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The Muskat problem models the filtration of two incompress-
ible immiscible fluids of different characteristics in porous me-
dia. In this paper, we consider both the 2D and 3D setting of 
two fluids of different constant densities and different constant 
viscosities. In this situation, the related contour equations 
are non-local, not only in the evolution system, but also in 
the implicit relation between the amplitude of the vorticity 
and the free interface. Among other extra difficulties, no max-
imum principles are available for the amplitude and the slopes 
of the interface in L∞. We prove global in time existence re-
sults for medium size initial stable data in critical spaces. We 
also enhance previous methods by showing smoothing (instant 
analyticity), improving the medium size constant in 3D, to-
gether with sharp decay rates of analytic norms. The found 
technique is twofold, giving ill-posedness in unstable situa-
tions for very low regular solutions.
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1. Introduction

This paper studies the dynamics of flows in porous media. This scenario is modeled 
using the classical Darcy’s law [22]

μ(x, t)u(x, t) = −∇p(x, t) − ρ(x, t)ed, (1)

where the velocity of the fluid u is proportional to the spatial gradient pressure ∇p

and the gravity force. Above x is the space variable in Rd for d = 2, or 3, t ≥ 0 is 
time and ed is the last canonical vector. In the momentum equation, velocity replaces 
flow acceleration due to the porosity of the medium. It appears with the viscosity μ(x, t)
divided by the permeability constant κ, here equal to one for simplicity of the exposition. 
The gravitational field comes with the density of the fluid ρ(x, t) multiplied by the 
gravitational constant g, which is also normalized to one for clarity.

In this work the flow is incompressible

∇ · u(x, t) = 0, (2)

and takes into consideration the dynamics of two immiscible fluids permeating the porous 
medium Rd with different constant densities and viscosities

μ(x, t) =
{

μ1, x ∈ D1(t),
μ2, x ∈ D2(t),

ρ(x, t) =
{

ρ1, x ∈ D1(t),
ρ2, x ∈ D2(t).

(3)

The open sets D1(t) and D2(t) are connected with Rd = D1(t) ∪D2(t) ∪∂Dj(t), j = 1, 2
and move with the velocity of the fluid

dx

dt
(t) = u(x(t), t), ∀x(t) ∈ Dj(t), or x(t) ∈ ∂Dj(t). (4)

The evolution equation above is well-defined at the free boundary even though the ve-
locity is not continuous. The discontinuity in the velocity holds due to the density and 
viscosity jumps. But what matters is the velocity in the normal direction, which is con-
tinuous thanks to the incompressibility of the velocity. The geometry of the problem is 
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due to the gravitational force, with the fluid of viscosity μ2 and density ρ2 located mainly 
below the fluid of viscosity μ1 and density ρ1. In particular, there exists a constant M > 1
large enough such that Rd−1 × (−∞, −M ] ⊂ D2(t).

We are then dealing with the well-established Muskat problem, whose main interest is 
about the dynamics of the free boundary ∂Dj(t), especially between water and oil [32]. 
In this paper, we study precisely this density-viscosity jump scenario, i.e. when there 
is a viscosity jump together with a density jump between the two fluids. Due to its 
wide applicability, this problem has been extensively studied [4]. In particular from the 
physical and experimental point of view, as in the two-dimensional case the phenomena 
is mathematically analogous to the two-phase Hele-Shaw cell evolution problem [35].

From the mathematical point of view, in the last decades there has been a lot of effort 
to understand the problem as it generates very interesting incompressible fluid dynamics 
behavior [25].

An important characteristic of the problem is that its Eulerian–Lagrangian formula-
tion (1), (2), (3), (4) understood in a weak sense provides an equivalent self-evolution 
equation for the interface ∂Dj(t). This is the so-called contour evolution system, which 
we will now provide for 3D Muskat in order to understand the dynamics of its solutions.

Due to the irrotationality of the velocity in each domain Dj(t), the vorticity is con-
centrated on the interface ∂Dj(t). That is the vorticity is given by a delta distribution 
as follows

∇∧ u(x, t) = ω(α, t)δ(x = X(α, t)),

where ω(α, t) is the amplitude of the vorticity and X(α, t) is a global parameterization 
of ∂Dj(t) with

∂Dj(t) = {X(α, t) : α ∈ R2}.

It means that ∫
R3

u(x, t) · ∇ ∧ ϕ(x)dx =
∫
R2

ω(α, t) · ϕ(X(α, t))dα,

for any smooth compactly supported field ϕ. The evolution equation reads

∂tX(α, t) = BR(X,ω)(α, t) + C1(α, t)∂α1X(α, t) + C2(α, t)∂α2X(α, t), (5)

where BR is the well-known Birkhoff–Rott integral

BR(X,ω)(α, t) = − 1
4πp.v.

∫
R2

X(α, t) −X(β, t)
|X(α, t) −X(β, t)|3 ∧ ω(β, t)dβ, (6)

which appears using the Biot–Savart law and taking limits to the free boundary. Above 
the coefficients C1 and C2 represent the possible change of coordinates for the evolving 
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surface and the prefix p.v. indicates a principal value integral. It is possible to close 
the system using that the velocity is given by different potentials in each domain and 
we denote the potential jump across the interface by the function Ω(α, t). Taking limits 
approaching the free boundary in Darcy’s law yields the non-local implicit identity

Ω(α, t) = AμD(Ω)(α, t) − 2AρX3(α, t), Aμ = μ2 − μ1

μ2 + μ1 , Aρ = ρ2 − ρ1

μ2 + μ1 , (7)

where D is the double layer potential

D(Ω)(α, t) = 1
2πp.v.

∫
R2

X(α, t)−X(β, t)
|X(α, t)−X(β, t)|3 · ∂α1X(β, t) ∧ ∂α2X(β, t)Ω(β, t)dβ. (8)

In that limit procedure, the continuity of the pressure at the free boundary is used, which 
is a consequence of the fact that Darcy’s law (1) is understood in a weak sense. Relating 
the potential and the velocity jumps at the interface provides

ω(α, t) = ∂α2Ω(α, t)∂α1X(α, t) − ∂α1Ω(α, t)∂α2X(α, t), (9)

and therefore it is possible to close the contour evolution system by (5), (6), (7), (8), (9)
(see [16] for a detail derivation of the system).

Then the next question to ask is about the well-posedness of the problem. A remark-
able peculiarity is that, in general, it does not hold. The system has to initially satisfy 
the so-called Rayleigh–Taylor condition (also called the Saffman–Taylor condition for the 
Muskat problem) to be well-posed. This condition holds if the difference of the gradient 
of the pressure in the normal direction at the interface is strictly positive [1], [2], i.e.
the stable regime. For large initial data, well-posedness was proved in [17] for the case 
with density jump in two and three dimensions. In that case, the Saffman–Taylor condi-
tion holds if the denser fluid lies below the less dense fluid. The density-viscosity jump 
stable situation was proved to exist locally in time in 2D [15] and in 3D [16]. Although 
these proofs use different approaches, it was essential in both proofs to find bounds for 
the amplitude of the vorticity in equation (7) in terms of the free boundary. There are 
recent results where local-in-time existence is shown in 2D for lower regular initial data 
given by graphs in the Sobolev space H2 for the one-fluid case (μ2 = 0) [11] and in 
the two-fluid case (μ2 ≥ 0) [31]. In the 2D density jump case the local-in-time existence 
has been shown for any subcritical Sobolev spaces W 2,p, 1 < p < ∞ [14], and Hs, 
3/2 < s < 2 [30]. Here, the terminology subcritical is used in terms of the scaling of the 
problem, as Xλ(α, t) = λ−1X(λα, λt) and ωλ(α, t) = ω(λα, λt) are solution of (5), (6), 
(7), (8), (9) for any λ ≥ 0 if X(α, t) and ω(α, t) are. Therefore Ẇ 1,∞, Ẇ 2,1 and Ḣ3/2 are 
critical and invariant homogeneous spaces for the system in 2D, or Ẇ 1,∞, Ẇ 3,1 and Ḣ2

in the 3D case. It is then easy to check that the main space Ḟ1,1 used in this paper (see 
definition below) is also critical.
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On the other hand, the Muskat problem can be unstable for some scenarios, when the 
Saffman–Taylor condition does not hold. In particular, if the difference of the gradient 
of the pressures in the normal direction at the interface is strictly negative, the contour 
evolution problem is ill-posed in the viscosity jump case [36] as well as the density 
jump situation [17] in subcritical spaces. With the Eulerian–Lagrangian formulation 
(1), (2), (3), (4) it is possible to find weak solutions in the density jump case where 
the fluid densities mix in a strip close to the flat steady unstable state [37] and for 
any H5 unstable graph [7]. In the contour dynamics setting, adding capillary forces to the 
system makes the contour equation well-posed [24]. When the Saffman–Taylor condition 
holds, the system is structurally stable to solutions without capillary forces if the surface 
tension coefficient is close to zero [3]. However, there exist unstable scenarios for interfaces 
interacting with capillary forces [33] which have been shown to have exponential growth 
for low order norms under small scales of times [29]. The system also exhibits finger 
shaped unstable stationary-states solutions [23].

A very important feature of this problem is that it can develop finite time singularities 
starting from stable situations. The Muskat problem then became the first incompress-
ible model where blow-up for solutions with initial data in well-posed scenarios had been 
proven rigorously. Specifically, in the 2D density jump case, solutions starting in stable 
situation (denser fluid below a graph) become instantly analytic and move to unstable 
regimes in finite time [10]. In the unstable regime the interface is not a graph anymore, 
and at a later time the Muskat solution blows-up in finite time showing loss of reg-
ularity [8]. The geometry of those initial data are not well understood, as numerical 
experiments show that some solutions with large initial data can remain smooth [19], 
and the patterns can become more complicated for scenarios with fixed boundary ef-
fects [27]. As a matter of fact, some solutions can pass from the stable to the unstable 
regime and enter again to the stable regime [20].

The Muskat problem also develops a different kind of blow-up behavior in stable 
regimes: the so-called splash singularities. This singularity occurs if two different particles 
on the free boundary collide in finite time while the regularity of the interface is preserved. 
This collision can not occur along a connected segment of the curve of particles in either 
the density jump [18] or the density-viscosity jump case [21]. In particular, the splash 
singularity is ruled out for the two-fluid case [26] but it takes place in one-fluid stable 
scenarios [9].

The question we study in this paper is about the global in time existence, uniqueness, 
regularity and decay of solution of the Muskat problem in stable regimes and ill-posedness 
in unstable regimes. In the viscosity [36], density [17] and density-viscosity jump 2D 
cases [23], [11] there exist global in time classical solutions for small initial data in 
subcritical norms which become instantly analytic, thereby demonstrating the parabolic 
character of the system in these situations. See [5] for the same result in the 2D density 
jump case with small initial data in critical norms, represented on the Fourier side by 
positive measure. In [14], global in time existence of classical solutions are shown to exist 
with small initial slope. In [12], global existence of 2D density-jump Muskat Lipschitz 
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solutions are given for initial data with slope less than one. See [28] for an extension of 
the result with fixed boundary and [13] for the 3D scenario, where the L∞ norm of the 
free boundary gradient has to be smaller than 1/3. In [12] and [13] global existence and 
uniqueness is proved for solutions with continuous and bounded slope and L1 in time 
bounded curvature in the density jump case for initial data in critical spaces with medium 
size. More specifically, the initial profiles are given by functions, i.e. X(α, 0) = (α, f0(α)), 
for a function f0(α) of size less than k0:

‖f0‖Ḟ1,1 =
∫

Rd−1

dξ|ξ||f̂0(ξ)| < k0,d, d = 2, 3,

where k0,d is an explicit constant, k0,3 > 1/5 in 3D and k0,2 > 1/3 in 2D. In [34], the 
optimal time decay of those solutions are proven, for initial data additionally bounded 
in subcritical Sobolev norms. We also point out work [6], where the Lipschitz solutions 
given in [8] are shown to become smooth by using a conditional regularity result given 
in [14] together with an instant generation of a modulus of continuity.

Next, we describe the main results and novelties in this work. This paper extends the 
global existence results in 2D and 3D from [13] to the more general case with density-
viscosity jump. Moreover, in 3D we improve the available constant for global existence 
and make it equal to the 2D constant in the Aμ = 0 case. Precisely, it is given by initial 
data satisfying that

‖f0‖Ḟ1,1 =
∫

dξ|ξ||f̂0(ξ)| < k(|Aμ|),

where k : [0, 1] → [k(1), k0] is decreasing and k(0) = k0 = k0,2. We would like to point 
out that due to the nature of equation (7), maximum principles are not available for the 
amplitude and the slopes in the L∞ norm and the parabolic character of the equation 
is not as clear as in the case Aμ = 0. We provide the first global existence result for this 
important scenario in a critical space. The space Ḟ1,1 appears as a natural framework 
to perform the task of inverting the operator (I −AμD) in order to get bounds for ω in 
terms of the interface. In particular, we also improve the method in [13] as we are able 
to show smoothing effects, proving that solutions with medium size initial data become 
instantly analytic. Furthermore, we show uniform bounds of the interface in L∞ and L2

norms with analytic weights. Then, we show optimal decay rates for the analyticity of 
the critical solutions, improving the results in [34].

Finally, we show with the new approach in the paper that solutions are ill-posed in the 
unstable regime even for low regularity solutions understood in the contour dynamics 
setting. We give precise statements of these results in Section 3. In next section we 
provide the contour equations we use throughout the paper.
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2. Formulation of the Muskat problem with viscosity jump

In this section, we derive the contour equation formula given by (5), (6), (7), (8), (9)
in terms of a graph. This equation will be used throughout the paper to state the main 
results and to prove them. To simplify notation we shall write f(α, t) = f(α) when there 
is no danger of confusion.

In the 3D case, if the evolving interface can be described as a graph

X(α, t) = (α1, α2, f(α, t)), α = (α1, α2) ∈ R2,

then the equations (5) are reduced to one equation as follows

0 = − 1
4πp.v.

∫
R2

(α2 − β2)ω3(β) − ω2(β)(f(α) − f(β))
|(α, f(α)) − (β, f(β))|3 dβ + C1(α),

0 = − 1
4πp.v.

∫
R2

ω1(β)(f(α) − f(β)) − (α1 − β1)ω3(β)
|(α, f(α)) − (β, f(β))|3 dβ + C2(α),

ft(α)=− 1
4π

∫
R2

(α1−β1)ω2(β)−(α2−β2)ω1(β)
|(α, f(α))−(β, f(β))|3 dβ+C1(α)∂α1f(α)+C2(α)∂α2f(α).

Thus, substituting the coefficients from the tangent terms into the evolution equation 
and applying a change of variables, we obtain the equation for f :

ft(α) = I1(α) + I2(α) + I3(α), (10)

where

I1(α) = − 1
4πp.v.

∫
R2

β1ω2(α− β) − β2ω1(α− β)
(1 + (Δβf(α))2) 3

2

dβ

|β|3 , (11)

I2(α)= 1
4πp.v.

∫
R2

Δβf(α)∂α2f(α)ω1(α−β)−Δβf(α)∂α1f(α)ω2(α−β)
(1 + (Δβf(α))2) 3

2

dβ

|β|2 , (12)

I3(α) = 1
4πp.v.

∫
R2

β2∂α1f(α) − β1∂α2f(α)
(1 + (Δβf(α))2) 3

2
ω3(α− β) dβ

|β|3 . (13)

Above we use the notation Δβf(α) for

Δβf(α) = (f(α) − f(α− β))|β|−1.

We have the following equations for the vorticity coming from (9):

ω1 = ∂α2Ω, ω2 = −∂α1Ω, ω3 = ∂α2Ω∂α1f − ∂α1Ω∂α2f. (14)
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Introducing (14) into (11) and (12) they can be written as

I1(α) = 1
4πp.v.

∫
R2

1
(1 + (Δβf(α))2) 3

2

β

|β|3 · ∇Ω(α− β)dβ,

I2(α) = 1
4πp.v.

∫
R2

Δβf(α)∇f(α)
(1 + (Δβf(α))2) 3

2
· ∇Ω(α− β)

|β|2 dβ. (15)

By adding and subtracting the appropriate quantity, we obtain the following

I1(α) = 1
2ΛΩ(α) + 1

4πp.v.
∫
R2

(
(1 + (Δβf(α))2)− 3

2 − 1
) β

|β|3 · ∇Ω(α− β)dβ,

where the operator Λ is given by the Riesz transforms

Λ = R1∂α1 + R2∂α2 (16)

and also as a Fourier multiplier by Λ̂ = |ξ|. Plugging the identity for Ω (7), the equation 
below shows the parabolic structure of the equation as

I1(α) = −AρΛf(α) + Aμ

2 ΛD(Ω)(α)

+ 1
4πp.v.

∫
R2

(
(1 + (Δβf(α))2)− 3

2 − 1
) β

|β|3 · ∇Ω(α− β)dβ.
(17)

Using formulas (14) and (7) in I3(α) (13) we are able to find that

I3(α) = Aμ

4π p.v.
∫
R2

β · ∇⊥f(α)∇D(Ω)(α− β) · ∇⊥f(α− β)
(1 + (Δβf(α))2) 3

2

dβ

|β|3 . (18)

We can finally write the contour equation (10) by using formulas (17), (15) and (18) to 
get:

ft = −AρΛf + N(f), where N(f) = N1(f) + N2(f) + N3(f), (19)

where N(f) = N(f, Ω) and

N1 = Aμ

2 ΛD(Ω)(α),

N2 = 1
4πp.v.

∫
R2

(
β
|β| + Δβf(α)∇f(α)
(1 + (Δβf(α))2)3/2

− β

|β|

)
· ∇Ω(α− β)

|β|2 dβ,

N3 = Aμ

4π p.v.
∫

β · ∇⊥f(α)∇D(Ω)(α− β) · ∇⊥f(α− β)
(1 + (Δβf(α))2) 3

2

dβ

|β|3 .

(20)
R2
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The equation for Ω is given implicitly by

Ω(α, t) = AμD(Ω)(α, t) − 2Aρf(α, t), (21)

where the operator D(Ω) (8) is rewritten as follows

D(Ω)(α) = 1
2π

∫
R2

Δβf(α) − β·∇f(α−β)
|β|

(1 + (Δβf(α))2)3/2
Ω(α− β)

|β|2 dβ. (22)

Note that the derivatives of D(Ω) can be written in the following manner

∂αi
D(Ω)(α, t) = 2BR(f, ω)(α, t) · ∂αi

(α1, α2, f(α)), (23)

and therefore

∂αi
Ω(α, t) − 2AμBR(f, ω)(α, t) · ∂αi

(α1, α2, f(α)) = −2Aρ∂αi
f(α, t). (24)

In the case of a graph, the Birkhoff–Rott integrals are also reduced in the following 
manner

BR(f, ω) def= (BR1(f, ω), BR2(f, ω), BR3(f, ω)),

where we use the shorthand BRi
def= BRi(f, ω) to be the terms

BR1 = −1
4π p.v.

∫
R2

β2
|β|ω3(α− β) − Δβf(α)ω2(α− β)

(1 + Δβf(α)2) 3
2

dβ

|β|2 , (25)

BR2 = −1
4π p.v.

∫
R2

Δβf(α)ω1(α− β) − β1
|β|ω3(α− β)

(1 + Δβf(α)2) 3
2

dβ

|β|2 , (26)

BR3 = −1
4π p.v.

∫
R2

β1
|β|ω2(α− β) − β2

|β|ω1(α− β)

(1 + Δβf(α)2) 3
2

dβ

|β|2 . (27)

This completes our explanation of the formulation in 3D.
We now state the formulation in 2D. Proceeding similarly as above one obtains that

ft = −AρΛf + N(f), where N(f) = N1(f) + N2(f), (28)

where N(f) = N(f, Ω) and

N1 = Aμ

2 ΛD(Ω)(α),

N2 = 1 p.v.
∫ Δβf(α) − ∂αf(α)

2 Δβf(α)∂αΩ(α− β)
dβ.

(29)
2π 1 + Δβf(α) β
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The equation for Ω is given implicitly by

Ω(α, t) = AμD(Ω)(α, t) − 2Aρf(α, t), (30)

where the operator D(Ω)(α, t) is rewritten as follows

D(Ω)(α, t) = 1
π

∫
R

Δβf(α) − ∂αf(α− β)
1 + Δβf(α)2

Ω(α− β)
β

dβ. (31)

Note that the vorticity is given by ω(α) = ∂αΩ(α).

3. Main results

In this section, we present the main results and briefly give an outline of the structure 
of this paper. The first result is global well-posedness in the critical space Ḟ1,1 ∩ L2

in 3D, where we define the norms

‖f‖Ḟs,1
def=

∫
|ξ|s|f̂(ξ)|dξ, s > −2.

We also denote ‖f‖Ḟ0,1 = ‖f‖F0,1 .

Theorem 1 (Existence and uniqueness, 3D). Let f0 ∈ Ḟ1,1 ∩ L2 satisfy the bound

‖f0‖Ḟ1,1 < k(|Aμ|)

for a constant k(|Aμ|) depending on the Atwood number Aμ. Then there exists a unique 
solution to (19)–(22) with f ∈ L∞(0, T ; Ḟ1,1 ∩ L2) ∩ L1(0, T ; Ḟ2,1) such that f(α, 0) =
f0(α) and

‖f‖L2(t) ≤ ‖f0‖L2 , ‖f‖Ḟ1,1(t) + σ

t∫
0

‖f‖Ḟ2,1(τ)dτ ≤ ‖f0‖Ḟ1,1 < k(|Aμ|), (32)

for a positive constant σ depending on Aρ, Aμ and ‖f0‖Ḟ1,1 .

The constant σ is defined in (10) with ν = 0. The Rayleigh–Taylor stability of the 
scenario allows the positivity of σ. This condition is ensured because Aρ is positive (the 
denser fluid is below) and because of the size of ‖f0‖Ḟ1,1 (which is given according to 
the parameter |Aμ|). In the following theorem the formula for σ is more straightforward 
and the property above can be seen directly.
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In the 2D case, we analogously have the following:

Theorem 2 (Existence and uniqueness in 2D). Let f0 ∈ Ḟ1,1 ∩ L2 satisfy the bound

‖f0‖Ḟ1,1 < c(|Aμ|)

for a constant c(|Aμ|) depending on the Atwood number Aμ. Then there exists a unique 
solution to (28)–(31) with f ∈ L∞(0, T ; Ḟ1,1 ∩ L2) ∩ L1(0, T ; Ḟ2,1) such that f(α, 0) =
f0(α) and

‖f‖L2(t) ≤ ‖f0‖L2 , ‖f‖Ḟ1,1(t) + σ

t∫
0

‖f‖Ḟ2,1(τ)dτ ≤ ‖f0‖Ḟ1,1 < c(|Aμ|),

for a positive constant σ depending on Aρ, Aμ and ‖f0‖Ḟ1,1 ,

σ(‖f0‖Ḟ1,1) = Aρ

⎛⎜⎝1 −
2‖f0‖2

Ḟ1,1

(
3 − ‖f0‖2

Ḟ1,1

)
(
1 − ‖f0‖2

Ḟ1,1

)2 −Aμ

×
2‖f0‖Ḟ1,1

(
2Aμ‖f0‖5

Ḟ1,1 − 6‖f0‖4
Ḟ1,1 − 8Aμ‖f0‖3

Ḟ1,1 + 4‖f0‖2
Ḟ1,1 − 2Aμ‖f0‖Ḟ1,1 + 2

)
(
1 − ‖f0‖2

Ḟ1,1

)2 (
1 − ‖f0‖2

Ḟ1,1 − 2Aμ‖f0‖Ḟ1,1

)2

⎞⎟⎠
Computing the constant explicitly for |Aμ| = 1, we obtain c(1) ≈ 0.128267.

As noted in the introductory section, in the 3D setting, when Aμ = 0, the constant k(0)
matches the size of the initial data in the 2D without viscosity jump proven in [13, 
Remark 5.4], and therefore, improves the size of the initial data in the 3D case without 
viscosity jump given by [13].

In the graph below (see Fig. 1) the 3D constant k(|Aμ|) is pictured with respect 
to |Aμ|. The maximum is k0 ≈ 0.362606 and the minimum is k(1) ≈ 0.080604. The 
graph in the Figure arises from estimating the size of initial data, k(|Aμ|), needed to 
satisfy the positivity condition (60) of the high order rational polynomial given in the 
proof.

To prove Theorem 1 and in particular (32), we first need to prove a priori estimates 
on the vorticity and potential jump functions. These estimates on ‖ωi‖Ḟs,1 for s = 0, 1
are computed in Section 4. The key point of the vorticity estimates is to demonstrate a 
bound on ‖ωi‖Ḟs,1 by a constant multiple of ‖f‖Ḟs+1,1 , as ωi(α) is of similar regularity 
to ∇f(α).

Next, we introduce the following norms with analytic weights:

‖f‖pḞs,p(t) def=
∫

|ξ|spepνt|ξ||f̂(ξ, t)|pdξ, ν > 0, s ≥ 0, p ≥ 1, (33)

ν
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Fig. 1. k(|Aμ|).

where we also denote ‖f‖Ḟ0,p
ν

= ‖f‖F0,p
ν

. In Section 5, we will use the vorticity estimates 
to prove uniform bounds on the analytic weighted quantity ‖f‖Ḟ1,1

ν
(t):

Theorem 3 (Instant analyticity). Suppose f(α, t) is a solution to (19)–(22) in 3D with 
initial data satisfying ‖f0‖Ḟ1,1 < k(|Aμ|) or (28)–(31) in 2D with initial data satisfying 
‖f0‖Ḟ1,1 < c(|Aμ|). Then there exist ν = ν(‖f0‖Ḟ1,1) > 0 such that the evolution of the 
quantity ‖f‖Ḟs,1

ν
satisfies the estimate

‖f‖Ḟ1,1
ν

(t) + σ

t∫
0

‖f‖Ḟ2,1
ν

(τ)dτ ≤ ‖f0‖Ḟ1,1 . (34)

Furthermore, if f0 ∈ L2 then

‖f‖F0,2
ν

≤ ‖f0‖L2 exp(R(‖f0‖Ḟ1,1)), (35)

where R is a positive rational polynomial.

Setting ν = 0, we obtain the estimate (32). Following the instant analyticity argu-
ment, we present an L2 maximum principle for the Muskat problem with viscosity jump 
in Section 6. Next, in Section 7, we give an argument for uniqueness of solutions in 
the space F0,1, noting that F0,1 ↪→ L∞. All of these a priori estimates finally allow 
us to perform a regularization argument in Section 8. In this argument, we perform an 
appropriate mollification of the interface evolution equation for f(α, t) and show that 
the regularized solutions fεn(α, t) converge strongly to f(α, t) in L2(0, T ; Ḟ1,1) and sat-
isfy (32). Taking the limit fεn(α, t) −→ f(α, t), we establish the global wellposedness 
result of Theorem 1.
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In this paper, we also show analytic results in L2 spaces in Section 9. Specifically, we 
prove uniform bounds on an analytic L2 norm, as given by (35) as well as

d

dt
‖f‖2

Ḟs,2
ν

(t) ≤ −σ‖f‖2
Ḟs+1/2,2

ν
(36)

for 1/2 ≤ s ≤ 3/2. Note that in general, we denote Ḟs,2
ν by Ḣs

ν for s �= 0 and F0,2
ν

by L2
ν throughout the paper. We will use this L2 estimate to show the L2 decay and 

ill-posedness results later in the paper.
Given solutions with initial data as described in Theorem 1, in Section 10 we obtain 

large-time decay for solutions to the Muskat problem by using estimates similar to (34), 
(35) and (36):

Theorem 4 (Sharp decay estimates). Suppose f(α, t) is a solution to (19)–(22) with initial 
data satisfying ‖f0‖Ḟ1,1 < k(|Aμ|) and ‖f0‖L2 < ∞. Then for any 0 ≤ s ≤ 1

‖f‖Ḟs,1
ν

(t) ≤ Cs(1 + t)−s−1+λ,

for arbitrarily small λ > 0 and some nonnegative constant Cs depending on the initial 
profile f0(α) and the exponent s. Moreover, for any T > 0, there exists a constant CT,s

depending on f0, T and s such that

‖f‖Ḣs
ν
(t) ≤ CT,st

−s,

for t > T . In 2D, we have the following decay rate for solutions with initial data satisfying 
‖f0‖Ḟ1,1 < c(|Aμ|) and ‖f0‖L2 < ∞:

‖f‖Ḟs,1
ν

(t) ≤ Cs(1 + t)−s−1/2+λ.

The Hs
ν decay rates in 2D are the same.

Remark 5. We call the decay rates in Theorem 4 sharp for the following reason. If 
f0 ∈ Ḟ1,1 ∩ L2, then it can be seen that f0 ∈ Ḟs′,1 for −1 < s′ ≤ 1 but f0(α) need not 
be in Ḟ−1,1. If we consider the linearized contour equation with initial data ‖f0‖Ḟs′,1 for 
−1 < s′ < 1, then for any s > s′, we have the equivalence for the linear solutions

‖f0‖Ḟs′,1 ≈ ‖ts−s′‖etΛf0‖Ḟs,1‖L∞
t
.

This estimate yields, for example, the optimal rate of ts′−1 for decay of ‖f‖Ḟ1,1 . Because 
we at most can guarantee that ‖f0‖Ḟs′,1 < +∞ for −1 < s′ ≤ 1 but not for any lower 
value of s, the decay rates above are sharp. Finally, for ν �= 0, since ‖f‖Ḟs,1 ≤ ‖f‖Ḟs,1

ν
, 

the rates are also sharp for the analytic weighted norms.

In Section 10, we additionally note that for f0 satisfying the conditions of Theorem 4, 
it immediately follows that the solution f(α, t) is in the spaces Ḟs,1∩Ḣs′ for any s > −1
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and s′ ≥ 0. Moreover, due to the decay of the quantity ‖f‖Ḟ1,1
ν

, we can show that there 
exists a constant ks and time Ts depending on s > 1 and the initial profile f0 such that

‖f‖Ḟs,1
ν

(t) + σs

t∫
Ts

‖f‖Ḟs+1,1
ν

(τ)dτ ≤ ks (37)

for some ν > 0 and for all t > Ts for a time Ts large enough and depending on s and f0. 
Therefore, we obtain decay rates for t > Ts:

‖f‖Ḟs,1
ν

(t) ≤ Cst
−s−1+λ

analogously to Theorem 4. We can draw similar conclusions for the Sobolev norms with 
analytic weight such as Hs

ν .
Finally, and importantly, we use the L2

ν uniform bound (35) to obtain an ill-posedness 
argument for the unstable regime of the Muskat problem in Section 11:

Theorem 6 (Ill-posedness). For every s > 0 and ε > 0, there exist a solution f̃ to the 
unstable regime and 0 < δ < ε such that ‖f̃‖Hs(0) < ε but ‖f̃‖Hr(δ) = ∞ for any r > 0.

This ill-posedness result is very significant because we show instantaneous blow-up of 
solutions in very low regularity spaces. In particular, one could start in Hs with high s

and it still blows up in Hr for any small r. Furthermore, one could try to construct 
solutions with low regularity to understand the interface unstable situation and yet find 
that the free boundary solution does not make sense.

We note here that this paper explains the full proof of Theorem 1 and the other 
theorems in 3D. The proof of Theorem 2 and the other 2D results follow similarly, the 
2D results are actually easier in several places, and for that reason we do not rewrite the 
2D proofs in this paper.

4. A priori estimates on ω

In this section, we will prove the necessary estimates on ‖ωi‖Ḟs,1 for s = 0, 1 and 
i = 1, 2, 3. These estimates will be used later to prove the bound (34) on the evolution of 
a solution in ‖f‖Ḟ1,1

ν
. We first show that ‖ωi‖F0,1 is bounded by quantities depending only 

on the characteristics of the fluids and ‖f‖Ḟ1,1 . Then, using the estimates on ‖ωi‖F0,1 , we 
further show that the quantities ‖ωi‖Ḟ1,1 for i = 1, 2, 3 are linearly bounded by ‖f‖Ḟ2,1

with the linear constant depending on ‖f‖Ḟ1,1 .

Proposition 7. Given the constants S1, C1, C2 depending on Aμ, ‖f‖Ḟ1,1 that are defined 
by

S1 = ‖f‖Ḟ1,1

1 − ‖f‖2 , C1 = 1 −AμS1

1 − 5A S
, C2 = C1

(1 − 2A S )(1 − ‖f‖2 ) , (38)

Ḟ1,1 μ 1 μ 1 Ḟ1,1
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we have the following estimates

‖ω1‖F0,1 = ‖∂α2Ω‖F0,1 ≤ 2C1Aρ‖f‖Ḟ1,1 , (39)

‖ω2‖F0,1 = ‖∂α1Ω‖F0,1 ≤ 2C1Aρ‖f‖Ḟ1,1 , (40)

and

‖ω3‖F0,1 ≤ 12AμAρC2‖f‖3
Ḟ1,1 ,

‖∂αi
D‖F0,1 ≤ 6AρC2‖f‖2

Ḟ1,1 , i = 1, 2.
(41)

For the potential jump function Ω, we moreover have the estimate

‖Ω‖Ḟ1,1 ≤ 2AρB1‖f‖Ḟ1,1 , (42)

where

B1 = 1 − 2AμS1

1 − 8AμS1
. (43)

Proof. First, by formulas (14) and (21) we have that

‖ω1‖F0,1 = ‖∂α2Ω‖F0,1 , ‖ω2‖F0,1 = ‖∂α1Ω‖F0,1 , (44)

and

‖ω3‖F0,1 = ‖∂α2Ω∂α1f − ∂α1Ω∂α2f‖F0,1 = Aμ‖∂α2D∂α1f − ∂α1D∂α2f‖F0,1

≤ Aμ‖f‖Ḟ1,1 (‖∂α1D‖F0,1 + ‖∂α2D‖F0,1) ,
(45)

so it suffices to bound the quantities ‖∂αi
Ω‖F0,1 and ‖∂αi

D‖F0,1 for i = 1, 2. Notice that 
from (21) and (23) we have that

‖∂αi
Ω‖F0,1 ≤ Aμ‖∂αi

D‖F0,1 + 2Aρ‖f‖Ḟ1,1 ,

‖∂α1D‖F0,1 ≤ 2‖BR1‖F0,1 + 2‖BR3∂α1f‖F0,1 ,

‖∂α2D‖F0,1 ≤ 2‖BR2‖F0,1 + 2‖BR3∂α2f‖F0,1 .

(46)

Thus, we proceed to bound the terms ‖BR1‖F0,1 , ‖BR2‖F0,1 and ‖BR3‖F0,1 , given by 
(25), (26) and (27). We start with the term ‖BR1‖F0,1 . We first need to bound the 
Fourier transform of the Birkhoff–Rott integral terms. For the first term in BR1,

BR11(f)(α) = −1
4π p.v.

∫
R2

β2
|β|ω3(α− β)

(1 + Δβf(α)2) 3
2

dβ

|β|2 , (47)

we first apply a change of variables in β.
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BR11(f)(α) = 1
4πp.v.

∫
R2

β2
|β|ω3(α + β)

(1 + Δ−βf(α)2) 3
2

dβ

|β|2 .

Hence,

BR11(f)(α) = −1
8π

(
p.v.

∫
R2

β2
|β|ω3(α− β)

(1 + Δβf(α)2) 3
2

dβ

|β|2 − p.v.
∫
R2

β2
|β|ω3(α + β)

(1 + Δ−βf(α)2) 3
2

dβ

|β|2
)
.

By using the Taylor series expansion for the denominator, given by

1
(1 + x2) 3

2
=

∞∑
n=0

an(−1)nx2n, where an = (2n + 1)!
(2nn!)2 ,

we obtain that

BR11(f)(α) = −1
8π

∑
n≥0

(−1)nan
∫
R2

( β2

|β|ω3(α− β)Δβf(α)2n

− β2

|β|ω3(α + β)Δ−βf(α)2n
) dβ

|β|2 .

Applying the Fourier transform, the products are transformed to convolutions:

B̂R11(ξ) = −1
8π

∑
n≥0

(−1)nan
∫
R2

β2

|β|
(
ω̂3(ξ)e−iβ·ξ ∗

(
∗2n f̂(ξ)m(ξ, β)

)
− ω̂3(ξ)eiβ·ξ ∗

(
∗2n f̂(ξ)m(ξ,−β)

)) dβ

|β|2 ,

where

m(ξ, β) = 1 − e−iβ·ξ

|β| .

Writing the integral in polar coordinates with β = ru and u = (cos(θ), sin(θ)),

B̂R11(ξ) = −1
8π

∑
n≥0

(−1)nan
π∫

−π

∞∫
0

sin(θ)
(
ω̂3(ξ)e−iru·ξ ∗

(
∗2n f̂(ξ)m(ξ, r, u)

)
− ω̂3(ξ)eiru·ξ ∗

(
∗2n f̂(ξ)m(ξ, r,−u)

))dr
dθ.
r
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By a change of variables in the radial variable,

B̂R11(ξ) = −1
8π

∑
n≥0

(−1)nan
π∫

−π

−∞∫
0

sin(θ)
(
ω̂3(ξ)eiru·ξ ∗

(
∗2n f̂(ξ)m(ξ,−r, u)

)
− ω̂3(ξ)e−iru·ξ ∗

(
∗2n f̂(ξ)m(ξ,−r,−u)

))−dr

−r
dθ.

Note that m(ξ, −r, u) = −m(ξ, r, −u), and hence, we obtain

B̂R11(ξ) = −1
8π

∑
n≥0

(−1)nan
π∫

−π

0∫
−∞

sin(θ)
(
ω̂3(ξ)e−iru·ξ ∗

(
∗2n f̂(ξ)m(ξ, r, u)

)
− ω̂3(ξ)eiru·ξ ∗

(
∗2n f̂(ξ)m(ξ, r,−u)

))dr
r
dθ.

Thus, adding the upper and lower integrals together we obtain

B̂R11(ξ) = −1
16π

∑
n≥0

(−1)nan
π∫

−π

∞∫
−∞

sin(θ)
(
ω̂3(ξ)e−iru·ξ ∗

(
∗2n f̂(ξ)m(ξ, r, u)

)
− ω̂3(ξ)eiru·ξ ∗

(
∗2n f̂(ξ)m(ξ, r,−u)

))dr
r
dθ.

Writing out of the convolutions in integral form and using the equality

m(ξ, r, u) = iu · ξ
1∫

0

e−ir(1−s)u·ξds,

we obtain that

B̂R11(ξ)

= −1
16π

∑
n≥0

an

∫
R2

· · ·
∫
R2

π∫
−π

sin(θ)ω̂3(ξ − ξ1)
2n−1∏
j=1

(u · (ξj − ξj+1))(u · ξ2n)f̂(ξj − ξj+1)

1∫
0

· · ·
1∫

0

∞∫
−∞

(
e−iAr − eiAr

)dr
r
ds1 · · · ds2ndθdξ1 · · · dξ2n+1,

where

A = u · (ξ − ξ1) +
2n−1∑

(1 − sj)u · (ξj − ξj+1) + u · ξ2n.

j=1
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Next, notice that

∣∣∣ 1∫
0

· · ·
1∫

0

∞∫
−∞

(
e−iAr − eiAr

)dr
r
ds1 · · · ds2n

∣∣∣
≤ π

∣∣∣ 1∫
0

· · ·
1∫

0

sgn(A) − sgn(−A)ds1 · · · ds2n

∣∣∣ ≤ 2π.

Moreover, if ξ = (ξ(1), ξ(2)), then

|u · ξ| = | cos(θ)ξ(1) + sin(θ)ξ(2)| = |ξ|| sin(θ + α)|,

where α satisfies sin(α) = ξ(1)/|ξ|, and therefore, cos(α) = ξ(2)/|ξ|. Using these estimates,

|B̂R11|(ξ) ≤
1
8
∑
n≥0

an

(
(∗2n| · ||f̂(·)|) ∗ |ω̂3(·)|

)
(ξ)

π∫
−π

| sin(θ)|
2n∏
j=1

| sin(θ + αj)|dθ

for some angles αj . Finally, note that

π∫
−π

| sin(θ)|
2n∏
j=1

| sin(θ + αj)|dθ ≤
π∫

−π

| sin(θ)|2n+1dθ = 4/an.

Summarizing,

|B̂R11|(ξ) ≤
1
2
∑
n≥0

(
(∗2n| · ||f̂(·)|) ∗ |ω̂3(·)|

)
(ξ). (48)

The estimates on BR12, BR2 and BR3 follow as the one on BR11. We conclude that

‖BR1‖F0,1 ≤ 1
2

1
1 − ‖f‖2

Ḟ1,1

(‖f‖Ḟ1,1‖ω2‖F0,1 + ‖ω3‖F0,1) ,

‖BR2‖F0,1 ≤ 1
2

1
1 − ‖f‖2

Ḟ1,1

(‖f‖Ḟ1,1‖ω1‖F0,1 + ‖ω3‖F0,1) ,

‖BR3‖F0,1 ≤ 1
2

1
1 − ‖f‖2

Ḟ1,1

(‖ω1‖F0,1 + ‖ω2‖F0,1) .

Introducing this bounds into (46) we find that

‖∂α1D‖F0,1 ≤ ‖f‖Ḟ1,1

1 − ‖f‖2
Ḟ1,1

(2‖ω2‖F0,1 + ‖ω1‖F0,1) + 1
1 − ‖f‖2

Ḟ1,1

‖ω3‖F0,1 .

Substituting the bounds for the vorticity (44), (45), it follows that
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‖∂α1D‖F0,1 ≤ ‖f‖Ḟ1,1

1 − ‖f‖2
Ḟ1,1

(2‖∂α1Ω‖F0,1 + ‖∂α2Ω‖F0,1)

+ Aμ
‖f‖Ḟ1,1

1 − ‖f‖2
Ḟ1,1

(‖∂α1D‖F0,1 + ‖∂α2D‖F0,1) .

Analogously,

‖∂α2D‖F0,1 ≤ ‖f‖Ḟ1,1

1 − ‖f‖2
Ḟ1,1

(2‖∂α2Ω‖F0,1 + ‖∂α1Ω‖F0,1)

+ Aμ
‖f‖Ḟ1,1

1 − ‖f‖2
Ḟ1,1

(‖∂α1D‖F0,1 + ‖∂α2D‖F0,1) .

If we denote

S1 = ‖f‖Ḟ1,1

1 − ‖f‖2
Ḟ1,1

, S2 = S1

1 −AμS1
, (49)

the above inequalities can be written as

‖∂α1D‖F0,1 ≤ S2 (2‖∂α1Ω‖F0,1 + ‖∂α2Ω‖F0,1 + Aμ‖∂α2D‖F0,1) ,

‖∂α2D‖F0,1 ≤ S2 (2‖∂α2Ω‖F0,1 + ‖∂α1Ω‖F0,1 + Aμ‖∂α1D‖F0,1) .
(50)

Therefore, it is not hard to see that

‖∂α1D‖F0,1 ≤ S2(2 + AμS2)
1 − (AμS2)2

(
‖∂α1Ω‖F0,1 + ‖∂α2Ω‖F0,1

)
,

‖∂α2D‖F0,1 ≤ S2(2 + AμS2)
1 − (AμS2)2

(
‖∂α2Ω‖F0,1 + ‖∂α1Ω‖F0,1

)
.

(51)

By defining the following constants

c1 = S2

1 − (AμS2)2
(2 + AμS2), c2 = S2

1 − (AμS2)2
(1 + 2AμS2),

and recalling (46) and the bounds above we have that

‖∂α1Ω‖F0,1 ≤ Aμc1‖∂α1Ω‖F0,1 + Aμc2‖∂α2Ω‖F0,1 + 2Aρ‖f‖Ḟ1,1 ,

‖∂α2Ω‖F0,1 ≤ Aμc1‖∂α2Ω‖F0,1 + Aμc2‖∂α1Ω‖F0,1 + 2Aρ‖f‖Ḟ1,1 .

Therefore, we can conclude that

‖∂αi
Ω‖F0,1 ≤ 2Aρ‖f‖Ḟ1,1

1
.
1 −Aμ(c1 + c2)
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This expression can be simplified further to obtain that

‖∂αi
Ω‖F0,1 ≤ 2Aρ‖f‖Ḟ1,1

1 −AμS1

1 − 5AμS1
.

Going back to (51) we find that

‖∂αi
D‖F0,1 ≤ S2

1 − (AμS2)2
3(1 + AμS2)2Aρ‖f‖Ḟ1,1

1 −AμS1

1 − 5AμS1

= 6Aρ‖f‖Ḟ1,1
S1(1 −AμS1)

(1 − 2AμS1)(1 − 5AμS1)
.

This last two bounds combined with the estimates (44), (45) conclude the proof of 
(39)–(41). Finally, to show (42), we do the following using (51):

‖Ω‖Ḟ1,1 ≤ Aμ‖∂α1D(Ω)‖F0,1 + Aμ‖∂α2D(Ω)‖F0,1 + 2Aρ‖f‖Ḟ1,1

≤ 6AμS2

1 −AμS2
‖Ω‖Ḟ1,1 + 2Aρ‖f‖Ḟ1,1 .

Therefore,

‖Ω‖Ḟ1,1 ≤ 2Aρ

(1 − 2AμS1

1 − 8AμS1

)
‖f‖ ˙F1,1 .

This concludes the proof. �
Proposition 8. Define the constants C3, C4 and C5 depending on Aμ and ‖f‖Ḟ1,1 ,

C3 =
1 + ‖f‖2

Ḟ1,1

1 − ‖f‖2
Ḟ1,1

(
1 + Aμ

6‖f‖Ḟ1,1(1 −AμS1)
(1 − ‖f‖2

Ḟ1,1)(1 − 2AμS1)(1 − 5AμS1)

)
,

C4 =
1 + S2

2A
2
μ (C3 + C1 + 4S1C1‖f‖Ḟ1,1)

1 − 3AμS2(1 + AμS2)
,

C5 = S2

‖f‖Ḟ1,1

3 + AμS2(3 + C3 + C1 + 4S1C1‖f‖Ḟ1,1)
1 − 3AμS2(1 + AμS2)

,

(52)

where C1, S1 and S2 are given by (38) and (49). Then, we have the following estimates

‖ω1‖Ḟ1,1 = ‖∂α2Ω‖Ḟ1,1 ≤ 2AρC4‖f‖Ḟ2,1 ,

‖ω2‖Ḟ1,1 = ‖∂α1Ω‖Ḟ1,1 ≤ 2AρC4‖f‖Ḟ2,1 ,
(53)

and

‖ω3‖Ḟ1,1 ≤ 4AμAρ‖f‖2
Ḟ1,1‖f‖Ḟ2,1(C5 + 3C2),

‖∂ D‖ ≤ 2A C ‖f‖ ‖f‖ , i = 1, 2.
(54)
αi Ḟ1,1 ρ 5 Ḟ1,1 Ḟ2,1
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Moreover,

‖Ω‖Ḟ2,1 ≤ 2AρB2‖f‖Ḟ2,1 ,

where

B2 = 1 + 2S2
2Aμ(C1 + C3 + 4S1C1‖f‖Ḟ1,1)
1 − 6AμS2(1 + AμS2)

. (55)

Proof. Using the formulas for the vorticity it follows that

‖ω1‖Ḟ1,1 = ‖∂α2Ω‖Ḟ1,1 , ‖ω2‖Ḟ1,1 = ‖∂α1Ω‖Ḟ1,1 ,

‖ω3‖Ḟ1,1 ≤ Aμ‖f‖Ḟ1,1(‖∂α2D‖Ḟ1,1‖∂α1D‖Ḟ1,1)

+ Aμ‖f‖Ḟ2,1(‖∂α1D‖F0,1 + ‖∂α2D‖F0,1).

It suffices then to bound ‖∂αi
Ω‖Ḟ1,1 and ‖∂αi

D‖Ḟ1,1 . From (24) we have that

‖∂α1Ω‖Ḟ1,1 ≤ 2Aρ‖f‖Ḟ2,1 + Aμ‖∂α1D‖Ḟ1,1 , (56)

‖∂α1D‖Ḟ1,1 ≤ 2‖BR1‖Ḟ1,1 + 2‖BR3‖F0,1‖f‖Ḟ2,1 + 2‖BR3‖Ḟ1,1‖f‖Ḟ1,1 .

Using an analogous bound to (48), it follows that

‖BR1‖Ḟ1,1 =
∫
R2

|ξ||B̂R1(ξ)|dξ ≤ 1
2
∑
n≥0

∫
|ξ||ω̂3(·)| ∗ (∗2n| · ||f̂(·)|)(ξ)dξ

+ 1
2
∑
n≥0

∫
|ξ||ω̂2(·)| ∗ (∗2n+1| · ||f̂(·)|)(ξ)dξ.

By the product rule, we can distribute the multiplier |ξ| to each term in the convolution 
to obtain

‖BR1‖Ḟ1,1 ≤ 1
2
∑
n≥1

2n
∫

|ω̂3(·)| ∗ (∗2n−1| · ||f̂(·)| ∗ | · |2|f̂(·)|)(ξ)dξ

+ 1
2
∑
n≥0

(2n + 1)
∫

|ω̂2(·)| ∗ (∗2n| · ||f̂(·)| ∗ | · |2|f̂(·)|)(ξ)dξ

+ 1
2
∑
n≥0

∫
(| · ||ω̂3(·)|) ∗ (∗2n| · ||f̂(·)|)(ξ)dξ

+ 1
2
∑
n≥0

∫
(| · ||ω̂2(·)|) ∗ (∗2n+1| · ||f̂(·)|)(ξ)dξ.

Using Young’s inequality, we finally obtain that
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‖BR1‖Ḟ1,1 ≤ ‖f‖Ḟ1,1(
1 − ‖f‖2

Ḟ1,1

)2 ‖ω3‖F0,1‖f‖Ḟ2,1 +
1 + ‖f‖2

Ḟ1,1

2
(
1 − ‖f‖2

Ḟ1,1

)2 ‖ω2‖F0,1‖f‖Ḟ2,1

+ 1
2

‖f‖Ḟ1,1

1 − ‖f‖2
Ḟ1,1

‖ω2‖Ḟ1,1 + 1
2

1
1 − ‖f‖2

Ḟ1,1

‖ω3‖Ḟ1,1 .

Proceeding in a similar way we have that

‖BR3‖Ḟ1,1 ≤ 1
2

1
1 − ‖f‖2

Ḟ1,1

(‖ω1‖Ḟ1,1 + ‖ω2‖Ḟ1,1)

+ ‖f‖Ḟ1,1(
1 − ‖f‖2

Ḟ1,1

)2 ‖f‖Ḟ2,1(‖ω1‖F0,1 + ‖ω2‖F0,1).

From the bounds in Proposition 7 we can write the above estimates as follows

‖BR1‖Ḟ1,1 ≤ Aρ‖f‖Ḟ2,1‖f‖Ḟ1,1

(
1 + ‖f‖2

Ḟ1,1

)
(1 + 6AμC2‖f‖Ḟ1,1)(

1 − ‖f‖2
Ḟ1,1

)2

+ 1
2S1‖∂α1Ω‖Ḟ1,1 + Aμ

1
2S1 (‖∂α1D‖Ḟ1,1 + ‖∂α2D‖Ḟ1,1) ,

(57)

‖BR3‖Ḟ1,1 ≤ 4C1AρS
2
1‖f‖Ḟ2,1 + 1

2
1

1 − ‖f‖2
Ḟ1,1

(‖∂α2Ω‖Ḟ1,1 + ‖∂α1Ω‖Ḟ1,1). (58)

Then, using (57) and (58) as well as the estimates from Proposition 7, we obtain

‖∂α1D‖Ḟ1,1 ≤ 2‖BR1‖Ḟ1,1 + 2‖BR3‖F0,1‖f‖Ḟ2,1 + 2‖BR1‖Ḟ1,1‖f‖Ḟ1,1

≤ S1‖∂α1Ω‖Ḟ1,1 + AμS1‖∂α1D‖Ḟ1,1 + AμS1‖∂α2D‖Ḟ1,1

+ 2C3Aρ‖f‖Ḟ1,1‖f‖Ḟ2,1 + 2S1C1Aρ‖f‖Ḟ2,1 + 8S2
1C1Aρ‖f‖Ḟ1,1‖f‖Ḟ2,1

+ S1‖∂α2Ω‖Ḟ1,1 + S1‖∂α1Ω‖Ḟ1,1

≤ 2S1‖∂α1Ω‖Ḟ1,1 + S1‖∂α2Ω‖Ḟ1,1 + AμS1‖∂α1D‖Ḟ1,1 + AμS1‖∂α2D‖Ḟ1,1

+ 2S1Aρ‖f‖Ḟ2,1 (C3 + C1 + 4S1C1‖f‖Ḟ1,1) .

Recalling the definition of S1 and S2 (49), from here we can write that

‖∂α1D‖Ḟ1,1 ≤ 2S2‖∂α1Ω‖Ḟ1,1 + S2‖∂α2Ω‖Ḟ1,1 + AμS2‖∂α2D‖Ḟ1,1

+ 2AρS2‖f‖Ḟ2,1 (C3 + C1 + 4S1C1‖f‖Ḟ1,1) ,

and analogously,

‖∂α2D‖Ḟ1,1 ≤ 2S2‖∂α2Ω‖Ḟ1,1 + S2‖∂α1Ω‖Ḟ1,1 + AμS2‖∂α1D‖Ḟ1,1

+ 2A S ‖f‖ (C + C + 4S C ‖f‖ ) .
ρ 2 Ḟ2,1 3 1 1 1 Ḟ1,1
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We conclude that

‖∂α1D‖Ḟ1,1 ≤ S2(2 + AμS2)‖∂α1Ω‖Ḟ1,1 + S2(1 + 2AμS2)‖∂α2Ω‖Ḟ1,1

+ 2S2
2AμAρ‖f‖Ḟ2,1 (C3 + C1 + 4S1C1‖f‖Ḟ1,1) ,

‖∂α2D‖Ḟ1,1 ≤ S2(2 + AμS2)‖∂α2Ω‖Ḟ1,1 + S2(1 + 2AμS2)‖∂α1Ω‖Ḟ1,1

+ 2S2
2AμAρ‖f‖Ḟ2,1 (C3 + C1 + 4S1C1‖f‖Ḟ1,1) .

Now, we will introduce these inequalities into (56) to close the estimates. First, we have 
that

‖∂α1Ω‖Ḟ1,1 ≤ 2Aρ

(
1 + S2

2A
2
μ (C3 + C1 + 4S1C1‖f‖Ḟ1,1)

)
‖f‖Ḟ2,1

+ AμS2(2 + AμS2)‖∂α1Ω‖Ḟ1,1 + AμS2(1 + 2AμS2)‖∂α2Ω‖Ḟ1,1 ,

which implies that

‖∂α1Ω‖Ḟ1,1 ≤ AμS2(1 + 2AμS2)
1 −AμS2(2 + AμS2)

‖∂α2Ω‖Ḟ1,1

+ 2Aρ‖f‖Ḟ2,1
1 + S2

2A
2
μ (C3 + C1 + 4S1C1‖f‖Ḟ1,1)
1 −AμS2(2 + AμS2)

.

The above inequality combined with the analogous one for ∂α2Ω yields that

‖∂αi
Ω‖Ḟ1,1 ≤ 2Aρ‖f‖Ḟ2,1

1
1 − AμS2(1+2AμS2)

1−AμS2(2+AμS2)

1 + S2
2A

2
μ (C3 + C1 + 4S1C1‖f‖Ḟ1,1)
1 −AμS2(2 + AμS2)

= 2Aρ‖f‖Ḟ2,1
1 + S2

2A
2
μ (C3 + C1 + 4S1C1‖f‖Ḟ1,1)

1 − 3AμS2(1 + AμS2)
.

By denoting

C4 =
1 + S2

2A
2
μ (C3 + C1 + 4S1C1‖f‖Ḟ1,1)

1 − 3AμS2(1 + AμS2)
,

we conclude that

‖∂αi
Ω‖Ḟ1,1 ≤ 2AρC4‖f‖Ḟ2,1 , (59)

and therefore

‖∂αi
D‖Ḟ1,1 ≤ 2AρS2‖f‖Ḟ2,1

(
3(1 + AμS2)C4 + AμS2(C3 + C1 + 4S1C1‖f‖Ḟ1,1)

)

= 2AρC5‖f‖Ḟ1,1‖f‖Ḟ2,1 ,
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where we have denoted

C5 = S2

‖f‖Ḟ1,1

3 + AμS2(3 + C3 + C1 + 4S1C1‖f‖Ḟ1,1)
1 − 3AμS2(1 + AμS2)

.

Thus, the estimates for the vorticity are

‖ωi‖Ḟ1,1 ≤ 2AρC4‖f‖Ḟ2,1 , i = 1, 2,

‖ω3‖Ḟ1,1 ≤ 4AμAρ‖f‖2
Ḟ1,1‖f‖Ḟ2,1(C5 + 3C2).

Finally, we estimate the quantity ‖Ω‖Ḟ2,1 .

‖Ω‖Ḟ2,1 ≤ Aμ‖∂α1D(Ω)‖Ḟ1,1 + Aμ‖∂α2D(Ω)‖Ḟ1,1 + 2Aρ‖f‖Ḟ2,1

≤ 6AμS2(1 + AμS2) + 2Aρ(1 + 2S2
2Aμ(C1 + C3 + 4S1C1‖f‖Ḟ1,1))‖f‖Ḟ2,1 .

Therefore,

‖Ω‖Ḟ2,1 ≤ 2Aρ
1 + 2S2

2Aμ(C1 + C3 + 4S1C1‖f‖Ḟ1,1)
1 − 6AμS2(1 + AμS2)

‖f‖Ḟ2,1 .

This concludes the proof. �
Remark 9. Because we actually have the triangle inequality

|ξ|s ≤ |ξ − ξ1|s +
m∑

k=1

|ξj − ξj+1|s + |ξm+1|s

for all 0 < s ≤ 1, notice that the same arguments as above can be used to show that

‖ω1‖Ḟs,1
ν

= ‖∂α2Ω‖Ḟs,1
ν

≤ 2AρC4,ν‖f‖Ḟs+1,1
ν

and

‖ω3‖Ḟs,1
ν

≤ 4AμAρ‖f‖2
Ḟ1,1‖f‖Ḟ2,1(C5,ν + 3C2,ν)

where the constants C2,ν , C4,ν and C5,ν now depend on ‖f‖Ḟ1,1
ν

rather than ‖f‖Ḟ1,1 .

5. Instant analyticity of f

We dedicate this section to proving the norm decrease inequality (63) which will be 
needed to obtain the global existence results of this paper. Note that (63) states that the 
interface function becomes instantly analytic given medium-sized initial data f0 ∈ Ḟ1,1. 
Precisely, we show the following:
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Proposition 10. Assume the initial data f0 satisfies that

σ (‖f0‖Ḟ1,1) > 0, (60)

where

σ (‖f0‖Ḟ1,1) = −ν + Aρ

(
1 − 2

(2B1 + B2 −B2‖f0‖2
Ḟ1,1

(1 − ‖f0‖2
Ḟ1,1)2

)
‖f0‖2

Ḟ1,1

−Aμ

(12C2 + 2C5 − 2C5‖f0‖2
Ḟ1,1

(1 − ‖f0‖2
Ḟ1,1)2

)
‖f0‖3

Ḟ1,1 − 2AμC5‖f0‖Ḟ1,1

)
.

All the constants above are defined precisely in (38), (43), (52), and (55), which are given 
during the proofs of the previous estimates. Then

‖f‖Ḟ1,1
ν

(t) + σ (‖f0‖Ḟ1,1)
t∫

0

‖f‖Ḟ2,1
ν

(τ)dτ ≤ ‖f0‖Ḟ1,1 .

Proof. We will use the evolution equation (19) and (20). Differentiating the quantity 
‖f‖Ḟ1,1

ν
, we obtain

d

dt
‖f‖Ḟ1,1

ν
(t) = d

dt

(∫
|ξ|eνt|ξ||f̂(ξ)|dξ

)

≤ ν

∫
|ξ|2etν|ξ||f̂(ξ)|dξ +

∫
|ξ|eνt|ξ| 12

( f̂tf̂ + f̂ f̂t

|f̂(ξ)|

)
dξ

≤ (ν −Aρ)
∫

|ξ|2eνt|ξ||f̂(ξ)|dξ +
∫

|ξ|eνt|ξ||N̂(f)(ξ)|dξ.

Hence, using the decomposition (20), we can use the Fourier arguments as earlier, such 
as (48), to pointwise bound the nonlinear term

|N̂(f)(ξ)| ≤ |N̂1(f)(ξ)| + |N̂2(f)(ξ)| + |N̂3(f)(ξ)|

in frequency space. The latter two terms are bounded by

|N̂2(f)(ξ)| ≤
∑
n≥1

(
(∗2n| · ||f̂(·)|) ∗ | · ||Ω̂(ξ)|

)
(ξ) (61)

and

|N̂3(f)(ξ)| ≤ Aμ

2
∑(

(∗2n| · ||f̂(·)|) ∗ | · ||D̂(Ω)(ξ)|
)
(ξ). (62)
n≥1
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The estimate on N̂1(f)(ξ) is done in Section 4:

‖N1‖Ḟ1,1
ν

= Aμ

2 ‖D(Ω)‖Ḟ2,1
ν

≤ 2AρAμC5‖f‖Ḟ1,1
ν

‖f‖Ḟ2,1
ν

.

For the other two nonlinear terms, using the triangle inequality

|ξ| ≤ |ξ − ξ1| + |ξ1 − ξ2| + · · · + |ξ2n|,

we obtain that

eνt|ξ| ≤ eνt|ξ−ξ1|eνt|ξ1−ξ2| · · · eνt|ξ2n|

and therefore∫
|ξ|eνt|ξ||N̂2(f)(ξ)|dξ ≤

∑
n≥1

∫
|ξ|eνt|ξ|

(
(∗2n| · ||f̂(·)|) ∗ | · ||Ω̂(ξ)|

)
(ξ)dξ

≤
∑
n≥1

2n
∫ (

(∗2n−1| · |eνt|·||f̂(·)|) ∗ | · |eνt|·||Ω̂(ξ)| ∗ | · |2eνt|·||f̂(ξ)|
)
(ξ)dξ

+
∑
n≥1

∫ (
(∗2n| · |eνt|·||f̂(·)|) ∗ | · |2eνt|·||Ω̂(ξ)|

)
(ξ)dξ

≤
∑
n≥1

2n‖f‖2n−1
Ḟ1,1

ν
‖Ω‖Ḟ1,1

ν
‖f‖Ḟ2,1

ν
+

∑
n≥1

‖f‖2n
Ḟ1,1

ν
‖Ω‖Ḟ2,1

ν

≤ 2AρB1
∑
n≥1

2n‖f‖2n
Ḟ1,1

ν
‖f‖Ḟ2,1

ν
+ 2AρB2

∑
n≥1

‖f‖2n
Ḟ1,1

ν
‖f‖Ḟ2,1

ν
.

Similarly, ∫
|ξ|eνt|ξ||N̂3(f)(ξ)|dξ

≤ Aμ

2

(∑
n≥1

2n‖f‖2n−1
Ḟ1,1

ν
‖D(Ω)‖Ḟ1,1

ν
‖f‖Ḟ2,1

ν
+
∑
n≥1

‖f‖2n
Ḟ1,1

ν
‖D(Ω)‖Ḟ2,1

ν

)
for the N3 nonlinear term. Plugging in the estimates (41) and (54) for D(Ω), we obtain∫

|ξ|eνt|ξ||N̂3(f)(ξ)|dξ≤AμAρ

(
12C2

∑
n≥1

n‖f‖2n+1
Ḟ1,1

ν
‖f‖Ḟ2,1

ν
+2C5

∑
n≥1

‖f‖2n+1
Ḟ1,1

ν
‖f‖Ḟ2,1

ν

)
.

By collecting the previous estimates, we obtain that

d ‖f‖Ḟ1,1(t) ≤ −σ‖f‖Ḟ2,1 , (63)

dt ν ν



578 F. Gancedo et al. / Advances in Mathematics 345 (2019) 552–597
where

σ = −ν + Aρ − 2AρAμC5‖f‖Ḟ1,1
ν

− 2AρB1
∑
n≥1

2n‖f‖2n
Ḟ1,1

ν
− 2AρB2

∑
n≥1

‖f‖2n
Ḟ1,1

ν

−AμAρ

(
12C2

∑
n≥1

n‖f‖2n+1
Ḟ1,1

ν
+2C5

∑
n≥1

‖f‖2n+1
Ḟ1,1

ν

)
. (64)

Writing the sums in a definite form,

σ = −ν + Aρ − 2AρAμC5‖f‖Ḟ1,1
ν

− 2Aρ

(2B1 + B2 −B2‖f‖2
Ḟ1,1

ν

(1 − ‖f‖2
Ḟ1,1

ν
)2

)
‖f‖2

Ḟ1,1
ν

−AμAρ

(12C2 + 2C5 − 2C5‖f‖2
Ḟ1,1

ν

(1 − ‖f‖2
Ḟ1,1

ν
)2

)
‖f‖3

Ḟ1,1
ν

. (65)

This completes the proof. �
Remark 11. We would also now like to comment on our estimate in the case of no viscosity 
jump, which is the regime considered in [13]. Setting Aμ = 0, we obtain from (64) that

σ = Aρ

⎛⎝1 − 2
∑
n≥1

(2n + 1)‖f0‖2n
Ḟ1,1

⎞⎠ .

Hence, σ is a positive constant for ‖f0‖Ḟ1,1 satisfying

2
∑
n≥1

(2n + 1)‖f0‖2n
Ḟ1,1 < 1.

This is the condition for the 2D case in [13]. However, here we show that this condition 
is also sufficient in the 3D case, thereby improving the previous results.

6. L2 maximum principle

For completeness, we present the proof of a L2 maximum principle in this section for 
Muskat solutions in the viscosity jump regime. Given that the viscosities and densities 
of both fluids are constant on each domain (3), from Darcy’s law (1) one obtains that 
the flow is irrotational away from the free boundary:

curl u(x, t) = 0, x ∈ D1(t) ∪D2(t).

Thus we find that the velocity comes from a potential φ

u = ∇φ, (66)
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and since the flow is incompressible we obtain that

Δφ = 0.

Now, integration by parts shows that

0 = μi

∫
Di

φΔφdx = −μi

∫
Di

∇φ · ∇φdx + μi

∫
∂Di

∇φ · nφdσ,

so using (66) it reads as

−μi

∫
Di

|u|2 dx +
∫

∂Di

u · nμiφdσ = 0.

Recalling that the normal velocity is continuous across the boundary due to the incom-
pressibility condition, by adding the balance of both domains we can write

−
∫
R3

μ|u|2 dx +
∫
∂D

u · n(μ2φ2 − μ1φ1) dσ = 0. (67)

Here φi is the potential in Di. Introducing (66) in (1) we find that

μiφi = −p− ρix3.

From this and the continuity of the pressure along the boundary we obtain that

−
∫
R3

μ|u|2 dx = (ρ2 − ρ1)
∫
∂D

u · nx3 dσ. (68)

If the boundary is described as a graph

∂D(t) = {(α, f(α, t)) ∈ R3 : α ∈ R3},

since it moves with the flow one has that

ft(α) = u(α, f(α)) · (−∂α1f(α),−∂α2f(α), 1))

= u(α, f(α)) · n(α)
√

1 + (∂α1f(α))2 + (∂α2f(α))2.

Going back to (68) we find that

(ρ2 − ρ1)
∫

ft(α)f(α) dα +
∫

μ|u|2 dx = 0,

R2 R3
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so by integration in time we finally obtain the L2 maximum principle

(ρ2 − ρ1)‖f‖2
L2(t) + 2

∫
R3

μ|u|2 dx = (ρ2 − ρ1)‖f0‖2
L2 .

7. Uniqueness

Proposition 12. Consider two solutions f and g to the Muskat problem with initial data 
f0, g0 ∈ L2 ∩ Ḟ1,1 that satisfy the condition (60). Then,

d

dt
‖f − g‖F0,1 ≤ −C‖f − g‖Ḟ1,1 ,

and moreover, ‖f − g‖L∞ = 0.

Proof. Using (19), we can write, as before

d

dt
‖f − g‖F0,1

ν
=

∫
R2

1
2

̂(f − g)(ξ)∂t(f̂ − g)(ξ) + ̂(f − g)(ξ)∂t(f̂ − g)(ξ)
| ̂(f − g)(ξ)|

≤ (ν −Aρ)‖f − g‖Ḟ1,1 +
3∑

i=1

∫
| ̂Ni(f − g)(ξ)|dξ

where Ni are the nonlinear terms given by (20). For example,

∫
| ̂N1(f − g)(ξ)|dξ = Aμ

2

∫
R2

| ̂ΛD(Ω(f))(ξ) − ̂ΛD(Ω(g))(ξ)|dξ,

where Ω(f) is the term Ω in the case of the solution f and similarly for Ω(g). We define 
the terms N2 and N3 later. As earlier in the paper, we use the decomposition (16), where 
∂αi

D(Ω) is given by (23). Hence, we can write for i = 1

∫
R2

| ̂∂α1D(Ω(f))(ξ) − ̂∂α1D(Ω(g))(ξ)|dξ

≤
∫
R2

|B̂R1(f)(ξ) − B̂R1(g)(ξ)|dξ +
∫
R2

| ̂BR3(f)∂α1f(ξ) − ̂BR3(g)∂α1g(ξ)|dξ.

First, we consider the BR1 = BR11 + BR12 term. Using the Taylor expansion, we can 
write BR11(f) as



F. Gancedo et al. / Advances in Mathematics 345 (2019) 552–597 581
BR11(f) = − 1
8π

∑
n≥0

p.v.
∫
R2

(
ω3(f)(α− β)(−1)nan(Δβf(α))2n

− ω3(f)(α + β)(−1)nan(Δ−βf(α))2n
)β2dβ

|β|3
def= BR+

11(f) −BR−
11(f).

Next, we get that the integrand of the n-th term in BR11(f) −BR11(g) is given by

BR+
11(f) −BR+

11(g) = (−1)nan(p1p
2n
2 − q1q

2n
2 )

= (−1)nan(p1p
2n
2 − q1p

2n
2 + q1p

2n
2 − q1q2p

2n−1
2 + q1q2p

2n−1
2 − . . . + q1q

2n−1
2 p2 − q1q

2n
2 )

= (−1)nan
(
(p1 − q1)p2n

2 + q1p
2n−1
2 (p2 − q2) + q1q2p

2n−2
2 (p2 − q2)+

. . . + q1q
2n−1
2 (p2 − q2)

)
(69)

where p1 = ω3(f)(α− β), p2 = Δβ(f)(α), q1 = ω3(g)(α− β) and q2 = Δβ(g)(α). We do 
the same for BR−

11 by defining p−1 = ω3(f)(α+β), p−2 = Δ−β(f)(α), q−1 = ω3(g)(α+β)
and q−2 = Δ−β(g)(α). Next, using the Fourier arguments to bound BR11 as in Section 4, 
we can obtain that

| ̂BR11(f)(ξ) − ̂BR11(g)(ξ)|

≤ 1
2
∑
n≥0

| ̂ω3(f) − ω3(g)| ∗ (∗2n| · ||f̂ |) + |ω̂3(g)| ∗ (∗2n−1| · ||f̂ |) ∗ | · ||f̂ − g(·)|

+ . . . + |ω̂3(g)| ∗ (∗2n−1| · ||ĝ|) ∗ | · ||f̂ − g(·)|. (70)

Hence, applying Young’s inequality,∫
R2

| ̂BR11(f)(ξ) − ̂BR11(g)(ξ)|dξ

≤ 1
2
∑
n≥0

‖ω3(f) − ω3(g)‖F0,1‖f‖2n
Ḟ1,1 + ‖ω3(g)‖F0,1‖f‖2n−1

Ḟ1,1 ‖f − g‖Ḟ1,1

+ . . . + ‖ω3(g)‖F0,1‖g‖2n−1
Ḟ1,1 ‖f − g‖Ḟ1,1 . (71)

Next,

ω3(f) − ω3(g)

= ∂α2D(Ω(f))∂α1f − ∂α2D(Ω(g))∂α1g − ∂α1D(Ω(f))∂α2f + ∂α1D(Ω(g))∂α2g

= ∂α2(D(Ω(f)) −D(Ω(g)))∂α1f + ∂α2D(Ω(g))(∂α1(f − g))

− ∂α1(D(Ω(f)) −D(Ω(g)))∂α2f − ∂α1D(Ω(g))(∂α2(f − g)).
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Hence,

‖ω3(f) − ω3(g)‖F0,1

≤ ‖∂α1(D(Ω(f)) −D(Ω(g)))‖F0,1‖f‖Ḟ1,1 + ‖∂α2(D(Ω(f) − Ω(g)))‖F0,1‖f‖Ḟ1,1

+ ‖∂α1D(Ω(g))‖F0,1‖f − g‖Ḟ1,1 + ‖∂α2D(Ω(g))‖F0,1‖f − g‖Ḟ1,1 . (72)

Furthermore, for BR12 we similarly obtain

‖BR12(f) −BR12‖F0,1

≤ 1
2
∑
n≥0

‖∂α1Ω(g) − ∂α1Ω(g)‖Ḟ0,1‖f‖2n+1
Ḟ1,1 + ‖∂α1Ω(g)‖F0,1‖f‖2n

Ḟ1,1‖f − g‖Ḟ1,1

+ . . . + ‖∂α1Ω(g)‖F0,1‖g‖2n
Ḟ1,1‖f − g‖Ḟ1,1 .

Next, for the BR3 integral term

∫
R2

| ̂BR3(f)∂α1f(ξ) − ̂BR3(g)∂α1g(ξ)|dξ

≤ ‖BR3(f) −BR3(g)‖F0,1‖f‖Ḟ1,1 + ‖BR3(g)‖ ˙F0,1‖f − g‖Ḟ1,1 .

Next,

‖BR3(f) −BR3(g)‖F0,1

≤ 1
2

∑
i=1,2

∑
n≥0

‖∂αi
Ω(f) − ∂αi

Ω(g)‖F0,1‖f‖2n
Ḟ1,1 + ‖∂αi

Ω(g)‖F0,1‖f‖2n−1
Ḟ1,1 ‖f − g‖Ḟ1,1

+ . . . + ‖∂αi
Ω(g)‖F0,1‖g‖2n−1

Ḟ1,1 ‖f − g‖Ḟ1,1 .

The key point to note here is that these estimates are precisely those used to prove the 
vorticity estimates in the norm Ḟ1,1 in Proposition 8 if we replace the quantities

‖∂αi
Ω(f)‖Ḟ1,1 or ‖∂αi

Ω(g)‖Ḟ1,1 ↔ ‖∂αi
Ω(g) − ∂αi

Ω(g)‖F0,1

‖f‖Ḟ2,1 or ‖g‖Ḟ2,1 ↔ ‖f − g‖Ḟ1,1 ,
(73)

and notice by counting terms that the computation of (69) creates the same effect on 
the estimates as the effect created by the triangle inequality (or product rule) in the 
case of estimates of Proposition 8. Therefore, continuing to compute the estimates for 
uniqueness as above and comparing with the estimates of Section 4 and 5 by using the 
substitutions (73), we obtain the analogous estimate, for example:

‖∂αi
Ω(f) − ∂αi

Ω(g)‖F0,1 ≤ 2AρC4‖f − g‖Ḟ1,1 .
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These vorticity estimates and performing similar computations on the nonlinear 
terms Ni, we can see that

d

dt
‖f − g‖F0,1 ≤ −σ‖f − g‖Ḟ1,1

where σ is the same positive constant as in Proposition 10. It can be seen by the swap 
of terms described above in (73). �
8. Regularization

In this section, we describe the regularization of the system together with the limit 
process to get bona-fide and not just a priori estimates for the Muskat problem. We 
denote the heat kernel ζε as an approximation to the identity where ε plays the role of 
time in such a way that ζε converges to the identity as ε → 0+. We consider the following 
regularization of the system

∂tf
ε = −Aρ

2 Λ(ζε ∗ ζε ∗ fε) + ζε ∗ (N(ζε ∗ ζε ∗ fε,Ωε)), fε(x, 0) = (ζε ∗ f0)(x), (74)

where N(·, ·) is given by (19) and (20), and Ωε by

Ωε(α, t) = AμDε(Ωε)(α, t) − 2Aρζε ∗ ζε ∗ fε(α, t). (75)

The operator Dε(Ωε) is written as follows

Dε(Ωε)(α)= 1
2π

∫
R2

β
|β| ·∇α(ζε∗ζε∗fε)(α−β)−Δβ(ζε∗ ζε∗fε)(α)

(1 + (Δβ(ζε∗ζε∗fε)(α))2)3/2
Ωε(α−β)

|β|2 dβ. (76)

Integration by parts also provides the identities

∂αi
Dε(Ωε) = − 1

2π

∫
R2

Δβ(∂αi
(ζε∗ ζε∗fε))(α)

(1 + (Δβ(ζε∗ζε∗fε)(α))2)3/2
β · ∇αΩε(α−β)

|β|2 dβ

+ 1
2π

∫
R2

β
|β| · ∇α(ζε∗ζε∗fε)(α−β)−Δβ(ζε∗ ζε∗fε)(α)

(1 + (Δβ(ζε∗ζε∗fε)(α))2)3/2
∂αi

Ωε(α−β)
|β|2 dβ.

(77)

Then it is easy to estimate Ωε as in Section 4 in terms of ζε∗ζε∗fε with the condition 
‖ζε∗ζε∗fε‖Ḟ1,1(t) < 1. These estimates provide a local existence result using the classical 
Picard theorem on the Banach space C([0, Tε]; H4). We find the abstract evolution system 
given by ∂tfε = G(fε) where G is Lipschitz on the open set {g(x) ∈ H4 : ‖g‖Ḟ1,1 <

1}. We remember that fε(x, 0) ∈ H4 due to f0 ∈ L2. The next step is to reproduce 
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estimate (63) for s = 1. As the convolutions are taken with the heat kernel, it is easy 
to prove analyticity for fε so that for ν small enough we find that ‖f ε‖Ḟ1,1

ν
bounded. 

Even more, we know that ‖f ε‖Ḟ1,1
ν

(t) < k(|Aμ|), as continuity in time provides that this 
quantity is close in size to ‖f ε‖Ḟ1,1

ν
(0) = ‖f ε‖Ḟ1,1(0) ≤ ‖f0‖Ḟ1,1 < k(|Aμ|) if Tε > 0 is 

small enough. Therefore, in checking its evolution as in Section 5 we find that

d

dt
‖f ε‖Ḟ1,1

ν
(t) ≤ −C‖ζε∗ ζε∗fε‖Ḟ2,1

ν
,

so that integration in time provides

‖fε‖Ḟ1,1
ν

(t) + C

t∫
0

‖ζε∗ ζε∗fε‖Ḟ2,1
ν

(τ)dτ ≤ ‖f0‖Ḟ1,1 . (78)

Next we repeat the computations in Section 9 for the regularized system. It is possible 
to find that

‖fε‖L2
ν
(t) ≤ ‖f0‖L2 exp

(
R(‖f0‖Ḟ1,1)

)
.

Energy estimates provide

d

dt
‖fε‖2

H4 ≤ P (‖ζε∗fε‖2
H4)

where P is a polynomial function. Then, using that

‖ζε∗fε‖H4 ≤ C(ε)‖fε‖L2 ≤ C(ε)‖f0‖L2 exp
(
C(‖f0‖Ḟ1,1)

)
we are able to extend the solutions in C([0, T ]; H4) for any T > 0.

Next, we find a candidate for a solution by taking the limit ε → 0+ after proving that 
f ε is Cauchy L∞(0, T ; F0,1). From now on, we consider ε ≥ ε′ > 0. Then, as in Section 7, 
we are able to find that

‖fε − fε′‖F0,1(t) ≤‖ζε ∗ f0 − ζε′ ∗ f0‖F0,1 + I1(t) + I2(t)

where

I1(t) =
t∫

0

Aρ

2 ‖Λ(ζε ∗ ζε ∗ fε′ − ζε′ ∗ ζε′ ∗ fε′)‖F0,1(τ)dτ87,

and

I2(t) =
t∫
‖ζε ∗N(ζε ∗ ζε ∗ fε′ ,Ωε′) − ζε′ ∗N(ζε′ ∗ ζε′ ∗ fε′ ,Ωε′)‖F0,1(s)ds.
0
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As before, in order to get the inequality above, we use the decay from the dissipation 
term to absorb the bounds for ζε ∗N(ζε ∗ ζε ∗ fε, Ωε) − ζε ∗N(ζε ∗ ζε ∗ fε′ , Ωε′). Then, 
using the mean value theorem in the heat kernel on the Fourier side, it is possible to get

‖ζε ∗ f0 − ζε′ ∗ f0‖F0,1 ≤ C‖f0‖Ḟ1,1ε1/2. (79)

Similarly

I1(t) ≤ C

t∫
0

‖ζε′ ∗ ζε′ ∗ fε′‖F2,1(s)ds ε1/2 ≤ C‖f0‖Ḟ1,1ε1/2.

A further splitting in the mollifiers, together with the inequality

‖ζε ∗ ζε ∗ fε′‖Fs,1(s) ≤ ‖ζε′ ∗ ζε′ ∗ fε′‖Fs,1(s), s ≥ 0,

allows us to find for the nonlinear term, as before, the following bound

I2(t) ≤ C(‖f0‖Ḟ1,1)
t∫

0

‖ζε′ ∗ ζε′ ∗ fε′‖F2,1(s)ds ε1/2 ≤ C(‖f0‖Ḟ1,1)ε1/2.

It yields finally

‖fε − fε′‖F0,1(t) ≤ C(‖f0‖Ḟ1,1)ε1/2, (80)

so that we are done finding a limit f ∈ L∞(0, T ; F0,1). The interpolation inequality

‖g‖2
Ḟ1,1 ≤ ‖g‖F0,1‖g‖Ḟ2,1

provides

t∫
0

‖ζε ∗ ζε ∗ fε−ζε′ ∗ ζε′ ∗ fε′‖2
Ḟ1,1(s)ds ≤

t∫
0

A(s)(‖ζε ∗ ζε ∗ fε‖Ḟ2,1(s) + ‖ζε′ ∗ ζε′ ∗ fε′‖Ḟ2,1(s))ds,

(81)

where

A(s) = ‖ζε ∗ ζε ∗ (fε − fε′)‖F0,1(s) + ‖ζε ∗ ζε ∗ fε′ − ζε′ ∗ ζε′ ∗ fε′‖F0,1(s).

The first term in A(s) is controlled by (80) and for the second term we apply a similar 
approach as in (79) to find
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A(s) ≤ C(‖f0‖Ḟ1,1)ε1/2.

Using (78) in (81) we find finally

t∫
0

‖ζε ∗ ζε ∗ fε − ζε′ ∗ ζε′ ∗ fε′‖2
Ḟ1,1(s)ds ≤ C(‖f0‖Ḟ1,1)ε1/2, (82)

which provides strong convergence of ζε ∗ ζε ∗ fε to f in L2(0, T ; Ḟ1,1).
Next we can extract a subsequence fεn in such a way that

(f̂εn(ξ, t), exp (−8π2εn|ξ|2)f̂εn(ξ, t)) → (f̂(ξ, t), f̂(ξ, t))

pointwise for almost every (ξ, t) ∈ R2 × [0, T ]. Therefore for t ∈ [0, T ] � Z with measure 
|Z| = 0 it is possible to find the same pointwise for almost every ξ ∈ R2. Fatou’s lemma 
allows us to conclude that for t ∈ [0, T ] � Z and

M(t) = ‖f‖Ḟ1,1
ν

(t) + C

t∫
0

‖f‖Ḟ2,1
ν

(s)

it is possible to obtain

M(t) ≤ lim inf
n→∞

(
‖fεn‖Ḟ1,1

ν
(t) + C

t∫
0

‖ζεn ∗ ζεn ∗fεn‖Ḟ2,1
ν

(s)ds
)
≤ ‖f0‖Ḟ1,1 .

The strong convergence of ζε∗ζε∗fε to f in L2(0, T ; Ḟ1,1) together with the regularity 
found for f allow us to take the limit in equations (74), (75), (76) to find f as a solution 
to the original Muskat equations (19)–(22). Now we use the approach in Section 6 to get 
the L2 maximum principle for f .

9. Gain of L2 derivatives with analytic weight

In this section, we first show gain of L2 regularity. In particular, we prove uniform 
bounds in L2

ν = F0,2
ν , which will be used to show decay of analytic L2 norms, and more 

prominently, the ill-posedness argument of Section 11:

Theorem 13. Suppose f0 ∈ L2 ∩ Ḟ1,1 and ‖f0‖Ḟ1,1 satisfying the condition (60). Then, 
f(t) ∈ L2

ν instantly for all t > 0. Moreover

‖f‖2
L2

ν
(t) ≤ ‖f0‖2

L2 exp(R(‖f0‖Ḟ1,1)),

with R a rational function. In particular, this implies that f(t) ∈ Hs instantly for all 
t > 0.
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Proof. Differentiating the

1
2
d

dt
‖f‖2

L2
ν
(t) = (ν −Aρ)‖f‖2

Ḣ
1/2
ν

+ Aμ

2

∫
|ξ|e2νt|ξ||D̂(Ω)(ξ)||f̂(ξ)|dξ

+
∫

e2νt|ξ||N̂2(ξ)||f̂(ξ)|dξ +
∫

e2νt|ξ||N̂3(ξ)||f̂(ξ)|dξ.

We now bound the nonlinear terms. For example,

∫
|ξ|e2νt|ξ||D̂(Ω)(ξ)||f̂(ξ)|dξ ≤ ‖f‖

Ḣ
1/2
ν

‖D(Ω)‖
Ḣ

1/2
ν

,

and using the bounds on N̂i (61) in (62) followed by the product rule we obtain that

∫
e2νt|ξ||N̂2(ξ)||f̂(ξ)|dξ ≤

∑
n≥1

∫
e2νt|ξ||f̂(ξ)|

(
| · ||Ω̂(·)| ∗ (∗2n| · ||f̂(·)|)

)
(ξ)dξ

≤
∑
n≥1

∫
eνt|ξ||f̂(ξ)|(| · ||Ω̂(·)|eνt|·|) ∗ (∗2n| · |eνt|·||f̂(·)|)(ξ)dξ

≤
∑
n≥1

∫
|ξ||Ω̂(ξ)|eνt|ξ| · (eνt|·||f̂(·)|) ∗ (∗2n| · |eνt|·||f̂(·)|)dξ

and therefore

∫
e2νt|ξ||N̂2(ξ)||f̂(ξ)|dξ ≤

∑
n≥1

∫
|ξ| 12 |Ω̂(ξ)|eνt|ξ| · (| · | 12 eνt|·||f̂(·)|) ∗ (∗2n| · |eνt|·||f̂(·)|)dξ

+
∑
n≥1

2n
∫

|ξ| 12 |Ω̂(ξ)|eνt|ξ| · (eνt|·||f̂(·)|) ∗ (| · | 32 eνt|·||f̂(·)|) ∗ (∗2n−1| · |eνt|·||f̂(·)|)dξ

≤ ‖Ω‖
Ḣ

1/2
ν

‖f‖
Ḣ

1/2
ν

‖f‖2n
Ḟ1,1

ν
+

∑
n≥1

2n‖Ω‖
Ḣ

1/2
ν

‖f‖L2
ν
‖f‖Ḟ3/2,1

ν
‖f‖2n−1

Ḟ1,1
ν

≤
∑
n≥1

‖Ω‖
Ḣ

1/2
ν

‖f‖
Ḣ

1/2
ν

‖f‖2n
Ḟ1,1

ν
+ 2nεn2 ‖Ω‖2

Ḣ
1/2
ν

+ 2n 1
2εn

‖f‖2
L2

ν
‖f‖2

Ḟ3/2,1
ν

‖f‖4n−2
Ḟ1,1

ν
,

where the last line is obtained using Young’s inequality for products. We set εn = ε/n3

for some small constant ε > 0 that we can pick. We can bound the other terms of N2

and N3 similarly. It remains to bound ‖D(Ω)‖
Ḣ

1/2
ν

and ‖Ω‖
Ḣ

1/2
ν

. First,

‖Ω‖ ˙ 1/2 ≤ Aμ‖D(Ω)‖ ˙ 1/2 + 2Aρ‖f‖ ˙ 1/2 .

Hν Hν Hν
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Hence, we need to bound ‖D(Ω)‖
Ḣ

1/2
ν

appropriately:

‖D(Ω)‖
Ḣ

1/2
ν

≤ 2
∑
n≥0

‖|ξ| 12 eνt|ξ|(∗2n+1| · ||f̂(·)|) ∗ |Ω̂(·)|‖L2
ν

≤ 2
∑
n≥0

‖f‖2n+1
Ḟ1,1

ν
‖Ω‖

Ḣ
1/2
ν

+ 2(2n + 1)‖f‖Ḟ3/2,1
ν

‖f‖2n
Ḟ1,1

ν
‖Ω‖L2

ν
.

Using this estimate for D(Ω),

‖Ω‖
Ḣ

1/2
ν

≤ (1 − 2Aμ

∑
n≥0

‖f‖2n+1
Ḟ1,1

ν
)−1

·
(
2Aμ

∑
n≥0

(2n + 1)‖f‖Ḟ3/2,1
ν

‖f‖2n
Ḟ1,1

ν
‖Ω‖L2

ν
+ 2Aρ‖f‖Ḣ1/2

ν

)
.

For ‖f‖Ḟ1,1
ν

of our medium size, the inverted term on the right hand side above is a 
bounded constant. Also,

‖D(Ω)‖
Ḣ

1/2
ν

≤
∑
n≥0

‖f‖2n+1
Ḟ1,1

ν
(1 − 2Aμ

∑
n≥0

‖f‖2n+1
Ḟ1,1

ν
)−1

·
(
2Aμ

∑
n≥0

(2n + 1)‖f‖Ḟ3/2,1
ν

‖f‖2n
Ḟ1,1

ν
‖Ω‖L2

ν
+ 2Aρ‖f‖Ḣ1/2

ν

)
+ (2n + 1)‖f‖Ḟ3/2,1

ν
‖f‖2n

Ḟ1,1
ν

‖Ω‖L2
ν

≤ C(‖f‖Ḟ1,1)
(
‖f‖Ḟ3/2,1

ν
‖Ω‖L2

ν
+ ‖f‖

Ḣ
1/2
ν

)
.

Now, it can be seen that ‖Ω‖L2
ν
≤ C̃(‖f‖Ḟ1,1

ν
)‖f‖L2

ν
where C̃(‖f‖Ḟ1,1) → 0 as ‖f‖Ḟ1,1

ν
→

0. Thus, summarizing, we can pick ε > 0 small enough in the Young’s inequality step in 
the bounds of the integral terms of N2 and the other nonlinear terms,

1
2
d

dt
‖f‖2

L2
ν
(t) ≤

(
ν −Aρ + c(ε, ‖f‖Ḟ1,1

ν
)
)
‖f‖2

Ḣ
1/2
ν

+ 1
2ε c̃(‖f‖Ḟ1,1

ν
)‖f‖2

Ḟ3/2,1
ν

‖f‖2
L2

ν
,

where c(ε, ‖f‖Ḟ1,1) → 0 as ‖f‖Ḟ1,1
ν

→ 0 or as ε → 0 and c̃(‖f‖Ḟ1,1) → 0 as ‖f‖Ḟ1,1
ν

→ 0. 
Hence, picking ε sufficiently small, but not 0, the first term on the right hand side is 
negative. By Gronwall’s inequality, we obtain

‖f‖2
L2

ν
(t) ≤ ‖f0‖2

L2 exp
( 1

2ε c̃(‖f‖Ḟ1,1
ν

(t))
t∫

0

‖f‖2
Ḟ3/2,1

ν
(τ)dτ

)
.

Finally, the exponential term on the right hand side is uniformly bounded because by 
interpolation
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t∫
0

‖f‖2
Ḟ3/2,1

ν
(τ)dτ ≤

t∫
0

‖f‖Ḟ1,1
ν

(τ)‖f‖Ḟ2,1
ν

(τ)dτ ≤ ‖f0‖Ḟ1,1

t∫
0

‖f‖Ḟ2,1
ν

(τ)dτ ≤ ‖f0‖2
Ḟ1,1 .

This completes the proof. �
Next, recall the notation

‖f‖Ḣs
ν

= ‖f‖Ḟs,2
ν

=
∫

|ξ|2se2|ξ|tν |f̂(ξ)|2dξ.

We will use the following inequality on the time derivative of the Hs
ν norm when per-

forming decay estimates in L2 spaces:

Proposition 14. Let 1/2 ≤ s ≤ 3/2 and assume f0 ∈ Ḟ1,1 ∩ L2 satisfying (60). Then,

d

dt
‖f‖Ḣs

ν
≤ −C‖f‖

Ḣ
s+1/2
ν

. (83)

Proof. Differentiating the quantity ‖f‖Ḣs
ν

and integrating by parts we obtain

1
2
d

dt
‖f‖2

Ḣs
ν

= ν‖f‖2
Ḣ

s+1/2
ν

−Aρ‖f‖2
Ḣ

s+1/2
ν

+ K1 + K2 + K3,

where the terms Ki corresponds to the nonlinear terms Ni in (19). Then we have that

K1 ≤ Aμ

2

∫
|ξ|2se2νt|ξ||f̂(ξ)||ΛD(Ω)(ξ)|dξ.

Using the identity Λ = R1∂α1 + R2∂α2 , it suffices to prove the following bounds on 
∂αi

D(Ω): ∫
|ξ|2se2νt|ξ||f̂(ξ)||R1∂α1D(Ω)(ξ)|dξ ≤

∫
|ξ|2s|f̂(ξ)||∂α1D(Ω)(ξ)|dξ

≤ ‖f‖
Ḣ

s+1/2
ν

‖∂α1D(Ω)‖
Ḣ

s−1/2
ν

.

Hence, it suffices to appropriately bound ‖∂α1D(Ω)‖
Ḣ

s−1/2
ν

. Using (23) we have that

‖∂α1D(Ω)‖
Ḣ

s−1/2
ν

≤ 2‖BR1‖Ḣs−1/2
ν

+ 2‖BR3∂α1f‖Ḣs−1/2
ν

≤ 2(‖BR1‖Ḣs−1/2
ν

+ ‖BR3‖Ḣs−1/2
ν

‖f‖Ḟ1,1
ν

+ ‖f‖
Ḣ

s+1/2
ν

‖BR3‖F0,1
ν

).

Similarly to previous estimates in Section 4, we use the triangle inequality and Young’s 
inequality to obtain that
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‖BR11‖Ḣs−1/2
ν

≤ 1
2

(∑
n≥0

∥∥∥|ξ|s−1/2eνt|ξ|
(
|ω̂3(·)| ∗ (∗2n| · ||f̂(·)|)

)
(ξ)

∥∥∥
L2

ξ

)

≤ 1
2

(∑
n≥1

2n
∥∥∥(eνt|·||ω̂3(·)|) ∗ (∗2n−1| · |eνt|·||f̂(·)|) ∗ | · |s+1/2eνt|·||f̂(·)|

∥∥∥
L2

)

+ 1
2

(∑
n≥0

∥∥∥(| · |s−1/2|eνt|·|ω̂3(·)|) ∗ (∗2n| · |eνt|·||f̂(·)|)
∥∥∥
L2

)

≤ 1
2
∑
n≥1

2n‖ω3‖F0,1
ν

‖f‖2n−1
Ḟ1,1

ν
‖f‖

Ḣ
s+1/2
ν

+ 1
2
∑
n≥0

‖ω3‖Ḣs−1/2
ν

‖f‖2n
Ḟ1,1

ν
,

and

‖BR12‖Ḣs−1/2
ν

≤ 1
2

(∑
n≥0

∥∥∥|ξ|s−1/2eνt|ξ|
(
|ω̂2(·)| ∗ (∗2n+1| · ||f̂(·)|)

)
(ξ)

∥∥∥
L2

ξ

)

≤ 1
2

(∑
n≥0

(2n + 1)
∥∥∥(eνt|·||ω̂2(·)|) ∗ (∗2n| · |eνt|·||f̂(·)|) ∗ | · |s+1/2eνt|·||f̂(·)|

∥∥∥
L2

)

+ 1
2

(∑
n≥0

∥∥∥(| · |s−1/2|eνt|·|ω̂2(·)|) ∗ (∗2n+1| · |eνt|·||f̂(·)|)
∥∥∥
L2

)

≤ 1
2
∑
n≥0

(2n + 1)‖ω2‖F0,1
ν

‖f‖2n
Ḟ1,1

ν
‖f‖

Ḣ
s+1/2
ν

+ 1
2
∑
n≥0

‖ω2‖Ḣs−1/2
ν

‖f‖2n+1
Ḟ1,1

ν
,

and

‖BR3‖Ḣs−1/2
ν

≤ 1
2

(∑
n≥0

∥∥∥|ξ|s−1/2eνt|ξ|
(
(|ω̂1(·)| + |ω̂2(·)|) ∗ (∗2n| · ||f̂(·)|)

)
(ξ)

∥∥∥
L2

ξ

)

≤ 1
2

(∑
n≥1

2n
∥∥∥(eνt|·||ω̂1(·)| + eνt|·||ω̂2(·)|) ∗ (∗2n−1| · |eνt|·||f̂(·)|) ∗ | · |s+1/2eνt|·||f̂(·)|

∥∥∥
L2

+
∑
n≥0

∥∥∥(| · |s−1/2|eνt|·|ω̂1(·)| + | · |s−1/2|eνt|·|ω̂2(·)|) ∗ (∗2n| · |eνt|·||f̂(·)|)
∥∥∥
L2

)

≤ 1
2
∑
n≥1

2n(‖ω1‖F0,1
ν

+ ‖ω2‖F0,1
ν

)‖f‖2n−1
Ḟ1,1

ν
‖f‖

Ḣ
s+1/2
ν

+ 1
2
∑
n≥0

(‖ω1‖Ḣs−1/2
ν

+ ‖ω2‖Ḣs−1/2
ν

)‖f‖2n
Ḟ1,1

ν
.
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Hence, we now have to prove estimates on ‖ωi‖Ḣs−1/2
ν

for 1/2 ≤ s ≤ 3/2. This follows 
similar patterns:

‖∂α1Ω‖
Ḣ

s−1/2
ν

≤ 2Aρ‖f‖Ḣs+1/2
ν

+ 2Aμ‖BR1‖Ḣs−1/2
ν

+ 2Aμ‖BR3∂α1f‖Ḣs−1/2
ν

.

Notice that using the triangle inequality as above on |ξ|s−1/2, since 0 ≤ s − 1/2 ≤ 1, we 
obtain analogously to the steps in Section 4 that

‖∂αi
Ω‖

Ḣ
s−1/2
ν

≤ 2AρC4,ν‖f‖Ḣs+1/2
ν

.

Moreover, for i = 1, 2

‖ωi‖Ḣs−1/2
ν

≤ 2AρC4,ν‖f‖Ḣs+1/2
ν

,

and

‖ω3‖Ḣs−1/2
ν

≤ 4AμAρ‖f‖2
Ḟ1,1(C5,ν + 3C2,ν)‖f‖Ḣs+1/2

ν
.

Now we can follow the steps in Proposition 10. Plugging in the estimates above and 
performing similar estimates for K2 and K3, we obtain for 1/2 ≤ s ≤ 3/2

d

dt
‖f‖Ḣs

ν
≤ −C‖f‖

Ḣ
s+1/2
ν

, (84)

for a positive constant C depending on f0 and ν. �
10. Large-time decay of analytic norms

In this section, we begin by proving the Decay Lemma we will use to show large time 
decay of solutions to the Muskat problem:

Lemma 15 (Decay Lemma). Suppose ‖g‖pḞs1,p
ν

(t) ≤ C0 and

d

dt
‖g‖pḞs2,p

ν
(t) ≤ −C‖g‖p

Ḟs2+1/p,p
ν

(t) (85)

such that s1 ≤ s2 and p ∈ [1, ∞). Then

‖g‖pḞs2,p
ν

(t) � (1 + t)(s1−s2)p.

Proof. Consider r > 0. Then

‖g‖pḞr,p
ν

=
∫

eνtp|ξ||ξ|rp|ĝ(ξ)|pdξ

≥
∫

s

eνtp|ξ||ξ|rp|ĝ(ξ)|pdξ

|ξ|>(1+δt)
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≥ (1 + δt)s
∫

|ξ|>(1+δt)s

eνtp|ξ||ξ|(r−1/p)p|ĝ(ξ)|pdξ

= (1 + δt)s
(
‖g‖p

Ḟr−1/p,p
ν

−
∫

|ξ|≤(1+δt)s

eνtp|ξ||ξ|(r−1/p)p|ĝ(ξ)|pdξ
)
.

We can use (85) and the above argument with r = s2 + 1/p to obtain that

d

dt
‖g‖pḞs2,p

ν
+ C(1 + δt)s‖g‖pḞs2,p

ν
≤ −C‖g‖p

Ḟs2+1/p,p
ν

+ C(1 + δt)s‖g‖pḞs2,p
ν

≤ C(1 + δt)s
( ∫
|ξ|≤(1+δt)s

eνtp|ξ||ξ|s2p|ĝ(ξ)|pdξ
)

≤ C(1 + δt)s(s2−s1)p(1 + δt)s
( ∫
|ξ|≤(1+δt)s

eνtp|ξ||ξ|s1p|ĝ(ξ)|pdξ
)

≤ C(1 + δt)s(s2−s1)p(1 + δt)s‖g‖pḞs1,p
ν

≤ CC0(1 + δt)s(s2−s1)p(1 + δt)s.

Now, let σ > (s2 − s1)p and choose δ such that δσ = C, s = −1. Then

d

dt
((1 + δt)σ‖g‖pḞs2,p

ν
) = (1 + δt)σ d

dt
‖g‖pḞs2,p

ν
+ σδ‖g‖pḞs2,p

ν
(1 + δt)σ−1

= (1 + δt)σ d

dt
‖g‖pḞs2,p

ν
+ C‖g‖Ḟs2,p

ν
(1 + δt)σ−1

= (1 + δt)σ( d
dt

‖g‖pḞs2,p
ν

+ C‖g‖pḞs2,p
ν

(1 + δt)−1)

≤ CC0(1 + δt)σ−(s2−s1)p−1.

Integrating in time we obtain that

(1 + δt)σ‖g‖pḞs2,p
ν

≤ C̃

δt
(1 + (1 + δ)σ−(s2−s1)p)

for some constant C̃. Dividing both sides of the inequality by (1 + δt)σ we obtain our 
results. �

We can now use this lemma to prove large-time decay rates for the analytic norms. 
By Holder’s inequality, for s > −d/2 and r > s + d/2

‖f‖Ḟs,1
ν

≤ ‖f‖Hr
ν

∥∥∥ |ξ|s
(1 + |ξ|2)r/2

∥∥∥
L1

� ‖f‖Hr
ν
.
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Hence, by the estimate (83), we obtain for −1 < s′ < 0:

‖f‖Ḟs′,1
ν

(t) ≤ Cs (86)

for a fixed constant Cs. By the Decay Lemma, this implies that

‖f‖Ḟs,1
ν

� (1 + t)−1−s+λ (87)

for 0 ≤ s ≤ 1 and arbitrarily small λ > 0. This proves Theorem 4. We can further 
demonstrate decay of other analytic norms. For example, the quantities ‖f‖Ḟs,1

ν
for 

s > 1 also decay in time. First, note that

‖f‖Ḟs,1(t) ≤ ‖e−νt|ξ||ξ|s−1‖L∞
ξ
‖f‖F0,1

ν
≤ ‖e−νt|ξ||ξ|s−1‖L∞

ξ
k(Aμ) < ∞

for any t > 0. Moreover, using the weighted triangle inequality

|ξ|s ≤ (n + 1)s(|ξ − ξ1|s + |ξ1 − ξ2|s + · · · + |ξn|s),

it can be seen that

d

dt
‖f‖Ḟs,1

ν
(t) ≤ −C(s)‖f‖Ḟs+1,1

ν
(t)

for a positive constant C(s) depending on s and ‖f‖Ḟ1,1
ν

when ‖f‖Ḟ1,1
ν

is sufficiently small. 
However, by (87) for s = 1, the quantity ‖f‖Ḟ1,1

ν
(t) does indeed decay to a sufficiently 

small quantity when t > Ts for some Ts > 0 depending on s and the initial data f0. 
Hence, since, as noted earlier, ‖f‖Ḟs,1

ν
(Ts) < ∞, we can apply the Decay Lemma to 

obtain

Theorem 16. Let s ≥ 1. Then, ‖f‖Ḟs,1(t) < ∞ for all t > 0 and we have the decay

‖f‖Ḟs,1
ν

≤ C1,st
−s−1

for t > Ts and C1,s depending on s and the initial data f0.

We can similarly see by the uniform bounds of Theorem 13, that ‖f‖Ḣs(t) < ∞ for 
all s ≥ 0 and t > 0. Hence, by similar arguments to above and Proposition 14, the Decay 
Lemma 15 with p = 2,

Theorem 17. Suppose s ≥ 1/2. Then ‖f‖Ḣs < ∞ for all t > 0 and we have the decay

‖f‖2
Ḣs

ν
≤ C2,st

−2s

for t > Ts and C2,s depending on s and the initial data f0.
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11. Ill-posedness

In this section we show that the Muskat problem in the unstable case ρ1 > ρ2 is 
ill-posed for any Sobolev space Hs with s > 0. First we notice that our initial data 
f0 ∈ L2 ∩ Ḟ1,1 need not be in Hs.

Lemma 18. There exists a function g ∈ L2 ∩ Ḟ1,1 with

‖g‖L2 < ∞, ‖g‖Ḟ1,1 < kμ

for a constant kμ of medium size such that g /∈ Hs for any s > 0.

Proof. We give an explicit counterexample. Consider a radial function g : R2 → R. Let 
for n ≥ N for some N > 0 integer

|ξĝ(ξ)| = r|ĝ(r)| =
{
nσ if r ∈ [nδ, nδ + 1/nγ ]
0 otherwise,

where σ, δ and γ are positive. Then one can compute

‖g‖Ḟ1,1 = 2π
∞∫
0

r2|ĝ(r)|dr ≤ 2π
∑
n≥N

nσ+δ−γ + nσ−2γ < ∞

when σ + δ − γ < −1. For 0 ≤ s < 1/2 we have that

‖g‖2
Ḣs =

∞∫
0

(r|ĝ(r)|)2r2s−1dr

and having chosen N > 0 appropriately large,

22s−12π
∑
n≥N

n2σ+δ(2s−1)−γ ≤ 2π
∑
n≥N

n2σ−γ(nδ + n−γ)2s−1

≤ 2π
∞∫
0

(r|ĝ(r)|)2r2s−1dr

≤ 2π
∑
n≥N

n2σ+δ(2s−1)−γ .

Hence, pick σ, δ and γ such that 2σ + δ(2s − 1) − γ = −1. Then, ‖g‖L2 < +∞ and for 
s > 0, ‖g‖Ḣs = +∞. This counterexample gives the proof in the 3D case, as we can force 
‖g‖Ḟ1,1 < kμ by multiplying this counterexample by the appropriate constant.
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In the 1D interface case, let for n ≥ N for some N > 0 integer

ξĝ(ξ) =
{
nσ if ξ ∈ [nδ, nδ + 1/nγ ]
0 otherwise

such that γ > σ + 1, 2δ + γ > 2σ + 1 but 2δ(1 − s) + γ = 2σ + 1. Then one can compute 
that

‖g‖L2 < ∞, ‖g‖Ḟ1,1 < kμ and ‖g‖Hs = +∞. �
Remark 19. This example can be adapted to show that even if g ∈ Ḟ1,1

ν ∩ L2, it need 
not be in Hs.

Theorem 20. For every ε > 0, there exists a solution f̃ to the unstable regime and 0 <
δ < ε such that ‖f̃‖Hs(0) = δ but ‖f̃‖Hs(δ) = ∞ for any s > 0.

Proof. Take f0 ∈ L2 ∩ Ḟ1,1 satisfying condition (60) for the Muskat problem in the 
stable regime such that ‖f0‖Hs = ∞. By the gain of regularity in (35)

‖f‖Hs(δ) ≤ ‖e−νδ|ξ||ξ|s‖L∞‖f‖L2
ν
(δ) ≤ c(δ)‖f0‖L2 exp

(
R(‖f0‖Ḟ1,1)

)
< ε

by picking initial data with ‖f0‖L2 sufficiently small. If f(x, t) is a solution to the stable 
case problem, then f̃(x, t) = f(x, −t + δ) is a solution to the unstable case ρ1 > ρ2. 
Hence,

‖f̃‖Hs(0) = ‖f‖Hs(δ) < ε and ‖f̃‖Hs(δ) = ‖f‖Hs(0) = ∞.

This completes the proof. �
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