen gas to prevent oxidation and stored in −80 ◦C. The
lipid extract was later dissolved in 1 mL isopropanol for LC-MS/MS analysis. Aqueous
metabolites were lyophilized and placed at −80 ◦C. Aqueous metabolite pellets were later
solubilized in 100 µL 0.1% formic acid in H2O for LC-MS/MS analysis. Protein compo-
nents were collected by precipitation in cold 80% acetone in the centrifuge tubes at −20 ◦C
overnight.

4.7. Protein Extraction, Digestion, and LC-MS/MS

Three biological replicates of mock and SAR primed guard cell samples were prepared
for proteomic experiments. Proteins were precipitated by addition of 80% acetone in glass
centrifuge tubes in −20 ◦C overnight. Acetone was removed using glass pipettes, and
the tubes with the protein samples were dried in a speedvac. Protein samples were then
resuspended in 50 mM ammonium bicarbonate, reduced using 10 mM dithiothreitol (DTT)
at 22 ◦C for 1 h, alkylated with 55 mM indol-3-acetic acid (IAA) in darkness for 1 h, then
digested with trypsin for 16 h.

MS data acquisition was performed using an Easy-nLC coupled to a Q Exactive
hybrid quadrupole-Orbitrap MS/MS system (Thermo Scientific, Bremen, Germany) with
a nanoelectrospray ion source. Sample peptides (10 µL volume) were injected onto an
Acclaim PepMap™ 100 pre-column (75 µm × 2 cm, nanoViper C18, 3 µm, 100 A) and
separated in an Acclaim PepMap™ RSLC (75 µm × 25 cm, nanoViper C18, 2 µm, 100 A)
analytical column with a linear gradient of solvent B (0.1% formic acid, 99.9% Acetonitrile)
from 1% to 30% for 90 min at 250 nL/min. The MS was operated between MS scan and
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MS/MS scan automatically with a cycle time of 3 s. Eluted peptides were detected in
the Orbitrap MS at a resolution of 120 K with a scan range of 350–1800 m/z, and the
most abundant ions bearing 2–7 charges were selected for MS/MS analysis. Automatic
gain control (AGC) for the full MS scan was set as 200,000 with maximum injection time
(MIT) as 50 ms, and AGC target of 10,000 and MIT of 35 ms were set for the MS/MS scan.
The MS/MS scan used quadrupole isolation mode, collision-induced dissociation (CID)
activation energy, 35% collision energy, and an IonTrap detector. A dynamic exclusion time
of 30 s was applied to prevent repeated sequencing of the most abundant peptides.

4.8. Metabolite, Lipid Preparation, and LC-MS/MS

The untargeted metabolomic approach used the high resolution Orbitrap Fusion
Tribrid mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) with Vanquish™
UHPLC liquid chromatography. An Accucore C18 (100 × 2.1) column was used for
metabolites with solvent A (0.1% formic acid in water) and solution B (0.1% formic acid
in acetonitrile). The column chamber temperature was to 55 ◦C. Pump flow rate was set
to 0.45 mL/min. The LC gradient was set to 0 min: 1% of solvent B (i.e., 99% of solvent
A), 5 min: 1% of B, 6 min: 40% of B, 7.5 min: 98% of B, 8.5 min: 98% of B, 9 min: 0.1% of B,
10 min stop run. To enhance identification, an Acquire X MSn data acquisition strategy was
used which employs replicate injections for exhaustive sample interrogation and increases
the number of compounds in the sample with distinguishable fragmentation spectra for
identification. Electrospray ionization (ESI) was used in both positive and negative modes
with a spray voltage for positive ions (V) = 3500 and a spray voltage for negative ions
(V) = 2500. Sheath gas was set to 50, auxiliary gas was set at 1 and sweep gas was set to 1.
The ion transfer tube temperature was set at 325 ◦C and the vaporizer temperature was set
at 350 ◦C. Full MS1 used the Orbitrap mass analyzer (Thermo Fisher Scientific, Waltham,
Massachusetts, USA) with a resolution of 120,000, scan range (m/z) of 55–550, MIT of 50,
AGC target of 2e5, 1 microscan, and RF lens set to 50%.

For untargeted lipidomics, a Vanquish HPLC-Q Exactive Plus system was used with
an Acclaim C30 column (2.1 mm × 150 mm, 3µm). Solution A for lipids consisted of
0.1% formic acid, 10 mM ammonium formate, and 60% acetonitrile. Solution B for lipids
consisted of 0.1% formic acid, 10 mM ammonium formate, and 90:10 acetonitrile: isopropyl
alcohol. The column chamber temperature was set to 40 ◦C. Pump flow rate was set to
0.40 mL/min. The LC gradient was set to 0 min: 32% of solvent B (i.e., 68% of solvent A),
1.5 min: 45% of B, 5 min: 52% of B, 8 min: 58% of B, 11 min: 66% of B, 14 min: 70% of B,
18 min: 75% of B, 21 min: 97% of B, 26 min: 32% of B, 32 min stop run. The method for
Q Exactive Plus mass spectrometer included a 32-min duration time, 10 s chromatogram
peak width with full MS and ddMS2. Ion fragmentation was induced by CID, with positive
polarity and a default charge state of 1. Full MS1 used the Orbitrap ion trap mass analyzer
with a resolution of 70,000, 1 microscan, AGC target set to 1e6, and a scan range from 200 to
2000 m/z. The dd-MS2 scan used 1 microscan, resolution of 35,000, AGC target 5e5, MIT of
46 ms, loop count of 3, isolation window of 1.3 m/z, and a scan range of 200 to 2000 m/z
for positive and negative polarity.

4.9. Data analysis for Proteins, Metabolites, and Lipids

For LC-MS/MS proteomic data analysis, we used Proteome Discoverer™ 2.4 (Thermo
Fisher Scientific, Waltham, MA, USA) with the SEQUEST algorithm to process raw MS files.
Spectra were searched using the TAIR10 protein database with the following parameters:
10 ppm mass tolerance for MS1 and 0.02 da as mass tolerance for MS2, two maximum
missed tryptic cleavage sites, a fixed modification of carbamidomethylation (+57.021)
on cysteine residues, dynamic modifications of oxidation of methionine (+15.996) and
phosphorylation (+79.966) on tyrosine, serine, and threonine. Search results were filtered at
1% false discovery rate (FDR) and peptide confidence level was set for at least two unique
peptides per protein for protein identification.



Int. J. Mol. Sci. 2021, 22, 191 18 of 22

Relative protein abundance in primed and control guard cell samples was measured
using label-free quantification in Proteome Discoverer™ 2.4 (Thermo Scientific, Bremen,
Germany). Proteins identified and quantified in all 3 out of 3 sample replicates were used,
and no imputation was performed. Peptides in mock and primed samples were quantified
as area under the chromatogram peak. Peak areas were normalized by the bovine serum
albumin (BSA) internal standard added during sample preparation and extraction. The
average intensity of three primed vs. three mock samples were compared as a ratio and two
criteria were used to identify significantly altered proteins: (1) increase of 1.2 or decrease of
0.8 (prime/mock), and (2) p-value from an unpaired Student’s t-test less than 0.05.

For untargeted metabolomics, Compound Discover™ 3.0 Software (Thermo Scientific,
Bremen, Germany) was used for data analyses. Raw files from three replicates of mock
and three replicates of primed guard cells were used as input. Spectra were processed by
aligning retention times. Detected compounds were grouped and gaps filled. Peak area
was refined from normalize areas while marking background compounds. Compound
identification included predicting compositions, searching mzCloud spectra database,
and assigning compound annotations by searching ChemSpider, pathway mapping to
KEGG pathways and to Metabolika pathways was included for functional analysis of the
metabolites. The metabolites were scored by applying mzLogic and the best score was
kept. Peak areas were normalized by the positive and negative mode internal standards
(lidocaine and camphorsulfonic acid, respectively) added during sample preparation. For
untargeted lipidomics data analyses, Lipid Search 4.1™ and Compound Discover™ 3.0
(Thermo Scientific, Bremen, Germany) were used. Raw files from three replicates of mock
and three replicates of primed guard cells were uploaded Lipid Search 4.1™ for annotation
of lipids found in all the samples. A mass list was generated for uploading to Compound
Discover™ 3.0 Software. This mass list was used for compound identification along with
predicted compositions, searching mzCloud spectra database, and assigning compound
annotations by searching ChemSpider. Peak areas were normalized by median-based
normalization. For both metabolomics and lipidomics, the average areas of three primed
vs. three mock metabolite samples were compared as a ratio and two criteria were used to
determine significantly altered metabolites or lipids: (1) increase of 1.2 or decrease of 0.8
(prime/mock), and (2) p-value from an unpaired Student’s t-test less than 0.05.

5. Conclusions

In conclusion, our work here makes a clear distinction from previous studies in that it
specifically targets the guard cell SAR. Our results have shown: (1) guard cells have specific
metabolic responses to long-distance SAR priming that are different from leaves; (2) directly
measured increased SA in primed guard cells leading to narrowed stomata aperture, and
reduced bacterial entry and growth in leaves; (3) increased SA, redox changes, lipid
peroxidation, and signaling may mediate the guard cell SAR; and (4) palmitic acid and its
ester 9-PAHSA may function as activators of FLS2 in primed guard cells. Identifying lipid,
metabolite, and protein components of guard cell SAR is a critical first step in analyzing
how stomatal immunity plays a role in plant defense. Much additional work still needs
to be done, e.g., functional testing of the newly identified components in guard cell SAR
using reverse genetics. Additionally, a pharmacological approach could be taken to confirm
the effectiveness of palmitic acid and 9-PAHSA in stomatal immune responses. Another
route for future experimentation may involve transcriptomics toward comprehensive
understanding of the transcriptional regulation in guard cell SAR.
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