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Abstract

This paper proves the existence of small-amplitude global-in-time unique mild
solutions to both the Landau equation including the Coulomb potential and the
Boltzmann equation without angular cutoff. Since the well-known works [45]]
and [3}/43] on the construction of classical solutions in smooth Sobolev spaces
which in particular are regular in the spatial variables, it still remains an open
problem to obtain global solutions in an L2, framework, similar to that in [49],
for the Boltzmann equation with the cutoff assumption in general bounded do-
mains. One main difficulty arises from the interaction between the transport op-
erator and the velocity-diffusion-type collision operator in the non-cutoff Boltz-
mann and Landau equations; another major difficulty is the potential formation
of singularities for solutions to the boundary value problem.

In the present work we introduce a new function space with low regularity in
the spatial variable to treat the problem in cases when the spatial domain is either
a torus or a finite channel with boundary. For the latter case, either the inflow
boundary condition or the specular reflection boundary condition is considered.
An important property of the function space is that the L5° L% norm, in velocity
and time, of the distribution function is in the Wiener algebra A(2) in the spatial
variables. Besides the construction of global solutions in these function spaces,
we additionally study the large-time behavior of solutions for both hard and soft
potentials, and we further justify the property of propagation of regularity of
solutions in the spatial variables. © 2020 Wiley Periodicals, Inc.
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1 Introduction

The Landau equation with Coulomb potential and the non-cutoff Boltzmann
equation for the long-range interaction potentials are two fundamental mathemati-
cal models in collisional kinetic theory that describe the dynamics of a nonequilib-
rium rarefied gas. These two equations are connected in several ways; for example,
the Landau equation can be formally derived from the Boltzmann equation by tak-
ing the grazing limit. Further, the collision operators in both equations each feature
velocity diffusion that can induce a gain of spatial regularity for spatially inhomo-
geneous solutions as a result of the interplay with the free transport operator.

The existence theory for both equations has a long history. A well-established
framework in which to study global well-posedness is to look for solutions that are
close to the global Maxwellian equilibria in different function spaces. However,
for these two equations it is a big open problem to characterize the optimal math-
ematical space of initial data with lower regularity in space and velocity variables
such that unique solutions may exist globally in time. The main goal of this work
is to prove the global existence of unique solutions in a new function space with
mild regularity for both equations in the perturbative framework.

1.1 Equation
In this article we are concerned with the collisional kinetic equation of the form

(1.1) 3 F +v-VyF = Q(F, F).

Here the unknown F = F(¢, x,v) > 0 stands for the density function of particles
with position x = (x1,x2,x3) € @ C R3 and velocity v = (vy,v2,v3) € R? at
time ¢ > 0, and it is supplemented with initial data

F(0,x,v) = Fo(x,v).

1.2 Collision Term

The collision term on the right-hand side of (I.1)) that we will consider in this
paper is described by either the Landau operator or the non-cutoff Boltzmann op-
erator, which are given as described below.
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Landau Collision Operator
For the Landau collision operator, Q(-, -) is given by

(12) 0(G.F)v) = V, - { /R Y06V F©) ~ F0)VGldu,

Then (I.I) with (I.2) is called the Landau equation. Equivalently, the Landau
collision operator can be written as

Q(G. F)(v)

3
(1.3) ;
= > by [ 900G, F) ~ F(0)dy, Galdu.
Jm=1 R
The Landau collision kernel ¥ in (1.2)) or (1.3) is a nonnegative symmetric matrix-
valued function defined for 0 # z = (21,22, 23) € R3 as

i ZjZ .
4 v = {Sﬂw‘ |jz|§"}|Z|V“, jom =123,

where §;,, is the Kronecker delta and —3 < y < 1 is a parameter determined by
the interaction potential between particles. It is customary to use the term “hard
potentials” when 0 < y < 1, “Maxwell molecules” when y = 0, “moderately
soft potentials” when —2 < y < 0, and “very soft potentials” when —3 < y <
—2 (cf. [84]). The case y = —3 corresponds to the classical Coulomb potential
(cf. [45,/82]]). However, see the discussion below for the terminology that
we will use in the rest of this paper.

Non-Cutoff Boltzmann Collision Operator

For the Boltzmann collision operator without angular cutoff, Q(-,-) takes the
form of

(1.5 Q0(G, F)(v) = /]R3/SZ B(v —u,0)[GW)YF') — G(u)F(v)|do du,

where the velocity pairs (v, 1) and (v’, u’) satisfy

/ _ vtu |[v—u|
%v = —>-+ =0,

r_ vtu _ |v—u|
u = = 5 g,

Then (L.I)) with (I.5) is called the Boltzmann equation. The Boltzmann collision
kernel B(v—u, o) is a nonnegative function, depending only on the relative velocity
|v — u| and on the deviation angle 8 given by

v—Uu
cosf = <0, —>
v —ul

o €S2

Without loss of generality we may assume that B(v —u, ¢) is supported on cos 8 >
0,ie,0<0 < % Otherwise, we can reduce to this situation with the following
standard symmetrization (cf. [38],83])):

B(v—u,0) =[B(v—u,0) + B(v —u,—0)|1s9>0-
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Here and in the rest of the paper, 14 denotes the usual indicator function of the
set A. Throughout this paper we further assume that B(v — u, ¢) takes the product
form as follows:

B(v —u,0) = Cglv—ul"b(cos ),
for a constant Cg > 0, where |v — u|? is called the kinetic part with y > —3, and
b(cos 0) is called the angular part satisfying that there are Cp, > 0,0 < s < 1, such
that

: Cp
W < Slneb(COS 9) < m Vo e (O, %]

For the angular non-cutoff Boltzmann operator, it is also customary to use the terms
“hard potentials” when y > 0, “moderately soft potentials” when 0 > y > —2s,
and “very soft potentials” when —3 < y < —2s. However, see the discussion
below (1.26) for the terminology that we will use in the rest of this paper.

One physical example is given when the collision kernel is derived from a spher-
ical intermolecular repulsive potential of the inverse power law form ¢(r) =
rmED with 2 < £ < o0 corresponding to which B satisfies the assumptions
above withy = (£ —5)/({ —1)and s = 1/(£ — 1) (cf. [18]).

Through the paper, in the Boltzmann case we further require that

3
y > max{—3, 5 2s},

due to the mild regularity setting of the results in this article. Indeed, the above
condition is satisfied for the full range of the inverse power law model.

1.3 Spatial Domain and Boundary Condition
In this paper we focus on two kinds of specific bounded domains @ C R3. We

consider either a torus or a finite channel with prescribed boundary conditions.

Case of the Torus
In this case, we set
(1.6) Q=1T3:=[0,27]>.

Correspondingly, F(t, x, v) is assumed to be spatially periodic in x € T3.

Case of the Finite Channel
In this case we set

Q=1xT?

1.7
(7 = {x = (x1,X),x1 € :=(=1,1),X := (x2.x3) € T2 = [0, 271]2}.

Correspondingly, F(¢,x,v) is assumed to be spatially periodic for ¥ € T2 and
satisfy the following two kinds of boundary conditions at x; = *+1:

¢ Inflow boundary condition:

(1.8)  F(t,—1,X,v)|y,50 = G_(t,X,v), F(t,1,X,0)|p;<0 = G4(t,X,v).
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e Specular reflection boundary condition:

F(t’ _17f5v156)|l)1>0 = F(tv _17)_Ca _v176)5

1.9
(19) F(t. 1. v1. 9]y, <0 = F(t. 1%, —v1. D),

where v = (va, v3).

1.4 Reformulation

Consider the following global Maxwellian equilibrium state:
= p() = @m) e,

Note that u is a spatially homogeneous steady solution to (I.T)) for either the Lan-
dau case or the Boltzmann case. We look for a solution to (I.I]) of the form

F(t,x,v) = /L-l—ul/zf(t,x,v).
Then, the new unknown f = f(z, x, v) satisfies
(1.10) df+v-Vof +Lf =T /).
with initial data
(L.11) £0.x,v) = folx.v) i= u7 2 [Fo(x.v) — .

Here, the linearized collision operator L and nonlinear collision operator I' are
given by

(1.12) Lf == 20, k2 F) + O £, 10}
and
(1.13) T(f, f) = w2 Qus f. 12 f),

respectively. In the case of a finite channel, corresponding to (I.8) or (I.9), the
boundary conditions along x; are given by

(114) .f(f,—l,)_C,U)|vl>() :g—(taf’v)’ f(l‘,l,)_C,U)|U1<0 =g+(t,)_c,v),
for the inflow boundary, and

f(l‘,—l,)?, vlv§)|vl>0 = .f(t,—l,)_C, —1)1,6),

(1.15) _ _ _ —
f(tv 17x5v15v)|l)]<0 — f(tv lvxa_vlv v)a

for the specular reflection boundary.
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1.5 Problem

In this paper we will study the following two problems (PT) and (PC) as de-
scribed below. For each problem, both the Landau operator (I.2)) and the Boltz-
mann operator (I.5) will be included in our study.

(PT): Consider (I.10) and (I.T1) in the torus domain € as in (I.6). Due to the
conservation laws, we may always assume that f(z, x, v) satisfies

(1.16) / / /L%f(t,x,v)dvdx=0,
T3 JR3
(1.17) f f w2 f(t.x,v)dvdx =0, i=1.2,3
T3 JR3
(1.18) / / w[2uZ £(z, x,v)dv dx = 0,
T3 JR3

for any f > 0. In other words if these are satisfied initially, then the equa-
tion shows that they will continue to be satisfied for any ¢ > 0.

(PC): Consider (I.10), (I.11)), and or (T.13) in a finite channel domain 2

as in (1.7).
For the specular reflection boundary condition (I.15]), we assume further
that
1 1
(1.19) f / / w2 f(t, x1,x,v)dvdx dxy = 0,
—-1JT2 JR3

1
(1.20) ///viuif(r,xl,f,v)dvdfdxl=o, i=1,2,3,
—1JT2 JR3

1
(1.21) /f/|v|2uéf(r,x1,x,v)dvdfdxl=o,
—1 ']I'Z ]R3

for any + > 0. Indeed, (L.I9), (T.20) with i = 2,3, and (L.2I)) are the
direct consequence of the conservation of mass, momentum, and energy,

respectively. To obtain (1.20) for i = 1, we further assume that the initial
data satisfy the following symmetry assumption:

(122) FO(XIJ?,ULE) = FO(_xlaxv_vlaﬁ)v
and hence the solution will also satisfy
F([axlafvvlaﬁ) - F(tv_xlaxv _vlaﬁ)v

which directly gives (1.20) when i = 1. We only assume the symmetry
condition (1.22)) for the specular reflection boundary condition (I.13])).

1.6 Function Space

To study the well-posedness of the problems (PT) and (PC), we first introduce
a function space X7 with 0 < T < oo, which is a key point in this work. We will
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present the motivation for this space later below. For the problem (PT) in a torus
T3, we define

Xr =L LPL?
with norm
(1.23) I/ llxs == / sup || f(z. k)2 dE(k) < oo,
73 0<t<T

where the Fourier transformation of f(z, x, v) with respect to x € T3 is denoted
Fe k)= Zo f(t Ko v) = / R £t x vydx, ke 72,
T3

In this paper, for convenience we would use d X (k) to denote the discrete measure
in Z3, namely,

[ gt0dz0 = 3 sto.

z keZ3

Remark 1.1. The main reason for using the integral form [, 3 d X (k) is to make it
clear that when the torus domain T3 changes to the whole space domain R2, one
may directly change d £ (k) over k € Z3 into dk over k € ]Ri, and the similar

results in this paper also hold true in Rf’c after taking into account the appropriate
modifications to the time decay of solutions.

Now, similar to the above, for the problem (PC) in a finite channel, we define

Xr =L LPLY

X1,V
with norm

fllr o= [, sup 17RO, d@) < oo,

ZE 0<t<T

with k = (ka.k3) € Z2 and X = (x2, x3) € T2 we take the Fourier transform as
ft,x1.kv) = Fef(t.xi.k,v) = / e TR f(1, %1, %, v)d¥, k€72,
T2

Notice that Fourier transform is taken only with respect to X = (x2, x3).
We also introduce the velocity-weighted norm

g i= [ s fekl s )

Z3 0<t<T

(1.24) or/ sup ||w];\(t,l€,-)||Lz1 dE(E),
Z X1.U

20<t<T

for (PT) or (PC), respectively. Here w = w, 5 (v) is a velocity-weighted function
defined as

v 2
(1.25) Wg,p (V) = eq(4) . () =1+ v
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with two parameters g and . Note that whenever there is no confusion, we will
omit the dependence of wy 3 (v) on g and ¥, and write w, 3 (v) = w(v) for brevity.
In the situation when ¢ = 0, we have w, y(v) = I and hence the function space
X7 with velocity weight is reduced to X7 without weight. Throughout this paper
we require that (g, 9) satisfies the following hypothesis in terms of y and s:

Landau case: if 2 <y <1,theng = 0;
if 3<y<-2,theng>0and0 < <2
(126) (H) with the restriction that 0 < g < 1if ¢ = 2.

Boltzmann case: if y + 25 > 0, then g = 0;

if -3 <y < —2s,theng >0and v = 1.

For convenience of terminology in relation to (I.26)), in the rest of this paper we
will call them soft potentials if either y 4+ 2 < 0 in the Landau case or y + 2s < 0
in the Boltzmann case, and we will call them the hard potentials otherwise.

In general, we define the Li L%L,’) mixed Lebesgue space norms as follows:

T R q/r \Pl4 1/p
||f||L;L;L;;:=(fZ3(/O (fRBIf(t,k,v)lrdv) a) dzac)) |

k
where 1 < p,q,r < o0, and we use the standard modification of the above when
any of p, g, or r is equal to co. Analogously for the case of a finite channel in

roblem (PC) we will define standard LZL% L” | mixed Lebesgue space norms
p kT x1,v
as

||f||Ll§]f}Lr =

xl,v

T, pl . )
(/ (/ (/ f w|f(”x1”€v”)|rdvdx1)q dt)p qdz(E)) "
2z \Jo -1JR3

where again 1 < p,q,r < oo and we use the same standard modification when
any of p, g or r is equal to co. In this paper we typically use p = 1, g = 2 or
q = 00, and r = 2 in the above definitions.

We note further that for ease of the notation we will use the general norm nota-
tion ||| in different sections to denote different norms, the specific norm that we
are using is identified within the section before it is used each time.

1.7 Goal

Using the above preliminary notations, for the problems (PT) and (PC) our main
goal of this paper is to study the following three issues: ® Global-in-time existence

of small amplitude solutions in Xt. For the problem (PT) we are able to show that
if
lfolly iz o= [ Twotk. )z 4200



940 DUAN ET AL.

is suitably small and Fo(x,v) = pu+u'/2 fo(x,v) > 0, then (PT) admits a unique
global-in-time mild solution f(z, x, v) such that F(¢,x,v) = u + u%f(t, X,v) >
0, and || f| xu is uniformly bounded for all 7 > 0. We prove similar results for
the problem (PC) with physical boundaries when the solution space is replaced by

1 s + 1V £ -

We will give the precise statements for all of these results in the next section.

e Large-time behavior of solutions. To obtain the rate of convergence, under the
hypothesis (H), associated with the velocity weight function w = wy »(v) and y,
we define a parameter « in the Landau case as

1 forq =0,-2<y <1,
(1.27) K:{

s
m forq>0,—3§y<—2,

and in the non-cutoff Boltzmann case we define

1 forg =0,y + 25 >0,
(1.28) K =
forg >0,-3<y<—-2s5, 0 =1.

v
o4y +2s|

Note that « € (0, 1], and 0 < & < 2 in (1.26)). Additionally we use ¥ = 1 only in
the Boltzmann case as in (1.26)) and (1.28) because of Lemma .| from [29].
We then are able to show that the obtained solutions decay in time as follows:

tK

(FAQLFSVERS e
for the problem (PT), and

I Olgigz, , + IVafOllrz 5 e M

X1.v

for the problem (PC), where A > 0 is a suitably small uniform constant that is
independent of time.

e Propagation of spatial regularity. For the problem (PT), we will establish
the propagation of spatial regularity of solutions. Specifically, we are able to
show that if the initial data fo additionally satisfies that |[(Vx)™ fol|; 172 is small
enough with m > 0, then the solution f'(¢, x, v) satisfies that || (Vx)m‘f ”L}(L%L%
is bounded uniformly for all 7 > 0, where (Vi)™ f = Z (k)™ f). For the
problem (PC), similar results also hold true but instead they regard the propaga-
tion of x-regularity, namely, along the tangential direction of x; € (—1, 1), and we
will give the precise statement of these results in the next section.
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1.8 Motivation of the Current Work

The global-in-time existence theory in the perturbation framework for the Lan-
dau equation and the Boltzmann equation without angular cutoff has been well
established for suitably small initial data in smooth Sobolev spaces. Particularly,
for the Landau equation in a periodic box with y > —3 including the physical
Coulomb potential, Guo [45] gave the first result on the construction of global clas-
sical solutions near Maxwellian with f (¢, x, v) € L*°(0,00; H f’v). As pointed out
in [45} p. 393], such a high Sobolev norm is a standard choice due to the nonlin-
earity of the Landau operator since the L.°° norm in x is easily controlled by the
Sobolev embedding and then a high Sobolev norm of a product is bounded by a
product of the same norms. For the Boltzmann equation without angular cutoff in
a periodic box, Gressman-Strain [40] first constructed the global small-amplitude
solution f(t,x,v) in L%°(0, 00; L2 H?2) for the hard potential case y + 2s > 0
(including y + 25 > —%) and in L°°(0,00; H ;‘,v) for the general soft potential
case y + 25 < 0. A similar result was also independently obtained by AMUXY in
their series of works (cf. [2}|3]], for instance) in the case of the whole space. A key
point in those well-known works is to characterize the dissipation property in the
L? norm in v for the linearized self-adjoint operator (cf. [1,/67]) and further carry
out the energy estimates by controlling the trilinear term in an appropriate way.

Regarding the solution space, a natural question is to ask whether it is possible to
construct the global solutions f(¢, x, v) in some function spaces with much lower
regularity in space and velocity. In fact, we remark that the local existence with
mild regularity for the Boltzmann equation with or without cutoff was discussed
in AMUXY [4] in the function space L>®(0, Ty; L2 H¥) with s > 3/2 and some
Ty > 0 for even large initial data. Note that if one uses the Sobolev space L2 H
it seems necessary to require s > 3/2 in order to obtain the L°° bound in x by
the imedding. Motivated by [4] as well as [[73]], for the Boltzmann equation with
angular cutoff in the whole space, Duan-Liu-Xu [28]] found a Chemin-Lerner-type

space Z‘;?Bg/ ZL% (cf. [8,[19]]) such that the solution of small amplitude can be
bounded in this function space uniformly in time 7" > 0, where By = Bj ; (R3
for s > 0 denotes the usual Besov space in x, and f (¢, x,v) € Z%OB)SCL% means

@2 sup 8gf (- )laz ) sty

= Y 2% sup [[Agf(t )2, < oo
g>—1 0<t<T ’

Above the A, are the standard frequency projection operators in Fourier space.
A key observation is that the .°° norm in x still can be controlled by the embedding
B ,36'/ 2c L% in three dimensions. One feature of the Chemin-Lerner-type space is
that the supremum over 0 < ¢ < T is taken before the E}I norm, and this feature
plays a role in controlling the quadratically nonlinear term in terms of the chosen
energy functional and the dissipation rate functional. Later, Morimoto-Sakamoto
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[[65]] carried over the same idea to treat global existence for the Boltzmann equation
without angular cutoff in the case y > max{—3, —% — 2s}. Duan-Sakamoto [30]
obtained the time decay rates of solutions for both hard and soft potentials with
angular cutoff. We remark that it seems still true that those results in [30L/65]] can
also be obtained for the Landau equation with y > —3 including the Coulomb
potential.

On the other hand, we notice that the space L7, with suitable velocity weight
seems the simplest one with mild regularity in space and velocity variables for
directly treating the nonlinearity to obtain the global existence; see an L2 N L™
approach by Ukai-Yang [[80] based on spectral theory and the decomposition L =
—v 4+ K (cf. [40,41]]) for the Boltzmann equation with cutoff hard potentials in
the whole space. In fact, for the Boltzmann equation with cutoff hard potentials in
the torus or even in a general bounded domain, Guo [49]] developed a mathemat-
ical theory of global existence of small-amplitude LS, solutions by an L2-L®
interplay method. Since then, there have been extensive generalizations and fur-
ther developments of the Boltzmann global existence theory in the angular cutoff
setting, for instance, [[10,/13,26,31}50L/51,/57,/58,/63}|68]]. Particularly, motivated
by [[26,49], Nishimura [68|] provided an interesting result on global existence of
the angular cutoff Boltzmann equation in the space LY L7, with suitable velocity
weight for 1 < p < oo; this work extends to the case of finite p < oo. The case of
p = 2 is of its own interest because this means that it may no longer be necessary
to study the interplay between L% and LY if p # 2.

However, so far there are not many results on the global existence theory in
L$?, for the angular non-cutoff Boltzmann equation. The main reason is that the
collision operator in the non-cutoff case exposes the fractional velocity diffusion
property so that it is very difficult to apply the characteristic approach as in [49] to
obtain the L°° bounds in x for the solutions. The same situation occurs to the Lan-
dau equation with velocity diffusion. Recently Kim-Guo-Hwang [59]] developed an
L? to L™ approach to the Landau equation in the torus domain, where initial data
are required to be small in L5, but additionally belong to H )}’U. Since the Sobolev
embedding can no longer be used, a key point of the proof in [59] is to control the
L.°° bound by the L2 estimates via De Giorgi’s method [39]], and also to control
the velocity derivatives to ensure uniqueness by the Holder estimates again via De
Giorgi’s method [39]. The De Giorgi’s method applied to the Landau equation
has been recently developed in Golse-Imbert-Mouhot-Vasseur [39]]. Notice that for
the Boltzmann equation without cutoff, the regularity issue has also been studied
in many recent works, for instance, Silvestre [72]], Imbert-Silvestre [56[], Imbert-
Moubhot-Silvestre [55], and Chen-Hu-Li-Zhan [20]. See also a recent survey by
Moubhot [66]] and references therein.

Moreover, we observe that there recently have been several research works to
apply the Wiener algebra A(£2), or in the notation of this paper L}(, to study the
global-in-time existence and gain of analyticity for solutions to some evolution
equations with diffusions, for instance, Constantin-Cérdoba-Gancedo-Strain [22],
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Constantin—Cérdoba—Gancedo—Rodriguez-Piazza—Strain [21f], Patel-Strain [70],
Gancedo—Garcia-Juarez—Patel-Strain [37]], Liu-Strain [62]], Granero-Belinchén—
Magliocca [42]], and Ambrose [7]. See also a recent work by Lei-Lin [[60]] for
the global well-posedness of mild solutions to the three-dimensional, incompress-
ible Navier-Stokes equations if the initial data satisfy Vy fy € L}C. Here a function
f(x) withx € T3 isin L}C if its Fourier transform f (k) is summable in k € Z3,
namely,

/Z3 F0ldsk) = Y |f k)] < oo.

kez3

It is obvious to see that for two functions f(x) and g(x) with x € T3,

Ifeliy < [ 200 | Fe)
< fzidm) /Z?dE(Z)If(k—l)é(l)l =1/l gl

where we have used Fubini’s theorem together with the change of variables k—/ —
k in the last identity. Thus using this Banach algebra property one may expect that
the L}c norm can play a similar role to the L$° norm when studying the Landau
equation or the non-cutoff Boltzmann equation. Note that, as pointed out in [[7]], the
space L}CL%O is also a Banach algebra, where f = f(¢,x) witht > Oand x € T3
isin Ly LY if
/ sup | £ (2,k)|dE (k) < oo.
Z3 0<t<T

Those observations together with the aforementioned works [28,(30L|65] motivated
us to introduce the function space X7 = L} L3 L2 with the norm | -||x- as defined

previously in (1.23).
1.9 Related Literature

In what follows we recall some known results on the Landau and Boltzmann
equations with a focus on the topics under consideration in this paper, particu-
larly on global existence and large-time behavior of solutions to the spatially in-
homogeneous equations in the perturbation framework. For global solutions to the
renormalized equation with large initial data, we mention the classical works by
DiPerna-Lions [24125]], Lions [61]], Villani [82]83]], Desvillettes-Villani [23]], and
Alexandre-Villani [5]].

When the spatial domain is either the whole space or a torus, we mention Ukai
[78L79]], Caflisch [11,/12], Guo [46}47]], Liu-Yang-Yu [64], and Strain-Guo [75}
76| for the Boltzmann equation with cutoff. In the non-cutoff case, besides those
works [2,3,/43]] mentioned before, we also mention the recent works by Alonso-
Morimoto-Sun-Yang [6]], He-Jiang [53]], and Hérau-Tonon-Tristani [54] for global
existence and large-time behavior of solutions with the polynomial velocity weight
for the Boltzmann equation in the torus, as well as Carrapatoso-Mischler [14] in
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the case of the Landau equation. Here, [6}/14,54] are motivated by the recent work
Gualdani-Mischler-Mouhot [44]] in the case of the cutoff Boltzmann equation in
the torus, while [53]] is based on a new energy-entropy approach in terms of quasi-
linear equations.

Moreover, for the large-time behavior of solutions in soft potential cases, par-
ticularly for the optimal time-decay rates, we mention Caflisch [[12], Strain-Guo
[75L[76]], and Strain [74]]; see also Sohinger-Strain [73]], in different settings. We
also mention the recent numerical study on the possible sharp 2/3 rate of large
time decay for the Landau equation with Coulomb interactions in Bobylev-Gamba-
Zhang [9]]; we obtain this decay rate in (2.9), (2.14), and @2.17) with when
y =—3and ¥ = 2.

Since one part of this paper is concerned with the boundary value problem on
the Landau and Boltzmann equations, we also make some comments on the re-
lated known results in a perturbation framework. We mainly focus on the case of
the Boltzmann equation, as it seems there are few results in the case of the Lan-
dau equation with boundaries. In fact, the mathematical study for the the bound-
ary value problems of the Boltzmann equation date back to the 1960s. Cercig-
nani [[15/[16] proved the existence and uniqueness for the inflow boundary value
problem of the discrete time linearized Boltzmann equation with angular cutoff
in two parallel plates, which was immediately extended to the nonlinear case by
Pao [[69]. With the aid of these approaches as well as the work by Caflish [12],
Esposito-Lebowitz-Marra [34,(35] studied the hydrodynamic limits of the station-
ary Boltzmann equation with diffuse reflection boundary condition in a slab.

For the general bounded domains, Shizuta-Asano [71]] in 1977 announced that
the global existence and time decay rates to the equilibrium for the Boltzmann
equation with the specular reflection boundary condition could be established by
using the Vidav’s multi-iteration method [81]. Almost ten years later, Ukai [[79]
in 1986 constructed the famous trace theorem for the Boltzmann equation, which
was then used by Hamdache [52] to construct the normalized weak solutions for
the Boltzmann equation with Maxwell boundary condition. Later on, Ukai’s trace
theorem was improved by Cercignani [[17]] so that Hamdache’s result could be even-
tually extended to more general cases.

As mentioned before, with the foundational work by Guo [49] on the L2-L>®
method, a great many of achievements have been made over the past decades in the
study of the initial boundary value problems for the kinetic equations, particularly
for the Boltzmann equation. For instance, Esposito-Guo-Kim-Marra [32] con-
structed a genuine nonequilibrium stationary solution. Briant-Guo [10] partially
proved the stability of the Boltzmann equation with Maxwell boundary condition.
Kim-Lee [58]] removed the analytical boundary condition that was required in [49]
for the study of the sole specular reflection boundary value problem by iterating the
Duhamel’s formula three times. Liu-Yang [63]] extended the results in [49] to the
cutoff soft potential case. Duan-Wang [31]] showed the global well-posedness for a
class of large-amplitude initial data. Guo-Liu [51]] constructed the global existence
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for the Boltzmann equation with specular reflection boundary condition around the
polynomial initial data differing from a global equilibrium Maxwellian. Esposito-
Guo-Kim-Marra [33]] and Duan-Liu [27]] studied the hydrodynamic limits of the
Boltzmann equation in bounded domains based on an improved L2-L> method.

The main difficulty in studying the initial boundary value problems for the
Boltzmann equation is that there should be a singularity at the boundary [50], and
actually this singularity may propagate to the interior of the domains [57]]. In this
sense, unlike the Cauchy problem, it is quite hard to establish the global existence
in Sobolev spaces for the Boltzmann equation with physical boundary. Thus, al-
though the well-posedness for the Cauchy problem of the Landau equation [45.[76]
and the non-cutoff Boltzmann equation [3,43]] have already been established sev-
eral years ago, the boundary value problem for either the Landau equation [45]] or
the non-cutoff Boltzmann equation is left as a big open problem. Our results in this
paper seem to be the first ones concerning this issue.

1.10 Organization of the Paper

The rest of this paper is organized as follows. In Section [2} we give the precise
statements of the main results of the paper regarding the global existence, large-
time behavior, and propagation of spatial regularity of solutions to the problems
(PT) and (PC). In Section[3] we present our strategy of proof by showing the uni-
form a priori estimates without any velocity weight for both the non-cutoff Boltz-
mann equation and the Landau equation in the torus. Motivated by our strategy of
proof, Section [ is concerned with the trilinear estimates with velocity weights in
the corresponding function spaces. Section [5]is then devoted to establishing the
macroscopic estimates both in the torus case and in the finite channel case. In Sec-
tions [6] and [7] we will give the proof of the main results in the case of a torus and
a finite channel, respectively. In Section[8] we explain the local-in-time existence
of mild solutions for completeness. Then at the end of the paper, the appendix
includes some basic lemmas that are used in the previous sections.

2 Main Results
2.1 Notations

To state the main results in this section, we will now introduce some more no-
tation. Recall that to characterize the energy functional for the problem (PT) or
(PC), we have introduced the function space

Xr = L LFPL; or L LPLY

X1,0°

respectively, as well as the velocity-weighted space X as in (1.24), where the
velocity weight w = wy »(v) is defined in (1.25) under the assumption (H) as in
(T.26). In what follows, we further define the corresponding energy dissipation rate
functionals. In this section, and in the rest of the paper, we will use f, g, and 4 as
generic smooth real-valued functions in our estimates, when f is not being used
as the solution to an equation such as (I.10). Then since we are taking the Fourier
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transform, we will also use the standard complex conjugate as f. Now, for the
Landau equation, we recall the Landau kernel in (1.4). Then we define

oM =gIM(v) = / UM (v — u)u(u)du.
R3
It is convenient to define the following velocity-weighted D-norm:

3
2 . — 1 . pa—
‘wq,ﬂf‘D = Z /R3 wZ’ﬂ{ofmavjfaumf + Zajmvjvmff}dv.

j.m=1

In the case of the finite channel, we also define

[wao £

(2.1 3 5 . 1 . _
= Z /I/qu’&{ofmaujfavmf—i—Zojmvjvmff}dvdxl,

j.m=1

by including an extra integration in x; € I = (—1, 1). For the case of the non-
cutoff Boltzmann equation, we define accordingly

22 |wgnflp =
L[ LB uou2 0w 6) - Fe)TE) — 7w dodudy
R3 JR3 Js2 ’
[ L B2 j) £ T @) — w0 do dudv,
R3 JR3 JS2 ’
and in the presence of the spatial variable in the finite channel we have
23) llwgpglp =

./1 fR%ng/gz B(v —u,o)wj,ﬂ(v)u(u)(f(v/) — f(v)

-(f(W) — f(v))do dudvdx,

" /1 ngfRs/sz B —u,0)uwg 5 (0) f() [ ()

. (u%(v/) — ;L%(v))2 dodudvdx.

Then, corresponding to the energy functional X, we define the weighted dissipa-
tion rate functionals:

T
o Fligrzez, = ([ s Zereo
v, 3\Jo

k

2 1/2
dt) A (k)

D
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and

T 1/2
. ]
o Fligiziz, o = |, (/0 g0 7 f 0 de) (b

for the torus and finite channel domains, respectively. In the case of a finite channel,
we need to include an extra first-order derivative in x, and thus we define the total
energy functional and energy dissipation rate functional, respectively, as

(2.4) Erw(f) = Z quﬁaafHL%L%"L?‘mv
|| <1

and

Drw(f)= Y 19%la.b.cllprgs g2,

2.5) lo|<1
+ Z ||wq,19{1—P}3af||L]%L2TL)2q.v’D,
lo|<1
where 8% = 9% = 0%05205 with @ = (a1, 02,a3) a standard multi-index.

Further, the macroscopic part (a, b, c¢) is defined by (5.I) below, and the norm
-1l 1 1212 only in the 7- and x- variables for a function g = g(¢, x) is understood
Kk *1

in the same integration order as the norm ||[|;1;2 ;2 :
k~T"x1.v.D

T r1 — 1/2 _
lellyoez, = || ( [ [ 17ss ax dr) a5(%).
ke zz\Jo J—1

When w = 1, we will use &7 (f) and 27 ( f) for brevity to denote the norms (2.4)
and (2.5)) without the weight (1.25).

For any given ¢t > 0, we define the following norms in x and v:
g0 ()l 1 12 = /Z g o Fe f 0K AT (K)
k

and

g0 fOy2z,, = [ 0o Zef @R 2, 42,

2
K

The corresponding high-order norms are defined by

lwgo fO)lly 12 = /Z Y wgp T f (0 2 dE(K)
k
and

g0 fOly 1z, = [ 0" lwgo Z 1B 5, | 4260,

k
where m is an integer.
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For the inflow boundary value problem in the finite channel case, we also define
the following norms to capture the boundary effect of the given functions g :

T
E@ =Y [ e avar
+ 0 J+v1<0
T 1,7 2 2
+ ff lvi| " |k -0)°|gx| dvdt
; 0 J+v1<0
T
2.6) X [ rtigPavas
+ 0 J+v1<0
T
X [ e P ava
+ 0 :|:U1<0

T J—
+y ff il + KPP IgE P dvdt,
+ 0 J+v1<0

and

@) E@D) = /Z VER@E®.

Other notations. Throughout this paper, C denotes a generic positive (generally
large) uniform constant and A denotes a generic positive (generally small) uniform
constant, where both C and A may take different values in different places. 4 < B
means that there is a generic constant C > 0 such that 4 < CB. A ~ B means
A < Band B < A. We also typically use n > 0 to denote a constant that can be
made arbitrarily small.

2.2 Case of the Torus

To state the main results, we are first concerned with the problem (PT) for the
Landau equation or the non-cutoff Boltzmann equation in a torus.

THEOREM 2.1 (Existence and large-time behavior). Let Q@ = T3. Assume that
fo(x, v) satisfies (1.16), (1.17), and (I.18). Let w, 9 be chosen under the assump-
tion (H) in (T.26). There is eg > 0 such that if Fo(x,v) = u + pt/2 fo(x,v) > 0
and

lwg.o follpt 12 = €0,

then there exists a unique global mild solution f(t,x,v), t >0, x € T3, v e R3
to the problem (PT) (L.I0) and (I.I1) for the Landau equation or the non-cutoff
Boltzmann equation, satisfying that F(t,x,v) = u + pY2 f(t,x,v) > 0 and

(2.8) lwgo fllprpsers +lwgw fllpizzre | < lwgs follpizz
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for any T > 0. Moreover, let k € (0,1] be defined in (1.27) or (1.28) for the
Landau case or the non-cutoff Boltzmann case, respectively; then there isa A > 0
such that the solution also enjoys the time decay estimate

29) 1F Ol 22 S e Nwgo fol 1z
foranyt > 0.

THEOREM 2.2 (Propagation of spatial regularity). Let all the conditions in The-
orem [2.1] be satisfied; then for any integer m > 0, there is an €9 > 0 such that

if
2.10) lwg,s folly | 13 = <o.

then the solution f(t,x,v) to (LI0)-(T:T1) established in Theorem 21| satisfies
[ sup g Fak) g 4200

0<t<T
T R 1/2
(2.11) +f (k)m(f |wq,19f(z,k)|§)dz) dX(k)
z3 0

= ||wq,19f0 ”Lllc.mL%’
forany T > Q.
2.3 Case of the Finite Channel

Next, we are concerned with the problem (PC) for the Landau equation or the
non-cutoff Boltzmann equation in the finite channel.

THEOREM 2.3 (Inflow boundary condition). Let Q = [ X T2 Let Wq,9 be
chosen under the assumption (H) in (1.26). There are g > 0 and C > 0
SMCh’ thatlf\FO(xlﬂxvv) = M + Ml/zfo(xlvfs v) 2 0’ F(l’il’fvv) = /"l’ +

u'2g (t,%,v) > 0forvy >0arx; = —landvy <0atxy =1, and
(2.12) D lwgpdfoll sz, + E(wg &%) < €o.
|| <1

then there exists a unique mild solution f(t,x1,X,v) to the inflow boundary prob-
lem (PC) (1.10), (I.11), and (1.14) for the Landau equation or the non-cutoff Boltz-
mann equation, satisfying that F(t,x1,%X,v) = u + u'/2 f(¢,x1,%,v) > 0, and

@13) Eru(F)+ Zru(f) = CL Y Nwesd® follpis,, + E(g s 8D},
loe|<1

for any T > 0, where &4, (f), D1w(f), and E(w, 98+) are defined in (2.4),

2.5), and @.7), respectively. Moreover, let k € (0, 1] be defined in (1.27) or

for the Landau case or the non-cutoff Boltzmann case, respectively; then there is
A > 0 such that if

E(wys8x) + sup E(* L) <

s>0
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for €y > 0 further small enough, then it holds that

N0 f Oz, , €M Y0 lwgsd® folliz,
(2.14) la|<1 la|<1
+ e M" {E(wqgaﬂ) + sup E(e'lskﬂ)},

§>0
foranyt > Q.

THEOREM 2.4 (Specular reflection boundary condition). Let Q@ = I x T2. Let
wg.9 be chosen under the assumption (H) in (1.26). Assume the symmetry condi-

tion (I.22), and let fo(x,v) satisfy (1.19), (1.20), and (1.21)). There are g > O
and C > 0 such that if Fo(x1.%,v) = i + /2 fo(x1,%.v) > 0 and

o
2.15) > lwgpd® follirz, , < eo.

ler]<1

then there exists a unique mild solution f(t,x1,X,v) to the specular reflection

boundary problem (PC) (I.10), (I.T1), and (I.13) for the Landau equation or the
non-cutoff Boltzmann equation, satisfying that

F(t,x1,Xx,v) = M—l—ul/zf(t,xl,)?, v) >0
with f(t,—x1,X,—v1,v) = f(t,x1,X,v1,0) and

(2.16) Erw(f) + Pruw(f) < C D lwgpd® follLrrz

le]<1

for any T > 0, where &7, (f) and D1, () are defined in 2.4) and 2.5), re-
spectively. Moreover, let k € (0, 1] be defined in (L27) or (L28)) for the Landau
case or the non-cutoff Boltzmann case, respectively; then there is A > 0 such that

o —At¥ o
(2.17) 2Oz, S Y wgod follrsz,
lee]<1 loe| <1
foranyt > Q.
THEOREM 2.5 (Propagation of spatial regularity in x). Let all of the conditions in

Theorem [2.3| and Theorem [2.4| be satisfied, then for any integer m > 0, there are
€0 > 0 and C > 0 such that if

(2.18) > ||wq,l93°‘f0||Li_, L3, T E(wg9 (k)" %) < €o,
|a|§1 Sm
and
o <
(2.19) 2 g od® foll 12, = o,

loe]<1
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hold in the place of 2.12) and [2.13)), respectively, then we obtain that

(2.20)

3 /Z B sup g0 0. F) 42 (B

laf<1 O=t=

. T o 1/2 _
+ 3 L@ ([ s Tipar) az®

ler]<1

S Mot follzy gz, + Ewes(B) gD},

o] <1

for the inflow boundary condition, and

(2.21)

S [ swp g7 6Bz

ol <1 0=t=T
B _ T . 1/2 3
£ 30 [@m([ s ) asd
jaj<1 2 0
< (04
$ 20 lwgod foller sz
lr]<1

for the specular reflection boundary condition, respectively.

2.4 Comments

Here a few comments are in order on the results of this paper.

(a)

(b)

As mentioned before, the global existence of classical solutions close to
the global Maxwellians was established in [45] for the Landau equation
and in [43] for the Boltzmann equation without angular cutoff both in the
torus. To the best of our knowledge, the current results seem to be the
first ones to revisit these global existence theories in a new function space
with mild regularity in both space and velocity variables. The proof can
be carried out in a unified way for the Landau and Boltzmann cases. The
function space
Ly LPLy N L L3LS p

appears to be very useful for treating the global dynamics of Landau and
non-cutoff Boltzmann solutions in perturbation framework.

In the case of a finite channel, to the best of our knowledge these results
may be the first ones to provide an elementary understanding of the ex-
istence theories for the Landau or non-cutoff Boltzmann equations in the
situation where the spatial domain has physical boundaries.

As mentioned before, the singularities can generally form for solutions
to the boundary value problem. When the boundary condition is specular
reflection, we have made an essential use of the symmetric condition (1.22)
on the initial data, which then also remains true for the solution. The sin-
gularity is killed by such a symmetric property of solutions. It turns out
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that without this symmetric assumption, the corresponding results are still
unknown. For the inflow boundary value problem, the singularity is trans-
formed to the boundary data; see the boundary energy functional as in (2.6)
or (2.7), which is induced by the estimates on the normal derivatives 0y, f
in terms of the equations as in below.

Another issue is related to the case of the diffusive reflection boundary
for which it seems too hard at the moment to treat estimates on the bound-
ary terms in our settings. Of course, with the developments in this work,
we are still far away from dealing with the existence of solutions, even lo-
cal in time, for the Landau or non-cutoff Boltzmann equation in general
bounded domains.

Regarding results on the propagation of spatial regularity, it should be
pointed out that it may be unnecessary to require the smallness assump-
tions on the m™-order derivatives of the initial data as in (2Z.10), (Z.18), and
(2.19). Indeed, since the initial data is assumed to be sufficiently small in
the function space without the Fourier mode {k)™, one could try to use an
induction argument together with interpolation techniques and time decay
properties of solutions to obtain the similar results to those in Theorem[2.2]
and Theorem [2.5] under the only assumption that the m-order derivatives
of initial data have a finite norm in the space L}CL% with an appropriate
velocity weight. For brevity of the presentation we will not pursue such
improved results in this paper.

(d) The question of the regularity of the obtained solutions in our situation of

the global existence theory is an interesting issue to be further studied. This
is because either the Landau operator or the non-cutoff Boltzmann operator
both enjoy the velocity diffusion property, and the spatial regularity could
also be gained through the hypoellipticity techniques of such collisional
kinetic equations; see an aforementioned work [20] and references therein.

3 Strategy of the Proof

In this section we shall present the strategy of the proof. In particular, we will

explain how to obtain the uniform a priori estimates on the solutions in the function
space X7 = LIICL%OL% for the problem (PT) in the torus case Q2 = T3. For the
problem (PC) in the finite channel case @ = (—1, 1) x T2, we can carry out the
same strategy to treat the periodic variable X = (x»,x3) € T? with some extra
consideation for the variable x; € (—1, 1); this will be clarified in Section later.
In this section we will not include any velocity weight in order to increase the
claritiy of the exposition. The local-in-time existence of solutions will be studied
in Section[8]
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3.1 Non-Cutoff Boltzmann Case

For convenience of the presentation we first start from the Boltzmann equation
without angular cutoff. Let f = f(z,x,v),0 <t <T,x € T3, v e R3, bea
smooth solution to

(3.1 I f+v-Vaf +Lf=T(ff).

with prescribed initial data f(0, x,v) = fo(x, v). Taking the Fourier transform in
x € T3, we obtain

(3.2) 3 . k,v) +iv-kf(, ko) + Lk v)=Tf, H k).

Here, for brevity, we have denoted the operator
(33) (/. 9k v)

= [ B —uwom 26 (17 « 20010 - (7 + 20100 do du
where the convolutions are taken with respect to k € Z3:

[f @)+ gW)(k) = /Z S k=L)WY= (D),

[ @) * gk := /Z Sk =108 v)dZ ().

Then for this system we have the uniform estimate in the following proposition.

PROPOSITION 3.1. There is a universal constant C > 0 such that

L, s 1k dx0

30<t<T
T R 1/2
+/ (/ I{I—P}f(t,k,-)l%)dt) IS0
73 0

< ||f0||L/£L%

I/ Lt pser2 T , 1/2
(o (i)

forany T > 0, where the constant n > 0 can be arbitrarily small.

3.4)

PROOF. Taking the product of (3.2) with the complex conjugate of f (t,k,v)
and further taking the real part of the resulting equation, we have

. o
STk P + R(LF. P = 2 E T ). D,

where ( -, -) denotes the complex inner product over the complex field, i.e., (f, g) =
f - g, and Z denotes the real part of a complex number. Integrating the above
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identity with respect to v and then ¢, we have

1, - t ~ A
s Nk + [ #WF Pzar
' 1~ bAoA
= Stk I2; + /0 #EF, D). Pz dr.

where correspondingly (-, ) L2 denotes the complex inner product over L%, ie.,

(f.onz = [ f)Ew.

Recall that by the coercivity estimate of L (cf. Lemma [A.2)), there is 69 > 0
such that

Sol{T—Piglp < #(Lg. 82
Thus it follows from (3.5)) that

1 - t ~
Sk +80f0 L= P} de

1, - L N A A
< MG + [ #EG D). Pz
Taking the square root on both sides and using the elementary inequalities

1
E(A+B)§\/AZ+BZ§A+B,

we further have

1 R t R 1/2
LNk e + J%(/O =P} 7 ek ) dr)

NG
~ t A 1/2
s||fo<k,.>||L5+ﬁ(/O \%(F(f,f),f)L%\dr) |

So, we have derived, forany 0 <t < T and k € 73, that

R t R 1/2
1tk )2 + (/ {I—P} f(r.k,)|} df)
(3.6) 0

1/2
df) },

~ t ~ ~ ~ ~
< co{||fo<k,~)||L% + ( fo BES . Dz

with
V2
= >0
min{1/~/2, v/8o}
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Moreover, taking supy <, <7 on both sides of (3.6) and then integrating the resulting
inequality with respect to d X (k) over Z3, we have

L, s 17wkl ds®)

30<t<T

T R 1/2
3.7) +fZ(/ |{I—P}f(t,k,~)|%)dt) dx (k)
3\Jo

R T . 1/2
<cllfleyiz + [ ([ 1EF A Pglar)  azaol.

In what follows we will estimate the last term on the right-hand side of (3.7).
Indeed, it can be bounded as

ro e
/ (/ I(F(f,f),f)Lgldf) a3(k)
Z3 0

T ~ ~ N 1/2
= f (/ / If (k — l)IILgIf(l)IDIf(k)IDdz(z)dz) a5 (k).
z3\Jo Jz3
in terms of the trilinear estimate in the following lemma.

LEMMA 3.2. It holds that
39 [T D). hk) 5| < € /Z 7 =Dl 8DIplh(K)|p d (D).

3.8)

PROOF. By the definition (3:3)) of (- -) as well as Fubini’s theorem, we obtain
(B 2)®). 2 (b)) 15

:/RszaszB(v—u,o)ul/z(u)

< {LF @) * 3WHK) — [F () % B@) (k) Vh(v. k)do du dv

:/R%ngfSZB(v—u,o)Ml/z(u)

x/ {7k —1LaNg(1) — Fk — 1)@ v)}i(v. k)d S (1) do du dv
Z3

- / / P(Fk — 1), g0k dv d2(1).
73 JR3
Therefore, it follows that
3.10)  [@(f. ). h(k)) 2] < fZ @k =1).20). k) 2]|d (D).

Recall either from [4} theorem 1.2] or from [43] theorem 2.1, p. 782] that one has
(3.11) (TCf8). M2l SfIpzlglplhlp.
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With the above inequality the desired estimate (3.9) follows from (3.10). This
completes the proof of Lemma[3.2] O

Remark 3.3. We remark here, in regards to the previous proof and what follows,
that the norm is equivalent to the norm N*¥ from [43] eq. (1.8), page 774];
this can be shown directly for example by using the estimates in [43]. See for
example [43} eq. (2.13), p. 784].

We continue to estimate the upper bound in (3.8). Applying the Cauchy-Schwarz

inequality with respect to |, OT (-)dt and further using Young’s inequality with an ar-
bitrary small constant n > 0, we have

r ~ ~ N 1/2
| (/ AR —z)||Lg|f<r,1)|D|f<r,k)|Dd>:(1)dz) (k)
Zy, 0 Z;

T R R 2\ 1/4
s/z(/o (/Z If(t,k—l)IILglf(t.l)IDdE(l)) dr)

T 1/4
(3.12) y / |f(z,k)%dz) a5 (k)
0

T 1/2
Y 2
< n/ﬁ (fo F 0k dr) 45 (k)

k

) T R R 2\ 1/2
o Z;(/o (/Z 170k =Dligl 7. Dlpd=()) dr)  dxo

To treat the second term on the right-hand side of (3.12)), we first use Minkowski’s
inequality to obtain

(3.13) IR P3y PP=R R PFY P3%

Then we have

T R R 2\ 1/2
([ (L 17ek=nigifenbaza) a)
0 Z;

r , A , 1/2
ffzz(/o ||f(lvk—l)IIL%If(t,l)lDdz) dx(l),

1

and hence it follows that

r ~ ~ 2 1/2
fz(_/ (fz||f(l,k—l)IILglf(lJ)IDdE(l)) dz) d3 (k)
Z3 0 Z;

1/2

-~ T ~
<[ [ s 1Fek=nig( [ 1FenB ) asdzo,
73 JZ 0

;o<t<T
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Further, by Fubini’s theorem and translation invariance, the upper bound in the
above inequality can be computed as

R T 1/2
L s 17k =i [*17eniar) asiazi
Z3JZ 0

7 0<t<T

T 1/2
= [z ([ 1Fenpa) [ azw s 1fek =Dl
zZ; 0 z}

0<t<T

R T 1/2
= 1F L o012 fZ(/O a3 dz) ds(D).

[

Then, applying those estimates above to the second term on the right-hand side of
(3.12) and further using (3.7) and (3.8)) leads to the desired estimate (3.4). This
completes the proof of Proposition [3.1} O

We remark that we have the identity

EF NPz = CF DA-P) 5.

Then using this identity one can modify the proof above slightly to obtain

T R 1/2
/ sup || £ (. k. )IledE(k)Jrf (/ |{1—P}f(z,k,.)|§)dz) dx (k)
Z3 0

0<t<T
R 1/2
S Wlzyze + 1l [ /O Tkl d)  aze

This indicates that as long as one can further appropriately estimate (such as in
Theorem [5.1| below) the macroscopic dissipation,

T R 1/2
/([ |Pf(z,k,.)|§)dz) dx (k)
73 0
T 1/2
~/ (/ |(cfb,\c)<r,k)|2dr) dx(k),
z3\Jo

where (a, b, ¢) is defined in (5.1]), we can then obtain the uniform estimates under
the smallness assumptlon on || f || L3 that can be closed provided that fy is
suitably small in L 112,

3.2 Landau Case

When the non-cutoff Boltzmann operator is replaced by the Landau operator
as in (I.2), we are still able to carry out the same strategy. Indeed, the nonlinear
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Landau operator (I.13) takes the following form (cf. [45] p. 395]):
3
. 1 . 1
I'(fg) = Z [9; (WY % (2 £}y, gl — (U™ * (vipe? f)}0y; g
ij=1

— 0o, LW 5 (200, )}g] + 0 (vip2 0, £))e].

We consider the linearized Landau equation of the same form as in (3.1)). Taking
the Fourier transform in x € T3 gives the same form (3.2) with the nonlinear part
now taking the form

L(/.8)
3
= 2 [Buly o (2 1)) s 00,81 = 40 0 (vin® )} 00,2
i, j=1 . 1 ~
— o, [0 0 (129, )} 5 8
{0 sy it )} e 2.

where %, denotes the convolution in v € R3 and #; denotes the convolution in
k € 7Z3. We now apply the estimate [45, theorem 3, p. 406] to directly obtain

(3.14)

LEMMA 3.4. The following estimate holds uniformly:
(D, 2)(K). h(k)) 2] 5 (1F 12 #k |281D) ) R

More precisely, the estimate above can be found in [77, prop. 1, p. 621], which
is a simplification of the original estimate from [45| theorem 3, p. 406]. We remark
that the estimates in those papers involve weights and derivatives, however the
above estimate in Lemma [3.4| only differs in the lack of weights and derivatives
and the inclusion of the convolution *; in the terms. And Lemma follows
directly from the exact same proofs. Based on the above lemma, one can obtain
the same estimate as stated in Proposition For brevity we omit the rest of the
details in the Landau case since they are the same as in the Boltzmann case.

4 Trilinear Estimates

In this section we will treat trilinear estimates by three parts. The first part is
concerned with the velocity-weighted trilinear estimates as used in (3.11)). More-
over, corresponding to estimating the left-hand term of (3.8), the second and third
parts are devoted to considering the velocity-weighted trilinear estimates on mixed
variables in the cases of the torus and the finite channel, respectively.

4.1 Trilinear Estimates in L% with Velocity Weight

We first give some basic estimates on the velocity weighted trilinear terms in the
following lemma whose proof can be found in [[76, lemma 10, p. 327] and [29,/36|
lemma 2.3, p. 176; lemma 2.4, p. 121], respectively. Note that for hard potentials
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corresponding to either —2 < y < 1 in the Landau case or y + 2s > 0 in the
Boltzmann case, we have ¢ = 0 and hence w, 3 = 1, namely, it is not necessary
to include any velocity weight in the hard potential cases. In fact, in all the cases
under the hypothesis (H), there is no need to include any velocity weight for the
purposes of establishing the existence theory. However, the velocity weight will be
needed for deducing the subexponential time decay in the soft potential cases.

LEMMA 4.1. Let (q. 1) in the velocity weight function wg » be chosen in terms of
the hypothesis (H) in (1.26). Then, for the Landau operator; it holds that

(0Cf 90, w2 oh) 12

< (||wq,19f||L%|wq,0g|D + |wq,19f|D||wq,z9g||L%)|wq,19h|D-

4.1)

Similarly, for the non-cutoff Boltzmann operator, it holds that

(C(f.8).wg o) 2]
(4.2) v

< (lhwgo fllz2lwgglp + lwes flplwgsglp2)lweshlp.
ify +2s >0, and

(N(f8) wg 5h) 2

S @2 wg s f 212l + 1) > gl 2lwgs £ 1p}lwg ohlD

4.3) .
+minf{lwg,s £l 201(0)> gl 2. llgll 2 | ()2 5w s £l 2} w0kl D
+llwgogl2 | () > wy g f|| 2lwg. kD,

ify +2s <.

4.2 Trilinear Estimates on Mixed Variables in Isotropic Case

Recall that we have derived (3.4) without any velocity weights. Given Lemma
@, we may employ the same idea to include the velocity weight w, » in our
estimates.

LEMMA 4.2. Let (q. 1) in the velocity weight function wy » be chosen in terms of
the hypothesis (H) in (I.26). Then, for both the Landau and Boltzmann cases it

holds that
|

k

1/2

T —
(/0 (C(f8).w] 9h),2 \dz) ds (k)

(4.4) = Cn(||wq,ﬁf||L;,L;9L% wt]ﬂ}gHL,{,LZTL%’D

g Fligizez aogly s

+ 7]||wq,19h ”Lll\'L%"L%,D’
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where the Fourier transform ~ is taken in x = (x1,x2,x3) € T3, n > 0is an
arbitrary small constant, and Cy, is a universal large constant depending only on

n.

PROOF. In the rest of this proof (-,-) denotes the L2 complex inner product.
We consider Proposition [3.1] and its proof. In particular, we recall (3.12)) and the
estimates below it. Then to show (4.4), it suffices to verify that

|(F(f8). wy 5)|

45 5 fZ ?(”wq,ﬂf(k =D 131g08DIp + lwg,s f k= DIpllwgs&D)lL2)

x |wg 9h(k)| , dZ(1).
Indeed, by (1.13), it holds that
@.6) (T(f.g) (k). w2 yh(k)) = fR % w2y E(0) T2 O(u f. u2 ) (k)h(k)dv.
Then, it follows from (I.3]) and (4.6) together with Fubini’s theorem that

[(FCF ) k). g 6)
/R% dv w2 512 (v) /Z?dE(l)

X o, [0 0 (12 £k = D) @)[00,80) = 20 |t
- [ avianio [ aso

X an {[W’m *y {(avm.]?_

T F) e~ zmi}]ui(v)g(l)}ﬁ(k)‘

Ao , =
/Z?dE(l) /R5 dv'(f(k l)vg(l))wq’ﬁh(k)‘

< fZ (Ot = 1.8, w2 yhh)) [dS0).
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for the Landau collision operator, and

|(C(f g) (k). h(k))|
A dr i du /8 do Bu @yl o (Fa)g@)k) - .mxm)ﬁ(k)‘

1 2
/]R% dv /11;3 du - do B//ﬂ(u)wq’l9

x /Z AWk =g ~ fak - 1)@(1))}7@)‘

/SdZ(l)/S dvF(f(k—l),g(l))w;ﬂlf(k)‘
z; R3

< /Z (Gt~ 1).20).w2 i) [dS0),

for the Boltzmann collision operator. Hence, from the above two estimates, one
can further derive (4.3) with the help of (@.I)) for the Landau operator, and (4.2))
and (@.3) for the Boltzmann operator. This completes the proof of Lemma.2] [J

The following lemma will be useful for dealing with the nonlinear terms arising
from the macroscopic estimates in Section The proof of Lemma.3]is omitted
for brevity of presentation, since it is similar to and much easier than that of Lemma
H.5]below in the case of the finite channel, where the proof will be provided.

LEMMA 4.3. Assume that {(v) depends only on v and decays rapidly at infinity.
Then, for |«| = 0, 1, it holds that

r , \1/2
/Zz(/o [(Z=0(f. ). () 2| dt) ds (k)

= C(”f”L}\,L%"L%”g”L,“,LZTLiD + ”f”L}‘LzTL%D”g”L}\L;’PL%)

4.3 Trilinear Estimates on Mixed Variables in Anisotropic Case

Similar to the proof of Lemma the proof of the following lemma is also
based on Lemma and some significant properties of the L}; Wiener algebra
space A(T?).

LEMMA 4.4. Let (q,1) in the velocity weight function wy y be chosen in terms of
the hypothesis (H) in (1.26). Then, for both Landau and Boltzmann cases it holds
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that for |o| = 0, 1, we have

T 1/2 _
/22(/0 \(%r(aa,f,g),w;,ﬂm\dz) ds (k)

< C,,(qu,ﬁaafHL;_,L;?L%l.u

1 1 2
k THlev.D

4.7)
T qu,ﬁaafHLLLz 212,12 Wa98lrirsen 12)
+ 1w, ﬂhHL L1213, L2,
and
T 1/2 B
/Z2 (/0 (Z=T(f, aag),w;ﬂ@‘dl) dx (k)
3
(4.8) = C’?(Hw%ﬁaagHLl%L‘;f’L%l,v Lr2Hl 12,

+ ” Wy, ﬂaagHLLLZ L3, 12, qu,ﬁfHL}?L‘}OH}IL%)
+ 77||wq 19h||L 172 L}CIL% D’

where the Fourier transform ~ is taken in X = (xo,x3) € T2, the inner product
(-,-) is taken over L%l,v where x1 € I = (—1,1), n > 0is an arbitrary constant,
and Cy is a universal constant depending only on .

PROOF. We only prove (4.7), since the proof of @.8) is very similar. For this
purpose, we first show that

(Z=L@ f9)w] k)2

@9 5 [ f[(hao®T F=Dlzluno®
+ |wqp 9% f (k = D)| p | wg, ag(l)HLz)lwq shlp dx1 d= (D).

To verify (4.9) for the Landau operator or Boltzmann operator, similarly to the
proof of Lemma.2] we get from (I.13)) and Fubini’s theorem that

(4.10)  |(F=L(@* . g) (k). wﬁ,ﬁ(’;))ml,v |

= | ax [ avwi ot zcontivg n 0 BA(R)

— /Idxl /R% dv /ledE(l_)F(a/"‘?f(l;—l_),(’g\(l_))w;ﬁ}?(l?)‘ -
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= /Zlgdz(l_)/]dX1 /RE dv F(a/a\f(];_l_)“’g‘([_))w;ﬁil\(lg)

< [ /0@ E =D 20wy ) azD.

Hence (4.9) follows from (@.10) with the help of Lemma.1]| Next, we let J denote
the left-hand term of (4.7):

1/2

T —
J = /Zz(fo ‘(ﬁg[‘(a‘)‘f,g),w‘?,ﬁ}DL%I.v‘dl) dX (k).

Then by applying (4.9) together with the functional Sobolev embedding inequality
lglLoey S ”g”Hl(I), one has

_ e 2
J </Z2 (/ /zz 3w f kD |woe §(1)||DdE(l)||wh(k)HDdt) dx (k)

Ta'<1

N
/(// S |wi 7 & D p |wie §(Z)||d2(l)||wh(k)||Ddt) as(®).

Ta'<1

Now above and in the rest of this proof the norm ||-|| is L§1 , and the norm |||/ p

is as defined in (Z-I). Also the above integrals both contain an implicit d £ (k), and
the weight w = wy » as usual.
It further follows from the Cauchy-Schwarz inequality in the time integral that

B 12 1/2 B
156 (/ [f S g 007 (& = 1| 104,90 (1)||Ddz<z)} dt) i)

T a'<1

+c,7/ (/ [/ S g0 7 E D 00,02 g(z‘)||dz(z‘)rdt)l/2dz(/€)

Ta'<1

T o 1/2 _
+ "/zg_,([o }|wq,0h(k)||f)dt) ds (k).

for an arbitrary small constant 7 > 0. Now we use Minkowski’s inequality as in
(3.13)) to deduce from the above estimate that

NV
15y s ||wqﬂa“f<k)||dz<k>/ (/ > a2l ar) )

a’'<1

— - L 12
+C,7/22051£ Y llwq0d% g(l)HdE(l)/Zi(/o ||wq,198°‘f(k)||§)dt) dx (k)

St=lgr<

PNV S
h(k)|p d dX(k),
o [ ([ wasi@l )~ axed
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that is,
J 5 Cylwg,0" f HL%L%OL%I,U ”wq,l?g”Li—,LzTH}lL%.D
+ Gy qu,ﬂaafHLi_,LzTL%lL%.D lwa,08llLLrsemy, L2
- ”“wq,ﬂﬁHL%L%Lil 12,
This then proves {.7), and thus completes the proof of Lemma 4.4 O

Similar to Lemma[4.3] the following lemma will be used for treating the nonlin-
ear term in the macroscopic estimates. We will provide a brief proof for complete-
ness.

LEMMA 4.5. Assume that ¢ (v) depends only on v and decays rapidly at infinity.
Then, for |«| = 0, 1, it holds that

! 2 1/2 —
/Z(fo [(F2r @ f.0).60) 2122 dt) I

.11
< C(||3°‘f||L;__L§9L§1,v ”g”L;ﬁ—,Ler}lL%.D
00 F ez 02,02 N8Nt rsemy, 12)
and
T ) 1/2 _
/Z . ( fo [(F=0(£3%9).¢) 2 [ 12, dt) d= (k)
(4.12) ‘

= C(Haag”L]{__LC%OLgcl.v ”f”L/{—,LzTH}IL% b
o
+ 0 g”L/{TI}TL%lL%,D”f”Ll‘?L?PH}IL%)'

PROOF. As in the proof for Lemma [.4] we prove (@.I1) only, since the proof
of (@.12) is similar. Firstly, to treat the left-hand term of {#.12)), we write that

T ) 1/2
( /0 [(Z2r @ f.0).£0) 2172, dr)

T o _ _ 2 1/2
_ (/0 /I(fR%/Z%r(aaf(k—1),§(1))§(v)d>:(1)dv) dt dxl) .

From Lemma[4.1] the above term is bounded by

! @ T - -\? 1/2
Cg(fo fz( leHa f(k—”HLglg(l)lDdz(Z)) dt dxl)

! T T T —\?2 1/2
+C;(/O/I(/Z%Hg(l)HL%\a f(k—l)\Ddz(z)) dtdxl) ,

(4.13)
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where C¢ > 0 is a universal constant depending only on {. Furthermore, by
. o : . - . :
Minkowski’s inequality ||| ”L}”L%xl < ”L%,xl ||L11, #@.13)) is then bounded

by
r T A~ N2 1/2 _
R fZ[g(/o /I(Ha flke=D]z18Dp) dtdxl) dx(0)

’ (1 oL T 2 1/2 _
+C§/Z]Z(/(;/;(||g(l)||L%‘a FE-D)|,) dtdxl) =0,

According to Sobolev’s inequality ||gl|zoc(r) < €]z (r)- the above term can be
bounded by

T, 1/2 _
> ([ 1@l ar) axd

0<a1<l1

T . _ 1/2 _
Lil.v(/o ||a“f(k—z)||f)dz) as().

c *f—-T
E/Z;OE?ET” Sk=Dlpz
(4.14)

w3 )

2
70=1=T g<q <1

Consequently, (4.11) follows from taking the integration of (4.14) in ke Z% with
respect to d X (k) and further applying Fubini’s theorem. This completes the proof
of Lemma O

5 Macroscopic Estimates

Throughout this section, we let 7 > 0 be an arbitrary fixed constant. We further
emphasize that the universal constant C > 0 in all estimates below is independent
of T. Let us start from the macro-micro decomposition of the solution f; i.e., we
split f as f =P f + {I—P}f, where

5.1) Pf=1{a+b-v+(vf—3)ciuz.

This expression above defines [a, b, ¢], where [-, -, -] represents a vector.

5.1 Isotropic Case

In this section we will derive the uniform a priori estimates for the macroscopic
part of a solution to the equation

(5.2) G f+v-Vyf+Lf=H, >0 xeT?veR?

with initial data given as in (1.11]), where generally the inhomogeneous source term
H = H(t, x,v) is assumed to be a functional of an arbitrary distribution %(z, x, v)
and H = H(h(x,v)) € A +(L), where A4 L(L) is the perpendicular to the null
space of L for any ¢ and x. For the proof we will follow the same strategy as in [32]
by the dual argument.
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THEOREM 5.1. Under the assumptions of Theorem[2.1] it holds that
||[a,b,(7]||L]1\,L2T < ”{I_P}f”L}\_LZTL%_D + ”f”L}\L‘}"L% + ||f0||L;1\L%
(5.3) T - 1/2
([ dacshpa) aswo,
z3 \Jo
where the inner product in the last term is taken over L? in v.

PROOF. By taking the velocity moments
1 1., 1 S 1
p2ovjpz, (I =3z, (jom — Duz. (" =3)vu2

with 1 < j,m < 3 for the equation (I.I0) with I'(f, f) replaced by H, one sees
that the coefficient functions [a, b, c] = [a, b, ¢](¢, x) satisfy the fluid-type system

dia+ Vx-b =0,

0¢th + Vi(a+2¢)+ Vi - O{I-P} f) =0,

(54)  {dic+ IVe-b+ IV AGT-PYf) =0,

0[O;m({I =P} f) +2c8jm] + 0;bm + Omb; = Ojp(r + h),
A ({I=P}f)+0djc = A;(r + ),

where the high-order moment functions
© = (Ojm(-))3xs and A =(A;(")i<j=3

are, respectively, defined by

Ojm(1) = ((ym =Dt £). Ay(f) = 6 (0 = Syt 1)

with the inner product taken with respect to the velocity variable v only, and the
terms r and h on the right are given by

r=—v-Vo{l-P}f, h=—-L{I-P}f+H.
Note that the conservation laws (I.16)), (I.17), and (T.18) imply that

la, b, c](t,0) =0

for any ¢ > 0.
In order to carry out the estimate in a unified way, we take a general function as

D(t,k,v) € C1((0,00) x Z3 x R?),

which will be fixed later according to the different cases that we study. Applying
the Fourier transform to (5.2)), taking the inner product of it and ® in L2, then
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integrating the resultant over [0, T'], we have
o~ o~ o~ o~ T o~ ~
(F- Dl ~ (F®)limo = [ (FL0D)s
0

T T T
—/ (f,v-ikd)dt +/ (Lf,®)dt :f (H,D)dt.
0 0 0
Note that above and in the rest of this proof, (-,-) = (-, ") 12- Here we have used

the shorthand notations (f, EIS)|t=T = (‘f, &3)(7“) and (f, <’I\>)|t=0 = (f, &3)(0).
Plugging in the macro-micro decomposition yields

T -~ ~
—/ (Pf.v-ikd)dt
0 - o r A A
= (f,cI>)(0)—(f,cI>)(T)+/0 (f.0,D)dt

T T T
—i—f (@=P)f,v-ikd)dt —/ (Lf,®)dt —i—/ (H,®)dt.
0 0 0

Now we will define the following notation:
1= (/. D)) - (/. )T,
Sy = [T (f. 8, D)d,
Sy = [T(A—-P)f,v-ikd)dt,
Sa=—[T(LF ®)dt + [] (H, Dydr.

First, we consider the estimate of ¢. We choose

® = O, = (|v]* = 5){v - ikde(t.k)}n>,

(Sl

where ¢, satisfies
(5.5) kP ge(t. k) = 2(t. k).

Note that since &(¢,0) = 0, we formally write ¢(z,k) = &(t,k)/|k|? for any
k e 73 with the understanding that we define ¢ (¢, 0) = 0. By this choice, we can
calculate that

T
—/ (Pf,v-ikd)dr
0

T
=—Z/ (@ +b-v+ (v =32, vjik;dc)dt
i 0
r ~ N 2 A 1 2 1 ~
=-> [ (@ +b-v+ (v?=3)Euz, vjv,(v]? = 5p2 (—kjkn)de)dt
. 0
Jsn

T ~ T
_ / @ (kPdo)di = [ e k)R dr,
0 0
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where we have used the orthogonality of the different integrands for the third equal-
ity.
Now we estimate the S;’s. Due to k € 73 it holds that

| D (1. k)| < Cutlklge(t. k)| < Cut |k[P|e(t. k)| = Cpu#|e(e. k),
and then we have ||&>c(t,k)||L% < et k)| < ||f(t,k)||L%. Thus
[S11 S 1/ . D2 + 1 o)
To obtain the estimate of S5, we first notice

18:8(2.K)| < [k|(1b(, k)| + KI=P}f (k)| p)

by the third equation of (5.4)). Therefore, we have

T T
|Sz|§/ |(.f,at<1>c>|dr=/ (1= P} F. 3,)dr
0 0
T T .
S0 Wde by cy [ 1n-Pfe o dr

T 13,6t k)2 g 7
5,,/ Mdt+c,,/ =Py f (. k)l d
0 k|2 0

T T
<n f B P di + f =P} 1) dr.
0 0

Note that the equality above is due to the choice of the velocity moments in the
definition of ®.. By Holder’s inequality and (5.3]), we have

T T
Sl [ 1eeRPdr+ Gy [ =P C 0 di.
0 0
Regarding the estimate of S4, we can also show that
T T R
Sl [ 1660Pdr+ G, [ =P d
0 0
T -
¢ [ ACkL bR ar

In particular, in S4 we use that L f = L{I-P} f , and then we can use the estimate
[43] eq. (6.12) on p. 819], recalling also Remark [3.3} then, similarly to the estimate
for S, the above estimate follows. Summing up the estimates of S;’s with n > 0
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suitably small, we obtain
T
/ |&(e, k)|? dt
0

-~ ~ T -~
6O SIE DI+ 1A®IE 0 [ bR

T T
+ Cn/ =P} F R dr + Gy / (A0, p)dr.
0 0

Next, we consider the estimate of 4. For this purpose we choose

3
d=0y= Y O} J =123,

where
. {olPvmvsikmds (1K) -4 J@h = Diksds (3. J #m,
22 = Dikygs(t. bz, J =m,
and
(5.7) K2y (t.k) = by(t.k).

Note again that since Z?\_] (z,0) = 0, it is valid to write 651 (t.k) = I;J (t.k)/|k|?* for
any k € Z3 with ¢ (¢,0) = 0. Under this choice we have

3 T N R
— Z/ (Pf.v-ik®]™)dt
— Jo
——Z/ Z G@4+b-v+ (WP =3 uz,v- szIJJm)d

> /(vmvmzbf o Pumuy i (<)

m= lmyé.l

S / (om0 183 B [0 0mv s 13 (ks ko))t
m= lmyéJ

Ly f (b, (—k s o))t — / by, (—K3)f)di

m=1m#J

——72 / by (~k2)dr)di =7 / bs(a k)P dr.
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The cancellation of the terms above is due to the choice of &’b- Here we will only
establish the estimate of S, since the other terms can be controlled similarly using
the methods in the previous case. Since the second equation of (5.4)) gives

18:b(2, k)| < k|(I(a + e)(t, k)| + {L—P} £ (¢, k) |p),
it holds by that

T T
15,] < 2/ (=P} 70,8 ™)|ds +Z/ (BF.8,8]™)|dr
o, 5 T R
< nz/ [3: 87" 1. 1) 7 dt+C,7/ L= P} f (1. k)3 dt
o Jo 0
T
+c,,/ 2, k)2 di
0
T T R
$0Y [ okdseoRde+ G [ vk
—Jo 0
T
+C,7/ |6t k)|? dt
0

T T T
< n/ \aqe, k)|* de + C,,/ |6t k)|? dt + C,,/ {I—P}f(t,k)|3 dt.
0 0 0

Here in the second line we again have used the orthogonality in the v-integration
for the estimate of

T o~ o~
/O (P, 3:®;™)]|dz.

One can then deduce that

T o~
/ |b(t, k) |> dt
0

. . T
< | fk, T)Ili% + ||fo(k)||§% + n/ a(t, k)|*dt
(5.8) 0

T T
+ cn/ 8, k) dt + cn/ I —P}F(t.k)3 dt
0 0

T
~ 1
+Cnf0 QAR R dr,

where 7 > 0 can be arbitrarily small.
Lastly, we consider a. We set

&=, = (Jv]> = 10){v - ika(t, k) >

where ¢, is a solution to

kP ¢a = a.
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Note again that since a(z,0) = 0, it is valid to write ¢,(¢.k) = a(t,k)/|k|? for

any k € 73 with the understanding that we define ¢, (¢,0) = 0. For this choice
the inner product of the macroscopic part is recast as

T
—/ (Pf,v-ikd,)dt
0

T
— =Y [ @4 Bev e+ (o = 3ol 10 k)i
j.n

T ~ T
=5 / @. 1k Pda)di = 5 / @G o dr.
0 0
By the first equation of (5.4)), one has
8,a(t. k)| < k||b(t. k)],

and then we have
T

T
|Sz|§/ |<{I—P}f,at<1>a)|dr+/ (P F, 0, ®0)ldr

0 0
T R T . TA

< [ iadain;dos [ n-pfe oo [ besrd
T T R T _

< / ek dalt, k) dt + / (L= Py F (k)3 de + / bl di
0 0 0

T T
s/ |b<z,k>|2dz+f (L= Py A b3 dr.
0 0

Therefore similar to the previous cases we obtain

T
/ la(t. k)| dt
0

-~ ~ T -~
69 I + 1AEIE + [ beoPa

T

T
_pF 2 iy 12
+/0 1 P}f(f,k)IDdtJr/O (A0, )2 dr.

Combining those estimates (5.6), (5.8)), and (5.9) yields the desired estimate (5.3).
This completes the proof of Lemma [5.1] O

5.2 Anisotropic Case with Boundary

In this section, we derive the important estimates for the macroscopic part of
the solutions to the problem (1.10), (I.11)), (1.14), and (1.T3]). Recall the macro-
micro decomposition (5.I). Given a function H = H(h(x,v)) € A (L), we
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then consider the linear problem
O f +vide f+T-Vif +Lf =H, 1>0,
(x1,X) € Q, v=(v1.7) € R3,

with the same initial data (I.11)) and the boundary condition (1.14) or (T.13). As
in the torus case, the H !-estimates of the coefficients [a, b, c](t, x1,X) will be
obtained by using the dual argument as in [32]. We would like to emphasize that
the computations in our situation are more complicated than those in [32]], since the
function space that we are using here is anisotropic. We shall give the full details of
the proof for completeness. Before doing this, we first define the boundary integral
functionals:

(5.10)

T
|T?,w(h)|2=/0/ Olvllw;ﬁlh(r,l,v)ﬁdvm
(5.11) vi>

T
+// viw] glh(e,—1,v)* dv dt,
0 Ju<0 ’

for particles with outgoing velocities on boundaries x; = =£1, and

T
Trw®?= [ [l e 1o dvas
(5.12) V=

T
+// vilwy oA, —1,v)*> dv dt,
0 Ju;>0 ’

for particles with incoming velocities on boundaries x; = +1, where the argument
h = h(¢,x1,v) is a distribution function that is well-defined on the boundaries.
For the shorthand notation, we set T%(-) = T%,w(-) in the case when w = 1,
i.e., when there is no velocity weight.

THEOREM 5.2. Assume all the conditions listed in Theorems 2.3l and 2.4 are valid
and let H(h(—v1)) = H(h)(—v1). For |a| = 0 or 1, it holds that

0%(a.b el iz 13

xl,v

S 2 ME=P flliye 2 2+ D0 10 FllLirsers,

le|=1 lor|<1

b0 ol +E@ + Y [ 1T EIE®
(5.13) lal<1 jal<1”Z
1/2

T ! ) _
+ Z/ZZ(/O | (@ H . p#)2| dt) d¥ (k)

l]<1

)
7.2

_(H —
Tr (W)‘dE(k),
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for the inflow boundary condition (1.14), and

X1.V

||3a[a,b,c]||LI%L2TL2

S 2P fllp2 2 2

X1~ v, D
lo|<1
(5.14)
+ 2 10 Fllprrgenz, , + 20 10" follasz
o<1 lor|<1
T , \V2
n Z/ (/ H(aaH,/JLZ)L%H dt) dx(k),
=172 \Jo

for the specular reflection boundary condition (L.15).

PROOF. In what follows we only show that (5.13) and (5.14) are valid for 9% =
dx, witha = (1,0, 0), since the proof in other cases is quite similar.

Acting 0 := 0dy, to (5.10) and taking the Fourier transform of the resulting
equations with respect to x, we have

(5.15) 3:9f + v10x,0f + ik -vaf + Ldf = oH,
with the corresponding initial data

(5.16) 0. x1,k,v) = folx1.k,v),

and the inflow boundary condition

GAT)  ft =1k v)|y=0 = &=t k.v),  f(t, 1.k, 0|0 <0 = 31 k. ),

or the specular reflection condition

,f(t’_l’];vvlvg)|v1>0 = .]?(l‘,—l,];, —V1, 6),

(5.18) R B S
f(t’ 1,k,l)1,l))|v1<0 = .f([v lakv_vl, U),

We note for clarity that in the proof of Theorem [5.2]the Fourier transform is always
taken with respect only to X.

Remark 5.3. Since H(h(—v1)) = H(h)(—v1), it is easy to see that if f(z, x1, X,
v1, V) is a solution of (5.13), (5.16), and (3.18) with fy(x1,v1) = f(—x1,—v1),

then

,f([’xlaf’ vl’ﬁ) = f([’ _xlaf’ _v1’§)~

We also note that if H = ['(h, h), then the property proved in [48, lemma 3.1,
p. 637] guarantees that H(h(—vy)) = H(h)(—v1).
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Similar to obtaining (5.4)), one has the following fluid-type system for the coef-
ficient functions [a, b, c]:
d1a + 0y, b1 + 35 -b =0, b = (bp.b3),
0th 4+ Vi(a +2¢) + V- O({I-P}f) =0,
(519)  {dc+1Ve b+ LV, AGI-P} ) =0,
0[O im({I =P} f) + 2¢8jm] + 0bm + Ombj = Ojp(r + h),
atAj({I— P} f) + ajc = Aj(]l“ + h),
where the terms r and h are given by

r=—vdy{I-P}f—v-Ve{I-P}f, h=-L{I-P}f + H.

We also recall the definitions of A; and ®;,, below (5.4).

Let ®(r,x1.k,v) € C'((0, 400) x (—1,1) x R?) with k = (kp.k3) € Z* be
a test function. Taking the inner product of ®(¢, x1, &, v) and (5.15) with respect

to (x1, v) and integrating the resulting identity with respect to # over [0, T'] for any
T > 0, we obtain

(3F. B)(T) — (3F. 3)(0) — f (F, 9, ®)dr — f (0F v Vo 2®)dt
0 0
T o R T o R T e
4 /0 (0137 (1), B(1))dr — /O (013F (=1, (= 1))dt + /0 (LT, &)di

T — A
= / (0H , D)dt.
0
2
X1,V°
the inner product (-, -) is always with respect to L%. The above identity together

with f = Pf + {I— P} f implies that

In the rest of this proof the inner product (-, -) is always with respect to L and

T 5
(5.20) —f OPf . v-Vy x®)dt = Y S,
0 —1

where §; (1 < j < 5) are defined by

S1 = (f, ®)(0) — @f . D)D),

Sy = [1(@f, 8, D)dt,

S3 = [y (1—Pf . v- Vs, x®)d1,

Sy = — [T (Lof . D)dt + [ (GH. D)1,

Ss = — fo (v1df (). ®()dt + [ (v13f (~1), B(~1))dt.

Estimates on ¢(t, x1, l;): We choose the test function

(S

& =0, = (v = 5){v- Vi, ze(t, x1.0)}p2,
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where

(521) = 0%, 6c + [kPge(k) = de(k),  pe(£1.%) = 0.
It is straightforward to see that

(5.22) ||$c||HAzf1 + [kl ell < l19el.

Here and in the rest of the proof of Theorem for brevity we shall use ||| =
[-l;2 to denote the L? norm in x; only if the function inside the norm only
X

depends on x;. If the function inside the norm depends on both x; and v, then
in the rest of this proof we shall also use ||-|| = ||-|| 2, without any risk of
1:

ambiguity. Using the definition (5.1)), we have
P/ ={a+b-v+ (v -3)&u.

Then one has

T
- / (0P f.v-Vy, x®)di
0

T % 55 -~ —
:_Z/O ({8a—f—ab-v+(|v|2—3)8c}u%,vjajcpc)dt
j
T . R . L
B _Z/o ({0a +3b - v + (v = 3)de 2, vjva(vl® = 5Hn2d;dn¢c)dt
j.n

T T
=Y [ e = [ i@ d.
~ Jo ' 0
J
We now turn to estimating the S; (1 < j < 5) term by term. By Holder’s
inequality and the elliptic estimate (5.22)), it follows that
1511 S 19/ (T + lI8f ol1>.

Above we also used that || dc I < ||5]\‘||. For the delicate term .S», we first get from
the third equation of (5.19) that

8005, | 1 < 05,51 @] + 1K1 (o2 b3) (0|

(5.23) i B )
[ TP F |, + K[ P3F] .
and fork # 0
1700 05e ()| S [0, b1 ()| + K] (B2 ba) (R
oy oz ®] S [0 bro)] + 1K1 B2, b))

[0 T=PYf |, + IR [{T =Py f ] .
On the other hand, it follows from (5.21)) that
10:@ell gy, < 10:0clpgor. kII9edel® < IKI7H8,8e ], k # 0.
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Then we compute

T T
|Sz|§/ \@,até)\dr:f (1= P}IF. 9,®)|ds

0 . X 0 . R

Snfo ||at<1>||2dz+cnf0 X —Pya7 | dt
T . . T .
< /0 1928, e 2. ) |12 dt + )2 /0 192 (0. )| dt
T —
+c,,/0 1= P}V, £ |3 dr

T T o
< ’7/0 Hbe(k)szt+Cn/0 [(1— PV, f 7, dt.

Thanks to (5.22)) and the Cauchy-Schwarz inequality, S3 is bounded as follows:

T _ T —
3] < n/o 1@ 2 dr + Cn/O |- P72 dr.

For the term S, applying the elliptic estimate (5.22)) yields

T _ _ T P
1S4| < nfo HBc(k)szz—IrCn/O s JET

T ——
+c,,/ |@H. 11%),2|* .
0

We further recall the explanation of the torus case of the estimate S4 above (5.6).
In particular, we also use the estimate [43, eq. (6.12) on p. 819], then the above
estimate follows after the Cauchy-Schwarz inequality is applied.

For the boundary term S5, we first consider the inflow boundary condition

(5.17), noticing that
~ ~ = 1
Pe(£1) = (Jv|? = 5)v1dx,Pe(t. 1. k)u2,
and by the trace theory

(1P (1. £ 10| < 16e @ D)l gz < N3cl].
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Then one has by using the Cauchy-Schwarz inequality that

T _ T e
|55|5n/ HBc(k)szt—i—C,,// lv1]13f (1)) dv dt
0 0 JR3
T ——
+c,7// lv1]|10f (—=1)|? dv dt
0 /R3
T T e
577/ |8c (k)| dz+c,,/f v [187 ()% dv dt
(5.25) 0 - 0 Ju;>0
+ G [ [ ilaF P avs
0 Jv1<0
T ——
+c,,// lv]|0f (—=1)|* dv dt
0 Ju1>0
T —
w6 [ mlenrava,
0 Jv1<0

Next, in view of (5.17), we get from equation (5.15) that

T
// o3 F () d di
0 Ju; <0
T ——
<[] mitaeavar
0 Jv1<0
T —
+// lor |7k - 02|25 | dvu dt
0 Jvu;<0
T
+/f lv1| 7Y LgT|? dv dt
0 Jv<0

T
+// lvr |7 H (1) dv dt
0 Ju<0

T
§E1§(§1)+/0/ 0|v1|_1|H(1)|2dvdt.
V1<

(5.26)

Similarly, it holds that

T
// |v1||3x1f(—1)|2dvdt
0 Ju1>0

(5.27) i
5’5;(?—”// oy | H (=1D)? dv dt.
0 Jv1>0
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It is straightforward to see that if 0, is replaced by 0%, then it follows that

T T
// |v1||aff(1)|2dvdr=// vil135g 2 dv dt.
0 Ju;<0 0 Jv1<0

T T
// Ivlllaxf(—l)lzdvdt=// o135 1? dv d.
0 Ju;>0 0 Ju1>0

Therefore we only consider the case d = dy, in the following.
As to the specular reflection boundary condition (5.18)), the symmetric property
plays a key role in dealing with the intractable boundary term S5. In fact, from

F(=x1,—v1) = f(x1,v1) forall x; € [—1, 1] and from (5.18) we have that
S(ELv) ]y 20 = f(FEL —v1)
at the boundary. Then we can show that S5 vanishes at this stage. Since

~ = 1 ~ = 1
c(t,x1,k) = 6/];Rq f(t,xl,k,v)(|v|2—3);,L§(v)dv,

we then see that ¢(z, x1, E) is even with respect to x1, which further implies that
¢c is odd w.r.t. x1 according to (5.21). Therefore one has
Do (t.—1,k,—v1) = —De(t, 1.k, v1)

by the definition of ®.. Note the fact that @c(il) = 0 was also used here.
Moreover, by f(—1,vy) = f(1,—vy1) = f(l,v1) for vy # 0, and using the
equation (5.13) to define the derivative dy, , one also has

Ox, f(=1,—v1) = 0y, f(—1,v1) = 0x, f(1,v1) forvy #0.
Consequently, by a change of variable vy — —vy, we have
T

T e —— ~ e —— ~
Ss :/ (v18X1,f(1)9 q)c(l))d[ _/ (vlamf(_l)a (Dc(_l))dt
0 0

T

T o — ~ ———— ~
=f0 (v19x, £ (1, v1), Dc(1))dt +f0 (010, f (=1, —v1), @c (=1, —v1))dt

T T
:/ (v19x, f (1, v1), Pc(1))d1 —/ (v10x, f (1, v1), Pc(1,v1))dt = 0.
0 0

Combining the above estimates for the S; (1 < j < 5) together, we now arrive at

T — —
(5.28) / |dc(k)||* dt

0
S 13 (DIP + 18 O + Ex(g+)

T
+c,,// lv1]18f (1)|? dvdr +
0 Jvu1>0
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T T _
+C,7f f |v1||3f(—1)|2dvdt+nf Hvxb(k)szt
0 Jv1<0 0

T 5 r, 2
+C,7/ \I{I—P}foHDdch/ |13 2| ar
0 0

T
+// lvr | H (D) dv dt
0 Ju<0

T
+// 1| ECD P do dt,
0 Jv1>0

for the inflow boundary condition (5.17)), and

T o P P T 2
/0 ||36(k)||2dt5||3f(T)||2+||3fo||2+n/0 | Vb ar
(5.29) +C,7fTH{I—P}V/x\fHZdt
0

T, __ | ”
+c,,/ H(GH,/H)L% dr,
0

for the specular reflection boundary condition (5.18). We thus conclude the esti-
mates on .

Estimates on b (1, x1,k): In this case, we choose the test function

3
o= 9" J=12.3,

m=1
with
&/m _ 000y I (1 x1,6) — 202 — V) s (6, x1. )z, J #m,
R R S P AT (PR TN 5 VL J=m.
where
(5.30) — 82 ¢y + kPps(k) = dbs(k) and $s(£1,k) =0,

In this paper we use the notation (d1, d2, d3) def (O, . 0%).

Standard elliptic estimates yield the estimate

165112, + K161 5 C 1B
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With the above choices in hand, we now turn to estimate both sides of (5.20)
term by term. Notice

3 T o —
— Z/O (P f,v-Vd;™)dt
m=1

Then it follows that

3 T ————— —
- Z/O (0Pf,v -V, ™)dr
m=1

3
S A I
n=1

3 T - ~
= — Z / (vmv]ll%ab‘],|U|2Umvju%8%n¢‘](t’xl’k))dt
m=1,m#J 0

3 T L~
- > / (Vv 12 0bm, |v[2vmvs
m=1,m#J 0

N

07 dmd s (1, x1,k))dt

3 T _
+7 ) / (0bm, 9md by (t, x1,k))dt
m=1m#J 0

T —_ —
— 7/ (0by,05¢ (1, x1,k))dt.
0

Therefore one has

3 T 3 T — _
—Z/ (8Pf,v~§\\l'g’m)dz:—72/ (b, 32,0 (t, x1,k))dt
m=1 0 m=1 0

T _ 5
- 7/ || dr.
0

In what follows, we only estimate S and S5, since the other terms are similar to

obtaining (5.28). By using the second equation of (3.19), as in (5.23) and (5.24),

we obtain
||8t8x15(1?)||H;11 < | 0x, @ + D0 + 1kl @ + &) ()|
+ o T=PLF |, + KA —P}F] .
and for k£ # 0 we have
k718,85 (0| < |02, @ + O 0| + Ikl @+ )|
+ 8 TPy 7|, + K[ P}F | .
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As a consequence, it follows that

T - ~
A Z/O (@78, 87™)|dt
m
T . R T e R
52/ \({I—P}af,at@l{’m)\dHZ/ |(PIf, 3, D;"™)|dt
m v0 m Y0
T ~7 T I
5’72/0 ||8t<1>b””||2drJrc,,/0 HI—P}V, f |5 dt
m

T f—
+Cy /O | Veek)|? di

T _ T N _
< n/o 19092, B (1, )12 dt +n/0 \a,ikd (. T di

T T
=112 S 112
+ c,,/ | PyVor|? di + c,]/ [¥re@® | dr
0 0
T _ T o _
<n / |va®|di + C, f |Vre® | i
0 0
T =112
+Cy [ =PV ar
where from (5.30) we used the following elliptic estimates:
18:6s 12, < 19:0blgg=r.  1KllI8:hs 1 < K1 19,90112, & # 0.
We also then used the estimates just above in the upper bounds of these estimates.
For the inflow boundary condition (5.17), Ss enjoys similar estimates to (5.23),
(5.26), and (5.27). Notice that only the case = dy, should be considered. We
now claim that S5 also vanishes for the specular reflection boundary condition

(5.18). From

E(I,xl,l?)=/ £t x1, & vyop? (v)dv
R3

and f(—xl, —vy) = f(xl, v1), we see that El(t,xl,E) is odd w.r.t. x;, which
further implies that ¢; is even according to (5.30). Hence it follows that

&, " (1.~ 1.k, —v1) = =@, (t, 1k, vy)
by the definition of o/m, Eventually, from

m(—l,—vl) = m(l,vl) for vy # 0,
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and further with the change of variable vy — —v;, we obtain

T o R T o R
S5 = f (018 7 (1), DL (1))t — f (0185 (1), B (1)
0 0
T e — o~
- /O (015 F (L v1), DI (1) dt

T
+f (v195x, f (=1, —v1). @, (=1, —vy))dt
0
=0.

For J = 2 and 3, both l;z and 133 are even w.r.t. x1, which further yields that ngﬁz
and ¢3 are odd w.r.t. x;. Then we still have

~J, I ~J, 7
" (1, 1.k, —v1) = =" (. L.k, vy), J =2,3.

Thus S5 also vanishes in the case of &Dl{’m (¢, 1, l;, v1) with J = 2 and 3. We now
have the following conclusion as in (5.28)) and (5.29):

T —~ —_—
/ Vb di
0
<87 (D)% + 13f ol + Ez(g+)(T)
T T
+c,,// |v1||8f(1)|2dvdt—|—C,7// lv1]10f (=1)|? dv dt
0 Jvu1>0 0 Jv<0
T, T,
T / [Fsa® |2 dt + ¢, / [Vae @] dr
0 0

T o T o
+C7,/0 H{I—P}vxfuf)dwrcnfo H(aH,u%)L%HZdz

T T
+/f |v1|_1|H(l)|2dvdt+// lor| Y H (= 1)|? dv dt,
0 Ju;<0 0 Ju;>0

for the inflow boundary condition (5.17)), and
T —_ —— ——
/0 10b3k) 1> dt S 10f (T + 19f (0)]?
T, T _
T / |Fra @[> dt + €, / e (| di
0 0

T T
+Cn/0 H{I—P}vxfuf)dwrcn/o |@GH. p) 2 | d.

for the specular reflection boundary condition (5.18). This then concludes the esti-
mates on b.
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Estimates on d(t, x1, E): In this case, we choose the test function

NI—

b =By = (Jv]? — 10){v - Vi, xalt, x1, B)} 2,
where
(5.31) — 9%, ba + kPga(k) = da(k) and  Ga(£1.k) =0
for the inflow boundary condition (5.17)), and
(5.32) — 9%, ba + |kIP@a(®) = da(k) and By, da(£1.K) =0

for the specular reflection boundary condition (5.18).

We compute both sides of (5.20) with ® replaced by ®,,. For the left-hand side,
we have

T
— / (OPf,v - Vy, xP)dt
0

T
=—Z/ ({aa-i-ab-v+(|v|2—3)8c}u%,vj3jq)a)dt
; 0
J
r P 7 2 3 1 2 1 —
:_Z/ ({8a + 0b - v + (Jv]* = 3)dc} 2, vjva(Jv[* — 10) 20 dngpa)dt
: 0
I.n
T o & T o
=—52_f0 (8a,—3,-¢c)dZ=—5/0 19a(k)||* dt.
J

As to the right-hand side, similar to the estimates for b (¢, x1,k), we only show the

estimates for Sz and S5 as the others follow in the same way as done previously.
For this, we first have from (5.31) or (5.32) that

10:@allyyy < 13:0ally 1. IKIIBedel> < 1K1~ 118,8al, k # o,

and
Iéallzz, + IKlllgall < [13all.

Moreover, one gets from the first equation of (5.19) that

13685, 80) | 1 < |2 D1 )| + 1K (B B3) ()

’

and
k|71 8,8za ()| < [|0x, b1 ()| + [k1 || (B2, b3) ()|
provided k& # 0.

’
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With the above estimates in hand, we now compute

T R T P R
|52|§/0 \(Bf,atoba)\dzgfo |({(I—P}of. 3, Pa)|dt
T ——— ~
+/ |(PIf, 0, Dy)|dt
0
T T s T o,
5/0 ||atq>a||2dt+/0 \\{I—P}Bf\\Ddt+f() |0b(k) |~ di
T R _ _ T R _
§f0 ||8t8x1¢a(t,k)||2dt+|k|2/0 18 pa (2, k)| dt
T =12
+/0 HI—P}V, 1| dt

T _ T o
5/0 Hvxb(k)|\2dz+/0 1= PV £, dt.

We now turn to estimating Ss. For the inflow boundary condition (5.17), S5
shares the similar estimates with (3.23), (5.26), and (5.27). Noticing that ¢, pos-
sesses the same symmetry as $c w.r.t. X1, one can show that S5 also vanishes for
the specular reflection boundary condition (5.18) by the same arguments as were
given for the estimates on ¢ (¢, x1, E) and b (t, x1, E). In conclusion, the following
estimates for a(z, x1, E) hold:

T —_ —— —
/0 10a () |* dt < 19f (T)I* + 19foll* + E(g+)

T —

+/f lv1]18f (1)|? dv dt
0 Jv1>0
T - T o,

+// |v1||8f(—1)|2dvdt+/ IVeb(k)|” dt
0 Jv1<0

+/T a-pvir| dt+/ @)

// lo1 |~ [H(D)? dv dt

v1<0

// lvi [TYHED|? dv dt
v1>0

for the inflow boundary condition ((5.17)), and

fo 19a(k) 1 dt < 13F (T + 13f o2 +/O | Vb (o) |* dt

T o T o
+/0 H{I—P}fouzdﬂr/o \\(aﬂ,u%)L%}\zdz,
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for the specular reflection boundary condition (5.18)). Finally, combining all the
above estimates on [a, b, ¢] together, we see that (5.13) and (5.14) hold true for the
case when 0 = dy,. The same estimate with the other derivatives also holds, and
the proof is analogous but easier. This completes the proof of Theorem[5.2] O

6 Proof of the Main Results in the Torus

In this section, we shall obtain the global existence and large-time behavior
(stated in Theorem [2.T). We further obtain the propagation of regularity in the
x-variable (stated in Theorem [2.2)) for solutions to the initial value problem (PT)

(I.10) and (T.1T) in the torus (1.6). We shall prove Theorem [2.1]and Theorem [2.2]

PROOF OF THEOREM 2.1l We first consider the uniform a priori estimates with-
out any velocity weight. As shown in Section 3] by applying the Fourier transform

to (T.10), as in (3.2) with (3.3)) or (3.14), and then taking the complex inner product
of the result with f in L2, we have

@ f. ) +ik-vf. )+ WLf. )= @SS
Taking the real part of this identity and integrating over [0, 7] for fixed 7" > 0 gives

. T R 1/2
[, s 17eolazw + | (/ I{I—P}f(t,k)ldet) a3 (k)
Z 0

30<t<T 73

~ T o ~ 1/2
5/23 ||fo(k)||Lng(k)+/ (/0 \%(I‘(ﬁf),{l—P}f)\dz) ds (k)

73
< fZ o)Lz d2®) + Cyll g peral Fli sz ez,
Al =Pl 22 0

for an arbitrary constant 7 > 0. Together with Theorem [5.1 and Lemma [4.3] the
above estimate yields
©.1) ”f”L}\L‘;OL% + ”f”L/I\L%"L%D

: <
~ ||f0||L]{L% + ”f”L}\L‘%OL% ”f”Lll\'L%’L%,D'
This is the main estimate that is needed for the hard potentials.

In case of soft potentials, in order to treat the time decay of solutions, we need
to make additional velocity-weighted estimates with the weight w, s given as in
(T:23)) under the assumption (H) (T.26). Indeed, with the help of Lemma[A.3] one
can also show that
||wq,19f||L/£L§°9L% + llwg,s f ”Llch%“L%.D

(6.2)
N ”wq,ﬂfO”LiL% + ”wq,ﬂf”L,{,L%?L%”wq,ﬁf”L,iLZTL%’D'

Note that the negative term —C|| f|| L2212, appearing in the use of Lemma
v,
[A.3] can be handled in terms of (6.1)), since one has w, 9 > 1. For brevity we
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omit these details in verifying (6.2)). Hence, under the smallness assumption on
lwg,s follz, 172, one can then obtain the closed estimate

lwg,0 Fllp)gers +wgo fllzizzrz ) < lwgw follr)rz-

This completes the proof of the uniform a priori estimate (2.8)) under the small-
ness assumption on ||wy s follz, 172 Combining this with the local existence to be

discussed in Section [§] and applying the standard continuity argument, we obtain
the global existence and uniqueness of global mild solutions. The positivity of
solutions is also guaranteed by the local existence result as in Theorem 8.1]

Next, we consider the rate of convergence of the obtained solutions. We only
treat the case of the non-cutoff Boltzmann equation since the same method can be
applied to the Landau case. Moreover, we focus on the soft potentials y + 2s < 0,
since it is similar to carry out the time-weighted estimates with the exponential
weight e* fora suitably small constant A > 0 in case of hard potentials y +2s > 0.

Therefore, for the soft potentials, let

h=e"f
with A > 0 and 0 < p < 1 chosen later. As f solves (I.10), then I satisfies
d:h + ik -vh + Lh = e_)“’pI‘/(}z,\}l) + AptP1h,
with initial data
7(0,k, v) = ho(k,v).
With the aid of the arguments used to derive (6.1), we have

~ T _ 1/2
[, s Wikl dz+ | ( | |h(t,k)|,23dt) 43 (6)
Z VA 0

30<t<T

63 5 [ 1w

T . 1/2
+ \/lpf (/ PR )3 dt) dx (k).
Z3 0 v

For p > 0 to be small enough later on and p’ > 0 to be chosen later depending
upon p, we define a set

E = {(v) < pt”}
and make the decomposition 1 = 1g + 1gc, cf. [76]. Then the second term on the
right-hand side of (6.3) can be bounded by

T N 1/2
VAp (/ tp_11E|h|2dvdt) d= (k)
z3 \Jo
T R 1/2
+\/kp/ (f tp_llEc|h|2dvdt) dx(k) =: 11 + I>.
Z3 0
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We will define p = (y + 2s)p’ + 1 in the Boltzmann case (or p = (y +2)p’ + 1
in the Landau case). Here, then over E, /; is controlled by

Iy < /App—-DIP’ /

Z3

T , . 1/2
(/ () P=D/P'2M7) 712 iy, dt) d= k).
0

We choose p as in (1.28) in the Boltzmann case (or (I1.27) in the Landau case),
suchthat (p —1)/p' =y +2s <0 (or(p —1)/p’ = y + 2 < 0 for the Landau
case), we then further obtain

T _ 1/2
I < /—App—(p—n/p'/zs(/o 7. k)3 dt) dx (k).

As A > 0 and p > 0 can be chosen arbitrarily small, the above term is absorbed
into the left-hand side of (6.3). For I5, since it holds that w;% < =907 t"7 12 o

E°, and we notice that we can take p = p’9 and 24 < gp” /2, we have
r P qa,9,p'% ~ 1/2
Iy < /Ap (/ f (P17 g =3 0% wg o |f 17 dv dz) dx (k)
Z3 \Jo JE¢ ’

~ T 1/2
<Ap sup ||wq,,,f(t,k)||L%(/O zP—lew"e—‘ép"f”m) d= (k)

Z3 0<t<T

<C¢_/ sup Nlwg.p £t K)ll 2 dS (k).

30<t<T

due to the finiteness of the z-integral; cf. [76]. By the existence result, it further
holds that

L5 [ Igs ol )

Plugging the above estimates back into (6.3) gives

T _ 1/2
/ sup |7z, k)||de2(k)+/ (/ |h(z,k)|%)dt) A3 (k)
Z 0

30<t<T

< [ g ol 4200,
7.3

We use Minkowski’s inequality ” - ”Lll\' HL‘;° < H II- HL;'?”L}\, and the expression

h = e*” £ to obtain the time decay estimate (2.9) with k = p in the soft potential
case. This then completes the proof of Theorem O

We will now give the proof of Theorem[2.2]
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PROOF OF THEOREM 2.2] Following closely the proofs of Lemma.2and The-
orem[5.1} one can show that

T 2m,,. 2 7 12
/ ( [ 10T w) wq,ﬂhndz) a3(0)

<Gy ”wq,&f”Li,ng?L% ”wq,ﬂg”Li,mLZTL%.D

+ Cn ”wq’ﬂf”Ll{',mL%"L%.D ”wq,ﬂg”Li”mL%’L% T n”wq’ﬂh”Ll{'.mL%L%.D
and
lla.boclly 12
< _
(64) ~ ”{I P}fHLl]\'.mL%"L%.D T ”f”L/]\'.mLC;"OL% T ”'fOHLll\'.mL?"OL%

r 1/2
m) gy % 5 2 '
+/Z3(/0 (kY™ [H (. 5)], 1) 2] dt) a3 (k)

Taking the L2 inner product of the Fourier transform of (T.10) and (k)™ w; ﬂf ,
we have

@ f 2mw2 o F) + ik -v ] k)2 w2 o F) + (LF. (k)2 ™ w2y /)
= (C(f. ). (k)2 w2 4 ).

Then by using the same argument that was used to derive (6.1)) and (6.2)), we have

/Z sup[[(k)™ (1. k)| 2 d S (k)

30<t<T

T 1/2
myy ~ 2
+/Z(/0 k)™ T P}f(t,k)llDdt)

< / VY™ Folld S k)
(6.5) z?

(— . 1/2
*/Z(fo "F(ﬁf>»<k>2’"{l—l’}f)|dz) 43 (k)
S |07 ol 4200 + Col ey nera Fly 1312,

FAI=P}fl) g22
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and we further deduce the velocity-weighted estimate

/Z sup[[(k)™wg9 f (2. )] 12 A (k)

30<t<T

T ~ 1/2
e L e i ar) asd

T 1/2
_ m )2
c ([ 1wmiipar) aza

< [ I folzd=a0

T/\ 2 5 ~ 1/2
([ @@ wq,ﬂfﬂdt) s

< [ Wm0 fllz dx )

(6.6)

+ Cn ||wq’19'f ”Lll\'.mL%oL% ”wt]ﬁf ”Lll\'.mL%"L%,D

tllwgs fliL) 1202 -
A combination of the estimates (6.4)), (6.3), and (6.6) gives

fZ sup_[[(k) wg.9 £t k)| 2d S (k)

30<t<T

r R 1/2
+/Z3 (/0 (k)™ wy9 f 15 dt) a5 (k)

< fZ M9 fol2d ),
which implies (2.T1). This completes the proof of Theorem [2.2] O

7 Proof of the Main Results in the Finite Channel

In this section, we shall obtain the global existence, large-time behavior, and
propagation of regularity in the X-variable for solutions to the initial boundary

value problem (PC) (1.10), (I.T1), (T.14), and (I.15) in the case when the spatial

domain is the finite channel.

PROOF OF THEOREM 2.3] AND THEOREM 2.4l We divide the proof into three
parts as follows. First of all, we start from the proof of global existence. Then we
explain the time decay rates. After that we explain the positivity of a solution and
uniqueness.

Global existence. In this section we give a sequence of uniform a priori energy es-
timates assuming the smallness assumption and using the local existence as stated
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in Theorem [8.1] For the sake of brevity, in what follows we only present the proof
of the a priori energy estimates. The computation is divided into two cases in terms
of the two prescribed boundary conditions.

Case 1. Inflow boundary condition. Let |a| < 1, then apply 0% to (1.10), and
then take the Fourier transform = = .%#5% with respect to X = (x2, x3) to obtain

10 9+ vi0, 0 f + ik B0 f + LI f = FH0UT(S. )},
with initial data . B - B
3% £(0,x1.k,v) = 0% fo(x1. k. v),
and the inflow boundary condition
(12)  ft. =1k, 0)|p=0 = T, k. v),  f(t,1,k,0)]v<0 = T3 (1. K, V).
Particularly, it follows from (7.2) that if || = 1, then for 9% = d%, one has
a/)_C\f‘(ta _17 Ea v)|l)1>0 = a/f\g.—([’ Ea v)a
a/f?(‘(tv lva v)|1)1<0 = a/le-i-(tvlgs U),
while for 9% = dy,, one has by using (7.I)) with @ = 0 and Remark [5.3| that
Ox, f(1.—1.k, )],

(7.3)

1>0
1 — — — —
= —E{Btg—(t,k, V) +U-0xg— + Lg= — Fx{l(g—.g-)}}.
(7.4)
0y (£ LKD), g

(9:g4(t.k,v) +7-35g+ + LgF — F={T(g+. g4)})-

1
=
In the rest of this section the complex inner product (-,-) = (-,-);2 is in the

X1.v
space L)zc1 v+ Now taking the inner product of (7.1)) and 3% f* with respect to (xy, v):

(3:0% 7, 0% f) + (v19x,0% £, 3% f)
+ (i TS f) + (L0 £ 07 f) = (FL0“T (S, 1)} 07 1),

In the rest of this proof we use the following brief notation ||-|| = ||-|;2  for
X1.v

the norm with x; € I and v € R3. Then, by taking the real part of (7.5) and
integrating the resultant identity with respect to ¢ over [0, T'], we obtain that

(7.5)

e — T — —
sup ||8°‘f||2+280/0 [1—PYo% 7 |7 dr + | @ )|

0<t<T
(7.6) <2010 foll® + | Y7 (0% F)[?

—
o

T
—I—2/O ‘%(9}{8“F(f,f)},{l—P}8 f)‘dt,
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for any k € Z2, where T;f and Y7 are defined in (5.11) and (5.12), respectively,
and the dissipation norm || ||p is defined in (2.1)) or (2.3) for the Landau or non-
cutoff Boltzmann equation, respectively. Furthermore, taking the square root on

both sides of and then integrating in k € 72, we obtain

A _ T - 1/2 3
/ sup IIB“fIIdE(k)Jr/ (f II{I—P}a"‘fII%dl) dX(k)
Z y 0

20<t<T

+/ YD) dE®)
(1.7 z?

< [ o ® + [ rehias®

—
o

T /2
+/Z2(/0 |%(F=(0*T(f. f)}, {1 -P}d f)‘dt) dX (k).
By using (7.2)), (7.3)), and together with Lemmaf4.4] it follows from that

o _ T o 1/2 B
f sup IIB“fIIdE(k)+/ ([ II{I—P}B"‘fII%dt) dx (k)
Z Z2\Jo

20<t<T

+/ Y S ®)
72

< || 9% i
78) SN follprz, , + E(8x)

o

+ Cylld f“L}?L%OL%l.u ”‘f“L/{TL%"HJ‘lflL%.D
o

+Colld* fllpirz 2 02 W Lisemy 13
_ o

HnRI=P% fll 22 12

where we have used (7.4)) and the norm E(-) defined in (2.7) to control the bound-
ary term on the right-hand side. Consequently, a suitable linear combination of the
above estimate and the macroscopic dissipation estimate (5.13)) gives rise to

19 Er(H+2r(Hs Y 16% follp1pz, , + Er(NZr(f) + E(g2).

loe]<1

where &7 ( f) and 7 ( f) are defined as in (2.4) and (2.5)), respectively. Performing
similar calculations to those used in obtaining (7.9)), recalling also the methods used
to obtain (6.2), then one can also show the following velocity-weighted estimate:

CgoT,w(f) + -@T,w (f)
(7.10) < Z ”wq,&aa.fO”L%L%l,v + ETw (NPrw(f) + E(wq,ﬁﬂ)-

lr]<1
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Here we recall that the velocity weight is useful to obtain the subexponential time
decay only in case of soft potentials. In fact, according to Lemmal[A.3] one has

R(LO* f,wg 59 f) > Sollwg,s9% f I — C19% f 13-

2
Ly w

Applying this inequality, we are able to obtain an estimate similar to (7.7 with its
right-hand term containing an extra term:

T 1/2 _
f(/ ||8°‘f||%dt) 4z (@),
72 0

where the above term can be controlled by taking a linear combination with the
estimate (7.9). Hence, similar to how we derived from (7.9), we then obtain
(7.10) analogously. This concludes the proof in the case of the inflow boundary
condition.

Case 2. Specular reflection boundary condition. Compared with Case 1 on the
inflow boundary condition (7.2)), the difference in this case stems from the bound-
ary term; i.e., we have to control

| Yru@az@

T ——
(7.11) =/ (—// viw?[0% £ (1)|? dv dt
Z2 0 Ju<0

T o 1/2 _
+/ / viw?|3% f(=D)> dv dt) dx k),
0 Jvu1>0

with
12 FLE v, D)y >0 = f(~1.k, —v1,7),
FOL k. v1. D)y, <0 = f(1,k,—v1. D).

2

Note that above and below we use the notation w* = wé o for brevity. Itis straight-

forward to see that if « = 0 or 3* = Jx, then by the change of variable v; — —v;

and (7.12), (7.11)) can be rewritten as

T ——
/(// viw?]3% £ (1)|? dv dt
Z2 0 U1>0
T o 1/2 _
—// v1w2|8°‘f(—1)|2dvdt) d= (k)
0 Jv<0

= [ Xt naz@.

which is just the corresponding boundary term on the left-hand side of and
hence they can be cancelled. If 9% = dy,, we first have from equation (7.1)) with
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o = 0 and the boundary condition (7.12)) and Remark 5.3]that

vidy, f(Lk,vy) = =3, f (1. k,vy) —ik-Tf (1, k,vy)
— Lf(Lk.vy) + TCf )1k vr)
= -0, f(~1L.k,—v)) —ik -5 f(~1.k,—vy)
(7.13) — Lf(=1.k,—v)) + T(f, /)=, k., —v1)
=0, f(~Lkv)—ik-f(~1.k.v1)
— Lf(~Lk.vy) + O(f ) (L k.v1)
=10y, f (=1, k,v1),

where the second identity is valid due to the fact that we loo/lfed for solutions to
satisfying the symmetric property f (1, —x1,k,—vi) = f(t,x1,k,v1). After
that we used the boundary condition (7.12). Note that in we have suppressed
the time variable for brevity. Then (7.13) implies that the boundary terms on both
sides of are equal and thus they can also cancel each other. Therefore, similar
to how we obtained (7.10)), it follows that we have

(714) (/) + Irw() S Y 1w sd® follLirz, , + Erw() P ()

lor]<1

Once (7.10) and ((7.14)) are obtained, then (2.13) and (2.16) follow from the stan-
dard continuity argument; cf. [28]] and [45]. This concludes the proof of the global

existence of mild solutions.

Time decay rates. The proof is quite similar to the torus case. We shall only show
(2.14) for the inflow boundary value problem, since (2.17) for the specular re-
flection boundary value problem can be obtained in the same way. For the same

~

reason as in the torus case, we only focus on the soft potentials. Let ho=eM’ f
with A > 0 and 0 < p < 1 to be determined later. Then / satisfies

3:9%h + v10x,0%h + ik - 50%h + L3% = ™" FL{d%T (h, h)} + Apt?~ 1],

with initial data
0% h(0, x1. k. v) = 0% fo(x1. k. v),

and for the inflow boundary condition we have

h(t, =1,k v)|v,>0 = X g (. k,v),  h(t, 1.k, v)|p,<0 = ™" g5 (. k., v).
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Next, performing similar calculations as to how we obtained (7.9), (7.10), and
(7.14), one has

0h(1. k) |d= (k
> [ s |Fhe.Bdz @

laf <1 V47 0=

T =12 1/2 _
+ > /Zz(/o E hHDdt) d= (k)

loe|<1

(7.15) N )
R Z/ HaafOHdE(k)+ sup E(e* gy)
z 0<t<T

lo|<1
T o 1/2 _
+\/EZ/ (/ zl’_lua"‘hﬂzdt) d (k).
jaj<1 7 2% \J0

We recall that above equation and in the below equation we use the notation |- || =
I-l;2 and |I-lp = [I-1l;2 Further, the last term on the right-hand can be
X1,V x1.v.D

estimated by the time-velocity splitting technique in the completely same way as
for we treated (6.3)) in the torus case. Thus, from (7.13) we have

— _ _ T 1/2 B
Z/Z sup [[0°h(t. k)| dSk) + > /Zz(/o Haahugdt) dx (k)

laj<1 V2% 0st=<T lel<1
$ Y [ Iwqo® RS @ + Eogogi) + sup B,
<1722 0=t<T

which proves (2.14). This also concludes the proof of the time decay rates of
solutions.

Positivity and uniqueness. The uniqueness of the initial boundary value problem
(1.10), (I.11), (1.14), or (I.13) can be proved by applying the similar method as
the previous “energy estimates” part and which is now quite standard. Also, the
local solution that we extend here from Section [§]is unique. Therefore we omit
these analogous details. Noticing that on the boundary

F(ta:l:lax?v) = M—i_l’b%gﬂ:(t?x’v) Z 0’

the positivity of the solution to the Landau equation is guaranteed by the maximum
principle; cf. [45]]. For the non-cutoff Boltzmann case, the positivity of the solution
can also be proved by using the same argument as in [43] p. 833]. This completes
the proofs of Theorems[2.3]and O

PROOF OF THEOREM We shall show that under the assumptions (2.18) or
(2.19), the regularity of the initial data and the boundary data can propagate from
the boundary into the interior of the channel along the tangential direction. In fact,
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let |¢| < 1, then we may derive the following trilinear estimates with an extra
Fourier multiplier (k)2™:

1/2

T
F= o \2m, 2 —
fZ2(/o |(Zx{T (3% 1. 2)}, (k) wq,ﬂh)|dt) a5 (%)

=Gy (” we,59% f HL}‘TML%OL%I,U H wq,ﬂgHL}szzTH)}l L2,

(7.16)
+ qu”(’\aafHLl%’mLzTL%lL%.D qu’ﬁgHL%,mL‘;?H}lL%)
+ 77qu,19h\|Ll{_'.an%"L%1L%.D’
and

T _ 1/2 _
(7.17) /Z(fo [(F={L(f.8%9)}, (k)" w] h \dz) dx (k)

= Cn(HwqﬁaagHL%,mL;OLiw wq,ﬂfHL}szzTH}lL%.D

Flwao®sl 222 [vaoflir rem iz)

+ 77H wq’ﬂh ”Ll{_'.mL%"LEI L%.D )

Moreover, regarding the macroscopic dissipation, for the inflow boundary condi-
tion (I.14)), analogous to it holds for || < 1 that

%la,b,clll;1 ;2,2
9°a.b.clls g0

X1.V
S 2 (=P flp g2 02,
le|<1
+ ”8af||L}?L;9L}C1_v + ||3a,f0||L%",L§13v) + E(kY™%+)
(7.18)
T P 5 1/2 ~
m CZH 1 E
+ 2 fzz(/o |y H, 1 212, dz) dx (k)

o] <1

+ > /Z2<1€)mnr;(a/°‘7)dz(1€)+/ <E)mT;(i)dz(1€).

=1 z? |v1]
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For the specular reflection boundary condition (I.15)), for |«| < 1, it similarly holds
that

16 bl 212

X1.V

S 2 MI=PR* fllpr papz gz, + D10 flor peerz

jol<1 jal<1
7.19
(7.19) £ 3 10 hly 1z,
ol <1
1/2 _
+ Z[ (/ |(Rymo% . 1) 2| 7 dz) d= (k).
le|<1

We point out that the proofs of these last two macroscopic estimates follow directly
as in the proofs of Theorem

In what follows, we will only explain the regularity propagation properties for
the inflow boundary condition. The corresponding results for the specular reflec-
tion boundary condition can be obtained similarly to how we obtained (7.14) since
the mode multiplier (k)%™ doesn’t influence the symmetry of f (xl,x U1, v) In-

deed, let |a| < 1; by taking the complex inner product of (7.1) and (k)“"w, 198"‘ f
with respect to (x1, v), we obtain

(000% f  wg 9 (kY>3 f) + (v10x,0% £, wg.9 (k)2 3% )
(lk Ua f wqﬂ( )2maaf) (Laaf wqﬂ( )Zmaaf)
= (FROT(f, 1)}, wa.0 (k)27 f),

forany 0 < ¢ < T and k € Z?. We use Lemma to observe that the equation
above further implies that

t/ sup [wg.p (K)™% £ (1, k) |d = (k)
Z2 0<t<T

BN
VI [ (/ gt )mB“fII%dt) dx (@)

T - 1/2
~-C ky™o* zd) ds(k
o L[ wemria) i

T\m~N+ a7 I\ T\mA— (A0 7 I
+ [ @t @ nas@ - [ @, @ Hasd
< [ Iwgs®Folaz®
72

' 2 TA\2mMAx ¥ 1/2 —
+/ZZ(/0 |(F={*T(f, £}, wg 5 (k) maa,f)\dt) ds (k).
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Similarly, using Lemmas [A.T] and [A.2] it also holds without any velocity weight
that

/Z sup BV 7 (. ) d S @)

20<t<T

1/2 _

+\/ﬁf (/ ky™{1 — P}E)“f||Ddt) d¥ (k)

721 VY (5% 7 N =
(7.21) +/Z2(k) Y (® f)d = (k) /Z7<k> Y7 (0% £)d S (k)

< [ 1 Folaz @)

' 2 Ty2miwy vz
+/Z2(f0 [(Z={OT(L )} wy 5 (k)™ f)\dz) A5 (),

In and we notice that, as proved previously, the boundary terms vanish
for the specular reflection boundary condition. Also, the boundary term with neg-
ative signs for incoming boundary velocities can be bounded by E(wg, (K\"g3).
The trilinear terms can be further bounded as in and (7.17). Therefore, ap-
plying all of those estimates, a linear combination of and together
with (7.18)) or (7.19) implies that

Z/z sup_ g0 (K91 (1. )| 2 (B)

2
la|<1 0<t<T

.y 1/2 _
= [ ([ g " F e ) a5 6

la|<1

Z/ g, (BY" 8% Folld S () + E (g 5 (k)" Z),

lel<1

provided that €g > 0 in (2 is suitably small. Note that in the above estimate
for the specular reﬂectlon case there is no boundary term E(wg s (k k)% 1) on the
right-hand side, so in that case the smallness assumption (2.18) is actually just
(2.19). Then the above estimate implies both of the estimates (2.20) and (2.21) for
solutions corresponding to the inflow and specular reflection boundary conditions,
respectively. This then completes the proof of Theorem [2.5] O

8 Local-in-Time Existence

In this section, we are concerned with the local-in-time existence of solutions
with mild regularity to the problem (PT) in the torus case and to the problem (PC)
in the finite channel case. For brevity of presentation, we give the full details of
the proof only for the non-cutoff Boltzmann equation with the specular reflection
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boundary condition in the finite channel. The main idea is motivated by [2, theo-
rem 4.2, p. 541] and 65} lemma 5.1, p. 4098]. Our approach used here can also
be adopted to treat the local-in-time existence for the other cases mentioned in this
paper. Then the analogous local existence theorem to Theorem [8.1]is true in the
other cases that arise in this paper as in Theorems [2.TH2.5] For brevity of the pre-
sentation we omit these details. However, we remark that in the case of the torus
domain, it is possible to carry out a straightforward proof of local-in-time exis-
tence and uniqueness based on the standard approximation argument in terms of
the known existence results for regular initial data.

THEOREM 8.1 (Local existence). Let all the conditions of Theorem[2.4]be satisfied.
Then there are €9 > 0, Tog > 0, and Cy > 0 such that if Fo(x1,X,v) = 1 +
12 fo(x1,%,v) > 0 and

o
21 19 folltrz, , < €o.
o=

then the specular reflection boundary problem for the non-cutoff Boltzmann equa-
tion in the finite channel (1.10) and (1.T1)) with (1.13) admits a unique solution

flt.x,v), 0<t<Tp,xeQ=1xT? velkR3,

with
(8.1) foVaf € LLLRLY, N L LT LY Ly
satisfying
F(t,x1,%,v) = p+ p'/? f(t,%1,%,0) > 0,
St —x1,X,—v1,0) = f(t, x1,X,v1,0),

and the uniform estimate

o (94
2 U0 Fllprpge rz, , + 19" Fllerez 12,02,

o] <1

o
< Cy Z 0 fO”L}?L%l,U‘

le]<1

(8.2)

To prove Theorem [8.1] we start from the following linear inhomogeneous prob-
lem:

0:g + 0105, & + V- Vxg + L1g — I'(h, g) = —%5h,
g(0,x,v) = go(x,v),

g(—1,x,v1,0)|y,;>0 = g(—1, X, —v1,0),
g(1,X,v1,V)|y, <0 = g(1,X, —v1,0),

(8.3)

for a given function h = h(z, x, v), where we have denoted the linear operators

Af = Qu ). Lof = —pTIQW3 £ ).
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For the later use, we recall that thanks to [3 lemma 2.15 and proposition 2.16,
pp. 937-939], it holds that

(Z18.8) 2 18l — Cill ()¢ 7.
3 3
[(Zag. 1) S 1" gl 2 1w PR 2.

where C1 > 0 is a universal constant. The solvability of (8.3) is guaranteed by the
following lemma.

(8.4)

LEMMA 8.2. There are ¢y > 0, T1 > 0, and C1 > 0 such that if

g0, Vxgo € LEL2 b, Vih € LLLF LY, o N LeL7 L3 Ly b,

kox1,v 0 X1,V To—x1

for Ty € (0, T1], and it holds that

go(x1,X,v1,0) = go(—x1, X, —v1, V),

(8.5) _ _ _ _
]h](taxlsxavlav) = h(t’_xlax’_vlav)’

and

(8.6) Z {”aah”L}?L%Liw + ”aah”L%L%OL%CIL%’D} =< €p,

loe|=1
then the initial boundary value problem (8.3)) admits a unique weak solution

g(t, x,v), O§Z§To,er=1xT2,veR3,

satisfying
®.7) g(t,x1.%.v1,7) = g(1,—x1. X, ~v1.7)
and
o (04

Y 0l 2, + D0 0%l 12,0,

=<1 ] <1
(8.8)

o (04
< Co( X 10%olyzz, , + VT X 10kl 3 12,12, )
=1 el <1

PROOF. We will divide the proof into four steps.

Step 1. First of all, we remark that since the operators .2}, .25, and I"(h, -) in-
volve a singular kernel and nonlocal derivatives, then it may be too hard to prove
the local-in-time existence of solutions to the linear problem (8.3) directly by ap-
plying the standard ODE theory. However, because

LeLR Hy Ly C L2((0,To) x T Hy Ly) C LY LEH, L,

TO xX7TX]

we may expect to achieve the proof through an approximation procedure by first
constructing approximate solutions in the function space

L0, To: L2H, L?).
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The advantage of using the above function space in this proof is that, compared to
LLL® H]} L2, itis more convenient to work with the weak formulation of (8:3) in
k 10 1

the L? framework because L%H ;1 L% is a Hilbert space. For this purpose, we will
smooth out the data h and g in (8.3]) with respect to the spatial variable as

(8.9) he =h *x xe. go0,e = &0 *x Xe-

Here *, is the standard convolution with respect to x, and y. with & > 0 suitably
small is a smooth mollifier for x € € = I x T2 such that 0 < xe < 1,and

1 for|xi| < 1—e,

X1,X) =
Xe(x1.%) 0 forl—5 <|xi| <1,

and yc is even in x; € (—1,1). As h and g are spatially periodic in X, so are
he and go.. Moreover, it is obvious to see that the symmetric property (8.3) also
holds true for h, and go . Now, in order to solve (8.3), let us first consider the
corresponding linear inhomogeneous problem with h and g¢ replaced by data h,
and go ¢ defined in (8.9), and set g, = g¢(¢, x, v) to be the corresponding solution,
namely, g, satisfies

018 + V- Vxge + L18e — U'(he, ge) = —Lohg,
ge(0,x,v) = go,6(x, v),

ge(—1, X, U1,5)|v1>0 = ge(—1,X,—v1,0),
ge(1,X, 01, D)y, <0 = ge(1, X, —v1,0).

(8.10)

Step 2. Next, our goal is to solve (8.10). We define a linear operator ¢ as
(8.11) G =3 + (v10x, +7-Vz + .2 —T(he.)",

where the adjoint operator (-)* is taken with respect to the complex inner product
in L2 . Note that .¢] is self-adjoint and the adjoint of I'(h, -) can be indeed de-
fined as I'*(, -), which is given by [43} p. 843]. We then claim that ¢ is injective
over the following function space:

W = {g cg e HY0, Ty: 7 (Q x Rg)) such that g(7y, x,v) = 0,
(8.12) g(t.x1,x,v1,v) = g(t,—x1,X,—v1,v), and
gt.£1,Xx,v1,0)|y, 20 = gt. £1, X, —vl,ﬁ)}.
Here (2 x Rﬁ)) is the standard Schwartz class by which we mean that g €

(€2 x R3)) is C* in all variables on the interior and decays faster than any
polynomial in the Rg variables and is periodic in T?2. To show this claim, we take
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ge € Wy and compute for @ = (a1, @) with ey < 1 and || < 6:
H(0*Y ge, 0% ge)

1d

(8.13) = YT 0% ge ”2 + (L10%gs, 0%g¢) + K (v10x, 0%ge, 0% ge)
— ) CERI* (0 e, 0% g,). 07 ge).

o' <o
The constant CZ, is the multinomial coefficient. Here and below we have used
the notation ||| = |- ||L% , tobe the L2 norm in x and v, and similarly the inner
product is (-,-) = (-,") 12 ,- We note that the analogous property to (7.13) for g¢
can be used to show that the boundary term satisfies

%(vlaxlaags, aags) = 0.

We will perform our estimates by iterating upon |c|.
From this identity with |a| = 0, we apply (8.4)) to obtain for 0 < ¢ < Ty that

To
lge ) + A / l2ell? d
t

To To
< / B Do, go)ldT + / (8o, T (e go))ld e
t t

+To sup |ge(0).
t<t<To
We also split into (v} > R and {v) < R for some large R > 1 to handle the lower
bound in (8.4), which results in the last term above. It further follows from Lemma
AT with wgs = 1 that

To
lge)I? + A/ l2el3 d
t

< (s le@l) [ el

t<t<Ty

To Ty
+Cy | lgelplbelf o 2dr+Cy | lgel®Ibelf ;2 dt
. LXL2 . LPL2

Ty
+n/ lgel3dr+To sup [|ge(0)]*
t

t<t<To

for any 0 < ¢ < Tp. Above and in the rest of this section we use the additional
norm notation ||- ||%) = iz . At the same time, with the Sobolev embedding
x,v,D

H} D L*(I), we note that using we have

2 < 2 < 2
(814) t583£T0||h8||L§OL% ~ ||h8||L,%L%H}1L% ~ ”h”L;—L?%H}IL% = CGO
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and

To
2 < 2
[ s S el e

< 2
~ ”h ”LI%L%"OH"H L%,D

(8.15)
< Cey,

where the constant C > 0 above is uniform and does not depend on & > 0.
Therefore, for €g > 0 small enough in (8.6) and Ty > 0 sufficiently small we
have

o o
(8.16) g + A f el dv < f (@ glld-,
t

forany 0 < ¢t < Tp. Then it is direct that the estimate (8.16) implies that ¢ defined
in (8.T1) is injective over W;. Hence, the claim is proved

For the time integral term on the right-hand side of (8.16), we should note that
for g € Wy, and for any «, it holds that

To
| i gdar
t
To
+
< f (19:0%gell + v+ 0" Vaegell + 1(0) V297 0% g || 2 yya)d
t

=+ P /
/ (3 1) 749" 0 g o 1 e 2 )

o' <a

(8.17)

< (g < 00.

Here we have used [65, prop. 6.10, p. 4107] in order to estimate .Z; g’ ge and
L3 he. 9% go).
In particular, to obtain (8.17) we used that for any o’ we have

(8.18) sup [[9% b2 < Ces”]hl”L g

cor2 1 2
t<t<To L L3 Hy Ly
and for later use we additionally have that
(8.19) / ||8°‘ he ”L°°L2 dt < C6||]1]1||L L1z B L2
t X1™v

where C, > (0 above may depend on ¢. The terms in the upper bound above are
finite due to (8.6).

Now we will perform an estimate similar to (8.16) but including derivatives: 9%.
A key point is that the estimates (8.18)) and (8.19) depend crucially upon & > 0.
However, we need a fixed uniform smallness of €p > 0 in (8.6), and we cannot
allow €9 — 0 as ¢ — 0. Therefore we will carefully iterate the derivatives such
that we only use (8.6) when we use the uniform-in-¢ > 0 estimates (8.14) and
(8-15) with no derivatives on h,. When we have derivatives on h, such as in (8.18))
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and (8.19), then we instead use the previous steps in the iteration to close our
estimates.

In the case |a| = 1, using (8.13) and taking one derivative we can again apply
(8-4) to obtain for 0 < t < Ty that

To
10% g5 ()7 +l/ 10%gslIpd T
t

To To
< / B e, 0%g0)|d T + / B ge. T (e, 0% g0))d T
t t

To
+/ |2 (g6. T (9%, 0%gs))|dT + To sup  [0%gs(7)||>.
t

t<t<Ty

It further follows from Lemma.T|with w, 5 = 1 and Sobolev embedding that

To
18%ge ()1 + /\/ 10%g6l1p dt
t

To
< sup ||3°‘gs(f)||/ 10 ge(v)lld 7
t

t<t<Typ
To 2 2 To 200 12
Gy [Nl e+ Gy [ NP I de
t / t v,
o 2 o 2
G [ 310l pde + Gy [ g PIh ey de
t ] t v,

To
o [ Wlhde+ T s PP
t

t<t<To

which holds for any 0 < ¢ < Ty. We conclude from (8.6)), (8.14)), and (8.13) and
the uniform smallness of € > 0 that

To
13 g ()2 + f 193 dt
t
TO o T() 5 o s
< / 19 g (1)1 d T + / lel B2 2 d o
t t 2

To 2 2
+ [Pl e 2 d
¢ X by,

Next using (8.18) and (8.19) (in this next step we are not using the smallness of
€0 > 0), we take a suitable linear combination of the last estimate with (8.16) to
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obtain that

To
0% @IF+ 4 Y / 10% gell d
t

o<1 lo|<1

Ty
<y / 19 g.(v) ld <.

la|<1 7!

(8.20)

In particular, we multiply (8.16) by a suitable large constant and then add it to the
previous line to obtain (8.20).
In general, for « = (a1, &) and & = (&, &3) we will prove that

To
O LROTEET S SN TN Y

a1 <1,|a|<6, ar<1,/a@l<6,”’
| <m |e|<m

Ty
< Z [0%G ge(r)ldt
a<l,jal<e, !
loe|<m

(8.21)

holds for m € {2,...,7}. The m = 0 case was shown in (8.16) and the m = 1
case was shown in (8.20).

We assume that holds for || = m and then prove that it also holds for
|| = m + 1. Consider any fixed o with |«| = m + 1; again using and (8.4),
we obtain for 0 < ¢ < Ty that

To
182 ()] + A / 19%ge 3 d v
t
To To
< / B D g0, 3 g0)\dT + / B3 ge. T (e, 0g0))|d T
t t

To / ’
[ Y[R g @ b 0% ax
t

o' <o

+To sup [8%ge(0)>.

t<t<Ty
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It similarly follows from Lemmal4.T|and the Sobolev embedding that
Ty
19%ge (@)1 + /\/ 10%gellp d=
t

To
< sup IIB“ge(f)ll/ 109G ge(T)|ld 7
t

t<t<Tp

To
2 2
Gy [ 1l bl de
t ,
To ) )
G [0l R d
t v,

TO 7 4
2 [ P

o’ <o

+ 118% ge 1 18 e | dt

igOL%)

To
o / 19%gel dr +To sup [0%gs(2)|2.
t

t<t<Ty

which holds for any 0 < ¢ < Tp. Again using (8.6), (8.14), and (8.15)) and the
uniform smallness of €g > 0, we obtain

To
19 e (]2 + A / 19%ge]3 d
t
To
< f 19D go(0)ld t
t

To
+ / > (1% gl 10 hel oo 2+ 10% gel HI* el e, 2)d T
U w<a t b o
Next using (8.18)) and (8.19) (and not relying on the smallness of €g > 0), since
o' < o we take a suitable linear combination of the above last estimate with (821
for |@| = m to obtain that also holds for || = m + 1. In particular, again
we multiply for |e| = m by a suitable large constant and then add it to the
previous line to obtain for || = m + 1, which proves (8.21).
Furthermore, we define the codomain of the mapping ¢ on W as

W ={w:w=9%g, geW}c L0, Ty; L2(Q x R?)),

and we define the functional

M Wz — (C,
Ty
We = Ghe = (he(0), gO,s) - (e, he)dt = A (wy),
0
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where 1, € W is uniquely determined by w, € W, as ¢ : W; — W, is bijective.
By (8.16) we have that
| A (we)|
(8.22) < [heO)[[1g0,ell + Cllhell oo (o, 70;12xR3)) e L1 (0,70: L2 (2 xR3Y)
< Cry (&) (l1go.ell + el oo (o, 7: L2 @xr3) ) 1€ Re | L1 (0,7 L2 (@2 xR3)) -

This implies that .#Z : W, — C can be extended to be a bounded linear functional
on L0, Tp; L?(2 x R?)). So, using the Hahn-Banach theorem, there is g, €
L>®(0, Ty; L?(2 x R3)) such that

To
(823)  M(we) = / (ge(t), we())dt  Ywe € LY(0, To; L*(Q2 x R?)),
0
and it holds that

1gell oo 0. 1:L2(0xR3Y) < CTo()([1g0.ell + I1hell Lo (0, 70:22(2xR3)) ) -
Recall (8.12). In terms of (8.23), for any i, € Wi, it follows that

T() T()
(8.24) . #(4h,) = (ge(t), Y he)dt = (he(0), g0.e) — (g, he)dt,
0 0

which implies that g, € L>®(0, To; L?( x R3)) is a weak solution to (8.10).
Moreover, from the energy estimate (8.16), it is straightforward to verify g, €
2 7272
L7, LXL p-
Step 3. In this step, we are going to show that the obtained weak solution g,
possesses higher regularity such as

(8.25) 0ge € LY LIL N LT, LILT p
for « € o with
o ={a:a=(a1,@), a1 <1,|a| <6}.

The proof uses an induction on n = |«| with the help of the weak formulation in
(8.10). The main issue to be dealt with arises from the fact that 3% does not com-
mute with ¢ since the linear operator I"(hg, -) depends on the function h.(¢, x, v).

Indeed, for |@| = 1, thanks to (8.17), we can still obtain a bounded linear func-
tional on L1(0, To: L%(Q x R3)), given by

«%(x . W2 — C,
To
we = Ghe > —(0%h(0), 20,e) — (L0%hg, he)dt
0
Ty

+ (T (3%, ge), he)dt.
0
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The above uses g, from (8.23). Note further that for || = 1 we have

To
(8.26) M (“Ghe) = M(G0%h) — ; (8¢, U (0%, he))dt = —My(Ghe).

Moreover, similar to obtaining (8.22), after integrating by parts on the initial data
term and using (8.16)), one has
| Mo (we)|
< [he@[110%go,e | + Cl10%Nel Loo 0,702 (2xR3)) 1 el L1 (0, 70: .2 (2xR3))
+C || aahe ”LOO(O,TO;H,%L%) ||ge ||L%"0L)2CL%.D(R3) ||hs ”LZTOLJZCL%.D (R3)
+C ”gs||L°°(0,T0;L2(QXR3))”aahS”LZTOH)%L%’D(R»*)”hs”LZTOL%L%.D(]R»*)
< CT0||ghe||L1TOL§,U(||3°‘go,s|| + 10%el .00 0, 70: L2(2xR3))
+ [|0%h, ||LW(0,T0;H§L%) lge ||L’2]’0L«2\‘L%.D(R3)

+ ||gs ||L°°(0,T0;L2(QX]R3)) || aahs ”L2T0 H)%I}’D(RB))-

v

Therefore, as before, there is g% € L°(0, Tp; L?(2 x R?)) such that

To
B27)  My(we) = (g5 (1), we(t))dt Ywe € Ll(o’ To; LZ(Q X ]R3)),
0

and similarly to before

188 52 0. 70:L2(2xR3)
< Cr, (19%go,ell + 10%Ie | oo (o, 70: 22 (xR )
0% hel oo o, iz ISellLz, 2222, @)
+ l1gellLoeo.mizzcsmon 107 Bell 2 pzrz , @3)-
Note that then reads as

To To To
[ @ohe g + / (v Vehe. g%) + / (Lihe. 8%)
0 0 0

To
#28) - [
0
To To
=—(3ah8(0),g0,€)— o ($23ah6ag?)+ o (F(aahs-ge),g?),

meaning that g& is a weak solution to the following problem:

3tg§‘ +v- ngg + flgg - F(hs,g?) = —250%h, + I'(0%hg, g¢),
g (0,x,v) = 39go,6(x, ),

ge(t,—1,X.v1,V)|y;>0 = ge(t, —1.X, —v1, V),
8e(t,1,X,v1,0) |y, <0 = ge(t. 1. X, —v1, ).
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Then using (8.23) with (8.26) and (8.27), we observe that

To To
(g2, Ghe)dt = — (ge, %G he)dt
0 0

for any &g, so that g& = 0%g, with |¢| = 1 in the weak sense. This proves (8.25))
with |a| = 1.

Now we assume that (8.23)) is true for @ € o7 with |o| = m > 1. Letting o € &
with |a| = m 4+ 1, as shown before, one sees that

%g : WZ — C,
To
we = Ghe > (=D (3%1:(0), goe) — | (L20%he, he)dt
0

~ TO ’ 7
b G [ e 0 o,

a>a’>0 0

can be extended to be a bounded linear functional on L>(0, Tp; L2(2 x R3?)).
Here, since |&/| < m, the induction assumption has been used. Then we also have

TO 4 4
M Ghe) = MG he) — Y Co | (8. T*(0% ¥ he, 0% he))dt
(8.29) a>a'>0 0

= (—D)L 2y (@he).

In (8.29) and above CJ, and C o are the constants that arise from the multinomial
formula, and they depend only on « and o’.
Then, similarly, there is g& € L°°(0, To; LZ(Q x R3)) such that

To

Mo(We) = i (g%(1), we(t))dt  VYwe € L10, To; L2(Q2 x R?)),

and again we have

&g | Loo0,70: L2 (2 xR 3))

< O, (10 go.e | + 107 Bl oo o, i1 2@xR )

a—ao’ a’
+ Zo”a WellLooo,mo:m2ep) 197 8ellz, 1312 @)
a>a’>

+ ) 19 gellooo, ;L2 (@xran 137 hslleTOH,%LZD(R%)-

v,
a>a’>0
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Consequently, similar to the previous arguments, one sees that g with & € ./ and
|| = m —+ 1is a weak solution to the following problem:

dege +v-Vxgd + L1gg — T'(he, g7

= —20%s + Y goqrm0 (0¥ he. 0% go),
g2(0,x,v) = 0%go,e(x, ),
gs(_lvf,v1,§)|v1>0 = ge(—1,X,—v1,0),
ge(lv)_c’vlvﬁ)|vl<0 = g¢(1,X,—v1,0),

and furthermore as in (8.29), g% = 0%g, holds true in the weak sense as

To To
(g%, %Ghe)dt = (—1)™H! / (gs. 0°Chg)dt
0

for any h. Hence, one has that 3%g, € L®(0, Tp; L?>(Q x R?)), and it is also
straightforward to further verify that 3* g, € L%OL)ZCL%’ p- This justifies (8.25) for
o € o with |¢| = m + 1. Thus, by induction, (8.23) is proved. Note that in the
above steps many of the estimates depended crucially on fixed ¢ > 0.

Step 4. We are going to show that there is g = g(¢,x,v),0 <t < Tp, x € Q,
v € R3 with g(¢, x1,X,v1,v) = g(¢t, —x1, X, —vy, V) such that

g.Vxg € LELF L3 L5 N LiLg LY, L] p.
and for any |a| < 1, 3% g, strongly converges to 3% g in the above space as ¢ — 0.

Firstly, starting from the approximate solution g, with the estimate (8.23)) in the
regular Sobolev space, we need to prove that for any || < 1, we have that

0ge € LLLR LY LN LELT LY LY .
Indeed, letting || < 1, to prove the estimates on d%g, in L};LO‘:’L2 L2, we split

B = To " x1
the whole Fourier space Z% as {k # 0} U {k = 0}, and write

19%8el 1 pz0 12 12 = / sup 3¢ ldx(R)
k= To™>1 72 0<t<Ty

(8.30)
= /_ sup [0%gelldX (k) + sup / 0%g.dXx|.
k#0 0<t<Ty 0<t<Toll/T2
Above, and in the rest of Step 4, we use the notation |- || = ||-[/;2 ;2.
X1 v

Estimate on the first term on the right-hand side of (8.30): To treat the sup norm
in time we may rewrite it as

8.31 su -|= lim ||-||;» =lminf|-|,;~ .
(8.31) L = i 1l = tmint g,
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Let Ab = |k|?g for b € R. Then it holds that

[k sup [|0%g: [l (6)

#0 0<t<Tp

B / L s [aPg|dz@®
(8.32) E0 K972 0<121, co

B fk#o |k|15/2 lé‘Eang [ad%0%| ‘L;Odm)

=00 Jeso |k|5/2 H “/S/Ea\gs\\ dE(l?),

where Fatou’s lemma has been used in the last 1nequality. Let p > 2 with the con-
jugate p’ such that 1/p + 1/p’ = 1, then we can derive from Holder’s inequality
that

/k;é() | |5/2 H |A 5/28"‘g8H||L,, d (k)
_\r
‘ godz(k))

([ s ®) ([ 1T |
= ko k15772 Fuolll 7 L

1/ 5200 N
<Cp-T, p sup (/%2 |AZ ao’gg”pdE(k)) .

0<t<Tp

Applying the inequality [|-[lgr(z2) < |I-ll¢2(z2) for any 2 < p < oo, we see that

A2 1P (R " Al2ge g 12 gsE V2
[ 16P0geas®) = ([ 1aPegpazd)

which by Plancherel’s identity the last upper bound is further bounded as

[8320%e] 12, < D107 gl 2
Beo

Plugging those estimates above into (8.32)) and taking the liminf as p — oo gives

f sup [ [dS @)
k#0 0<t<Ty
(8.33)

<CZ sup Ha g8HL2 < Ce < 00.
ﬂGQfO<t<TO

Estimate on the second term on the right-hand side of (8.30): We first apply
Minkowski’s inequality to obtain

< s [ gdaz < [ s [gdas,

0<t<Ty T2 0<t<Ty

0%g.dx
T2

sup
0<t<Ty
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By (8.31)) and Fatou’s lemma, one has

f sup ||8“g8||d)?:f liminf| |8% g |||, » dX
T2 0<t<To T2 P—7>o© To

(8.34)
< liminf/ lo%gell|, » dx.
p—>0 JT2 To

Similarly to before, for any p > 2 with the conjugate p’, by Holder’s inequality it
holds that

1/p’ 1/p
L lasatl ax < ([ 7ax) ([ sz, o)
T2 To T2 T2 To

To 1/p
=Cp/(/ / ||a°‘g8||”drdf) ,
T2 Jo
which implies that

To 1/p
it [ el g a7 =i ([ [ 1 ara)

=C sup sup [|0%ge].

0<t<T) XeT?
By the embedding H?(T2) C L%°(T32), plugging the above estimate into (8:34),

we have

(8.35) / sup [[0%gelldx < C Z sup
T2 0<t<To Qj0<t<T0

Gﬂgg < Ce < 00.

2V

Therefore, by (8.35)) and (8.33), it follows from (8.30) that 3%g, € LI%L‘;%L)ZCIL%
for |a| < 1. We have the following estimate:

D e gellLirs 12,12

la|<1
BNV
-y [ (/ ||a°‘ge||2dz) a3 (%)

lor|<1
- X [ ([T sra) o
a2 a“gs||2dz) ()
k0 |k|3/2 (/
lor|<1
2 1/2
+ > (/O L 0%gedx dt)
le|<1

To 1/2
(f > a2, dz) <Co<.

o1 <1,|x|<6
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We have shown that 0%g, € L};LZTOL%L%, p for |a| < 1 where the bounds above

depend upon ¢ > 0.
Secondly, we will now show that g¢ and Vi g are bounded in L -L$ L3, L3 N

L};LZTOLaan%, p uniformly for any & > 0. In fact, turning to (8:10), we may
perform similar energy estimates to those for obtaining using (8.4) to deduce

that

2 /Z sup 3% ge(t. B)|d S (k)

|a|<1 0<t<Ty

To 1/2 _
wvah ¥ [ ([T ieipar)  az@

loe]<1

< ¥ [ 100z ®

loe]<1

XL

le]<1

I 2
(FT (ks g0), P 5e) dt) 45 ()

1/2

To e _
+ > /ZZ(/O (0%, D g8)|dt) dZ (k)

ler]<1

#0030 [ s [0 DI,

Z2 0<t<Ty

The above upper bound is then further bounded by

<X [ 10sndaz®

o] <1

(44 o
+ Gy Z |9 gs”L}?L‘;%L%lL% Z |0 hEHL]l‘TL%"OL«%IL%.D

le|<1 la|<1
o o
+Cy DN gl 12,12, D 1% BelLt 12, 12
lee|<1 le|<1

o o
+ Gy Z |0 ]}]IS”L]%L%"OLJZHL%,D +1n Z |0 gSHL’]%L%"OL)ZClL%,D

ler|<1 le|<1

+To ) fZ2 sup 9% ge (. k)| d (k).



GLOBAL MILD SOLUTIONS OF LANDAU AND NON-CUTOFF BOLTZMANN 1013

On the other hand, it is straightforward to check that

(04 (04
DN bellpipge 2+ 200" hellLire 12 02

| <1 | <1
o o
S 2 N0 bllpgerz 4 DNz 12 02 ) < Ceo,
lee|<1 lee]<1
and similarly
> [ iz ® =c Y [ 1#olds®.
72 72

lee|<1 le|<1

The two bounds above are independent of ¢ > 0. Consequently, we obtain the
following uniform-in-¢ estimate:

Z/Z sup [|0%gs (¢, k) d S (k)

<1 V22 0=t<T
T 1/2 B
(8.36) + > fzz(/o 10%ge]|% dt) dX (k)
loe|<1

o 7 o
<) /Z 19%golld= () + D N9*BlLirz 12,12,

o] <1 le]<1

This holds on a short time interval 7y > O.
Lastly, we prove that for |«| < 1, the sequence (3% g¢).>¢ is Cauchy in the space
LeL@ L3 L3N LELT L3 LY ase — 07 To do so, it suffices to show that

0 X1 0o "x1v
3 / sup [|3%ge; — g | ®)
<1 Z2 0<t<Ty

To o 1/2 _
+Z/ZZ(/O ||a“gsl—a“g82||%)dr) 43(F)

(8.37) loe|<1
£ 2 [ 100 - Fronldz®

lel<1

+Zaa]hl—3a]hl 172 72 72 .
| €1 €2||L,:LTOLX1LU.D

lee]<1

Above the implicit constant is uniform in ¢ > 0. Indeed, in terms of

0tge +v-Vxge + L18c — U'(hg, g) = —L2he,
2e(0,x,v) = go,e(x.v),

gs(f’_l,)_cav176)|v1>0 = ge(t,—1,X,—v1,0),
ge(t, 1, X, 01, V) |y, <0 = ge(f. 1, X, —v1,0),
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the estimate can be derived by the energy estimates similar to obtaining
(8:36), and we omit the details for brevity. Therefore, there is a function g with
g.Vxg € Lo LPLY LyNLL LZTOLglLZD such that 3%g, — 0%g (ja| < 1) in
L L‘%‘(’)L%lL2 N L L2 L2 L2 pasE—~ 0F. Moreover, it is direct using similar
estlmates to verify that the hmlt function g is a unique solution to (8.3) satisfying
the symmetric property and the estimate (8.8). This completes the proof of

Lemma O

PROOF OF THEOREM 8.1l We construct the approximate solution sequence,

which is denoted by (f"(t,x,v))5>, for the problem (L.I0), (L.TI)), and (L.15)
using the following iterative scheme:
atfn-i-l + v13x1f"+1 +v- V)—Cfn'H + glfn+1 _ F(f”,fn+1) — _ngn’
N0, x,v) = fo(x,v),
[T ELE 01, 0) |y >0 = fMTH(=1 X, —v1, D),
LR 0 D)o <0 = ST (LE, 01, D),

forn = 0,1,..., where we have set f0(z,x,v) = fo(x,v). With Lemmain
hand, it is a standard procedure to apply the induction argument to show that there
are €9 > 0 and 7y > O such that if

||,f0||LLL2 + ”VXfO”LLLZ = €o,

then the approximate solution sequence ( f"(¢, x, v)) 2 o is well-defined in the
space L L°°L2 L2 NL- LZTOLJZCl L% ps itis also a Cauchy sequence in this func-
tion space Then the 11m1t function f(z, x, v) such that (8.1)) holds true by similar
estimates is indeed a unique solution of (I.10), (T.11), and (I.13) satisfying the
desired symmetric property and the estimate (8.2)). For the proof of positivity, we
can use the argument from [43| p. 833]; the details are omitted for brevity. The
proof of Theorem [8.1]is complete. g

Appendix: Basic Estimates

In this appendix, we collect some known basic estimates for the linearized Lan-
dau operator or Boltzmann operator L as in (I.I2). We will use the following
estimates, which were proven in [45, cor. 1 and lemma 5, p. 400]:

LEMMA A.l1 (Landau case). Let L be defined as in (I.12). Suppose y > —3; then
there exist two generic constants 8o, C > 0, such that

Sol{I—P}gl7, < (Lg, g2

g1} = C{l) 2 Py b s + [(0) T HA-P)3; 35 + [(0) g3},
where Py, is the projection defined as
3
Pyhj =Y hmvm

m=1

Uj
Ifz’ je{l,2,3},
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for any vector-valued function h(v) = [h1(v), h2(v), h3(V)].

For the Boltzmann case (I.5]) with (I.12), recalling also Remark [3.3] we have
the following linearized estimate from [43] eq. (2.13), p. 784].

LEMMA A.2 (Boltzmann case). Let L be defined as (1.12). For 0 < s < 1 and
y > —3. Then there exists a uniform quantitative constant Cy > 0 such that

1
eI T=Piel} = (Lg. )13 = Colll—Plglp,

This lemma is also independently contained in [3]]. From [3]] and also similarly
in [43] eq. (2.15), p. 784], recalling again Remark [3.3] one has that

2 yi2s 12 2 2

Soflelys,, +1(v) > gly} < lglp < Clelgs, .

where 6o, C > 0. Here the weighted fractional Sobolev norm | g|§1s = |(v)* g|12qs
¢

is given by
£ 4 2
2 o2 [(v)"g() — (u)"g(u)]
el = 10elZy + [ v [ an e Huist

This norm turns out to be equivalent to

el = [ dv |0 = 20}t )gw)

We refer to [3]] for additional details.
Lastly, we give the following uniform weighted estimates for both the linear
Landau and Boltzmann operator as follows.

LEMMA A.3 (Weighted estimates). Let L be given by (1.12), we have the estimate
(Lg.wg58)12 = 8glwga8lh — ClelT2(p,.

where 84, C > 0, and Bg denotes the closed ball in R3 with center 0 and radius a
constant R > 0. Here (q,V) are given as in (H) in (1.26) for the Boltzmann case
and the Landau case.

The lemma above is proven in [76, lemma 9, p. 323] for the Landau case. For
the Boltzmann case, such an estimate is proven in [43, lemma 2.6, p. 783, Equation
(2.10)] with polynomial weights. To prove the estimate with exponential weights
as in (I.23) with (1.26) it will follow directly from using the estimate [43] lemma
2.6, p. 783, eq. (2.10)] or [3]], combined with the techniques for handling the ex-
ponential weight in the proof of [[76, lemma 9, p. 323] following the restrictions in

(1.26). See also [29].
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