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1. Introduction to the relativistic Landau equation

Landau, in 1936, introduced a correction to the Boltzmann equation that is used to
model a dilute hot plasma where fast moving particles interact via Coulomb interactions
[22,27]. This widely used model, now called the Landau equation, does not include the
effects of Einstein’s theory of special relativity. When particle velocities are close to
the speed of light, which happens frequently in a hot plasma, then relativistic effects
become important. The relativistic version of Landau’s equation was derived by Budker
and Beliaev in 1956 [4,5]. It is a widely accepted fundamental model for describing the
dynamics of a dilute collisional plasma.

The spatially homogeneous relativistic Landau equation is given by

with initial condition f(0,p) = fo(p). A relativistic particle has momentum p =

(p*, p?, p?) € R3. The energy of a particle is given by p° = /1 + |p|2 where [p|? d:efp'p.
Let g(p), h(p) be two functions, then the relativistic Landau collision operator is defined
by

C(h, g)(p) = 0y, / Y (p, q) {h(q)Dp,9(p) — g, 1(q)g(p) } dqg. (2)
R3

Above and in the remainder of this article we will use the summation convention so
that repeated indices 7, j € {1,2,3} are implicitly summed over without writing the sum
Zf’ ;=1 notation. The kernel is given by the 3 x 3 non-negative matrix

9 (p,q) = Alp, q)SY (p, q). (3)

The components of this kernel are defined in (16) and (17) below. This kernel is the
relativistic counterpart of the non-relativistic Landau kernel which is presented briefly
in Remark 6. For notational simplicity and without loss of generality, in this paper, we
will normalize all the physical constants to be one.

Solutions to the relativistic Landau equation formally satisfy the conservation of mass,
total momentum and total energy in integral form as

/f(t,p)dpz /fo(p)dp (4)
R3 R3

/ pi (b, p)dp = / pfo(p)dp (5)

R3 R3
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/pof(t,p)dpz /pofo(p)dp- (6)
R3 R3

Additionally the Entropy of the relativistic Landau equation is defined as
H() = HEO) ™ [ 6.0 ft.0). 7)
R3
Further the Entropy dissipation is given by
D)™~ [ et D) . (®)

R3

Note that D(f) > 0 using the reformulation in (28) together with (19). Now using the
entropy from (7) and (8) it can be calculated that solutions to (1) formally satisfy

This is the Boltzmann H-Theorem for the relativistic Landau equation. Further integrat-
ing we have

T
HU@»+/Mﬂmﬁ:Hm» (9)
0

This says that the entropy of solutions is non-increasing as time passes. Note that we
define H(f(t)) with this sign to provide the above a priori estimate.
We also introduce the normalized relativistic Maxwellian as

The relativistic Maxwellians, also known as the Jiittner solutions, are the equilibrium
solutions to (1), and they are the extremizers of the entropy.

1.1. Notation

We will now define weighted L" spaces. For all [ € R, r € [1, +00], the weighted L"
spaces and norms are defined as follows:
1/r

def r T
1Al sy 2 1) Al gy = /@lWMI@ , (10)
R3
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where (p) & (1+ |p|2)1/2 and Lj(R?*) = {h : R® = R, [|h]|L;®s) < +oo}. Further we
let Ly = L™ when [ = 0. We also use the standard definition for L (R3?).
Further for a non-negative function f(¢,p) > 0 we define the energy

B(f(t) / £(t.p)p°dp,
R3

and initially f(0,p) = fo(p) as

def
Ey = / Jo(p)p°dp.
R3
We also define the initial entropy as

Ho ™ / fo(p) log(fo(p))dp.

R3

And for a general function h > 0 we define the absolute entropy functional
7(0) = [ 1(p) g )| .
R3
We also define the following moment functional for [ € R:

My(h) / (n)! h(p)dp.

R3

We further introduce the time dependent moment notation, for any £k € R and T > 0,
we measure the time dependent moments as:

Mi(f,T) % esssup / F(tp)(1+ [p[2) dp. (11)
t€[0,T] s

We will also use the standard Sobolev spaces H!(R?) and H*(R?) defined as:

7]l i1 moy = IVphllLaeys  IBllE sy = IBl72@s) + 1 VphI 22 @)

We further use the notation A < B to mean that there exists a positive inessential
constant C' > 0 such that A < CB. When A < B and B < A then this is further
denoted by A =~ B.
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1.2. Main results

In this section we state the main results of the paper. Our main result is Theorem 1
which states that the entropy dissipation (8) controls uniformly the size of V+/f €
L?(R3). Then in Theorem 3 we prove the global existence of weak solutions for initial
data fo € L1 N Llog L(R3) for any s > 1. Afterwards in Theorem 4 we prove that weak
solutions propagate high moments (11) of any order.

We begin by stating the entropy dissipation estimate:

Theorem 1. Let f = f(p) > 0 satisfy My(f) < M and H(f) < H for some M > 0 and
H > 0.

Then, there exists a positive constant which only depends (explicitly) on the mass
[ fdp, the momentum [ fpdp, the energy [ fp°dp and the upper bound on the en-
tropy H, such that the following entropy dissipation inequality holds

/W¢WW@smn+L
R3

This entropy dissipation estimate, which proves a gain of Vy/f € L?(R?), is the main
theorem in our paper. We will use this result to prove the global existence of a true weak
solution, and also the propagation of high moment bounds. We remark that from the
proof of the global existence of a weak solution given in this paper one can see directly
that our weak solutions conserve the mass (4) and satisfy the entropy inequality:

T
HU@»+/MﬂmwSHm»
0

However these weak solutions do not conserve momentum (5) and energy (6). They do
satisfy the energy inequality:

/pof(t,p)dp < /pofo(p)dp-

R3 R3

This can be seen directly in the proof of Theorem 3. Next we will give our definition of
a weak solution to the relativistic Landau equation:

Definition 2. Fix any T' > 0. Let fo € L1 N Llog L(R®) and f = f(t,p) be a non-negative
function satisfying f € L>([0,T]; L1(R3)) and v/f € L*([0,T]; H'(R3)). Further suppose
Mi(f(t,")) < Mi(fo) on [0,T]. This function f is called a weak solution of the relativistic
Landau equation (1), (2), and (3) on [0,7] with initial data fy if for all ¢ S o(t,p) €
C2([0,T] x R3) it holds that
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T T
dp fop(0,p) dt [ dp foe= [ dt | dpC(f,[f)e. (12)
Jasonfa fome=[a ]

Here the integral on the right is defined by
/ dp C(f. f) / / 1@ )3 (0,q) (3, pe0(p) + 0y, gsip(a)) dadp

R3 R3

+ / / FO) F@AD.0) (0 +2) (@ — i) Dy o(p) — Danip(@)) dadp.  (13)
R3 R3

See the derivation of (27) in Section 2.2 to obtain the weak form of the Landau collision
operator (2) given in (12) and (13).

Next we state the theorem which gives the existence of a weak solution to the rela-
tivistic Landau equation:

Theorem 3. Given initial data fo € LN Llog L(R3) for some s > 1, there exists a weak
solution to the Cauchy problem for the relativistic Landau equation.
Moreover for o € W% the mapping t — fRS f()p is Holder continuous.

Lastly, we give the theorem which shows the propagation of any polynomial moment
for a weak solution to the relativistic Landau equation:

Theorem 4. Let T > 0 and k > 1. Suppose f(t,p) > 0 is a weak solution of the relativistic
Landau equation on [0,T] x R3 associated to the initial data fo € Li N Llog L(R3).
Suppose also that the initial data satisfies [y fo(p)(1+ Ip|?)*dp < co. Then the moment
of order 2k of f is bounded locally in time, that is,

My (f,T) = esssup / F(tp)(L+ [pl?)dp < C,

te[0,T]
R3

where C' > 0 is a finite constant depending only on T, the collision kernel ®, the initial
mass, momentum, energy and entropy, Qr(f) o fOT £l s rs)dt and the initial moment

f]Rz fo(p)(1+ |p|2)kdp < 0.

Note that the finiteness of Qr(f & fo Ilfllzsrs)ydt < C < oo in Theorem 4 follows
directly from the Entropy estimate in Theorem 1 and the Sobolev inequality.

Now in the next section we will give an overview of some previous results for the
relativistic Landau equation, and the classical Landau equation. We will later explain
the structure of the classical Landau equation in Remark 6.
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1.8. The literature

We start by describing results for the relativistic Landau equation. A detailed analysis
of the linearized relativistic Landau collision operator was performed by Lemou in [25] in
2000. In 2004 [32], Strain and Guo proved the global existence of unique classical solutions
to the relativistic Landau-Maxwell system with initial data that is close to the relativistic
Maxwellian equilibrium solution. Then in 2006 [23] Hsiao and Yu proved the existence of
global classical solutions to the initial value problem for the simpler relativistic Landau
equation with nearby relativistic Maxwellian initial data in the whole space. In 2009
the C* smoothing effects were shown by Yu [41] for the relativistic Landau-Maxwell
system with nearby equilibrium initial data under the assumption that the electric and
magnetic fields are infinitely smooth. Further for relativistic Landau-Poisson equation
the smoothing effects were shown in [41] without additional assumptions. In 2010 the
Hypocoercivity of the relativistic Boltzmann and the relativistic Landau equations was
proven in [39], by Yang and Yu, including the optimal large time decay rates in R3.
In 2012, Yang and Yu, in [40] the global in time classical solutions to the relativistic
Landau-Maxwell system in the whole space R2 was proven for initial data which is
nearby to the relativistic Maxwellian. In 2014 [28] again looked at the Cauchy problem
for the relativistic Landau-Maxwell system in R3. In this paper for nearby Maxwellian
initial data the optimal large time decay rates were proven. Further see [38]. Then in
2015 Ha and Xiao in [21] established the L? stability of the relativistic Landau equation
and the non-relativistic Landau equation. In 2016 the authors of [29] studied the spectral
structure of the linearized relativistic Landau equation in R2 in the L? space. In 2017
[26] the authors did a precise spectral analysis of the relativistic Vlasov-Poisson-Landau
equation in the whole space R3 and they used that to prove the optimal large time decay
rates, including lower bounds on the decay rates.

The non-relativistic Landau equation has experienced a much larger amount of math-
ematical study in comparison. We will mention only a small sample of results that are
closely related to this paper. Arsen’ev and Peskov in 1977 in [2] proved the existence of
a local in time bounded solution. Then the uniqueness of bounded solutions with the
Coulomb potential is shown in Fournier [13] in 2010. The uniqueness for soft potentials
was previously shown in [14] in 2009. In 2002 [19] Guo proved the global existence of
classical solutions to the spatially dependent Landau equation with nearby Maxwellian
equilibrium initial data. The large time decay rates were shown in [33]. See also the
recent developments in [8] which study the case with a mild velocity tail on the initial
data. Further [6] performs a numerical study on the large time decay rate in terms of
the 2/3 law as in [34]. See also [20,35].

Now in the spatially homogeneous situation, in [11,12] Desvillettes and Villani proved
the large data global well-posedness and smoothness of solutions for the Landau equation
with hard potentials. In [36] Villani proved the existence of weak H-solutions of the spa-
tially homogeneous Landau equation with Coulomb potential in 1998. Then 2015 in [9]
Desvillettes proved an Entropy dissipation estimate for the Landau equation, and used it
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to conclude that the H-solutions are actually true weak solutions. We use several of the
methods from [9] in the proofs in this paper, as described in detail below. Further devel-
opments can be found in [10,7]. Also [37] proved L?” estimates for the Landau equation
with soft potentials. In [1] a priori estimates for the Landau equation with soft potentials
including the Coulomb case are proven. Recently also [30] proves upper bounds for cer-
tain parabolic equations, including the spatially dependent Landau equation by assuming
that the local conservation laws are bounded. And [16] proves a Harnack inequality for
solutions to kinetic Fokker-Planck equations with rough coefficients and applies that to
the spatially dependent Landau equation to obtain a C'“ estimate, assuming that the
local conservation laws are bounded. In Gualdani-Guillen [18] estimates are proven for
the homogeneous Landau equation with Coulomb potential.

In the quantum situation, Bagland [3] in 2004 proved large data global well-posedness
for the Landau-Fermi-Dirac equation for hard potentials. Also a related model problem
for the Landau equation was introduced in [24], which has been further studied in [17,18].

In the next section we will give an overview of the methods used in our proofs.

1.4. Owerview of the proofs

The major new difficulties in the proofs of the Theorems 1 through 4 are largely
algebraic. In particular the structure of the relativistic Landau kernel (3) with (16) and
(17) causes several extreme mathematical algebraic difficulties. This is initially seen in
the proof of Lemma 7 below, where the non-negativity of the kernel (3) is given in two
proofs. This result is known [25,27]. However our proofs are new, and they shed new light
on the structure of the relativistic Landau kernel that allows us to perform the analysis
in later sections.

We start by defining the following quantities p and 7 by

p=p'¢"—p-qg—1>0. (14)

T=p"" —p-q+1. (15)
Then the kernel takes the standard form (3), ®¥(p, q) = AS¥, with

e 1)2 _
e (16)

def

S = 7p by — (pi — @) (j — 43) + p (Pigs + pjai) - (17)

Here in particular 7 = p + 2.
Now a crucial point in our analysis is to introduce a new decomposition of S in (17)
as a difference of two projections as

Sij — Pij _ Aij
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where
S =1pdi; — (pi —a;) (p; — a;) + (0°¢° —p-a— 1) (Pig; +pi)

with 7p = ((p°¢° — p- ¢)? — 1). Here
P g0 — pq|* 615 — (¢°pi — 1°a:) (°ps — P°g;)
and
AT p x q* 6y — la*pip; — pPPaigs + (P @) (i + i) -

This is shown in (29) and (30). This new complicated decomposition is the heart of our
first proof of non-negativity of the kernel.

This decomposition is then very helpful in our second proof of non-negativity of the
kernel, because it enables us to write down the eigenvectors and eigenvalues of the
relativistic Landau kernel (3) in (33)-(35) as far as we know for the first time. (Note
that the eigenvalues of the linearized relativistic Landau operator were given in [25],
however these are very different and they are not for the kernel (3).) This eigenvalue
decomposition of the kernel (3) directly gives us the second proof of positivity.

Both of these decompositions described above are crucial to our poof of the entropy
dissipation estimate from Theorem 1. The proof of Theorem 1 otherwise largely uses the
method from Desvillettes in [10,9]. In particular, we use the knowledge of eigenvalues
and eigenvectors of the relativistic Landau kernel that comes from our decompositions to
find the lower bound on S% &:&; and more generally on the kernel il &:&;. This leads to
an auxiliary lower bound on the entropy dissipation D(f) that will be crucially used later
in the proof. In order to obtain this auxiliary lower bound we use the representation of
the entropy dissipation presented in (28) in Section 2.3, namely the entropy dissipation
can be expressed as an integral of ®Y¢;¢; against f(p)f(g) with the particular choice of

&= % — %19 Part of this lower bound contains a vector product |(¢"p —p°q) x &%,

which is rewritten as Y |gi;|> with an appropriate choice of g;; thanks to the general
identity |z x y|? = %Zijzl (xiy; — xjy¢)2. The proof proceeds by calculating three

expressions
gl
[ astv.006(%) 1@ da,
) 2
/qij(p, q) %aﬁ(ﬂ) f(q) dq,
. 2
[asto.0) % o) sy aa

2
where gb(%) is a given test function. These three expressions can be thought of as

) .
a 3 x 3 system of equations with the unknowns 1% pjif(p) - %apf"f(p), %(p) and
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Pi

By
pTJf(p) Now we use Cramer’s rule to express 2 ff(p) (one of the unknowns of the

system). From there, one uses elementary inequalities to obtain a pointwise upper bound
2 2
of 8”];'f (p)| and consequently of the integral [ f(p) ’a”;f (p)‘ dp. From that point using

the Cauchy-Schwartz inequality on one of the terms will lead to the expression of the

auxiliary lower bound on the entropy dissipation that can then be bounded from above
by the entropy dissipation.

Lemma 10 provides the key estimate needed to conclude Theorem 1, namely a lower
bound on a determinant Ay(f) given in the statement of the lemma. The inverse of this
determinant (and thus the need for the lower bound) naturally comes into play due to
the use of Cramer’s rule in the proof of Theorem 1. This determinant resembles the ones
appearing in Desvillettes [10,9]. The difference is that the entries in our determinant are
relativistic quantities % (as opposed to simply ¢;). This results in a series of extremely
complicated algebraic expressions.

Here we summarize the challenges and strategy. The idea is to diagonalize the deter-
minant that is showing up inside the integral defining A4(f) to get a lower bound on
Ay(f) in terms of the following quantity

su . , dg.
{A?w?fﬂ:l} / f(Q)X\A+ﬂZ%+»Z% <«
B(0,R)

Using the fact that entropy is bounded by H and that the domain is bounded, for any
constant A this integral can be estimated by

H
TV AL

where

Yiauw ke = / X a3 4095 |<e dg = / X5+t |<e dg,
B(0,R) B(0,R)

for A2+ 2 + 2 =1 and A2 + i2 = 1. The second equality can be obtained by rotating
the coordinate system. Estimating fB(O,R) X‘S\+ﬂ%‘<s dq is quite complex because the

variable ¢ appears via ¢° in the denominator of the expression defining the domain of
the characteristic function. The way we overcome this difficulty is by chipping away the
values of |u| for which this integral is zero in a series of splitting regimes. Eventually,
one shows that the set {q : ’)\ +nd

< e} N B(0, R) is non-empty only when

I
> -
| > 5
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where 6 = 0(R) is a fixed number depending on the radius R. This bound on p will be
important in that it guarantees that the expressions ﬁ + ./ ’%2 —1 and ﬁ + 4/ ;%2 -1
are both less than one. These expressions show up in the following representation of the
set {q : ‘)\—&—/Lg—ﬁ’ <e}

—€ 1 qo e 1
q;i,/1<<i,/1},
{ | 2 @ | ©2

which is then used to conclude that this set lies between two rotating curves, which in
turn is used to obtain an estimate on Y{) ,, .. .}, and thus the determinant Ay (f).

We will now say few words on the proof of Theorem 4. The propagation of moments
is proven by inductively invoking Lemma 15, which says that if the moment of order
2k — 1 is finite up to a time 7' (i.e. My_1(f,T) < 0o) and if the moment of order 2k is
finite initially, then the moment of order 2k stays finite up to the time T'. To prove this
lemma, one uses the weak formulation of the relativistic Landau equation with the test
function which is obtained by a smooth cutoff of the polynomial weight. The right-hand
side of the weak formulation with this particular test function is then broken into three
subdomains depending on the size of p° and ¢°. Depending on the case, one then uses
Young and Hélder inequalities, where the parameters of the corresponding LP spaces are
chosen so that terms can be estimated by fOT lf(t,-)||L3®3)dt, which is a finite quantity
thanks to the entropy dissipation estimate from Theorem 1 and the Sobolev embedding.

Note that in Section 3.2 we prove uniform upper and lower bounds for the diffusion
matrix a®(h) in (24) assuming only that the conserved quantities are bounded.

Lastly in Section 5, we prove the global existence of a weak solution to the relativistic
Landau equation. The construction is rather standard along the lines of [36,9,3]. In the
next section we will outline the rest of this article.

1.5. Outline of the remainder of this article

The rest of this paper is organized as follows. In Section 2 we explain the detailed
complex structure of the relativistic Landau collision operator (2) and its kernel (3). In
particular we will derive the weak formulation of the relativistic Landau equation. And we
reformulate the entropy dissipation (8) as in (28). After that we give two direct proofs of
the pointwise non-negativity of the kernel. Further we explain how to express the collision
operator in non-conservative form. Then in Section 3 we prove the entropy dissipation
estimate from Theorem 1. Following that in Section 4 we prove the propagation of high
moment bounds. Lastly in Section 5 we prove the global existence of a true weak solution
to the relativistic Landau equation.
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2. Structure of the relativistic Landau equation

In this section we explain in depth the structure of the relativistic Landau collision
operator (1). In Section 2.1 we explain the conservative form of the collision operator.
Then in Section 2.2 we will derive the weak form of the relativistic Landau equation.
Then in Section 2.3 we discuss the entropy dissipation estimate. After that in Section 2.4,
we will give two direct proofs of the non-negativity of the kernel, as in (19). Then
finally in Section 2.5 we explain the non-conservative form of the relativistic Landau
operator.

It is known that the collision kernel @, from (3) with (16) and (17), is a non-negative
matrix satisfying

3
and [25,27]

ij : p q
Y Y (pquiw; >0 if “”’éd(ﬁ_q—o) vd € R. (19)

.7

This property represents the physical assumption that grazing collisions dominate. In
particular the momentum of colliding particles is orthogonal to their relative velocity.
This is also a key property used to derive the conservation laws and the entropy dissi-
pation.

It follows from (18) that for any smooth decaying function g(p) we have

1
/dp (%) C(g,9)(p) = 0.
p

R3

In particular, after integrating by parts and using (18), we have

/dp p°Clg,9)(p) = ——/dp = /(IW ,4) {9(2)0p,9(p) — 04,9(a)9(p) } dg

R3

_ %/dq o /cpw (»,q) {9(p) — 3p,9(p)g(q) } dp

R3 R3
_ —%/dp /(z% - )cb“ p,q) {9(q) —94,9(0)9(p) } dg
R®  R3
—0. (20)
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The other cases follow similarly. Then these identities lead directly to the conservation
laws above (7).

2.1. Landau operator in conservative form

In this section we will express the Landau operator in conservative form. First we
recall a lemma from [32]:

Lemma 5. We compute a sum of first derivatives in q of (3) as

9,2 (p,q) = 2A(p, q) ((p + V)pi — ;) - (21)

This term has a second order singularity at p = q. We further compute a sum of (21)
over first derivatives in p as

+1)
@J@@%nm—4ﬁ%ﬁcm>“zza p#a.

This term has a first order singularity.

Note that there is actually a Dirac mass hiding in 9,0, % (p, q) when p = q as can
be seen in Lemma 9, which is proven in [32].

Remark 6. We note that the above is very different from the non-relativistic theory. The
following non-relativistic Landau collision operator (with normalized constants) is given
by

def

Ca(G,F) =V, - /¢>(v — V) {V,G)F(') = Gv)V, F(v')} dv'
R?)

The non-negative 3 x 3 matrix is

s viv; | 1
(sz(v) — {5% _ _J} -
T2 ) ol
Then the derivatives of the classical kernel are as follows
i ) — /
0y, 0y ¢ (v —0") =0, v#v.
This also contains a delta function when v = v'.

We now define the notation

@%m:¢WM@ﬁ?/®wnwmm@. (22)
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We further use this notation as

(8p7®13 def/8p7(b” D, q )d

Now directly from the collision operator from (2) with kernel (3), (16) and (17) we
can read off the expression of the Landau operator in conservative form

C(h, 9)(p) = By, (a7 (h)Dy,9(p) + (84, ®7)(R)g(p)) - (23)

Here we use the notation:

and we recall (22) and (21).
2.2. Weak formulation of the relativistic Landau equation
We will now derive the weak formulation of the relativistic Landau collision opera-

tor (2). For a test function ¢(p), after integration by parts, using (p,q) symmetry we
have

/C(h,g)(p p)dp = — //(b”zx {n(@)p,9(p) — 9, 1(q0)g(p) } By, ¢ (p)dqdp
R

R3 R3
= f—//CI)” D, q {h Op; g(p 8qjh }67 p)dgdp (25)
R3 R3
——//fI)” D, q {h 0q;9(q) — Op,h(p }8L q)dqdp.
R3 R3

Then after further integration by parts

/C(fug)(p p)dp = //(b” 2, )M(qQ)g(p) (Op,Bp, & (p) + Oy, 04,0(q)) dgdp
R3

R3 R3

s / / 1(p)9(q) (9, 2% (9. 9)0p, 5(p) + Dy, (9. 4)0q, 6(p)) dadp

R3 R3

+% / / h()g(q) (8, % (p, @), (D) + Do, 8 (p, 4)D 0 (p)) dgdp.

R3 R3

This is a weak formulation of the Landau operator, but it can be further simplified.
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By collecting terms, we will use the following weak formulation:

/C(hvg)(pw(p)dp
R3
/ / D)0 (p, q) (p,0p, $(p) + 0y, #(4)) dadp
R3 R3
+ / / h(p)g(q) (Op, 2" (p, q) — 0,2 (p, q)) (Op, d(p) — Ogu#(q)) dgdp.  (26)
R3 R3

This will be useful for studying the weak formulation of approximate problem later on
(105). Note that there is additional cancellation in d),, & (p, q) — 9y, " (p, q).
More precisely, in the specific case of (3), from (21), we have the simplification

8g, @ (p,q) = 2A(p, @) (P + V)pi — ¢i) , 8p, @ (p,q) = 2A(p, ) ((p + )i — pi) -

We plug this in to obtain that the simplified weak form of the relativistic Landau operator
is

/ C(h,9)()o(p)dp
R3
=5 | [ H@9®2" 0.0 (0,,0,6(6) + 3,,0,.6(0)) dado
R3 R3
+ [ [ 10)@AD )6 +2) (0~ 2) (00 6(0) — 00 8(a) dadp. (21)
R3 R3

Notice that both integrals have a first order singularity in the integrand when p = q.
2.3. Entropy dissipation for the relativistic Landau equation
In this section we derive several representations for the entropy dissipation of the

relativistic Landau equation. We recall that the entropy dissipation is given by (8).
We plug (8) into (25) to formally obtain

—5 | [#70.0 (@0, 1) - 0, 50 1)} L gy
R3 R3
+%//¢,z‘j(p7 ) {f(p)0q, f(q) — O, f(p)f(q)} %q()q)dqdp.
R3 R3

We conclude the following formula for the entropy dissipation
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5 [ [1or@eie.a (e - w) (%o - L w)

JJ 7 7 FOy
—2 [ [ #90.0) (0, — 0,) VI @) (00~ 0,) VFGT@) dady
R3 R?

=D(f) = 0.

Indeed we can take the following as the definition of D(f):

2 [ [ #7.0) (00, ~ 0,) VIO @) (00~ 0,) VIGT@) dady

R3 R3

This expression (28) will be used in the construction of weak solutions.
2.4. Direct proof of pointwise non-negativity of the Kernel

In this subsection we would like to give an alternative direct proof of (19). Note that
there is no proof given in [27] although the result is stated. And the proof of (19) in
[25] uses a complicated change of variable. Here we give two direct proofs that can be
expressed in the original coordinate system. In particular we will see that the details of
both proofs are useful in the later sections of the paper.

Lemma 7. For ®% defined in (3), we have ®9¢&;¢; > 0.
We will give two different direct proofs of this lemma. The reason is because they give
two different useful expressions for ®V¢;&;.
To begin a discussion of the first proof, we notice first that we can decompose S%
from (3) and (17) as follows
Gii — pii _ pii
where recall from (17) that we have
8 =1p8i; — (pi — @) (0j — ¢5) + (1°¢" —p-a—1) (pigj + @) »
where 7p = ((poqo —p-q)?%— 1). Then further
37 def 2
P9 = ¢ — %) 6 — (¢°pi — P°ai) (¢°p; — P°q5) (29)

and
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7 def 2
A7 = p x g 65 — lalPpips — PP aig; + (0 @) (igs + pii) - (30)
This can be seen by direct pointwise comparison. In particular we observe that
2 2
=0 -p-0)* - 1=|"p— % = Ipxql”. (31)

We will study P¥ — A%, this will be a crucially important expression in several places
during the rest of this paper. In particular, recalling (17), then the first proof below will
provide us with the formula

S = |(°p — p°q) x €7 — @Kp X €) x (g x ) > 0. (32)

First proof of Lemma 7. Because of the structure of (3), it will be sufficient to prove the
pointwise identity (32) and the positivity of S¥¢;¢;.
To establish the identity (32), first of all clearly

Piigie; = |¢% — | €1 — ((a°p — 2°a) -€)” = |(a°p — p°q) x €[,

Then we will also show that A%¢;&; = |(p x &) x (g x £)|?, however this is more involved.
Note that directly

Agig; = px g € = g (p- €)% — Ipl* (- ©)* +2(p- 9)(p - €)(q - €)

= |p?|q|*€]? (sin2 61 — cos® By — cos? O3 + 2 cos 0 cos B, cos 03) .
Here for 0; € [0, 7] and (i = 1,2,3), we used the definitions
p-q=pllglcosty, p-&=Ipl|{[cosbs, q-&=lqll¢|cosbs.
Then further define the angle ¢ € [0, 7] by
[p % €llg x € cos v = (p x €) - (4 % §).

Then by the vector identity (A x B) - (C' x D) = (A-C)(B-D) — (B-C)(A- D) with
A=p, C=gq, B=D = ¢ we can deduce the angle identity

sin 5 sin 63 cos 1) = cos 1 — cos 05 cos O3.
Now we calculate using only trig identities that
A ¥ gin? 01 — cos? 0y — cos? 05 + 2 cos 0; cos B cos 5

=1—cos?0; — cos? Oy — cos? 05 + 2 cos by cos 05 cos 05

=1 — (sin f3 sin O3 cos 1) + cos O3 cos 93)2 — cos? 0y — cos? 05
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+ 2 (sin 05 sin O3 cos 1 4 cos O3 cos O3) cos O cos O3
=1 — sin? #y sin? 03 cos? P+ cos? 0y cos® 03 — cos? 0y — cos? 03

= sin? 0y sin? 3 — sin? O sin? O cos? ¥ = sin® Oy sin? 5 sin? Y.

We use this calculation to obtain the desired expression
g : , . 1
AYE; = p?lal* €A = [pl?[g|*[¢]” sin® 6 sin® O3 sin® ¢ = WKP x &) x (g x &)

One could also establish this equality using vector identities.
Now that we have the identity (32), we will finish the proof by showing that the
expression is positive. We expand it out and use the angles defined previously

S59¢&5 = 1(a — p°q) x &> — —51(p x &) x (g x §)[?

1
1€
1
= (")?[p x & + (°)?|q x £I° — 20°¢°|p x &||q x €| cosp — W\p x €|?|q x &[*sin 1)

> (¢°)2p x &2 cos? b + (p°)%|q x €]* — 2p°¢°|p x €&||q x €| cos

2
= ((¢")Ip x &l cosyp — (P°)]g x €])” > 0.
Above we used the inequality #U& x €2|q x € sin? 1y < (¢°)%|p x €|?sin?y. O

For the second proof of Lemma 7 we will look at the eigenvalues. Since by (18) the

null space of S¥ is a span of vector (z% - q%), the first eigenvalue of S¥ is zero with

eigenvector (1% - q%). The matrix S% is real-valued and symmetric, so its eigenvectors
are orthogonal. One can then see that p x ¢ (which is orthogonal to both p and ¢, and
thus to v1) is another eigenvector (when p and ¢ are not co-linear). Its eigenvalue can be
calculated to be Ao = |¢°p — p%|? — |p x q|?.

To find the third eigenvector we will need to use some thoughtful guesswork. One
can look for it in the form of a linear combination v3 = Ap + Bgq. As such it will
automatically be orthogonal to vs, so one just needs to impose the requirement that
it is orthogonal to v;. After some calculation, this leads to the third eigenvector being
expressed as (¢°(p - ¢) — p°lal*) p+ (p°(p - @) — ¢°|p|*) ¢ and the corresponding eigenvalue
A3 = |¢°p — p¢|?. In summary, the set of (normalized) eigenvectors and eigenvalues of
S is the following:

A =0, (33)

vy = . X =1"p—p"* —|px q|?, (34)
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(-9 —p°la*)p+ (P°(p-q) — d"Ip1?) ¢
[ (¢°(p-q) —p°la) p+ (P°(p- @) — ¢°p*) gl

v = As = |¢"p —p%%. (35)

We will directly use these eigenvalues and eigenvectors to establish the second proof of
Lemma 7.

Second proof of Lemma 7. Eigenvectors vy, v, v3 form an orthonormal basis, so any vec-
tor £ can be represented as:

§=(§-v1)vr + (£ va)va + (& - v3)vs.

Therefore,

SUEE =M (E-v1)? + Aa(€ - v2)? + A3(€ - v3)?

2
=9 (5' (; . Zf) +1p°g — a°p? (€ 0)°, (36)

where we used that Ay = 0 and A2 = 7p by (31). Clearly (36) is non-negative. O

Remark 8. Here we point out that the subtracted expression in (32) is not lower order.
In particular if we choose £ orthogonal to both p and ¢ with |£] = 1 then as in (29) and
(30) we have that SY¢&;&; = |¢"p — p°q|* — |p x ¢|*. Further for any small € > 0 consider

def

B=(1-¢)|¢"p—1p"q)* — Ip x q]*.

We will find conditions where B < 0.

Suppose that [p| = |g| then B = (1 —€) (2(p")?|p|* — 2(p°)?|p|* cos §) — |p|*sin® . We
can calculate that B = |p|? A5 (0)+|p|* A1 () for A; and A, that do not depend upon p. In
particular, after some calculation, A;(6) = 2sin?(6/2) (1 — cos — 2¢). Then A;(f) < 0
if 1 —2e < cosf <1, and B < 0 if |p| is large enough.

Note that we effectively ignore the case when p and g are co-linear, since it is a measure
zero set for fixed p or g. Even so, it is shown in [25], that when p = Ag for some A € R
then the Landau kernel (3) is a multiple of the non-relativistic kernel ¢* from Remark 6.

2.5. Landau operator in non-conservative form

In this section, we will express the Landau operator (2) in non-conservative form. We
don’t actually use these results in the rest of the paper but we think it is important to
explain the complicated computation. First, we expand the collision operator from (2)
with kernel (3), (16) and (17) where we use the Einstein summation convention
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C(h,g)(p) = By, / 9 (p, ) {h(0)3p, 9(0) — ()0, h(g) } da
R3

- / 9 (p, q)h(a)da | 0y, 8,,9(0) + Oy, / 9 (p, q)h(q)da | B,,9(0)
R3 R3

B / O (p, )0y, h()da | Bp,9(p) — Dy, / Y (p, )0, h(a)dq | 9(p)-

R3 R3

Note that these are not exactly convolutions.
Now we recall a result from [32]:

Lemma 9. Given a smooth scalar function G(q) which decays rapidly at infinity, we have

apl/ .00, Gl =4 [ LI 1y Gy

Rd
+ k(p)G(p),
where
k(p) = 27/27rp0/ (1 + |p|? sin? 9)‘3/2 sin 6d6. (37)
0
For the last term we use Lemma 9 to obtain
y (p+1) hig)
—0p, /<I>”p,q8vhqdq :4/ dq + k(p)h(p
p J (p,4)0q; h(q) PP (p)h(p)
with (37). Notice further that
¢ 0.0 Pi o )
(%ﬂ‘p@) (r°¢" —p-q) = ol —qz+p—<q0p —pz)=0- (38)

This is a key observation from [32] which allows us do analysis on the relativistic Landau
collision operator.

For the terms where the derivative is on the kernel, terms such as (16) and (17), we
use (38) and the following operator

@-d—ef<a +£a>
L pi pO q; |

Then for the coefficient of the second term we have
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Op, / @ (p,q)h(q)dq | = / 0;9" (p, q)h(q)dq — / ]%3%‘1’” (P, q)h(q)dq.
R3 R3 R3

Notice that, using the notation from (22), we can interchange ¢ and j as

(97)(0g, 1) (0)(9p.9) (p) = (27)(9q; 1) (@) (9, 9) (p),

since the matrix ®% is symmetric.
Then collecting the second and third terms together we have

Dy, / Y (p, q)h(q)dq | 0p,9(p) — / " (p, q)0q,h(q)dq | By, 9(p)
R3 R3

_ / 0:9 (p, q)h(g)dq | By, 9(p)
RS

| (1—]2—2) 00 ® (p, Q)h(a)dq | B, 9(p).

R3

The point of this decomposition is that, fortunately, these integrands, ©;®%(p, q) and
(1 - g%) 04, 9% (p, q), have the same order singularity as ®% itself.
Then we define the following operators (24):

ai9 (h) = ¥ (h)(p) 2 / 9 (p, q)h(g)dq,

R3
0
V) = (h)p) Y [ (0:99pq) + (1- L) 0,97 () ) h(a)dg (39
R/S < ( po) )
and
e(h) = e(h)(p) % 4 / ﬁ%mq)dq T k(p)h(p). (40)

R3

We will further simplify the expression in (39), regarding this expression we have
directly that

.. O .. ..
6iq)” (pa CI) + <1 - %) 8%'(1)” (p7 q) = (apz + aql) i (p7Q)'

Notice from (21) and symmetry that
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04,7 (p,q) = 2A(p, @) ((p+ Vp; — ¢5)» 9,97 (p,q) = 2A(p, @) ((p+ 1)g; — p;) -

Then from the previous two expressions we obtain

(Ops + 0q:) @ (p,q) = 2A(p, q)p (P + 45)
which also has a first order singularity. We conclude that (39) can be written as
v (h) = 2/A(p, @)p (pj + a;) h(q)dq. (41)
R3

This is the main expression that we will use for b7.
Now we express the Landau operator in non-conservative form as

C(h, g)(p) = a” (h)0p, 0y, 9(p) + ¥’ (), 9(p) + c(h)g(p). (42)

Here we use (24), (41) and (40).
In the next section we will prove the main entropy dissipation estimate.

3. Entropy dissipation estimate

Our goal in this section is to prove the Theorem 1 which grants the uniform lower
bound on the entropy dissipation. We use the strategy from [10] and [9]. The main
new difficulties are algebraic and have to do with the extremely complicated relativistic
algebraic structure.

The key estimate in proving the entropy dissipation estimate is the following lower
bound of the determinant Ag(f) defined below.

Lemma 10. Let f be a non-negative function in L} (R3), and let ¢ be a C function that
decays sufficiently fast at infinity so that the integrals

[ (1) rowra o (1) raitan
R3 RS

are finite. In particular, ¢(x),¢' () < C(1 + |z|)=F for k > 10 is sufficient. Assume
H(f) < H. Then, for alli,j € {1,2,3}, with i # j, we have

1 qi q;
qO 9 qO
2
def q '3 9 99
8o aer | [olDysw 8 (%) @ |0
R3 aqj qi9; (‘LJ)Z
q° (¢9)2 qY

3
61 . |q|2 °
> ey Z/f(a)dq (ﬁﬁfmd)(T)) ,
R3
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where

—_

er Dinf {—, eo(R), £1(R), sg(R),Eg(Mo(f),Ml(f),F)} >0,

3 od
By 1, o (e S0
fR3 flg)d
‘“”( vEsdl
1+R2
defl 1—|—4R2 R
3+4R2 V1+R?

d f 2(4R2
e2(R) = ———=—,

[\

def

es(Mo(f), Mi(f),H) =

i oo (B2 )| () (o

Proof of Lemma 10. Define

1 & i
2
B & (&) &k
4 4 (q_]) 2
@ ()2 q
Then,
Ag(f) = det G, (43)
where G is the following matrix
6= [ o)1) B 1
= 5 ) /(@) Bdg. (44)
RS

Since G is a symmetric and real-valued matrix, it is diagonalizable by an orthonormal
matrix O so that

€1 0 0
0TGo = l 0 e O ] ,
0 0 €3

where the orthonormal matrix O can be represented as
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A Ao A3
O=|m p2 Hp3|,
%1 Vy Vs

where \? + p? +v7 =1, for [ = 1,2,3.
Therefore,

0 O

e 0 P
OTGO =0 ey /¢> q) Bdq

Therefore,

det G = det(OTGO)

=e€e1€e2€3

_H/ (W) ¢) (0T BO) dg.

k=1gs

Notice that the matrix B can be represented as

1
B=|o|[1 % %
- |¢ [ q° q0]>
9
qO
which implies
0"BO
_ 1
)\1 H1 1 @ q /\1 )\2 )\3
=l w2 ||| [ F Fllm ope w
[ \s W3 V3 4 vy V2 U3
q()
(M md v
q° lqo
=X el wF| [Mtmb g ltmpbtrd
| As psdh V3 ob
and so,

2
(O"BO)y, = <)\k; +o 0 A Zé)

(45)

A3+ psds +vsgd],
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Recalling (45), we now have

2
det G = H/¢ (Ak+“kqo+ykg(])) dg

k=1g

> /¢ W (/\+u +uq7)2dq . (46)
- >\2+u2+l/2 1} q° q°

Therefore, for any R >0 and ¢ € (0, 3)

. lq|? a | 4\
Ay(f) > f . KU L
)= {A2+J51+»2—1}/3¢( 2 )11 AjLMqO Vg da
R

||

> g6 ' v L
=€ {A2+J2n+f»2—1}/¢( 2 )f(Q)X“M%HV%(EEdq
R3

| twia-  sw ] FO Xy oy e | - 67

(V2 4r2=1}
B(0,R)

The first of the two integrals can be estimated as follows

/f dq>/f dqm/f )¢dg. (48)

B(0,R)

For the second integral, fix any A > 1 and split the domain into two regions - where
|f| > A and where |f| < A. Using the fact that the entropy is bounded by H on the
former domain, we have

H
S g < — .
/ FO) Xy 0y <9 < g + A‘{‘)\Jru : 5}03(073)‘ (19)

Combining (48) and (49) with (47), we have that for any A > 1,
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3
aunze (ut o (1)) | [ roa- == [iwwa o)
B(0,R) 2 ; V1+ R? ,
R R

3
7, y
WA Yoo )
where

Y{)‘7MaV7R75} = ‘{q S Rd . ’A —+ /J,q—é —+ Vq_é

< 5} N B(O,R)‘

= , .d
/ X‘>\+M%+V%‘<a q
B(0,R)

- / X‘,\+ug%+u§g‘<s dg, (51)
B(0,R)

where the last equality exploits the fact that ¢ # j, and is obtained by renaming the
variables (Qk»(h‘, q]) = (Q1»QZ»(]3)~ Here {k} = {1a 27 3} \ {25.7}
Next, by rotating the coordinate system, one can show that

Y{)\7u,u7R,€} = / X‘:\—i—ﬁ%ka dCL (52)
B(0,R)

for some X and ji that satisfy A2+ /i2 = 1. Indeed, consider the following rotation matrix

1 0 0

o erfo \/;ﬂiuz \/u;:-t/z . (53)
i i
ViZtv? o/ +u?

Note that O; is symmetric, real-valued and orthogonal matrix, so

0, =0T =071,
0,0, = I.

Also note that
(A p v)O1=(X a 0),

where
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)\2+ﬂ2:)\2+ﬂ2+1/2:1.

Recalling that 0107 = I, from (51), we have

YiauwRet = / X

B(0,R ~ —HKg2—V4g3
(05 ()\ 0) O/ p?+r? ||<e

=

Now apply the change of variables p = O1q, that is,

P1=q1
Py = —Hq2 — V(g3
/’u2 + V2
—Vq2 + [1q3
3= —F

and note that p® = ¢°, dp = dg, to conclude

Y{A,u,u,R,s} = / X

W= [ sy
B(0,R) (:\ i 0)

<e B(0,R)

NIERT

which proves (52). Since the parameter v no longer plays a role, we introduce the following
notation:

0 def
Y{)\,;L,R,s} - / X‘A+#%‘<E dq» (55)
B(0,R)

where R >0, A> + p? =1 and € € (0, 3).
We now proceed to estimate Y{OA,u,R,e}’ for R>0, A2+ p? =1and ¢ € (0, %)

(a) Case: |u| < £(1 —¢). Note that for such p we have

A =lul =v1-p?—|pl=1-2/u[=e

‘)\—Fuq—i
q
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Therefore, if || < £(1—¢), the set {q ‘)\ + 1l ‘ < 5} is empty, that is, Y{A WRe} =
0. So, without the loss of generality, from now on we assume that

(56)

»M»—'

ul > 50 —2) >

1 1

Case: ; < |p| < —5. We will now show the set {q' ‘)\—i—uq—Q < 6} N B(0,R) is

empty for 5ufﬁmently small e. First note that |\ + u 2| < e is equivalent to

- 1 1
N RS- L X Ty ey (57)
|l I q° | I

The function ¢; — % is increasing, since its derivative in g; is

0 _ .9 2
C G 1434
(¢°)? (¢°)?

Therefore, for ¢ € B(0, R) we have

> 0.

R _ -R _@ R __R
VIHR ™ 1+ @+ R +¢ ¢ JI+@G+R+q¢ ~ VI+R®

(58)

For ¢ to satisfy both (57) and (58), we need to have (regardless of the sign in (57))

—& 1 R
— Sl ——=. 59
|1 I V1+ R? (59)

co(R) i (1 - V%) >0, (60)

However, if we define

then for any ¢ € (0,e0(R)) we have

geo1- B~ - ,
VitR \/ \/1+—R?

where in the last inequality we used that |u| < . Therefore,

R___ 45+,/1 1<7€+,/1 1
V1+ R? 1 |ul pro

and € € (0,e0(R)), then
< 5} N B(0, R) is empty. So, from now on

due to (56). This contradicts (59). Therefore, if |u| <

S

Y{OA’H’R’E} = 0 since the set {q : ‘)\ + ,ug—ﬁ
we can assume that
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> . (61)
(c) Case —= 7 < || < , where
§=6(R):= — . (62)
2(1+2R?)
Again, we will show that for € small enough Y{O)\J%R’E} = 0. Set
el(R)d_‘*%< 1+§¢1i—32>' (63)

Note that £1(R) > 0. Indeed,

[I-s R [4R?+1 R

146 Vi+R? VAR?+3 1+ R?
AR R
AR +4 1+ RZ

Let € € (0,e1(R)). Then,

1_
_1— ,
Vit~ 1+R2_v 2 \/1—1-—R2

where in the second inequality we used that |u| < . As before, this implies

R _ 4€+,/1 1<75+,/1 1
V1+ R? 12 |l pro

. This again contradicts (59), which implies that the set

since |p| > %
{q: ’/\—Fug—g

[\v)

>
< 5} N B(0, R) is empty. Thus, from now on we can assume that

1+6
5

Note that (64) implies
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We are now ready to estimate the size of the set {q : ')\ + ﬂg—g < 5} N B(0, R). The

set {q: ‘)\—i—pg—%

< 6} is equivalent to

O R N Rt

where the sign + corresponds to the case A < 0, and sign — corresponds to A > 0. Let

1—-+vV1-9¢

e2(R) = 66
Then for € € (0,e2(R)), and p that satisfies (64), we have
1 1
‘iii1/—2—1’§i+ — -1
Vo il Vo
. V-6 V2 1-90
vz Vit Vi+s
1
= < 1. 67
V1+4 (67)
Let us also introduce the following notation:
Gmed) fra—— 4 /L (68)
= 1 —_— - —_ —— —_— s
' il Vop?
def € 1
co=co(x) =fta=—=+,/— -1, (69)
ul p?

where € = ﬁ In the rest of the proof we do not identify the difference between ¢;(+4) and
c1(—) or between c2(+4) and ca(—) because all the steps in the proof hold independent
of whether we use the 4+ or the — constant. Therefore we will only use the notation c;
and co without the £ in the rest of the proof. The estimate (67) implies that

1
le1] < ———= <1 and |e2] <

1
V146 V1+9

which ensures that all the exiressions below are well-defined.

<1,

The set {q : ‘)\ + ug—g < g ¢ lies between the following two surfaces:
2 p—
0 C1,
o _
qo = Co.

Notice that for ¢ € (—1,1)
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q2
g = G=C"0+ad+ 6+ 6)
= G- =F0+d+4q)
2 e 2 2
= G=7 a0 +d+a)

C
= = —\/1+ @&+,
RV e

where in the last line we use the fact that g and ¢ need to have the same sign (since
qo is positive). Therefore, the set {g : 1 < & < c2} N B(0, R) can also be obtained by
rotation around the y-axis of the region between the following two curves:

Hence, its volume can be calculated as follows:

R

z (u(x) — l(x)) dz

/
(w—ca )

1
\/1_62 V1-d

Y*{O>\7M,R,E} =2m

v\ 1+ 22dz

% (0488 -1). (70)

Note that

Co c1 Eta —£+a

Vi-d Vi-d Vi-d Vi-4
(+a)?— (—E+a)?

= W ((éia) [=(ZE£a) + (e +a)y/T- (E+a)?)

+4aé
7\/1—63\/1—C%((§:|:a) [—(EEa)?+(—£+a)y/T- EEa)?)
4aé

Ve W ((a:l:é) 1-(—Zxa?+(aFé) lf(éj:a)Q)'

It is easy to check that

V1—(E£a)2>/1-(a+8)2 (71)
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V1= (—é+a)2>+/1—(a+¢)2

Also, we have

(a+8)y/T—(2%a)l+@F)VI—(E+a)2>2ay/1— (ati)e (72)

Namely, (72) is in fact stating two inequalities:

(a+8)V1—(a—&)24+(a—&)\1—-(a+E)? >2ay/1— (a+ )2,
(a—&)V1—(a+8)2+ (a+8&)\/1—(a—€)?>2a\/1— (a+é)>

Both of them are true thanks to (71).
The estimates (71)-(72) imply

1
2<%
Vi-g V1-¢ (1—(a+2)?)

Wl

By (67) we know that a + € < \/11W <1, and by (64) we have that & = = < EI/E .

Therefore,

g

C2

&1
- <
\/1—(:2 \/1—01_6\/1+(5

2

22 [146\° (1+0)
( 5 ) = V2

Recalling from (62) that

1

0= <1
C244R2 T 2

we see that

1
© L <3eV2 o =3 V2(2+4RYY

\/1_05_\/1_01 a2

Since R will be chosen so that it is greater than 1, we further have

& L <3:V2(6RY)Y? < 63c R

\/1—05 \/1—01

Therefore, from (70) we have

Y ey < 427eR? (14 B 1) < 10602R", (73)

where in the last inequality we use that (1 + R?)3/2 < 8R® for R > 1. Finally, note that
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— 0
sup Y{Aaﬂvl’aR,E} - sup YY{A,;L,R,&}'
{N2+p2+r2=1} A2 +p2=1}

Therefore, for R > 1 and
.ol
0<e< 1nf{§,so(R),sl(R),sg(R)},
with £9(R),e1(R),e2(R) defined as in (60), (63) and (66), we have

sup YiauwvRey < 1060 RS. (74)
{242 402=1)

With this estimate we can now find the bound for A,(f). Namely, from (50), we now

. a1\
Ap(f) = €° <Bg)1,fR)¢ (2)) :

have

o 3
1 0 H 6
. e - — =1 A
[ H@aa- o= [ fla)da - 15— 1060:R
R3 R3
First, choose R > 1 so that
s [ fada < | [ o
N q)q A9 > 1 q)4aq.
R3 R3
In other words,
2

R sup [ 1 \/16 (L f(Q)quq) —1]. (75)

’ fRS f(q)dq

Then, choose A so that
H 1
mA Z/f(Q)dQ
R3
In other words,
4H

A% exp <4) | 76
T F0)da (70

Finally, impose an additional condition on ¢ so that
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1
1060eR°A < 1 / f(q)dg,

]R‘S
that is,
e <es(Mo(f), Ma(f), H),
where

def

es(Mo(f), My(f), H) =

b Jo (o (et ) e (o) | [ o)

Gathering all conditions on ¢, set

o {1 o), 24(R), <o) 2 () M. T | 0. (79)

With this choice of R, A, e we have the following estimate:

3
9\ N\ 3
Ay(f) > €5 i/f(q)dq (B%g%)ﬂb('%)) ;
R3

which is the desired estimate. O

With the lower bound of A4 (f) at our disposal, we are now ready to prove Theorem 1.
The main idea is to consider a 3 x 3 system of equations (83) with three unknowns, one
9, f(p) 8”’7{()11) As a result the

P fp) -

inverse of Ay(f) will show up, and that is how Lemma 10 will be used at the very end of

of which is . Then Cramer’s rule will be used to express
the proof. But before this system of 3 equations is set up, we first find an auxiliary lower
bound of the entropy dissipation (81) which exploits the fact that we know eigenvalues
of the relativistic Landau operator. This auxiliary bound will be used again towards the
end of the proof after an appropriate application of the Cauchy-Schwartz inequality.

Proof of Theorem 1. In order to control the kernel in the entropy dissipation we recall
the expansion from (36) and the expression (31). With these, we have the following lower
bound

2
SUgg; =1p (5 ' (|§ i fqzl>> +1p°g — "pl (€ - v3)”
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(e ) o)

=p (IE* = (€ 01)”) = rplon x £

¢°p — p°q) x €|

qu Pa|” - pXﬂ>’( o (79)
|¢°p — pq|

Here we used that the eigenvectors {v; = %,02 = (Ip ,v3} from (33)-(35) form

an orthonormal basis for R? (when p and ¢ are not colinear). We also used the inequality

2 2
la°p — p°a|” > |¢°p — P 4| — |p x 4 = 7p.
Then more generally we have the following lower bound for (3) with (16) and (17) as

2 2
[(¢°p — %) x €] _ (p+1)? (rp) 12 |(¢°p — p%q) x ¢ . (80)
14 — g/’ P°q° 1°p — p°q|?

Y8 > Arp

Then from (28) and (80), we have the lower bound for the entropy dissipation

=3 | [t0r@ee.0 (0 - @) (%L 0 - 2L @) doay

R3 R3

[\

R [ Y Gl 20

P _ g
R3 R3 Iy 40
1 (p+1)? P a7 <
—1/2 2
——//f@ﬂ@—vv%w)/-z—w > laij(p, q)I* dgdp, (81)
4 Pq JZE A B
R3 R3 J=1
where due to the identity
;3
|z x y> = 3 > (@i —wm:)° (82)
Q=1

we have

%m@(%%ﬂ(%ﬁ@&ﬂhﬂ(%%)Cﬁﬁmg%@ﬂ

i

_ (PO PGS ) 40 f \ 40
—pr(m L 0nf ) + 5oL () - 200,
~pi0yf Pj Oa.f (&a%‘f 4 9.f )
B0l Bl (L0 LI,
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From here, the strategy for finding the lower bound of D(f) is to consider the following
three integrals as a system of equations:

|

[ as.06%) fa) da

[astv.0 % 60 10y dg, (53

2
where ¢( %) is a generic radially symmetric function that we will assume decays at

infinity sufficiently fast. These quantities will lead to a 3 by 3 system of equations, with
Dy , A

the unknowns L5 p; ! (p) —85—{) a”JZ'f (p), ap;f (p) and p]{ ! (p). Cramer’s rule will be then used

to express and estimate pff(p) We now expand the three integrals. Let us introduce

the notation:

0, f

X, BTy

1 N f (p)
d_ef8pif

Xo = 7 (),

_ POt
0 f

(),

Then we have

[astv.roD) st@raa=x: | [ %) s aq

w2 [ 5ol rgag) x| [ Bl i aq

o 2
R3
4 g la® ¢\ la
s | [ S50 swaa) - xa | [ (%) oD s
R R
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/f ) (Ll ) - i) ) a

/f (% (0.9 (4) <qi>2¢(m)>dq

(¢%)°

q; |Q‘
+@{< G0 )1 @da

Finally,

o J

X ([(%)za%ﬂq)dq Xy (R/j—j— @)f(q)dq)
/f (% (0,°0' (%) E;]éiz(ﬁ((gz))d

- ]é/ (jTi)m%f(q)dq.

Therefore, we have the following 3 x 3 system:

2 . 2
(/¢('q7>f<q)dq) X1+ (/Z—g (%)f(q)dq) X;
R3 R3
2
- (/§g¢><'q ) /¢> A% £(@) (s + P11 dg
R3

(/ZO ¢<%)f<q>dq) X+ (/Z—g;’—o (%mq)dq) X,
R3 R3

R3

- (/<%>2¢(W ) /¢ () 10 (s + o))

1175
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) 2 N\ 2 2
( / Zgas('ﬂ)f(q)dq) X0+ ( /(%) ¢(|q2|)f(q)dq) X5
R3 R3
2
- (/j ;%(' - )Xs /¢ A1) #(g) (g L+ Pa() ) da,

R3

where

P (pa) = ~55 L8 B 0L

Py(f)(p.q) = — 5 (qij(b ~ 2 > + 2 <¢+<qz) ¢’ (qi)Q) B (Qj

Y O0p  (¢)? po O¢ (¢)? q°)?
R == (S - )+ B (S - )+ o

Cramer’s formula yields

& gi; + P1(f)

1
2
) = det</¢q { (—) 4% + P )
q; qiq;j

-0 (;0)2 Qij% + P3(f)

Op,

Taking into account that all the elements in the first two columns can be bounded by
Jrs #(1%-) F(q)dg, we have

2
%L ) < 28,07 ( [ <%>f<q>dq) (34)

(/¢>'q2 (1A >+|P2<f>|+|P3<f>|+3qij|)dq).

< 1 etc., we have

Since ]%

61 (1P + 1P|+ 1PN < 3161 (Jail + 1) + 81l
< 3v2[qll¢| + 8|9

Therefore,
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[3\/_/f |q|d +8/f |‘J|2
+3 / e |q”|dq]

By squaring this inequality and using that (a + b+ ¢)? < 3(a? + b + ¢?), we have

4
< 484() ( / ¢>(q7|2)f(q)dq)
R3
(/f |q|2 Iqldq) +192(/f |QF) q)
2
( [ s |qudq)

Integrating the last inequality against f(p), and using the Cauchy-Schwartz inequality

api f
f

2

on the last term, we get

[ 10022 0] v <1800 ( / ¢<%>f<q>dq>
R3 R3

'{(R/af(p)dp) (/f (2 IquQ)2+192(/f o) q>2

+27/f(p) (/f(Q)|Qij|2AdQ) (/f o(lql?/2)* A~ ldq) dp}
R3 R3

where we now choose A as

(p+1)? —1/2| D
A=LT2 (¢ L4
p°q° (7p) P’ q°

so that we can recognize the right hand side of (81) to obtain

/ / £(9)£(0)]gi3 > Adgdp < 4D(f).

R3 R3
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Then we have

4
Dy, 2 2
[ 2| w<anan | [ ol s
R3 R3
2 ) 2
YL / s (Dydag | 192 [ oD
R3 R3
+108 D(f) Sup /f o(|q|?/2)*A~1dq
Here we claim that
s / f@)o(aP /2?47 1dq | S 1. (36)

This claim will be established below after the proof. Finally observe that

2
dp.

[Iovim =13 [ 10|22
R? i=lRs

Therefore, if the function ¢ is chosen so that all integrals involving ¢ are finite, then we
will have that

/ ]vmrdp < C1AG(f) 2+ CaD(f),
e

and then Lemma 10 can be used to conclude

/ ‘v\/ﬁp)f dp < C1 + CoD(f).
.

This completes the proof. O

Next we will prove the claim in (86). But first we briefly recall a useful inequality
taken from Glassey & Strauss [15]:

Proposition 11. Let p, g € R3 then

lp—ql” + |p x ¢?
2p0qY

1
SpSQW—ﬂ? (87)
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We multiply and divide by p°¢° + p- ¢ + 1 to observe that

_lp—aP+1pxq
P’ +p-g+1

Then we note that p°¢° +p-¢>1and p- g+ 1 < pYP. Plugging these into the above
yields Proposition 11.

-2

Proof of the claim in (86). We recall that A = (pH) (tp)~ 1/2 55— 25| , and then
since 7 = p + 2 and % — q% < 2 we have
0,0 0,0
A_1§4pq p+2p1/2§ pq .
o TR
Case 1: |p| < 2|q|. Since p+ 1 > 1, then on this set
ATV S (@)
and so
/ F@ollaP /2?47 dg S / F@oa*/2)%(" . (58)

The last integral is finite since we allow ¢(|g|?/2) to be rapidly decaying.
Case 2: [p| > 2|g| and [p| > 1. On this set we use [p —q| > [p| — |¢| > %|p|, then we
further have from (87) that

> p—af _ I _ 30" _ 1p°
- 2p0q0 - SquO - 8p0q0 16 qO'

Thus on this region

and so
/ F(@)6(a2/2)? A dg < / F(@)(1a2/2)2(¢*)?dg. (89)

Case 3: |p| > 2|q| and |p| < 1. On this set we have

A_1<p0q0<00< 0 < 0\2
SoLisPd e < (q7),

hS)
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and so

/ F(@)e(lal?/2)2 A7 dg < /f o(lal?/2)%(¢%)2dq. (90)

From (88), (89) and (90) we see that for any p € R® we have that

/f a2 1dq</f o4 2" o

The proof follows since the last integral is finite because we allow ¢(|¢|?/2) to be rapidly
decaying as in the statement of Lemma 10. O

3.1. Estimates on the kernel ®(p, q)

In this section we will prove estimates on the kernel ®¥(p,q) from (3) and we will
further prove uniform upper and lower bounds on the matrix a* (h) from (24).

Lemma 12. For the kernel from (3) with (14) we have the uniform pointwise upper bound:

VpUq°

1
- lp—q] ’ Jorp < 3
29(p, )| S S ., ) (91)
Btk forp=g.
Further, recalling (16) we have the uniform upper bound:
vrod® forp < 1
A o +2)lp—a? s 7 . (92)

& 5+ ”o, forp =

ol

Proof. We recall (16) and (17) to get

i +1 2 _3
20| £ L o427 (plo+2) + - P + 05

p+ 12
< (po—qu 3/2(p(p+2)+lp—ql2+pp0q0)-

Next, from (87) we have p > |p ql . Therefore on p < 1/8 we have

3/2 0,0 1/2
ij (p+1)1/2 ( quO ) 2 pq 0.0
Y (p,q)| S p—q|”+ Pq
el s s (=) P =g

0
< V1P’

~ Ip—q

o
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Further note that on p > 1/8 we have that

J (p+DV2 o
19 (p,q)| < O S/Q(f)poqo + Ip—q|2+pp°q0) SI+HGEH St
. 1.
These two together prove (91). Now recall (16). Next we prove (92) for p < 3:

(p+1)? 3
Alp,q)(p+2)lp—q* = 00 (p(p+2)"2(p+2)|p—ql?
3
1 quO 2
S W( 2 |p—Q|2
p°¢° \|p — ¢
< VPP
~ p—dq

On the other hand, if p > %, then

Alp,q)(p+2)lp—q* = <P+1>2 <p+2)3 b — g2

p+2 P p°q°
2 02 02

5Ip q| 5(p) +(Q),
pYq° pYq°

which establishes (92). O
3.2. Uniform bounds for a*(h)

With the bounds on the kernel from the previous section, we can now establish the

uniform upper bounds for a* (h):

Lemma 13. Let £ € R, and h € LL(R3) N L3(R3) with s > 2. Then

a’ (h)&:&; < Crlé)™.

Here Cy > 0 is explicitly computable and Cy = Cy1(||h||L1(r3), 1Pl 23 ®3))-
Alternatively if we only have g € L}(R3) N L3(R3) then we have that

a'(g)€i&; < p"Cilel*.
Here Cy > 0 is eaplicitly computable and Cy = C~'1(||g||L%(R3), llgllLs®3))-

We also have the uniform pointwise lower bound as follows:
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Lemma 14. For h = h(p) > 0 satisfying [gs h(p)dp > 0, My(h) < M and H(h) < H we
have the following estimate

a’ (h)&:&; > o€

Here the constant Co > 0 is explicitly computable and only depends upon fR3 h(p)dp,
M >0 and H > 0.

We will first prove Lemma 14, and afterwards we will prove Lemma 13.

Proof of Lemma 14. The proof of the lower bound is an application of the proof of
Theorem 1 that was recently completed above. We will follow that proof very closely.
We note from (16) and (17) that

A (W)Eit; = / dg A(p. ) (S7€:€;) hg).
]R3

Here as in (80) we have that

(+1)? 12 |(a% — %) x€|*
Alp,q) (S7&:&5) > o (Tp) o —pdt

And then due to the identity (82) we have that

- 1 2 B -2 3
aI (h)&g; > / dg h(q) %(m) Gl R D S OV C)

R3 3,j=1

Above the ¢;;(p, g) is not the same as in the proof of Theorem 1 even though we use the
same notation. Here again recalling (82) then ¢;;(p, q) is defined as

Di qi Pj q;
%P, a) = 5~ =% E*-(--—)&-
i#:0) (po qo) o\t O

From this point we will follow the proof of Theorem 1, in an easier case. In particular
we define

def def

=&, X3 =¢;.

ef Pi Dj
X, def Tl S X,
P 0

By integrating against the three integrals in (83) then we can establish a (simpler) linear
system. We use Cramer’s formula as in just above (84) to establish that

gi

1 5 Qij
lq|? A 4

6= aut) et | [oomta) | () 0t | dg
R? B oE s

Q
=]
—~
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And then as in (84) we have the estimate

2
6] < Ag(h / () (g)ag / o) n(g) iy 1dg

We then square the above and multiply and divide by the square root of (85) inside the
integral containing |g;;|, and use Cauchy-Schwartz to obtain that

2
& s a2 | [ ¢<%)h<q>dq / (D) (g)lais 1 Adg
R3

/0> Iql2 Aldg

However [p, (b(%)Qh(q)A_ldq < 1 as in the proof of (86). Then summing the above,
the proof follows from (93) and Lemma 10. O

Now we will prove Lemma 13.
Proof of Lemma 13. Suppose without loss of generality that || = 1. We have that

aij(h)ﬁifj = /dq ((I)ijgigj) h(Q)

R3

2 | (¢% — p°q) x ¢°
% — p0q|®

< /dq A(p,q) |¢°p — p°q| h(q)

R3

/qun ) [¢°p — p°q|* (g
R3

In this calculation we used (36), and the fact that p(p + 2) < ‘qop - poq‘2. The reverse

of this type of inequality was used in (79). We will estimate this upper bound below.
In particular we first recall that

4% — p%a|” = p(p+2) + |p x qI*.

Now we plug this into the above and estimate each of the terms on the right individually.
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In particular for the p(p + 2) term we have

[ da M apto+ 2ia) = [ da LD (4 2)) 7 plo + 2)h(g)

pb-q
R3 R3

(p+1)*%
S/dq g P h(g).

R3

We will estimate this upper bound on several different regions. Firstly if p > 1/8 then
we use p < p°q® to obtain

3/2
[ da % “enl) < [ da ha).
R3

This is the upper bound that we will use in this regime. Next if p < 1/8 then we have
using (87) that

[ a %p-”%(q)s/dq L (Vp0q°> )5 [ da o)
R3 R3

°q p°¢° \ |p—q| Ip —q|

Now we further split into |[p —¢| > 1 and [p—¢| < 1. On |p — ¢| > 1 we use Young’s
inequality as

1 1
hx —Lgi<y|| < hllpr@sy || L1y S 1Pl g ms) - (94)
|- e R - ) (R3)

L™ (R3

Here 1 = = + L and we require 7’ < 3 or equivalently r > 3/2. We conclude that
/ dg A(p a)p(p + 2)h(a) < [0l oy + Il e

This concludes our estimates for the p(p + 2) terms.
For the |p x ¢|* terms above we have

2
[ da st lpx dhia) = [ dg (ppﬁqﬁ) ((p+2p) "2 |p x g hg)

R3 R3

+1)2
é/dq %p 2 |p x q|” h(q).

R3

This is the general upper bound that we will use. Now if p > 1/8 then using (87) we
have
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p+ 12 pxqf _
/dq (Gh) p~ 2 px q*hiq) < [ dg |p0q0| p~! h(q)

p°q°
R3
Ip > q” ( ¢’ ) /
< [ dq h(q) < [ dg h(q).
/ P°¢° \lpxqf? @ @
R3 R3

Alternatively if p < 1/8 then p° < 2 implies ¢° < 5, and these conditions also imply

|p—¢| < 2. This holds since the estimate (87) and the Cauchy-Schwartz inequality imply
0 0,0 0 qO 1 0 1
g < V2ppPq® +p” < 5—#235 q+§ +2, (95)
and so ¢° < § < 5. In addition, together with (87), this implies

1 5
{p<3hcilp- ql* <2pp°¢° < 5t Cllp—dal <2}

Then, on this region, we further use the lower bound in (87) to obtain

(p+ 1)1/2 —3/2 2 / Ip X ‘I|2 -3
dg L= 532 px g hiq) < [ dg B p3/2
/ A lp > q|” h(q) =) ¢~ o0 P (q)

3/2
b x qf” ( p°q° ) / h(q)
< [ dq h(q) < [ dq .
/ P \Ipxql?>+|p—q? @ A Ip — ql

R3

Now as in (94) we obtain that

h
/ 4 (_Q)q| < Allza rs) + 1Al (R

This holds for any r > 3/2. This is the main estimate in this region.

Lastly if p < 1/8 and p° > 2 then ¢° > 1, and p° ~ ¢°. Namely, using again (87) and
the Cauchy-Schwartz inequality one can easily see that

1 1
¢ >p° —Ip—ql =p° = V2pp°¢° > p° -/ 1P >p0 — 1(1)0 +4°).

Therefore, ¢° > %po > g > 1. In addition, one can similarly show that p® > %qo, which
implies

(96)

ol ot
i)

==}
%

Q

==}
%
ol w
i)

o

In this regime, using (87), we have
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1/2
(p+1)* 5/ 2
/dq g " " |p x q” h(q)

3/2
p % gl ( p°¢° ) pOq"
< [ dgq h(q) < [ dgq h(q).
/ p°¢°  \|p x q|*> +|p—q|? Ip —ql
R3 R3

On the one hand we can estimate this, using p° ~ ¢°, as above as

/00 o
dq p—q| h(g) S p° (1Bl ey + Al L rs)) -

This would give the second estimate in Lemma 13.
On the other hand, splitting into |[p —q| > 1 and |p — ¢| < 1, and using p° ~ ¢°, as in
(94) we obtain

/ﬁqvp%%w>

p—q " S (Pl zyws) + 120y @s)) -

This above holds for r > 3/2 as in the previous case. Further by interpolation inequality,
see for example [9, Proposition 6], we can bound

Hh”LT (R3) = HhH 1(R3)”hHL3(R3)

Here we take r = % + € where

1= s+ (1- B)0,
1 g 1-8
Fo1

3

1

So that we need to use the weight s = 1/8 where g = 2(3+2 3 Since 3 < 5 then we

need to use s > 2. Note that this interpolation can be proven directly from the Holder
inequality. Collecting all of these estimates completes the proof. O

4. Propagation of high moment bounds

The main result in this section will be to prove Theorem 4. Before we proceed, recall
from (11) moment notation

A@Uﬂvﬁﬁww/}mmu+mmwp

t€[0,T]
R3

Theorem 4 will be proved by inductively applying the following lemma:
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Lemma 15. Let k > 1. Suppose that M (f,0) < oo and My,_.1(f,T) < oc. Then

My(f,T) < C,

def

where C' < oo depends only on T, k, the collision kernel ®, Qr(f fo Ifll s (rsydt, the
initial moment My(f,0) and the moments M s _1)(f,T) and Mkfé(f, T).

Proof of Lemma 15. Let v € C2°(R?), 0 < o < 1, be such that aofj 1) = 1 and ajg 2c = 0
and let n € (0,1). Define

@) = (1+ o) a(nV/1+[pP).
We let 0; = 0p,. Then for any ¢,j € {1,2,3} we have
dssp(p) = 2kpi(1 + [p)* " a(ny/T+ [p?) + nps (1 + [p*)* =20’ (ny/1 + p]?),

and letting 0;; = 0,,0,, we have

Digip(p) = 2k (315 + 20k = Dpap; (1 + ) ™) (1 + [p) " aln/T+ pP)
+ (6”77190 + (4k — npip; (1 + |p|2)‘%)(1 + pI?)* e (np)
+?pip; (1 + [p1*)F 1 (/1 + [p?).

We denote the norm || - || by || - [[so- Then, for some constant C(k) that depends on
k, ||§0/||oo and ||S0//||oo, we have

10y, 0(p)| < Ck)(L+ [p[?)F!

We use the weak formulation of the collision operator in (27) to obtain

/ £(T, p)p(p)dp / £(0, p)p(p)dp = / dt / C(f, 1)(p) o(p) dp
R3 R3 R3

0

/dt//f )27 (p,q) (Op;p.2(P) + 0g,q,0(q)) dgdp

0 R3 R3

T
4 / dt / / SOV @A)+ 2) (@5 — pi) (B 0(p) — By () dadp

0 R3 R3



1188 R.M. Strain, M. Taskovié / Journal of Functional Analysis 277 (2019) 1189-1201

T
/d // () (@) |27 (p,q)| (1 + [p|* + |q[*)"~dgdp

0 R3 R3
T
+/d //f (0. a)(p+2)lp— q>(L+ [p|* + |g|*)"'dgdp. (97)
0 R3 R3

Estimating (97) using (91) and (92) we have

/ﬂﬂ@ﬂ@@—/}mmﬂm@
R3 R3

T
\/Poqo 2 2\k—1
fp )p_q(HlpI + lq[")" dqdp
0

T
0 0
+/ f(p)f(q) <Z_° + ;%) (1+ [pf2 + |g2)Fdgdp
0

{r>35}
r p°q° 2 2\k—1
S| s0r@EEL o bl ) dady (98)

0 {p<§.p0<2}

T

\/POQO 2 k—1

+ fp)f(a) b —d (1 + [pl” +q")" dqdp

0 {p<g.p°>2}

=11 + I + I,

where integrals Iy, I and I correspond to the domains Dy = {p < %4)0 <2}, Dy =
{p < %,po > 2} and D3 = {p > %}, respectively. We will estimate them separately.

First note that the set Dy is a subset of {p < £,p° <2,¢° < 5,[p—g| < 2} as in (95).
Therefore for some constant C(k) depending only on k& we have

I & ///f |(1+\ pl? + la2)* " dqdpdt

T

<cw [ [ 1o | [ Fa) =11 g da | dpdt
2, Ip — gl

0 R3
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/”fHLl(RS) ’f 1{| <2} dt.
L (R3)
By Young’s inequality for convolutions
Hf 1{I |<2} < ANl s msy ‘ Loy , -
L= (R?) L2 (R3)

Since the second term on the right-hand side is a finite number, we can further estimate
the integral in the domain D; as follows

T
L < CH) e 1 / 1F(t o rey dt (99)
0
= ) foll 2 ey ()
_ Ok, fo, Or(f)) < 0.

The domain D is a subset of {(p,q) € R3*3 : p <
(96). The comparability (96) further implies

L0 >2 ¢°>1,p°~¢°} asin

(»°)?

(q°)%,

(P°)? <1+ [pf* +lq)* <

Wl co

(@°)? <1+ 1p* + g <

w| co

so the weight function (1 + |p|? + |¢|>)*~! can be estimated as follows for any I € R:

(L4 [pI + gl = (L4 [ + )2 (1 + [pl? + Jgf*)* 12
< sup(L, (8/3)"2) sup(L, (8/3)"~1~1/%)(p°)! (¢") 27",

Therefore, the integral in the domain D5 can be bounded as follows

de///f | (1+\ 12+ |qf?)" " dgdpdt

C(k.1) / // 1) (0) o (025D g 20 D

0 /Il D P sy 102D s

dt,
L7 (R3)

’ Ly <2y

(100)
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for a pair of Holder conjugate indexes r and 7’ and for some constant C(k, ) that depends
on k and [. In the last inequality we used Holder and Young inequalities. We require that
r < 3 in order for the last term to be finite. Note that here we also only considered the
case when |p — ¢q| < 2. However the case |p — ¢q| > 2 satisfies a better estimate involving
only the weighted L' norms, as in the I3 term in (103) below.

Now, by interpolation inequality, see for example [9, Proposition 6], we can bound
the weighted L™ norm appearing above in terms of the weighted L' and the L? norm
as follows

i1 IR -
PG fll e may < 11 s sy 14025717202 Fll s

where

We note here also that this interpolation can be proven directly from the standard Holder
inequality.
to be finite we need r < 3, so let » = 12/5. Then r’ = 12/7,

1
For Hml{"léz}’ L7 (R3)

b= % and [ = (%_1%(7715_’8)_1, so in particular we have

1 8
—1l——-4=-=—=(k-1). 101
k 5 + 5 11(k ) (101)
Therefore, continuing from (100) we have
T
_1-ig1 -
I, 5 C(k,1) / ||f||§3(R3) (-2 2+2)f”il(ﬁ]g3)dt (102)
0

T
B 1te
< Cl M (1) [ 161t
0

14e 1—¢

2 T 2
/dt
0

T
< (Mg (D)) | [ 1 quyi
0

< C (k1,76 My ) (£.7), Q(f)) < oo.
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Finally, in the domain D3 = {(p,q) € R¥™: p > {} we have

T
0 0 B
Is :![[/f(p)f(q) (Z_O + ;%) (1+1pP* + |Q|2)k dgdpdt (103)

T
< / Z/ F)Fa) ()61 9 (02140 dgdpar

<or (M (11))

By gathering estimates (98), (99), (102) and (103) we get

/f(T7p)<)O(p)dp < C (k7l7T7 M%(kfl)(fa T)7 QT(f)’Mkfé(f7 T)) < 00.
R3

Finally let n — 0 to conclude the proof of the lemma. O
With Lemma 15 in hand, we now proceed to the proof of Theorem 4.

Proof of Theorem 4. Define the sequence

ko =k,

1

k/’n+1:k’n—§, forn € N.
Note that the sequence is decreasing and we can find no € N such that k,, > 1
and kp,41 < 1. Then, starting from k,, and using Lemma 15 repeatedly, we get that
My, (f,T) < oo for all n = ng,ng — 1, ...,0, so that in particular My (f,T) < co. O

5. Global existence of a true weak solution

In this section we use the approach from [36] and [9]. We recall also [3]. We will give
a sketch of the standard construction of global in time weak solutions to the relativistic
Landau equation using our estimates from the previous sections.

5.1. Ezistence for a reqularized problem

We recall the kernel (3):

Y (p,q) = A(p,q)S" (p, q),
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with (16) and (17). We will smoothly approximate A(p,q)Tp by A, such that A, —
A(p, q)Tp pointwise as n — oo. We remove the singularity of the kernel at p = ¢. In
particular we can choose

—1/2

of (p+1)2 _
Anprq) (ppoqo) (rp+n2)

Now let n = 1/e and define % (p, q) = Ay e(p,9)S™ (p,q)/7p- We choose this decompo-
sition so that Ay /.(p, q) develops a first order singularity as e — 0. Further 5% (p, q)/7p
is bounded due to (17). Then ®.(p, q) satisfies the null space (18) and the non-negativity
(19) with the same proof as in Lemma 7. Further ®.(p, q) — ®(p, q) as ¢ — 0 on compact
sets when p # ¢. In particular we have that

dp / dg |27 (p,q) — 7 (p,q)| =0, €—0. (104)
B(O,R)  B(O,R)

This convergence (104) holds for any 1 < r < 3 by the dominated convergence theorem.
Also 0y, ®c(p, q) — 0p, 2(p, q) and 0y, Pc(p, ) — Iy, D(p, ¢) pointwise as e — 0 on compact
sets when p # q.

Let Cc(h, g)(p) be the relativistic Landau operator (2) with kernel ®.(p, q) instead of
®(p, q). Analogous to C(h, g)(p) defined in (2), we have

C.(f.0)p) 0, / 9 (p, q) { (00, 9(p) — 00, F(@)9(p) } dg.
R3

Then, similar to (23), we introduce the following approximate problem:

Ouf € = O, (a (f)Dp, €+ VL(f) ) +eASS, (105)
where the coefficients are
(1) [ @9 (p.0) " (@) (106)
R3

and

419 [ 0,7 (.01 (@)da
R3

This type of reduced parabolic system (105) is well known to have global in time unique
smooth solutions using the Schauder fixed point theorem. We only give a very brief
outline. Essentially identical arguments are shown in detail in [11] and [3]. We consider
smooth initial data f¢(0,p) = f§(p) which satisfies
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5(0) > an(e)e PP,

For suitably chosen a1, /317 > 0. Then by the comparison principle, for a D > 0, it can
be shown that

FE(t,p) > dn(e)e PP =Dt (107)
And further

17N 2o (fo. 7321 gy w2 oo )y + 1 “llwrroe o, 1w 21 ) < Ce)-

Here W¥P are the standard Sobolev spaces. Note that we assume the initial data 15(p)
satisfies a high moment bound, and then this moment bound can be propagated in time
as in Theorem 4, proven in Section 4. The solution to (105) will also satisfy the high
moment bound. Then using the estimates in Section 5.2, also as in Section 3.1, we can
further show that (106) satisfies

€2ce < (a¥(f) + €dyj) €67 < Ce|€f.

Note that the lower bound in (107) can also give another proof of the lower bound above
using the eigenvalue expansion as in [25]. For further details, one can see a very similar
problem carefully described in the arguments from [11, Section 5].

5.2. Uniform estimates

We can readily observe that, for solutions to (105), we also have a uniform conservation
of the mass as

/f@@@z/ﬁ@@- (108)
R3 R3

This grants the uniform estimate f¢ € L°°([0,T]; L*(R?)). In addition following the
calculation from (20) for (105) then the energy satisfies

/f&mﬁ@:/ﬁ@W@+u/f&M®=/ﬁ@ﬁ@+k/ﬁ@@
R3 R3 R3 R3 R3

This grants the uniform estimate f¢ € L([0,7]; L1(R?)). Additionally if we let D (f€)
be the entropy dissipation defined in (28) with ®% replaced by ®% then the calculations
as in (9) rigorously hold for solutions to (105). We have that

Mﬂm+/AW@mH%/@/@W¢MWWSHw»
0

0 R3
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These estimates give uniform bounds on f¢(¢,p) in L} and Llog L. In particular it is well
known that H(f¢(t)) < H(f(t)) +1

Notice that Theorem 1 still holds for D, with ®¥ replaced by ®%. Thus from the
lower bound on D(f¢(s)) in Theorem 1 we obtain a uniform bound on

t

s [[wVFGmPas

0 R3

This grants a uniform estimate v/f¢ € L?([0,T); H'(R?)). Then we further recall the
Sobolev inequality:

1/3

/Ifs(p)l?’dp S/IV\/fe(p)de,
R3 R3

which grants us the following uniform bound f¢ € L([0,T]; L3(R?)).

We consider the standard L? based Sobolev space HJ"(R?) to have m derivatives and
the k-th order polynomial momentum weight (p)*. Then given ¢ € H"(R3) we observe
that

/ dp B, fcp = / / @) (D)8 (b, 0) (B, By 9 () + By, D 9(a) dadp
R3 R3
4 / / FED) (@) (8,89 (p. q) — By, B (p, 0)) (B 0(p) — Danip(a)) dadlp
R3 R3

e [ 1) 0,0,00). (109

Here we remark that it can be seen directly from the proof that the derivative compu-
tation (21) still holds for 9,, ¥ (p, ¢) and d,, ®¥ (p, q) with A replaced by Aq,(p,q)/7p-
Therefore we obtain the bound

/ dp 8,f°0| < [ llwee / / £ (@) () |9 (p, 0)| dadp

R3 R3 B(0,R)

+ gl / / FO) F (@) AP, 0) (o + 2)lp — qf2dgdp
R3 B(0,R)

+ ellgllwas / dp f5(p)-

R3
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Then, using Lemma 16 with 7/ = 3, then after integration in time the upper bounds are
uniformly bounded. We also use the continuous embedding of W2 into H™. So that
we can also conclude that (9;f€).~o is uniformly bounded in L*([0,T]; (H*(R3))") for
suitable m and k.

We use the notation f € /H(R3) to mean that /f € H'(R?). Then we observe

that
VHU(R3) N LI(R®) € L'(R?) C (H"(RY)).

The embedding of \/H'(R3) N L}(R?) < L'(R®) is compact, and the embedding
LY(R3) C (H™(R?))" is continuous. Next we use the compactness result [31, Corollary 4]
to observe that (f€)cso is relatively compact in L?([0,T]; L'(R3)). Therefore there ex-
ists a function f € L?([0,7]; L*(R?3)) and a subsequence of (f€).~o such that (f€)cso
converges to f in L*([0,7]; L'(R3)) and a.e. on [0, 7] x R3.

Now we also have the following lemma:

Lemma 16.

/dq / dp g(p)h(q) |®%(p,q)|

R3  B(0,R)
S lgllziso.rpy IRl ®s) + 9ller, Bo,ry) 1Rl L1 r3)
+ min{||h||L1(R3) ”gHL%(B(O,R)p ||h||L§(]R3) ||9HL1(B(O,R))}

+ min{{|[| L1 re) |9/ L (B0, r)) 1]l L @) 191l L2 (B0, R)) }s

where we can choose any r' € (3/2,00]. Here the implicit constant can be chosen to be
independent of R > 0.

Further, we can use (92) in place of (91) in the proof. Then this lemma also holds
when ’<I>ij (p, q)’ is replaced by A(p,q)(p+2)|p — q|*.

Proof of Lemma 16. We will use the bounds in (91). Then we have

/dq / dp g(p)h(q) |2 (p,q)| /dq / dp g(p)h(q) ﬂ

RS B(0,R) R3  B(0,R),p<

+ /dq / dp g(p)h(q) (p—o + i) :

R®  B(0,R),p>%

We will estimate these upper bound integrals one at a time. Notice that
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0 0
p q
/dq / dp g(p)h(q) <q_0 + F)
R3  B(0,R)

<Ilgllzrso,rylbllr ®s) + l9llzr, (Bo,rR) 17l Lt (R3)-

Further on p < % as in (95) then p° < 2 implies that ¢° < 5 and we further have
|p — ¢ < 2. We conclude using Young’s inequality that

pYq°
lp— q

/ dq / dp g(p)h(q)

R3  B(0,R), p<i, p0<2

1
S [ dg / dp g(p)h(q) —
/ WMD) 1
R3  B(0,R),lp—q|<2
< 1
< Wl @llolle o | Tt |
Here 1 = X + L and we require 1 < r < 3 to conclude that || 1. 1<2 <1
r r || {I1<2} L™ (R3)
Similarly we have
1 < 1
dq dp g(p)h(q) T—— S bl msy 9l (Bo,m)) || 7711112} :
lp —q |- Lr(R3)

R3  B(0,R),lp—q|<2
Thus for this term we conclude

/ dq / dp g(p)h(q) Ve

lp—q
R3  B(0,R), p<g, p°<2

S min{Hh||L1(R3)HQHLT/(B(O,R))v Hh||Lr’(R3)||9HL1(B(0,R))}~
This holds as long as we have r' € (3/2, o0].
0

Lastly on the region p < % with p® > 2, then we further have ¢° > 1 and also p° ~ ¢°.
See (96). If [p — ¢| > 1 also then we have

(e}

g
lp—q

/ dq / dp g(p)h(q)

R3  B(0,R),p<%.p9>2,|p—q|>1

S min{{|hf w9l L1 B0, r))> 1Pl L r3) 1912 (B(0,R)) }-

On the other hand when further |[p — ¢| <1 then we have
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p°q°
/dq / dp g(p)h(q) p—d
R®  B(0,R),p<%.p°>2,|p—q|<1

1
S Rl L ey 9l i 0.7y HW1{|.|<1}

L (R3)
Similarly we also have
vV 1pY¢°
/dq / dp g(p)h(q) —d
R3  B(0,R),p<%,p°>2,|p—q|<1
< 1
~~ HhHL%(R%”g”LT/(B(O,R)) Wl{l-lﬁl} LR

Therefore again when ' € (3/2, 00| then we further have

Vo

Ip — q|

/ dq / dp g(p)h(q)

R®  B(0,R),p<5,p°>2,|p—q|<1
S min{||2f Ly ws) 191 . (B0, r))s 1Pl L @) 191 1 (B0, 7))}

Collecting all of these estimates completes the proof. O

Now we integrate (109) in time to obtain that

/ dp F(t)p — / dp f<(s)¢
R3 R3
t
< llgllwa / dr / / (@) £ () | (p, )| dadp
s R®B(O,R)
t

+ gl / dr R/ ) /R | £ F @A D 0) (o + 2)lp — qlPdgdp

+e(t = s)lellwae< 1 f5llzr-

Now we use Lemma 16 with 7' = % + ¢ for a small € > 0 to estimate the two terms in
the middle above. Then we interpolate || f|| ./ (ga) < ||f6||%1(R3)||f6||i§(9R3). After using

a Holder inequality in the time integral we obtain

/dp fe(t)<P—/dP Fe(s)p| < Clt = 9)°llplwz + Ot = s)ll¢lwze,

R3 R3
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where the constant C' > 0 depends on ||f€[|L1(ws), |f€llL1®rs), and [[f]|z1(0,71;23(®3))
which quantities have been shown to be uniformly bounded.

Therefore the sequence ([ fépdp), ., is uniformly bounded and equicontinuous in
C([0,T]). By the Arzela-Ascoli theorem this sequence is further relatively compact in
C([0,T]). We can conclude from the convergence of (f€)eso to f that ([ fedp) is the

unique cluster point of ([ fpdp), .-

5.8. Weak solutions

Given fo € LY(R®) N Llog L(R3) for some s > 1 we choose smooth initial data
f§(p) as described in Section 5.1 that satisfies f¢ € LL(R3) and f§ — fo as e — 0 in
LY(R3) N Llog L(R?).

Then the calculations in the proof of Theorem 4 allow us to conclude that

/ (D) (14 p)*/2dp < C, (110)
R3

where the constant C' is uniform in [0, 7] and in € > 0. Then by the pointwise convergence
of (f€)es0 to f and Fatou’s lemma we conclude that

[ Hena+ Py < c.
R3

Now we look at the weak formulation.
First to simplify the notation we define

bl (p,q) = 9,97 (p, q) — By, ®¥ (p, q),

and

b (p,q) = 8,8 (p, q) — g, 8 (p, q).

From the (26), for the approximate problem (105), as in (12) and (13), we have the
following weak formulations

- [ b s500.) - /T @t [ dp ;o

R3 0 R3
T

=5 [t [ [ F@rweie.0 0,000+ 0,0,0(0) dad

0 R3 R3
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T
4 / dt R/ R/ £ ) F (@5 (9, 0) (P9 () — Do p(a)) dadp
T

6O/dtna/3dp f(p) Op,Op.0(p)-

And with no approximation the weak formulation is:

f/dp foso(O,p)/Tdt /dP forp
0

R3 R3

/ &t [ [ @108 (0.0) 0,,05,0(0) + 0,,0,0(0)) dadp

0 R3 R3
T
+ / dt / / F@) (@b (2, ) (B, 0(D) — Banip(@)) dadp.

0 R3 R3

Note that the first two terms on the left side, and the last term containing the Laplacian,
clearly converge as ¢ — 0. Now we consider the remaining two terms. First we have

/T / / FE )Y (p,q) (8p,0p,0(p) + 0y,04,0(q)) dgdp

R3 R3

T
- / dt / / @) F )3 (p. q) (D, Oy (D) + D, 00y 0(a) dadp
0

R3 R3

s/ / / (F@) )2 (0, q) — (@) (0)BY (p, 0)) By, By 0(p)

+ lpllwe / dat / dq / dp (@)1 () |87 (p.q)]
0 B(O,R’) B(0,R)
T
+||90szﬂoo/dt / dq / dp f(q)f(p) |27 (p,q)]| .
0  B(O,R’)e B(0,R)

The last two terms in the upper bound, after using Lemma 16, will go to zero as R’ — oo
because of the uniform higher moment bound in (110). Now the first term in the upper
bound converges to zero by the strong convergence of ®¥(p, q) to ®%(p,q) as in (104)
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and again using Lemma 16 and the strong convergence of f€ to f that we have previously
established.

The convergence in the last term above involving b’ (p, q) can be shown similarly. This
completes the proof of Theorem 3.
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