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1. Introduction

This paper studies the dynamics of flows in porous media. This scenario is modeled
using the classical Darcy’s law [22]

(e, tu(z,t) = =Vp(z,t) — p(z, t)ea, (1)

where the velocity of the fluid w is proportional to the spatial gradient pressure Vp
and the gravity force. Above x is the space variable in R? for d = 2, or 3, t > 0 is
time and eq is the last canonical vector. In the momentum equation, velocity replaces
flow acceleration due to the porosity of the medium. It appears with the viscosity p(z,t)
divided by the permeability constant x, here equal to one for simplicity of the exposition.
The gravitational field comes with the density of the fluid p(x,¢) multiplied by the
gravitational constant g, which is also normalized to one for clarity.
In this work the flow is incompressible

V- u(z,t) =0, (2)

and takes into consideration the dynamics of two immiscible fluids permeating the porous
medium R? with different constant densities and viscosities

_Jut, ze DY), _J ot xe DY),
wlot) = {MQ, x € D(t), plot) = { p*, x € D(t). ®)

The open sets D! (t) and D?(¢) are connected with R? = D(t)UD?(t)UdDI(t), j = 1,2
and move with the velocity of the fluid

Z—f(t) = u(x(t),t), VYa(t) € DI(t), or z(t) € 9D (t). (4)

The evolution equation above is well-defined at the free boundary even though the ve-
locity is not continuous. The discontinuity in the velocity holds due to the density and
viscosity jumps. But what matters is the velocity in the normal direction, which is con-
tinuous thanks to the incompressibility of the velocity. The geometry of the problem is
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due to the gravitational force, with the fluid of viscosity 1 and density p? located mainly
below the fluid of viscosity x! and density p!. In particular, there exists a constant M > 1
large enough such that R4=! x (—oo, —M] C D?(t).

We are then dealing with the well-established Muskat problem, whose main interest is
about the dynamics of the free boundary 9D/ (t), especially between water and oil [32].
In this paper, we study precisely this density-viscosity jump scenario, i.e. when there
is a viscosity jump together with a density jump between the two fluids. Due to its
wide applicability, this problem has been extensively studied [4]. In particular from the
physical and experimental point of view, as in the two-dimensional case the phenomena
is mathematically analogous to the two-phase Hele-Shaw cell evolution problem [35].

From the mathematical point of view, in the last decades there has been a lot of effort
to understand the problem as it generates very interesting incompressible fluid dynamics
behavior [25].

An important characteristic of the problem is that its Eulerian—Lagrangian formula-
tion (1), (2), (3), (4) understood in a weak sense provides an equivalent self-evolution
equation for the interface 9D’ (t). This is the so-called contour evolution system, which
we will now provide for 3D Muskat in order to understand the dynamics of its solutions.

Due to the irrotationality of the velocity in each domain D7(t), the vorticity is con-
centrated on the interface D7 (t). That is the vorticity is given by a delta distribution
as follows

V Au(z,t) = wla,t)d(z = X(a,t)),

where w(a, t) is the amplitude of the vorticity and X («,t) is a global parameterization
of DI (t) with

oD (t) = {X(a,t) : a € R?}.
It means that

u(z,t) - VA p(zr)de = /w(a,t) (X (ayt))da,
R3 R?

for any smooth compactly supported field ¢. The evolution equation reads
X (a,t) = BR(X,w)(a,t) + C1(a, t)0a, X (a,t) + Co(a, t)0n, X (, t), (5)
where BR is the well-known Birkhoff-Rott integral

_ 1 X(O{,t)_X(th)
BMKW@@——EPW/mmﬁfX%m
R2

5 Aw(B,t)dB, (6)

which appears using the Biot—Savart law and taking limits to the free boundary. Above
the coefficients C; and C5 represent the possible change of coordinates for the evolving
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surface and the prefix p.v. indicates a principal value integral. It is possible to close
the system using that the velocity is given by different potentials in each domain and
we denote the potential jump across the interface by the function Q(«,t). Taking limits
approaching the free boundary in Darcy’s law yields the non-local implicit identity

p =t p*=p'
Qa,t) = A, D) (e t) — 24, X5(at), A, =1 4 =L P (7
(a.t) = A D(Q) (e, t) — 24, X3(et), Ay i Y= e (7)

where D is the double layer potential

1 X(a,t)—X(6,1)
D(Q)(a, t) = gp'v'/\x(a,t)—X(ﬂ,t)lg
R2

aalX(ﬁ7t) /\aa2X<ﬁvt)Q(ﬁ7t)dﬁ (8)

In that limit procedure, the continuity of the pressure at the free boundary is used, which
is a consequence of the fact that Darcy’s law (1) is understood in a weak sense. Relating
the potential and the velocity jumps at the interface provides

W(a, t) = Oy at, )0y X (ay t) — Ony U, 1) Dy X (v, t), (9)

and therefore it is possible to close the contour evolution system by (5), (6), (7), (8), (9)
(see [16] for a detail derivation of the system).

Then the next question to ask is about the well-posedness of the problem. A remark-
able peculiarity is that, in general, it does not hold. The system has to initially satisfy
the so-called Rayleigh—Taylor condition (also called the Saffman—Taylor condition for the
Muskat problem) to be well-posed. This condition holds if the difference of the gradient
of the pressure in the normal direction at the interface is strictly positive [1], [2], i.e.
the stable regime. For large initial data, well-posedness was proved in [17] for the case
with density jump in two and three dimensions. In that case, the Saffman—Taylor condi-
tion holds if the denser fluid lies below the less dense fluid. The density-viscosity jump
stable situation was proved to exist locally in time in 2D [15] and in 3D [16]. Although
these proofs use different approaches, it was essential in both proofs to find bounds for
the amplitude of the vorticity in equation (7) in terms of the free boundary. There are
recent results where local-in-time existence is shown in 2D for lower regular initial data
given by graphs in the Sobolev space H? for the one-fluid case (u? = 0) [11] and in
the two-fluid case (u? > 0) [31]. In the 2D density jump case the local-in-time existence
has been shown for any subcritical Sobolev spaces W?2P?, 1 < p < oo [14], and H?,
3/2 < s < 2 [30]. Here, the terminology subcritical is used in terms of the scaling of the
problem, as X*(a,t) = A1 X (Ao, M) and w?(a,t) = w(Aa, At) are solution of (5), (6),
(7), (8), (9) for any A > 0 if X (a,t) and w(a, t) are. Therefore W W2! and H3/? are
critical and invariant homogeneous spaces for the system in 2D, or W, W31 and H?
in the 3D case. It is then easy to check that the main space FU1 used in this paper (see
definition below) is also critical.
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On the other hand, the Muskat problem can be unstable for some scenarios, when the
Saffman—Taylor condition does not hold. In particular, if the difference of the gradient
of the pressures in the normal direction at the interface is strictly negative, the contour
evolution problem is ill-posed in the viscosity jump case [36] as well as the density
jump situation [17] in subcritical spaces. With the Eulerian-Lagrangian formulation
(1), (2), (3), (4) it is possible to find weak solutions in the density jump case where
the fluid densities mix in a strip close to the flat steady unstable state [37] and for
any H5 unstable graph [7]. In the contour dynamics setting, adding capillary forces to the
system makes the contour equation well-posed [24]. When the Saffman—Taylor condition
holds, the system is structurally stable to solutions without capillary forces if the surface
tension coefficient is close to zero [3]. However, there exist unstable scenarios for interfaces
interacting with capillary forces [33] which have been shown to have exponential growth
for low order norms under small scales of times [29]. The system also exhibits finger
shaped unstable stationary-states solutions [23].

A very important feature of this problem is that it can develop finite time singularities
starting from stable situations. The Muskat problem then became the first incompress-
ible model where blow-up for solutions with initial data in well-posed scenarios had been
proven rigorously. Specifically, in the 2D density jump case, solutions starting in stable
situation (denser fluid below a graph) become instantly analytic and move to unstable
regimes in finite time [10]. In the unstable regime the interface is not a graph anymore,
and at a later time the Muskat solution blows-up in finite time showing loss of reg-
ularity [8]. The geometry of those initial data are not well understood, as numerical
experiments show that some solutions with large initial data can remain smooth [19],
and the patterns can become more complicated for scenarios with fixed boundary ef-
fects [27]. As a matter of fact, some solutions can pass from the stable to the unstable
regime and enter again to the stable regime [20].

The Muskat problem also develops a different kind of blow-up behavior in stable
regimes: the so-called splash singularities. This singularity occurs if two different particles
on the free boundary collide in finite time while the regularity of the interface is preserved.
This collision can not occur along a connected segment of the curve of particles in either
the density jump [18] or the density-viscosity jump case [21]. In particular, the splash
singularity is ruled out for the two-fluid case [26] but it takes place in one-fluid stable
scenarios [9].

The question we study in this paper is about the global in time existence, uniqueness,
regularity and decay of solution of the Muskat problem in stable regimes and ill-posedness
in unstable regimes. In the viscosity [36], density [17] and density-viscosity jump 2D
cases [23], [11] there exist global in time classical solutions for small initial data in
subcritical norms which become instantly analytic, thereby demonstrating the parabolic
character of the system in these situations. See [5] for the same result in the 2D density
jump case with small initial data in critical norms, represented on the Fourier side by
positive measure. In [14], global in time existence of classical solutions are shown to exist
with small initial slope. In [12], global existence of 2D density-jump Muskat Lipschitz
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solutions are given for initial data with slope less than one. See [28] for an extension of
the result with fixed boundary and [13] for the 3D scenario, where the L° norm of the
free boundary gradient has to be smaller than 1/3. In [12] and [13] global existence and
uniqueness is proved for solutions with continuous and bounded slope and L' in time
bounded curvature in the density jump case for initial data in critical spaces with medium
size. More specifically, the initial profiles are given by functions, i.e. X (a,0) = («, fo(a)),
for a function fy(«) of size less than ko:

Vol 7 = / QLN fol©)] < Kou,  d—2.3,

Rd—1

where ko 4 is an explicit constant, kg3 > 1/5 in 3D and kg2 > 1/3 in 2D. In [34], the
optimal time decay of those solutions are proven, for initial data additionally bounded
in subcritical Sobolev norms. We also point out work [6], where the Lipschitz solutions
given in [8] are shown to become smooth by using a conditional regularity result given
in [14] together with an instant generation of a modulus of continuity.

Next, we describe the main results and novelties in this work. This paper extends the
global existence results in 2D and 3D from [13] to the more general case with density-
viscosity jump. Moreover, in 3D we improve the available constant for global existence
and make it equal to the 2D constant in the A4, = 0 case. Precisely, it is given by initial
data satisfying that

1 foll 710 = / A€ FolE)] < k(I Al),

where k : [0,1] — [k(1), ko] is decreasing and k(0) = ko = ko 2. We would like to point
out that due to the nature of equation (7), maximum principles are not available for the
amplitude and the slopes in the L* norm and the parabolic character of the equation
is not as clear as in the case A, = 0. We provide the first global existence result for this
important scenario in a critical space. The space ! appears as a natural framework
to perform the task of inverting the operator (I — A,D) in order to get bounds for w in
terms of the interface. In particular, we also improve the method in [13] as we are able
to show smoothing effects, proving that solutions with medium size initial data become
instantly analytic. Furthermore, we show uniform bounds of the interface in L™ and L?
norms with analytic weights. Then, we show optimal decay rates for the analyticity of
the critical solutions, improving the results in [34].

Finally, we show with the new approach in the paper that solutions are ill-posed in the
unstable regime even for low regularity solutions understood in the contour dynamics
setting. We give precise statements of these results in Section 3. In next section we
provide the contour equations we use throughout the paper.
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2. Formulation of the Muskat problem with viscosity jump

In this section, we derive the contour equation formula given by (5), (6), (7), (8), (9)
in terms of a graph. This equation will be used throughout the paper to state the main
results and to prove them. To simplify notation we shall write f(a,t) = f(«) when there
is no danger of confusion.

In the 3D case, if the evolving interface can be described as a graph

X(a,t):(al,aQ,f(a,t)L a:(a17a2> ERQ,

then the equations (5) are reduced to one equation as follows

L [ ez = Bws(8) — () (@) ~ S(8)
0= 5P / (o, (@) — (B, F(B))PP

1 (B U(e) ~ FB) ~ (o~ Bws(B) X
= p“/ (o () — G FANE 0+ Cale),

dpg + 01(04),

_ 1 [(aa=B1)w2(B) = (a2 —B2)w1(B) o o o o
ft(a)_ 471_]1! |(a;f(a>)_<ﬁ,f(ﬁ))|3 dﬁ"‘cl( )8041f( )+CQ( )aoézf( )

Thus, substituting the coefficients from the tangent terms into the evolution equation
and applying a change of variables, we obtain the equation for f:

fi(@) = Li(a) + (@) + I3(a), (10)

where
IQ(a):ip'VﬁlAﬁf(a)a%f(a) (1(+(A)Bf?ﬂ)ﬁ?%)amf(a)m(a—ﬁ)%7 (12)
- [ o

Above we use the notation Agf(a) for

Asf(a) = (f(a) = fla—p))IBI~"
We have the following equations for the vorticity coming from (9):

w1 = 8a29, Wo = —GQIQ, w3 = 8a296a1f — 8a1(28a2f. (14)
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Introducing (14) into (11) and (12) they can be written as

Agf(a))?)z 1B

ipv/ Asf(@)Vfla)  VQ(a—B)
yres 'RQ (14 (Agf())?)2 8|2

. 1 B vale -
I(a) = pguﬂ D V(e p)dp,

IQ(O[) =

dg. (15)

By adding and subtracting the appropriate quantity, we obtain the following
ILi(a) = lAQ(a) + L v / ((1 + (A f(a))2)_% — 1)i -VQ(a = B)dS
o) =5 w ’ I8P |

R2

where the operator A is given by the Riesz transforms
A = R104, + R204, (16)

and also as a Fourier multiplier by A= |€|. Plugging the identity for Q (7), the equation
below shows the parabolic structure of the equation as

Ii(a) = —A A f(o) + %AD(Q)(O{)

1 B B (17)
4 Ep.V.R[ (@ + @sr(@)?) i - 1)W-Vﬂ(a—ﬁ)d,@.
Using formulas (14) and (7) in Is(a) (13) we are able to find that
8- (@)VDW)(a—F): V4 fla = §) d5
il t/ prewrwo) N

We can finally write the contour equation (10) by using formulas (17), (15) and (18) to
get:

fr=—=AAf+N(f),  where  N(f)=Ni(f)+No(f) +N3(f), (19

where N(f) = N(f,Q) and

Ny = ZEAD(@) o),
_ 1 i + 88/ (@)Y a,g
Mm*“/(( +(Dpf(@)?) 18] w2 S (20)
t/ﬁ V4 f(@)VD(Q)(a — B) - V4 f(a— ) df
1+(A5f()))% [}
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The equation for 2 is given implicitly by
Qo t) = A, D(Q)(a, t) — 24, f (o, 1), (21)

where the operator D(2) (8) is rewritten as follows

D()(a) =

1 /Aﬁf(a) — EVia=f) 0 —8) . o)

%Rz (1+ (Apf())?)?2 |
Note that the derivatives of D(2) can be written in the following manner
90, D(Q) (e, 1) = 2BR(f,w)(a, 1) - D, (1, g, f (@), (23)
and therefore
00, e, t) — 24, BR(f,w)(c,t) - On,; (a1, a2, f(a)) = —2A,04, f(a, 1). (24)

In the case of a graph, the Birkhoff-Rott integrals are also reduced in the following

manner

R(f,w) = (BRi(f.w), BRa(f,w), BRs(f,w)),

where we use the shorthand BR; & BR; (f,w) to be the terms

1 fesle = B) ~ Asf(awn(a ) dg

Bf = J (1+ Af(a)?)? R >
1 Agfla)wi(a—B) — %w?,(@ ) g
BRy = Ep.V.R[ 1+ Agf(a)z)% W, (26)
B1
1 . WWQ(CV B) — |5\W1( B) g
Blts = v / (1+ Agf(a)?)s [ER @)

This completes our explanation of the formulation in 3D.
We now state the formulation in 2D. Proceeding similarly as above one obtains that

fe=—A,Af+ N(f),  where  N(f)=Ni(f)+ Nao(f), (28)

where N(f) = N(f,Q) and

Ny = ZEAD(@) @),

_ 1 Apf(a) = 0af(a) OaSH e = B)
Ny %p.v./ 1+ Ay f(a)? Agf(a)Tdﬂ.

(29)
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The equation for €2 is given implicitly by
Qo t) = A, D(Q)(a, t) — 24, f (o, 1), (30)

where the operator D(Q2)(a, t) is rewritten as follows

D(Q)(a,t) =

l/ Asf(a) —Bufla=B)Aa—B) 0 (31)

s 1+ Agf(a)? B
Note that the vorticity is given by w(a) = 9,Q(c).
3. Main results

In this section, we present the main results and briefly give an outline of the structure
of this paper. The first result is global well-posedness in the critical space F1 N L2
in 3D, where we define the norms

/1

o ™ [1eP1FO1E, 5> -2
We also denote || f| zo.1 = || f]|Fo.1.

Theorem 1 (Ezistence and uniqueness, 3D). Let fo € F5' N L? satisfy the bound

[ foll 710 < k([Ap])

for a constant k(|A,|) depending on the Atwood number A,,. Then there exists a unique
solution to (19)~(22) with f € L>®(0,T; F“' 0 L?) N L' (0, T; F>1) such that f(a,0) =
fola) and

t
[fllz2 (@) < lfollzzs  11f]l£2 (2) +U/ 1l 222 (T)dr < [l foll £10 < R([ALD, — (32)
0

for a positive constant o depending on A,, A, and || fol| z1.1-

The constant o is defined in (10) with » = 0. The Rayleigh—Taylor stability of the
scenario allows the positivity of . This condition is ensured because A, is positive (the
denser fluid is below) and because of the size of || fo|| 1.1 (which is given according to
the parameter |A,|). In the following theorem the formula for ¢ is more straightforward
and the property above can be seen directly.
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In the 2D case, we analogously have the following:
Theorem 2 (Ezistence and uniqueness in 2D). Let fo € FUN L2 satisfy the bound

[ foll 10 < e(|Apl)

for a constant c(|A,|) depending on the Atwood number A,. Then there exists a unique
solution to (28)~(31) with f € L>(0,T; F-' N L) N L' (0, T; F>1) such that f(a,0) =
fola) and

t
112 @) <\l follz2s 1120 (2) +0/ £l 720 (T)dr < |l foll gr0 < c(|Apl),
0
for a positive constant o depending on A,, A, and || foll z1.1,

20 olZ (3= Ifoll2 )
1— 2
(1= 1foll2.0)
20 foll 15 (24l foll s = 6l foll s — 8 Aol s + AolI2 0 — 24401 foll 21 +2)

(1= 1002) (1= Mol — 24ullfoll 210 )

o([lfoll#1.1) = Ap

m

X

Computing the constant explicitly for |A,| =1, we obtain c(1) ~ 0.128267.

As noted in the introductory section, in the 3D setting, when A,, = 0, the constant k(0)
matches the size of the initial data in the 2D without viscosity jump proven in [13,
Remark 5.4], and therefore, improves the size of the initial data in the 3D case without
viscosity jump given by [13].

In the graph below (see Fig. 1) the 3D constant k(|A,|) is pictured with respect
to |A,]. The maximum is ky =~ 0.362606 and the minimum is k(1) ~ 0.080604. The
graph in the Figure arises from estimating the size of initial data, k(]A,|), needed to
satisfy the positivity condition (60) of the high order rational polynomial given in the
proof.

To prove Theorem 1 and in particular (32), we first need to prove a priori estimates
on the vorticity and potential jump functions. These estimates on ||w;|| z... for s = 0,1
are computed in Section 4. The key point of the vorticity estimates is to demonstrate a
bound on ||w;|| z.1 by a constant multiple of || || z.11,1, as wi(c) is of similar regularity
to Vf(a).

Next, we introduce the following norms with analytic weights:

11

L) = / [ e el fg,t)Pde, v>0, s>0, p>1, (33)
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0.05 1 1 1 1 1 1 1 1 1

0 0.1 02 03 04 05 06 07 08 09 1

Fig. 1. k(|A,|).

where we also denote || f|| zo.» = || f|| zo.». In Section 5, we will use the vorticity estimates
to prove uniform bounds on the analytic weighted quantity || f|| z1.1(¢):

Theorem 3 (Instant analyticity). Suppose f(a,t) is a solution to (19)—(22) in 3D with
initial data satisfying || foll 711 < k(|AL|) or (28)~(31) in 2D with initial data satisfying
| foll 711 < e(|Apl). Then there exist v = v(||fo|l #1..) > 0 such that the evolution of the
quantity || f|| zs.1 satisfies the estimate

[f1] 222 (2) + U/ £l 20 (T)dr < [ foll 1.1 (34)
0

Furthermore, if fo € L* then

£l 02 < Nl follz> exp(R([[ foll £1.1)), (35)

where R is a positive rational polynomial.

Setting v = 0, we obtain the estimate (32). Following the instant analyticity argu-
ment, we present an L? maximum principle for the Muskat problem with viscosity jump
in Section 6. Next, in Section 7, we give an argument for uniqueness of solutions in
the space F%!, noting that F%! « L. All of these a priori estimates finally allow
us to perform a regularization argument in Section 8. In this argument, we perform an
appropriate mollification of the interface evolution equation for f(«,t) and show that
the regularized solutions e~ («,t) converge strongly to f(a,t) in L2(0,T; ') and sat-
isfy (32). Taking the limit f"(a,t) — f(a,t), we establish the global wellposedness
result of Theorem 1.
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In this paper, we also show analytic results in L? spaces in Section 9. Specifically, we
prove uniform bounds on an analytic L? norm, as given by (35) as well as

d
ol

20 < =000 (36)

for 1/2 < s < 3/2. Note that in general, we denote F32 by HS for s # 0 and Fo?
by L2 throughout the paper. We will use this L? estimate to show the L? decay and
ill-posedness results later in the paper.

Given solutions with initial data as described in Theorem 1, in Section 10 we obtain
large-time decay for solutions to the Muskat problem by using estimates similar to (34),

(35) and (36):

Theorem 4 (Sharp decay estimates). Suppose f(a,t) is a solution to (19)—~(22) with initial
data satisfying || foll z1.1 < k(JAu|) and || fol|r2 < co. Then for any 0 < s <1

£l £ (8) < Cs(1+ £)=sIHA

for arbitrarily small A > 0 and some nonnegative constant Cs depending on the initial
profile fo(a) and the exponent s. Moreover, for any T > 0, there exists a constant Cr g
depending on fo, T and s such that

HfHH,j(t) < CT,stis,

fort > T. In 2D, we have the following decay rate for solutions with initial data satisfying
[ foll 1.1 < c(JApul) and [ follz> < oo:

£l (1) < Cu(1 + 1)1/,
The H; decay rates in 2D are the same.

Remark 5. We call the decay rates in Theorem 4 sharp for the following reason. If
fo € FL1 N L2, then it can be seen that fo € F*! for —1 < s’ < 1 but fy() need not
be in F~11. If we consider the linearized contour equation with initial data | foll =2 for
—1 < s’ <1, then for any s > s’, we have the equivalence for the linear solutions

_ !’
[ foll o1 2 17 le™ foll o Il Lo

This estimate yields, for example, the optimal rate of t*' =1 for decay of || f|| 1.1 . Because

we at most can guarantee that || fo|| 7.1 < +o0o for =1 < s’ < 1 but not for any lower
value of s, the decay rates above are sharp. Finally, for v # 0, since || f|| o1 < || f]l 1,

the rates are also sharp for the analytic weighted norms.

In Section 10, we additionally note that for f; satisfying the conditions of Theorem 4,
it immediately follows that the solution f(c, ) is in the spaces FS'NH* for any s > —1
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and s’ > 0. Moreover, due to the decay of the quantity || f|| 1.1, we can show that there
exists a constant ks and time T depending on s > 1 and the initial profile fy such that

t
#1520+ 02 [ 1l g0 (r)dr < b (37)
Ts

for some v > 0 and for all t > Ty for a time T large enough and depending on s and fj.
Therefore, we obtain decay rates for ¢ > T:

£l 22 () < O™~

analogously to Theorem 4. We can draw similar conclusions for the Sobolev norms with
analytic weight such as .

Finally, and importantly, we use the L2 uniform bound (35) to obtain an ill-posedness
argument for the unstable regime of the Muskat problem in Section 11:

Theorem 6 (Ili-posedness). For every s > 0 and € > 0, there exist a solution f to the
unstable regime and 0 < § < € such that || f]| zr(0) < € but || f||z-(6) = oo for any > 0.

This ill-posedness result is very significant because we show instantaneous blow-up of
solutions in very low regularity spaces. In particular, one could start in H® with high s
and it still blows up in H" for any small r. Furthermore, one could try to construct
solutions with low regularity to understand the interface unstable situation and yet find
that the free boundary solution does not make sense.

We note here that this paper explains the full proof of Theorem 1 and the other
theorems in 3D. The proof of Theorem 2 and the other 2D results follow similarly, the
2D results are actually easier in several places, and for that reason we do not rewrite the
2D proofs in this paper.

4. A priori estimates on w

In this section, we will prove the necessary estimates on |w;|| z.1 for s = 0,1 and
1 = 1,2, 3. These estimates will be used later to prove the bound (34) on the evolution of
a solution in || f|| z1.1. We first show that ||w;| 0.1 is bounded by quantities depending only
on the characteristics of the fluids and || f|| £1... Then, using the estimates on ||w; || zo.1, we
further show that the quantities ||w;|| z1.1 for i = 1,2,3 are linearly bounded by || f]| z2.1
with the linear constant depending on || f|| z1.1-

Proposition 7. Given the constants Sy, Cy, Ca depending on Ay, || f|| z1.1 that are defined
by

£l 1.0 1—-Au5 &
Sy=—tr—  C=—FF, = ,
SRV T 154,58 T —24,5)0 - %)

(38)
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we have the following estimates

[will 701 = 1180, Q| Fo.r < 2C1 Ap]| f]] 1.1, (39)
[well o1 = [|0a, Q| o1 < 2C1Ap[|f]| 1.1, (40)

and

lwsll o1 < 124, A,Co[ £l %1,

) : (41)
|00, D For < 64,Cs| fll5,., i=1,2.
For the potential jump function Q, we moreover have the estimate
190 211 < 24,B1[fll 1.1, (42)
where
1-2A4,5;
By = — 43
"7 1-84,5, (43)
Proof. First, by formulas (14) and (21) we have that
[will 701 = 1|0y Q2| Fo.1, [[wall 701 = {|0a, 2| Fo.1, (44)
and
||"‘)3||.7:0‘1 = HBazﬁé)mf - 804198062-][”]:0'1 = A#HBDLZDaalf - 8061,Daa2f||]:0’1 (45)

< Aullfll #1010 Dl 7ot + |00, Pl 7o)

so it suffices to bound the quantities ||y, || 701 and ||dy, D|| 70,1 for i = 1, 2. Notice that
from (21) and (23) we have that

[0, Q2|01 < Apl|Oa, Dl 5or + 24| fl| 1.1,
100, Dl o1 < 2| BRy| 701 + 2[| BR3Oa, f |01, (46)
||aa2D||]:o,1 < 2||BR2||]:0,1 + ZHBRgaasz]:o,l.

Thus, we proceed to bound the terms ||BRy| o1, | BRz| 701 and ||BR3| 0.1, given by
(25), (26) and (27). We start with the term ||BRj| ro.:. We first need to bound the
Fourier transform of the Birkhoff-Rott integral terms. For the first term in BR;,

BR11(f)(a)

B2y (o —
-1 / 18] 3( ﬁ) df (47)

T A Aaf (@) BE

we first apply a change of variables in 3.



F. Gancedo et al. / Advances in Mathematics 345 (2019) 552-597 567

1 Busa+B)  dp
47 [(

BRn()@) =20 | G R i) IBE

Hence,

BR11(f)(«)

B2 B2
~1 Fwsla—=05)  4p Fwsla+p) 4
(p'v'/ ( p'v'/ (112 pf(a)2)} 7

:8_ﬂ- - —

L+ 85 /(@) 5P

R2 R2

By using the Taylor series expansion for the denominator, given by

1 = " on (2n +1)!
m = ;an(—l) .’L’Q 5 where Ap = W’
we obtain that
BRu(1)(@) = 5 S ()"0 [ (FZenla=masi()”
n>0 R2
_bB 2n) 45
|ﬁ‘w3(a+ﬂ)A—ﬁf(a) >|5|2

Applying the Fourier transform, the products are transformed to convolutions:

BEG(O) = = Y (-0ay |2 () (20 f&)m(c. B)

8 "0 anR2 W
) ~ d
— (O« (" FEm(E,~5))
where
1—e ¢
m(§,B) = B

Writing the integral in polar coordinates with 8 = ru and u = (cos(0), sin(9)),

-1

BRy () = =

(—1)"an / /Sin(H) (@(5)@—"“'5 s (20 fmie,r, u))

n20 -7 0

— Qe (0 F(Emle,r, —w) ) b,
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By a change of variables in the radial variable,

™ —00

BR,1(€) = 87r an//sm cﬁs )eE s (520 f(E)m(E, —r,u))

. N d
— (e x (2 f(©)mg, —r, —u)) ) =L db.
Note that m(&, —r,u) = —m(&,r, —u), and hence, we obtain
ffa(f) ;1 / /sm (I * 2" F(E)m(E,r, u))

Q)T (2 FEmie,r,—u) ) ?de.

Thus, adding the upper and lower integrals together we obtain

ﬁ}z\n(g) an/ /Sln w3 e it * (470 F©m,r, u))

—mT —00

(O 5 (27 f(Em(E 7, —w)) ?d&

1671'

Writing out of the convolutions in integral form and using the equality

1
m(&,ryu) =iu- £/e*ir(lfs)“'5ds,
0
we obtain that

BRy(¢)

2n—1

mz ey / sn@he ) [T (0 6 = )€ (6 ~ 60

R2 R2 —
; d
/ / / ﬂA_z )Tdsl - ds9,dOdEy - - - déop i,
0

— 00

8

where

2n—1

—u-(E=&)+ Y (1=s)u-(&§ —&p1) +u-San.

=1
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Next, notice that

I8

T o\ d
/ 72Ar o z ) —rdsl d$2n
r

1
/sgn —sgn(—A)dsy - - - dsan,
0

7r‘ < 2m.

O\H O\H

Moreover, if £ = (¢, £®), then
[~ € = [cos(@)c™) + sin(0)¢)| = [¢]| sin(0 + )],
where a satisfies sin(a) = €1 /|¢|, and therefore, cos(a) = £(2) /|¢]. Using these estimates,
1 o
BEIE) < ¢ 3 an (271 17O = s() /|sm |H [sin(0+ )]0
n>0

for some angles o;. Finally, note that

s 2n T
/ | sin(8)] H |sin(6 + o;)|do < / |sin(0)*"*1d0 = 4/a,,.
A =1 7

Summarizing,

BRu©) < 5> (621 170D * @501 ) ©). (48)

n>0

N | =

The estimates on BR15, BRy; and BR3 follow as the one on BR11. We conclude that

1 1
IBR|zns < 3y (1l fall o+ llsslzo),
1A%
1 1
|BRa| o1 < 5 Az allwrllzon + llwsll o),
21 Hfll;l .
1
|BRs|| o1 < 57 (lwrll 7o + llwz [ 701) -
1 11%1 2
Introducing this bounds into (46) we find that
100, Dllros < U (ol s + il o) + sl o
1% ||f\|;1 .

Substituting the bounds for the vorticity (44), (45), it follows that
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/1211
1- ||f||_27:1,1

£l 211
1- ||fH§:11

100, Pl 7o < (2[|a, 2 701 + (|0, 2 0.1

+Au (100, Dl 701 + [0, Dl 70.1) -

Analogously,

[f1l 1.1
1- ||f||§:11

[PAIF%!
1- ||fH‘27:11

100, Dl o1 < (2010, 2| o1+ 1|0ar, [ F0.1)

+ A, (/100, D| 701 + |0y D 0.1 ) -

If we denote

[ f1] 1.1 S

S1 = So = — -
1 2 ].—AILSl,

1- ||f||2]:1,1 ’
the above inequalities can be written as

10, Dllros < Sa (20100, X0 + 180,270 + A1, Dll o).
[0, Dl 701 < 52 (2]|0ay U 701 + (|0, R 701 + Ayl Oy Dl 01 -
Therefore, it is not hard to see that
52(2 + A#SQ)
1—(A,52)?

S2(2+ A,S2)
1—(A,52)?

100y Dl o1 < (100, Q701 + 190,01 ),

100, Dl 201 < (100z 2701 + 100, 2l ro.1)-

By defining the following constants

S
c1 2 2(1+2AHSQ>7

Sa
@A) e =g G

T 1-(4,5)

and recalling (46) and the bounds above we have that

100, Q7o < Aper [0, Q| o + ApcallOa, Ul ror + 24,1 fll 51,1,
100, 2| 701 < Apea |0, Q| 7o + Apcal|Oa, Qi For + 24| fll 1.1

Therefore, we can conclude that

1
o | 01 < 24 .
e e Wy

(51)
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This expression can be simplified further to obtain that

1-A,S

([0 Q| 701 < 2Ap||f||fmm-

Going back to (51) we find that

Ss 1- A8
) 01 < — 1] ————————
100 Dl < T3+ AuS22A L1 5 o
Si(1— A,S1)
6|l ot L Au

(1-2A4,5)(1—54,51)

This last two bounds combined with the estimates (44), (45) conclude the proof of
(39)—(41). Finally, to show (42), we do the following using (51):

1920l 1.0 < ApllOa, D) 701 + ApllOa, DI || 701 + 24, [ f1| £1.1

64,5,
< T g s + 2400
Therefore,
1-2A4,5;
9052 < 24, (=5 250 )1 7

This concludes the proof. O

Proposition 8. Define the constants C3, Cy and Cs depending on A, and || f|| #1.1,

@:1HW&JG 4 611111 (1 — AuS1) )
L= [ f%, A= 5 = 24,80)(1 = 5A4,81) )
Cy— 1+ S3A2 (C3 4 C1 + 45:Ch || f]l 1.1) (52)
1-34,5(1+A,S,) ’
s — Sy 3+ A,50B+C3+Ci+ 45101Hf|\jr1,1)’
11l 1—3A4,5(1+ A,5)

where C1, S1 and Ss are given by (38) and (49). Then, we have the following estimates

lwrll 10 = 100, 2l 1.0 < 24,Cal[ fl| 2.1

(53)
lwall 10 = 100, Q| 1.0 < 24,Ca[ fl| 21

and

lwsl o < 44, A %0 | 1l 2.4 (Cs + 3C2),
HaaiD”]-"Ll < 2Ap05||f||].'-1,1 Hf||j:2,1, 1 =1,2.
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Moreover,
19201 220 < 24, B2 £l 2.1,

where

1+ 25%14”(01 +Cs5+ 45101||f||]':1,1)

B =
? 1—6A4,5(1+ A,Ss)

Proof. Using the formulas for the vorticity it follows that

lwrll 10 = 1100 Rl 2105 w2l 10 = (100, Q| 11,
lwsll 10 < ApllFll 212 (190 Dl #1.4[180, Pl 1.4)
+ Aull fll £2.1 (100, Dl| 0.1 + [|0ar, Dl 0.1)-

It suffices then to bound [|0, €| 1.1 and [|0a, D|| £1.1. From (24) we have that

100, Q| 11 < 241 fl| 220 + ApllOy Dll 1.1, (56)
[0a, Dl 11 < 2| BR1| 1.0 + 2| BRs| 7o || fl 2.0 + 2 BRs || gra [ £l 1.1-

Using an analogous bound to (48), it follows that

|BR || = / BRI < 5 3 [ IGO0 [FC) (e

n>0

+3 2 [IE@O1 s (1D ©)de

n>0

By the product rule, we can distribute the multiplier |¢| to each term in the convolution
to obtain

|BR: 500 < > JI@O1 (2101 PIFOD €)de

+3 3 @n+1 /|w2 w2 T PIEOD ©)de
n>0

F 23 (10D * (21D e
e

£33 [U 10D = (17D e
n>0

Using Young’s inequality, we finally obtain that
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T L s
| BBy 5 ] (] o 81 ] PO oo ] 2
(1 ~11f13..) 2(1- 11112, )
L e !
o B s g sl
21— I, 2 [T

Proceeding in a similar way we have that

1
1BRslps < 2 (eorllprn + sl o)
P S ST, el #
b Ml
5 Lf 2 (lwi ]l 700 + [[wa [ 70.0).

(1= 1712.)
From the bounds in Proposition 7 we can write the above estimates as follows
(1 171%00) (14 64,Ca fll51.)

(1= 1) (57)

1 1
+ —SlHachHrm + Au_Sl (e, Pll 1.1 + 100, Pl £1.1) 5

IBRill 10 < Apllfll 2 1 £ 20

| BR3|| 1.1 < 4C1A,S?| f]| f2n + (10 10 + 100, Q[ 1.0)- (58)

||f\|;1 ]

Then, using (57) and (58) as well as the estimates from Proposition 7, we obtain

100, Dl 1.1 < 2||BRy|| 10 + 2| BRs|| zor || fl| 2.0 + 211 BRu|| gra [ ]| 10
< 1100, | 11 + ApS1[100, Dl 11 + A1 100 Dl 1.1
+2C34, [ fll 71l fll 720 + 28101 A1 fll 220 + 8STC1A || Fll 11 [ 1] 22,
+ 51|00, 1.1+ 51|00, Q| £1.1
< 251100, Q10 + 51100 2 110+ AuS11100, Dl 1.1 + ApS1[|0a; Dl 1.4
+ 251 4[| fll 72, (Cs + C1 + 451C1 [ fll £11) -

Recalling the definition of S and Sy (49), from here we can write that

[0a, Dl 11 < 252[|0a, | 11 + S2[100, 2| 210 + ApS2]|06, DIl 14
+ 24,9 |||l z20 (Cs + C1 +451Ch || fll £1.0)

and analogously,

”8012D||]'-"111 < 2‘92H80429H]-"111 + SQHaDélQH]}lvl + A#SQHanDH]'-"lJ
+ 24,5 fll 2.0 (C3 + C1 + 451 Ch[| fll £1.0) -
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We conclude that

00, Dl £11 < S2(2 + ApS2) 100, A £11 + S2(1 + 24,52) (|0, U 1.1
+ 2854, A, fll 21 (Cs + C1 + 451G || fll 10

[0a, Dl 1.0 < S2(2 4 A82) (|0 | £1.0 + S2(1 + 24,.52) | 0ay Q| £1.1
+ 253 Ay Ayl fll 720 (Cs + C1 +4S1Ch| fll71.1) -

Now, we will introduce these inequalities into (56) to close the estimates. First, we have
that

100, Q| 211 < 24, (1+ S3A2 (Cs + Cr +451C1 || fll#1.1)) 1l 720
+ AuS2(2 + ApS2) 10, Q| 10 + ApS2(1 4 24,.52) 100, Q| 7.1,

which implies that

A,S>(1+2A,S,)
1—A,5(2+A,S)

1+ S3A2 (Cs3 4 CL +4S81C1 || fll #11)

100, U 2.1 <

100, Ul 1.4

12

1-— A#SQ(Q + A/_LS2)

+ 24, ([ fll 21

The above inequality combined with the analogous one for 9,,¢) yields that

1 1+ S3A2% (C5 + Cy 4+ 48101 fll #1.1)

A,,5,(1124,,57) —
1— m 1—-A4,5(2+ A,S2)

14 SQQA/% (C34 C1 +45:C1||fll £1.1)
1—3A4,5:2(1+ A,S)

100, Q| 1.1 < 24,1 ]| 720

= 24, |[fll 2.

By denoting

_ 14+ S5A2 (Cs 4+ Cy + 45101 | f|| £1.1)
1—-3A4,5(1+A,5S2) ’

Cy
we conclude that
100, 2] 211 < 24,C4| fl 2.1, (59)
and therefore

||(9aiD||_7':1,1 < 2Ap52||f||]-"2w1 (3(1 + AMSQ)CAI + A,S8(C5 + Ch + 43101||f||f1,1))
= 24, ol fll
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where we have denoted

_ So 3+A#SQ(3+CS+CI+4SlCle||]'_—1‘1)
||f||_7':1,1 1 _SAHSQ(]."’AHSQ)

Cs

Thus, the estimates for the vorticity are

[will g1.0 < 24,Cul[fll 20, i=1,2,
lwsll 10 < 44 AN 500 1l 720 (C5 + 3C2).

Finally, we estimate the quantity ||Q| z2.1.

1920 21 < AullOa, D) 211 + Apll 00, D(Q)] 1.0 + 24,1 f1] 721
< 6A,55(1+ AuSa) + 24,(1+ 255A,(Cy + Cs + 451C1| fll 7141 721

Therefore,

1+ QS%AH(Cl + Cs +45,C4 ||fH]:11)
1-6A4,52(1+A,5:)

192 2.0 < 24, £l 20

This concludes the proof. O

Remark 9. Because we actually have the triangle inequality

€1° < 16— &l* + D 1€ — &al® + [€mpal®

k=1
for all 0 < s < 1, notice that the same arguments as above can be used to show that
[will 51 = 100, 2 51 < 24,Cuu || fl| s+10
and
sl 251 < 4AL AN 1f 1l 220 (C5 + 3C2,0)

where the constants C ,,, C4, and C5, now depend on || f|| z1.1 rather than || f|z1...
5. Instant analyticity of f

We dedicate this section to proving the norm decrease inequality (63) which will be
needed to obtain the global existence results of this paper. Note that (63) states that the

interface function becomes instantly analytic given medium-sized initial data fo € Fb1.
Precisely, we show the following:
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Proposition 10. Assume the initial data fy satisfies that

o (I foll £1.4) > 0, (60)

where

2By + By — BQ”fO”2 1,1
Pl = (1 TR, ) Mol
.Fl 1

12C5 + 2C5 — 205Hf0||].__1 L ;
’ F1,1 2A,C 1,1 | -
o (1= Tfoll%..)? Mfolidss = 24,Cs | foll

All the constants above are defined precisely in (38), (43), (52), and (55), which are given
during the proofs of the previous estimates. Then

11l 221 () “‘U(”fOH}"Ll)/||f||}“3»1(7')d7 < [ foll £1.1-
0

Proof. We will use the evolution equation (19) and (20). Differentiating the quantity
| f1| £2.1, we obtain

Sl =5 ( [1gleelce )|d§>

<v 2t’/|§| d 4 l/t|§|1 ftf+ff
[ e e+ f gy (T ae

<(v-A) / €21 e e + / €l E N () (©)]de.

Hence, using the decomposition (20), we can use the Fourier arguments as earlier, such
as (48), to pointwise bound the nonlinear term

INC)E < INHE)] + IN2(N)(©)] + [N (F)(©)]

in frequency space. The latter two terms are bounded by

N1 D2 (= IFOD =1 194)]) (©) (61)

n>1

and

/\

IN3(f éj‘Z( 21O +1 - 1D (€). (62)
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The estimate on Ni(f)(§) is done in Section 4:

A
INill 720 = S IDE 220 < 240 A G5 fll 21 1 20
For the other two nonlinear terms, using the triangle inequality

€] < 1€ =&l + & — &l + -+ |&2nls
we obtain that

eVt < evtlé—&ilgrtl&i—&al | | ortléan]

and therefore
[l maipiende < 3 [ iele (21700 - 1)) ©de

n>1

<20 [ (3 e RO £ e i) < - et F @))€

n>1

+3 [ (6o < - Petiae) ©d

n>1

< D20l AR s Lz + D AU 19 20

n>1 n>1

<24, % 20l I 2 + 24,82 3 IS 1% 520

n>1 n>1

Similarly,

/ €l N () (€) | de

A n— n
< (32 20l IO |l f 2+ 3 I AIDE) 524)

n>1 n>1

for the N3 nonlinear term. Plugging in the estimates (41) and (54) for D(2), we obtain

/ €1 NG (D) (©)1de < A, A, (12653 Il A 1Lz +2Cs 30 I 22)-

n>1 n>1

By collecting the previous estimates, we obtain that

d
g Il 22 (@) < —allfll g2, (63)
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where

0 = v+ Ay~ 24,A,C5] fll 1o — 24,81 2 FI%a — 24,82 Y £

n>1 n>1

= A4, 4,(126: 3" nl FIZE +2C5 3 I (64)

n>1 n>1

Writing the sums in a definite form,

2B1 + By — B2||f‘|3i—;,1 ) Tk
Vi £

0= v+ Ay = 24,405l g1 — 24, (

1202 + 205 - 2C5Hf||2 1,1
— A A Fu f 3~1,1. 65
G e TN E L )

This completes the proof. O

Remark 11. We would also now like to comment on our estimate in the case of no viscosity
jump, which is the regime considered in [13]. Setting A, = 0, we obtain from (64) that

og=A4,[1-2> @n+1)|follH.
n>1

Hence, ¢ is a positive constant for || fo|| 1.1 satisfying

QZ (2n+1) ||f0||_7:11

n>1

This is the condition for the 2D case in [13]. However, here we show that this condition
is also sufficient in the 3D case, thereby improving the previous results.

6. L? maximum principle
For completeness, we present the proof of a L? maximum principle in this section for
Muskat solutions in the viscosity jump regime. Given that the viscosities and densities
of both fluids are constant on each domain (3), from Darcy’s law (1) one obtains that
the flow is irrotational away from the free boundary:
curl u(z,t) =0, x € DY(t) U D?(t).

Thus we find that the velocity comes from a potential ¢

u= Vo, (66)
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and since the flow is incompressible we obtain that
A¢ = 0.
Now, integration by parts shows that
0=p /¢Aq§dm——,u /V¢ Vodx + i /V¢ nodo,
oD*
so using (66) it reads as

—p /\u|2d:c+/u nu'gpdo = 0.

aD?

Recalling that the normal velocity is continuous across the boundary due to the incom-
pressibility condition, by adding the balance of both domains we can write

f/y|u|2 dx + /u n(pPe? — ptet)do = 0. (67)
R3 aD
Here ¢ is the potential in D?. Introducing (66) in (1) we find that
p'e' =—p—plus.
From this and the continuity of the pressure along the boundary we obtain that
—/u\u|2dx: (pg—pl)/u-nxgdo. (68)
R3 aD
If the boundary is described as a graph
aD(t) = {(o, f(o,1) ER®: 0 € R?Y,
since it moves with the flow one has that

fi(a) ZU(a,f(a)) ~ (*&nf(a) —0a, f(a), 1))
(Oé f a \/1+ aoqf )) ( azf(a))2'

Going back to (68) we find that

(p2 — p1 /ft da+/u|u|2dx:0,

R3
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so by integration in time we finally obtain the L? maximum principle
(0 = P fIIZ=(8) + 2/#|U|2d$ = (p2 = po)llfollZ:-
R3

7. Uniqueness

Proposition 12. Consider two solutions f and g to the Muskat problem with initial data
fo, g0 € L2 N FY that satisfy the condition (60). Then,

d
EH.}( - g||]-'9=1 < _CHf — g||;1,1,
and moreover, ||f — gllL~ = 0.

Proof. Using (19), we can write, as before

i”f_g”fi” _ / 1(f = 9)(©)o(f —9)(&) + (f — 9)(§)0(f — 9)(&)

2 (F—9)(©)]

R2

3
<= A7 =gl + Y [ INT = 9Ol
i=1
where N; are the nonlinear terms given by (20). For example,

[IMT= o)l = 2 [ IAD@)E - ADEL)(€)lde.

R2

where Q(f) is the term € in the case of the solution f and similarly for Q(g). We define
the terms Ny and N3 later. As earlier in the paper, we use the decomposition (16), where
00, D(Q) is given by (23). Hence, we can write for ¢ = 1

/ 190, D)) (E) — Doy D(g))(€) e
RZ

< / BR.(J)(€) — BR(9)(€)/de + / BR3 (/)00 /(€) — BR(9)00, 9(6)|de.

R2 R2

First, we consider the BRy = BR;; + BR;5 term. Using the Taylor expansion, we can
write BRy1(f) as
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BRu(f) = ~g= Yopev. [ (walhla = B)(-1)"an(Baf(@)"
n>0 R2

B2df3

EE

—wg(f)la+ A)(=1)"an(A s f(@)™")

def

= BR{,(f) = BR;(f).

Next, we get that the integrand of the n-th term in BR11(f) — BR11(g) is given by

BR{,(f) = BR{,(9) = (—1)"an(p1p3" — 1143")
= (—1)"an(mp3™ — qp3" + @1p3" — q1g2p3" " + qrgepy” =+ 1@ pe — 1g3™)

= (-1)"an ((p1 —q)pF" + @p3" (P2 — @) + (1qep3” 2 (P2 — q2)+
A ag  (pe — CI2)) (69)

where p1 = ws(f)(a = f), p2 = Ag(f)(@), g1 = ws(g)(e = B) and g2 = Ag(g)(a). We do
the same for BRy; by defining p_1 = w3(f)(a+5), p-2 = A_p(f)(@), ¢-1 = ws(g)(a+p)
and ¢_2 = A_g(g)(a). Next, using the Fourier arguments to bound BRy; as in Section 4,
we can obtain that

BEF )(©)]

IBRu(f)(€) -
%Z ) = ws(g)| * (=2 - (171 + [ws (@)l * (22 1A =] - 1T = 9]

IN

4o (@] gD # |- 1T =g ()] (70)

Hence, applying Young’s inequality,

/ BRo(f)(€) — B (9)(©)]de

1 n n—
<5 D lws(f) = wa(@)llroall I3 + lws(@lFor IS = gllza

+ot ws(@)ll o gl = gllza (7D

= aazD(Q(f))aoélf - 8042D(Q(g))80419 - aOtlD( (f))aoéQf + 8041D(Q( )) az g
= Oa, (D(Uf)) — D(£2(9))) e, f + Oa; D(4(9)) (O, (f — 9))
- aa1<D<Q(f)> - D(Q(g)>)aa2f - 80(1D(Q(g)>( (e <f - g))
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Hence,

lws(f) = ws(g)ll o
<18, (D(Q(S)) = DD 7o [ fll 1.0+ [10a; (DUS) = UGN o1 [[fl] 211
F 1100, DN 7ot [1f = gll 714 + 180, DU 701 [ f = gll 12 (72)

Furthermore, for BR1> we similarly obtain

|BR12(f) — BRi2l|| 7o

1
< 537 100, 29) — B, 29 o LIS + 100, 29 o LIS = 510
n>0

+ o+ 100, ) 7ol F 1 = gl s
Next, for the BR3 integral term

L —

/ | BR ()00 £(€) — BRa(g)0ar9(6)|dé

< IBRs(f) = BRs(g)ll 7o [[fll 10 + I BRs(9)l| o1 I f — gll 1.1

Next,
| BR3(f) — BR3(g)l| 0.1
1 _
<3 D0 100, 2f) = 00, 2Ug) o | £ 1 + 100,29 Lror 115 F = gl 21

i=1,2n>0

+o 1106, 2(g) o gl 5 = gll 21

The key point to note here is that these estimates are precisely those used to prove the
vorticity estimates in the norm F»! in Proposition 8 if we replace the quantities

100, 2l 1.1 07 00 29| 1.1 € 1100, 2(g) — 0a; 2(g) || 701

(73)
£l 22 or [lgll 2.0 < [If = gll 11,

and notice by counting terms that the computation of (69) creates the same effect on
the estimates as the effect created by the triangle inequality (or product rule) in the
case of estimates of Proposition 8. Therefore, continuing to compute the estimates for
uniqueness as above and comparing with the estimates of Section 4 and 5 by using the
substitutions (73), we obtain the analogous estimate, for example:

100, 2(f) = 0ar, g | 01 < 24,Cullf = gl 1.1
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These vorticity estimates and performing similar computations on the nonlinear
terms IV;, we can see that

d
EHf—ngO«l < —allf —gllzia

where ¢ is the same positive constant as in Proposition 10. It can be seen by the swap
of terms described above in (73). O

8. Regularization

In this section, we describe the regularization of the system together with the limit
process to get bona-fide and not just a priori estimates for the Muskat problem. We
denote the heat kernel (. as an approximation to the identity where € plays the role of

time in such a way that (. converges to the identity as ¢ — 0%. We consider the following
regularization of the system

O f© :_%A(gs*Ce*fg)"’_ge*(N(CE*CE*fEaQE»v Jo(x,0) = (¢ * fo)(z), (74)
where N(-,-) is given by (19) and (20), and Q° by
O (o, t) = A D () (o, t) — 24,( * G * f(a, t). (75)

The operator D*(°) is written as follows

D () () dg.  (76)

1 /%'Va(Ca*Ca*fs)(Oé—ﬁ)—AB(CE*Ce*fs)(a) 0 (a—B)
2 ) L+ (BalGrCr ) (@)D EE

Integration by parts also provides the identities

1 Ap(0a; (Cex Cexf9))(@)  B-Val¥(a—p)

00, D7 () = _%Rz 1+ (AB(CE*Ce*fE)(a))2)3/2 1B »
i/ U% . Va(CE*CE*fE)(O‘_B)_Aﬂ(CE* Cexf9)(a) 9o, 2 (=) dg.
2, (1+ (Ap(CerCex fe)(a))?)3/2 B2
(77)

Then it is easy to estimate 2¢ as in Section 4 in terms of (.*(.* f¢ with the condition
| e Ce* f€]| #1.1 () < 1. These estimates provide a local existence result using the classical
Picard theorem on the Banach space C([0, T.]; H*). We find the abstract evolution system
given by 0;f¢ = G(f¢) where G is Lipschitz on the open set {g(z) € H* : ||g]| 1. <
1}. We remember that f¢(x,0) € H* due to fo € L?. The next step is to reproduce
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estimate (63) for s = 1. As the convolutions are taken with the heat kernel, it is easy
to prove analyticity for f¢ so that for v small enough we find that [|f€[| 71,1 bounded.
Even more, we know that || || z1.1(t) < k(]ALl), as continuity in time provides that this
quantity is close in size to [|f€[| z1.1(0) = [|f¢[|£.1(0) < [foll 710 < E(JAL]) if Tc > 0 is
small enough. Therefore, in checking its evolution as in Section 5 we find that

d, .. €
EHJC |]'-‘,}’1(t) < —C|[¢ex Cexf H}"E'l’

so that integration in time provides

t
1<l 2 () + C/ [[Cex Cex foll 21 (T)dr < || foll 1.1 (78)
0

Next we repeat the computations in Section 9 for the regularized system. It is possible
to find that

1022 (8) < Ulfollze exp (R foll £1.0))-

Energy estimates provide

d
ST e < PUIGw £
where P is a polynomial function. Then, using that

I f Nl < CEIFNlzr < CEollzr exp (Cllfoll 1))

we are able to extend the solutions in C([0,7]; H*) for any T > 0.

Next, we find a candidate for a solution by taking the limit ¢ — 0T after proving that
f€is Cauchy L>(0,7T; F%!). From now on, we consider ¢ > ¢’ > 0. Then, as in Section 7,
we are able to find that

15 = £ | poa () <|ICe * fo — Cor * follpoa + L) + La(t)

where

t

A ’ ’
Bl = [ S2IAG 6w £ = Gox G x )l (r)drsT,

0

and

t
L(t) = / Co% N(Co# Co# f5,Q5) — Cor % N (Cor % Cor % 5, Q5) || 0 (s)ds.
0
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As before, in order to get the inequality above, we use the decay from the dissipation
term to absorb the bounds for ¢, * N((. * (o * f5, Q%) — (o * N(Co * (. * fe, QE/). Then,
using the mean value theorem in the heat kernel on the Fourier side, it is possible to get

G * fo — Cor * follzon < C|foll prae™>. (79)

Similarly

t
- C/ I6er # Gor % ¥ [l 72 (s)ds €/ < Ol foll prac™™.
0

A further splitting in the mollifiers, together with the inequality

1o # e 5 || e (8) < [ICor % Cor % f€ | o (s), s >0,

allows us to find for the nonlinear term, as before, the following bound

t
I(t) < C([[ foll #1.) / I6er % G x f | 2 (s)ds /> < O(||foll gr.1)e™?
0

It yields finally

112 = £ 1m0 (8) < Ol foll1.0)e™, (80)

so that we are done finding a limit f € L>°(0,T; F*!). The interpolation inequality

lgl%:a < lgllzosllgllz=.s

provides

t
/ G % ot f7—Cor s Cor 7|20 (8)ds <
0

t
/A(S)(HCE * Gt 2| () + Ier # Cor 3 ¥ [l 220 (9))ds,
0

where

A(S) = ”Cs * (e ok (fe - fsl)”}'ovl(s) + HCE * (e * fEI — Cer * Ger % f€/||]~'0’1(5)~

The first term in A(s) is controlled by (80) and for the second term we apply a similar
approach as in (79) to find
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A(s) < C(|l foll z1.1)e" 2.

Using (78) in (81) we find finally

/ 1Ge % Gt £ = Cor e Cor 1! [P (8)ds < C (| foll 3r.0) M2, (82)
0

which provides strong convergence of (. * (. * f¢ to f in L(0,T; F11).
Next we can extract a subsequence f¢» in such a way that

(fE” (5, t),exp (—871'2€n|£|2)}‘\€n (f7t)) - (f(§>t)7 f(£7t>)

pointwise for almost every (£,t) € R? x [0, T]. Therefore for t € [0,T] \ Z with measure
|Z| = 0 it is possible to find the same pointwise for almost every ¢ € R2. Fatou’s lemma
allows us to conclude that for ¢ € [0,7] \ Z and

M(t) = ||z (t) + C / 11721 (5)
0

it is possible to obtain
t
M) < timinf (1177 |z (0) +C / Gew Cen = 22 ()8 ) < foll s
0

The strong convergence of (. #C.* f€ to f in L2(0,T; F1) together with the regularity
found for f allow us to take the limit in equations (74), (75), (76) to find f as a solution
to the original Muskat equations (19)—(22). Now we use the approach in Section 6 to get
the L? maximum principle for f.

9. Gain of L? derivatives with analytic weight

In this section, we first show gain of L? regularity. In particular, we prove uniform
bounds in L2 = F22, which will be used to show decay of analytic L? norms, and more
prominently, the ill-posedness argument of Section 11:

Theorem 13. Suppose fo € L? N FL! and | foll 71,1 satisfying the condition (60). Then,
f(t) € L? instantly for all t > 0. Moreover

11125 (8) < 1 follZ> exp(R(l foll £1.4)),

with R a rational function. In particular, this implies that f(t) € H® instantly for all
t>0.
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Proof. Differentiating the

N | =

d A o
T (0 = (= A2 + 7“/|§|62"t'§'|D(Q)(£)Hf(§)\d§

+ [ e R f©) e + [ e Mol f(e)lde

We now bound the nonlinear terms. For example,

/WM%ﬁWWW%ﬂmMW®Mm

and using the bounds on N; (61) in (62) followed by the product rule we obtain that

[eeimaei©l < 3 [ e (11900« 621 1FCD) (©de

n>1

<Z/mw (- 1120 ey 5 (2] - Je () ) (€)de

n>1

= Z/IEHQ (©)Le - (MO * (2] - e () de

n>1

and therefore

/ e NG ()11 (¢ |d§<Z/|§| Q) - (- [2e IO = (627 - e F () )de

n>1

+22”/IE\ Q) () (|- 12O+ (2 - e F () de

n>1

< 190 e 1 s £+ S 20020 a1 1 112550

n>1

< Sl gz I a1 + 202 5 1905/ + 2n5— ||fHL2 111/ L £

L1
n>1

where the last line is obtained using Young’s inequality for products. We set ¢,, = ¢/n?

for some small constant ¢ > 0 that we can pick. We can bound the other terms of Ny
and Nj similarly. It remains to bound [|D(Q)| ;1/2 and ||| ;1/2. First,
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Hence, we need to bound ||D(2)|| ;1,2 appropriately:

2

D@22 <27 €12 1 I F ) = Q)22

n>0

<2 AR 522 + 220+ DS e 152190 22
n>0

Using this estimate for D(Q),

192 e < (1 =24, ) IR

n>0

(240 Y2+ DI e 171219083 + 24,171 2.
n>0

For || f[| z1.1 of our medium size, the inverted term on the right hand side above is a
bounded constant. Also,

1D > < D IR A =24, > IAEEE ™

n>0 n>0

(24, 3 @n+ DIl 112 19122 + 24,11 302

n>0

+ 20+ DIl oz [ 10119122

< Oz (11 g2 120z + 171 o).
Now, it can be seen that |||z < C~’(||f\|f$1)\|f||L3 where C(|| f|| £1..) — 0 as | fll 20 —

0. Thus, summarizing, we can pick € > 0 small enough in the Young’s inequality step in
the bounds of the integral terms of Ny and the other nonlinear terms,

1
S U130 < (v = Ap e ML) LA + 92110 g 11,
where c(e, || fl| £1.1) — 0 as || f[| z11 — 0 or as € — 0 and &(|| f|| £1.1) — 0 as || f[| 712 — 0.

Hence, picking e sufficiently small, but not 0, the first term on the right hand side is
negative. By Gronwall’s inequality, we obtain

17135 0) < Nfollzs exp (520171532 / 112y 2 (r)dr ).

Finally, the exponential term on the right hand side is uniformly bounded because by
interpolation
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/||f||23/21 Jdr < /anf 1Lz (7 < [ oll s /||f||f e < | foll-

This completes the proof. O

Next, recall the notation

11, = 111

F2 = / €21 f () de.

We will use the following inequality on the time derivative of the H; norm when per-
forming decay estimates in L? spaces:

Proposition 14. Let 1/2 < s < 3/2 and assume fo € FY' N L? satisfying (60). Then,

d
SNy < —Clfllgoore (83)

Proof. Differentiating the quantity || f|| ;. and integrating by parts we obtain

2 dtHf||2 s — VHin-[SH/z - AP||f||§LI§+1/2 + K1 + K2 + K3,

where the terms K; corresponds to the nonlinear terms NV; in (19). Then we have that

| A
< 5 [lePee i fe) A el

Using the identity A = R10,, + R20,,, it suffices to prove the following bounds on
00, D(Q):

[ 1P f @1 madn D@ 1ds < [ 16 @), DOl
< ||f||H5+1/2Haal'D(Q)”HS—l/z.

Hence, it suffices to appropriately bound ||0a, D()]| 7s-1/2. Using (23) we have that

gz

190 () 5172 < 20BR: | -2 + 2 BR O, 2172
< 2|BR| -z + BByl o721 g

+ [ fll gz | BR3| z01)-

Similarly to previous estimates in Section 4, we use the triangle inequality and Young’s
inequality to obtain that
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| BR11|

v S %(Z [/ € (1@ ) 1 (21 11D ©)] )
n>0 ¢

;(Z 2n| (e GB()1) « (2 - e T #]  H2e )| )
n>1

%(Z [ 12 gz ) « (20 e F )| )

1
< 3 2 2nleall g LA I g+ 5 > S sl gzl 1
n=>1 n>0
and
1 s— v —~ n n
|BRusl e < 5 D ||l 280 (1001 2 1F D) 9
v 2 >0 L2
1 vt|| |~ n vt||| £ s vt||| £
< 5<Z<2n+ D[ ()« (2 e F) ] - 512 ) | )
n>0
l . 5 1/2 vt|-| 2n+1) ([ vt|-|| £/,
2(2“ e O * (e IO,
n>0
1 n n
< 5 S n+ Dllwallpg LA N ggrore + 5 3 ol gymaral I
n>0 n>0
and

|BRsllyz-v2 < 5 <ZH|§|8 12 ”'5'(<|w1(>|+|w2<>|>*<*2"-||f<'>|>)<£>)L2>
n>0 £

< %(Z 20 (MG + e GO # (207 e HIFON) = -+ /2e O
n>1

?

+Z Z s | gra-/2 + llwall oz ) 11 %5

n>0

e (R e =T O e B e =1 O T Yt S O]

n>0

<5 Z% lwill 7o + llwzll 2o ) NS Nl e

n>1
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Hence, we now have to prove estimates on ||w;]| ;s-1,2 for 1/2 < s < 3/2. This follows

Il
similar patterns:

100yl gz-12 < 24,011 g2 + 24| BRu o1/ + 24, | BR3Dy 1.

I

Notice that using the triangle inequality as above on |€[*~1/2, since 0 < s —1/2 < 1, we
obtain analogously to the steps in Section 4 that

100, Ol yrv/e < 24, s/
Moreover, for i = 1,2
el 172 < 24,Calgar2
and
lwsll o172 < 44 AN fI%14 (Co + 3C2) 1 f ]l o

Now we can follow the steps in Proposition 10. Plugging in the estimates above and
performing similar estimates for Ky and K3, we obtain for 1/2 < s < 3/2

d

Sz < —CN Sl gz, (84)
for a positive constant C' depending on fy and v. O
10. Large-time decay of analytic norms

In this section, we begin by proving the Decay Lemma we will use to show large time
decay of solutions to the Muskat problem:

Lemma 15 (Decay Lemma). Suppose ||gH’Jl_sl,p (t) < Cp and

d
EHngj:yvp (t) < _C‘|g||§;—52+1/p,p (t) (85)
such that s1 < s3 and p € [1,00). Then

P (t) S (L4 1)s7s2P,

g1

Proof. Consider r > 0. Then

lallgs = [ P igmIa©lPde

Y

e’ Pl g|mP (&) P de
[€]>(146t)s
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(o [ g pag
[€]>(1+6t)°

= @00 (ol = [ PR,
[€1<(1+0t)°

We can use (85) and the above argument with r = s5 + 1/p to obtain that

d
CNglcn + OO+ 60 g1 < ~Cllglyn s + 1+ 86

<caray( [ emigrgp)
€1<(i+t)°
< C(1+ 8t C2m=0r (1 4+ 51)° / e rIelg | 1r g €) [Pde)
€1 <(i+t)°
< O+ 6t)* 2707 (1+ 66)°|g | B

< CCy(1 + 0t)5275UP(1 4 6t)°.

Now, let o > (s2 — s1)p and choose § such that 6o = C, s = —1. Then

d g
S+ 17 g

d _
.p;.‘-ifzm) =1+ &)UEHQHZ_%%P + 05||9|\1}52,p(1 +6t)° !

g d o—
= (14 60)7 gl + Clgll zzan (14 52)7

(o2 d 71
= (14 80)7 (g ssn + Clgllnn (14 60)7)

< CCO(l + 6t)0_($2—s1)p—1.

Integrating in time we obtain that

|

(14 08)7 gl en < = (14 (14 6)7~(2750r)

<

t

for some constant C. Dividing both sides of the inequality by (1 + &t) we obtain our
results. O

We can now use this lemma to prove large-time decay rates for the analytic norms.
By Holder’s inequality, for s > —d/2 and r > s + d/2

1l < M F g

S S e

€]° ‘
(14 [¢2)r/2

L1
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Hence, by the estimate (83), we obtain for —1 < s’ < 0:
1l () < C (36)
for a fixed constant Cs. By the Decay Lemma, this implies that
Ifll g S (A48~ (87)

for 0 < s < 1 and arbitrarily small A > 0. This proves Theorem 4. We can further
demonstrate decay of other analytic norms. For example, the quantities ||f[|zs.1 for
s > 1 also decay in time. First, note that

111202 (8) < e el e | Fllzen < lle™ gl | k(AL) < oo
for any ¢ > 0. Moreover, using the weighted triangle inequality
E1° < (n+1)°(I§ = &l” + & — &I + -+ +&l*),
it can be seen that
d
21 1l 22 @) < =C(s)lIfll 42 (2)

for a positive constant C(s) depending on s and || f|| z1.1 when || f|| z1.1 is sufficiently small.
However, by (87) for s = 1, the quantity || f|| z1.1(¢) does indeed decay to a sufficiently
small quantity when ¢ > Ty for some Ts > 0 depending on s and the initial data fo.
Hence, since, as noted earlier, ||f||zs.1(Ts) < oo, we can apply the Decay Lemma to
obtain

Theorem 16. Let s > 1. Then, || f|| z.1(t) < oo for allt > 0 and we have the decay
1 llppr < Cpot—>1
fort > T, and Cy s depending on s and the initial data fo.

We can similarly see by the uniform bounds of Theorem 13, that || f|| ;. (t) < oo for
all s > 0 and ¢ > 0. Hence, by similar arguments to above and Proposition 14, the Decay
Lemma 15 with p = 2,

Theorem 17. Suppose s > 1/2. Then || f|| ;. < oo for allt > 0 and we have the decay

1113, < Cout™

fort > T, and Cs 5 depending on s and the initial data fo.
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11. Ill-posedness

In this section we show that the Muskat problem in the unstable case p; > ps is
ill-posed for any Sobolev space H® with s > 0. First we notice that our initial data
fo € L> N FY! need not be in H®.

Lemma 18. There exists a function g € L* N FY1 with

lgllzz < o0, llgllzin <ky
or a constant k,, of medium size such that g ¢ H® for any s > 0.
"

Proof. We give an explicit counterexample. Consider a radial function g : R? — R. Let
for n > N for some N > 0 integer

ne if r TL6 n5 nY
|§§(£)I=r|§(r)|:{ freln’,n®+1/n]

0 otherwise,

where o, 0 and «y are positive. Then one can compute

o0
oo =2n [ 23 ldr <20 3 074 40 < o
0 n>N

when o+ § — v < —1. For 0 < s < 1/2 we have that

oo

loli. = [ lat))ear

0

and having chosen N > 0 appropriately large,

92s—1g Z p20+6(2s=1)—y < 9o Z n27 = (n® 4 )2
n>N n>N
< 27r/(7“|§7(7“)|)2r23_1dr
0
<on Z P20 +8(2s—1)—y
n>N

Hence, pick o, § and ~ such that 20 + 6(2s — 1) — v = —1. Then, ||g||rz < +o0 and for
s> 0, ||g|l s = +oo. This counterexample gives the proof in the 3D case, as we can force
llgl| #1.. < K, by multiplying this counterexample by the appropriate constant.
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In the 1D interface case, let for n > N for some N > 0 integer

0 otherwise

€a(e) = {" i € € [nfnb + 1/n7]

such that v > o+ 1,26+ > 20 + 1 but 2§(1 — s) + v = 20 + 1. Then one can compute
that

lgllze < o0, llgllzin < Ky and ||g||ms = +o0. O

Remark 19. This example can be adapted to show that even if g € F1'' N L2, it need
not be in H?.

Theorem 20. For every € > 0, there exists a solution f to the unstable regime and 0 <
§ < € such that || f]| s (0) = & but || f||z+(6) = oo for any s > 0.

Proof. Take fy € L? N F! satisfying condition (60) for the Muskat problem in the
stable regime such that || fo| s = oo. By the gain of regularity in (35)

111 0) < e PNl 1112 (6) < () follze exp (RUfol 1)) < e

by picking initial data with || fo||z2 sufficiently small. If f(x,t) is a solution to the stable

case problem, then f(z,t) = f(x,—t + ¢) is a solution to the unstable case p; > ps.
Hence,

1Fllzz=(0) = [Ifllz2+(8) < € and || fllzz+(8) = || f]l2+(0) = 0.

This completes the proof. O
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