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interactions. Despite its physical importance, this equation 
has not received a lot of mathematical attention we think due 
to the extreme complexity of the relativistic structure of the 
kernel of the collision operator. In this paper we first largely 
decompose the structure of the relativistic Landau collision 
operator. After that we prove the global Entropy dissipation 
estimate. Then we prove the propagation of any polynomial 
moment for a weak solution. Lastly we prove the existence of 
a true weak solution for a large class of initial data.
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1. Introduction to the relativistic Landau equation

Landau, in 1936, introduced a correction to the Boltzmann equation that is used to 
model a dilute hot plasma where fast moving particles interact via Coulomb interactions 
[22,27]. This widely used model, now called the Landau equation, does not include the 
effects of Einstein’s theory of special relativity. When particle velocities are close to 
the speed of light, which happens frequently in a hot plasma, then relativistic effects 
become important. The relativistic version of Landau’s equation was derived by Budker 
and Beliaev in 1956 [4,5]. It is a widely accepted fundamental model for describing the 
dynamics of a dilute collisional plasma.

The spatially homogeneous relativistic Landau equation is given by

∂tf = C(f, f) (1)

with initial condition f(0, p) = f0(p). A relativistic particle has momentum p =
(p1, p2, p3) ∈ R3. The energy of a particle is given by p0 =

√
1 + |p|2 where |p|2 def= p · p. 

Let g(p), h(p) be two functions, then the relativistic Landau collision operator is defined 
by

C(h, g)(p) def= ∂pi

ˆ

R3

Φij(p, q)
{
h(q)∂pj

g(p) − ∂qjh(q)g(p)
}
dq. (2)

Above and in the remainder of this article we will use the summation convention so 
that repeated indices i, j ∈ {1, 2, 3} are implicitly summed over without writing the sum ∑3

i,j=1 notation. The kernel is given by the 3 × 3 non-negative matrix

Φij(p, q) def= Λ(p, q)Sij(p, q). (3)

The components of this kernel are defined in (16) and (17) below. This kernel is the 
relativistic counterpart of the non-relativistic Landau kernel which is presented briefly 
in Remark 6. For notational simplicity and without loss of generality, in this paper, we 
will normalize all the physical constants to be one.

Solutions to the relativistic Landau equation formally satisfy the conservation of mass, 
total momentum and total energy in integral form as

ˆ

R3

f(t, p)dp =
ˆ

R3

f0(p)dp (4)

ˆ
pf(t, p)dp =

ˆ
pf0(p)dp (5)
R3 R3
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ˆ

R3

p0f(t, p)dp =
ˆ

R3

p0f0(p)dp. (6)

Additionally the Entropy of the relativistic Landau equation is defined as

H(t) = H(f(t)) def=
ˆ

R3

f(t, p) ln f(t, p)dp. (7)

Further the Entropy dissipation is given by

D(f) def= −
ˆ

R3

C(f, f)(p) ln f(p)dp. (8)

Note that D(f) ≥ 0 using the reformulation in (28) together with (19). Now using the 
entropy from (7) and (8) it can be calculated that solutions to (1) formally satisfy

d

dt
H(f(t)) = −D(f(t)) ≤ 0.

This is the Boltzmann H-Theorem for the relativistic Landau equation. Further integrat-
ing we have

H(f(T )) +
T̂

0

D(f(t))dt = H(f0). (9)

This says that the entropy of solutions is non-increasing as time passes. Note that we 
define H(f(t)) with this sign to provide the above a priori estimate.

We also introduce the normalized relativistic Maxwellian as

J(p) def= 1
4πe

−p0
.

The relativistic Maxwellians, also known as the Jüttner solutions, are the equilibrium 
solutions to (1), and they are the extremizers of the entropy.

1.1. Notation

We will now define weighted Lr spaces. For all l ∈ R, r ∈ [1, +∞], the weighted Lr

spaces and norms are defined as follows:

‖h‖Lr
l (R3)

def= ‖〈·〉lh‖Lr(R3) =

⎛
⎝ ˆ

〈p〉lr |h(p)|r dp

⎞
⎠

1/r

, (10)

R3
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where 〈p〉 def=
(
1 + |p|2

)1/2 and Lr
l (R3) = {h : R3 → R, ‖h‖Lr

l (R3) < +∞}. Further we 
let Lr

0 = Lr when l = 0. We also use the standard definition for L∞
l (R3).

Further for a non-negative function f(t, p) ≥ 0 we define the energy

E(f(t)) def=
ˆ

R3

f(t, p)p0dp,

and initially f(0, p) = f0(p) as

E0
def=

ˆ

R3

f0(p)p0dp.

We also define the initial entropy as

H0
def=

ˆ

R3

f0(p) log(f0(p))dp.

And for a general function h ≥ 0 we define the absolute entropy functional

H(h) def=
ˆ

R3

h(p) |log h(p)| dp.

We also define the following moment functional for l ∈ R:

Ml(h) def=
ˆ

R3

〈p〉lh(p)dp.

We further introduce the time dependent moment notation, for any k ∈ R and T > 0, 
we measure the time dependent moments as:

Mk(f, T ) def= ess sup
t∈[0,T ]

ˆ

R3

f(t, p)(1 + |p|2)kdp. (11)

We will also use the standard Sobolev spaces Ḣ1(R3) and H1(R3) defined as:

‖h‖Ḣ1(R3) = ‖∇ph‖L2(R3), ‖h‖2
H1(R3) = ‖h‖2

L2(R3) + ‖∇ph‖2
L2(R3).

We further use the notation A � B to mean that there exists a positive inessential 
constant C > 0 such that A ≤ CB. When A � B and B � A then this is further 
denoted by A ≈ B.
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1.2. Main results

In this section we state the main results of the paper. Our main result is Theorem 1
which states that the entropy dissipation (8) controls uniformly the size of ∇

√
f ∈

L2(R3). Then in Theorem 3 we prove the global existence of weak solutions for initial 
data f0 ∈ L1

s ∩ L logL(R3) for any s > 1. Afterwards in Theorem 4 we prove that weak 
solutions propagate high moments (11) of any order.

We begin by stating the entropy dissipation estimate:

Theorem 1. Let f = f(p) ≥ 0 satisfy M1(f) ≤ M and H(f) ≤ H for some M > 0 and 
H > 0.

Then, there exists a positive constant which only depends (explicitly) on the mass ´
f dp, the momentum 

´
f p dp, the energy 

´
f p0 dp and the upper bound on the en-

tropy H, such that the following entropy dissipation inequality holds

ˆ

R3

|∇
√

f(p)|2 dp � D(f) + 1.

This entropy dissipation estimate, which proves a gain of ∇
√
f ∈ L2(R3), is the main 

theorem in our paper. We will use this result to prove the global existence of a true weak 
solution, and also the propagation of high moment bounds. We remark that from the 
proof of the global existence of a weak solution given in this paper one can see directly 
that our weak solutions conserve the mass (4) and satisfy the entropy inequality:

H(f(T )) +
T̂

0

D(f(t))dt ≤ H(f0).

However these weak solutions do not conserve momentum (5) and energy (6). They do 
satisfy the energy inequality:

ˆ

R3

p0f(t, p)dp ≤
ˆ

R3

p0f0(p)dp.

This can be seen directly in the proof of Theorem 3. Next we will give our definition of 
a weak solution to the relativistic Landau equation:

Definition 2. Fix any T > 0. Let f0 ∈ L1
1 ∩L logL(R3) and f = f(t, p) be a non-negative 

function satisfying f ∈ L∞([0, T ]; L1
1(R3

p)) and 
√
f ∈ L2([0, T ]; H1(R3

p)). Further suppose 
M1(f(t, ·)) ≤ M1(f0) on [0, T ]. This function f is called a weak solution of the relativistic 
Landau equation (1), (2), and (3) on [0, T ] with initial data f0 if for all ϕ 

def= ϕ(t, p) ∈
C2

c ([0, T ] ×R3
p) it holds that
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−
ˆ

R3

dp f0ϕ(0, p) −
T̂

0

dt

ˆ

R3

dp f∂tϕ =
T̂

0

dt

ˆ

R3

dp C(f, f)ϕ. (12)

Here the integral on the right is defined by

ˆ

R3

dp C(f, f)ϕ = 1
2

ˆ

R3

ˆ

R3

f(q)f(p)Φij(p, q)
(
∂pj

∂pi
ϕ(p) + ∂qj∂qiϕ(q)

)
dqdp

+
ˆ

R3

ˆ

R3

f(p)f(q)Λ(p, q)(ρ + 2) (qi − pi) (∂pi
ϕ(p) − ∂qiϕ(q)) dqdp. (13)

See the derivation of (27) in Section 2.2 to obtain the weak form of the Landau collision 
operator (2) given in (12) and (13).

Next we state the theorem which gives the existence of a weak solution to the rela-
tivistic Landau equation:

Theorem 3. Given initial data f0 ∈ L1
s ∩L logL(R3) for some s > 1, there exists a weak 

solution to the Cauchy problem for the relativistic Landau equation.
Moreover for ϕ ∈ W 2,∞ the mapping t →

´
R3 f(t)ϕ is Hölder continuous.

Lastly, we give the theorem which shows the propagation of any polynomial moment 
for a weak solution to the relativistic Landau equation:

Theorem 4. Let T > 0 and k > 1. Suppose f(t, p) ≥ 0 is a weak solution of the relativistic 
Landau equation on [0, T ] × R3 associated to the initial data f0 ∈ L1

1 ∩ L logL(R3). 
Suppose also that the initial data satisfies 

´
R3 f0(p)(1 + |p|2)kdp < ∞. Then the moment 

of order 2k of f is bounded locally in time, that is,

Mk(f, T ) = ess sup
t∈[0,T ]

ˆ

R3

f(t, p)(1 + |p|2)kdp < C,

where C > 0 is a finite constant depending only on T , the collision kernel Φ, the initial
mass, momentum, energy and entropy, QT (f) def=

´ T

0 ‖f‖L3(R3)dt and the initial moment ´
R3 f0(p)(1 + |p|2)kdp < ∞.

Note that the finiteness of QT (f) def=
´ T

0 ‖f‖L3(R3)dt ≤ C < ∞ in Theorem 4 follows 
directly from the Entropy estimate in Theorem 1 and the Sobolev inequality.

Now in the next section we will give an overview of some previous results for the 
relativistic Landau equation, and the classical Landau equation. We will later explain 
the structure of the classical Landau equation in Remark 6.
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1.3. The literature

We start by describing results for the relativistic Landau equation. A detailed analysis 
of the linearized relativistic Landau collision operator was performed by Lemou in [25] in 
2000. In 2004 [32], Strain and Guo proved the global existence of unique classical solutions 
to the relativistic Landau-Maxwell system with initial data that is close to the relativistic 
Maxwellian equilibrium solution. Then in 2006 [23] Hsiao and Yu proved the existence of 
global classical solutions to the initial value problem for the simpler relativistic Landau 
equation with nearby relativistic Maxwellian initial data in the whole space. In 2009 
the C∞ smoothing effects were shown by Yu [41] for the relativistic Landau-Maxwell 
system with nearby equilibrium initial data under the assumption that the electric and 
magnetic fields are infinitely smooth. Further for relativistic Landau-Poisson equation 
the smoothing effects were shown in [41] without additional assumptions. In 2010 the 
Hypocoercivity of the relativistic Boltzmann and the relativistic Landau equations was 
proven in [39], by Yang and Yu, including the optimal large time decay rates in R3

x. 
In 2012, Yang and Yu, in [40] the global in time classical solutions to the relativistic 
Landau-Maxwell system in the whole space R3

x was proven for initial data which is 
nearby to the relativistic Maxwellian. In 2014 [28] again looked at the Cauchy problem 
for the relativistic Landau-Maxwell system in R3

x. In this paper for nearby Maxwellian 
initial data the optimal large time decay rates were proven. Further see [38]. Then in 
2015 Ha and Xiao in [21] established the L2 stability of the relativistic Landau equation 
and the non-relativistic Landau equation. In 2016 the authors of [29] studied the spectral 
structure of the linearized relativistic Landau equation in R3

x in the L2 space. In 2017 
[26] the authors did a precise spectral analysis of the relativistic Vlasov-Poisson-Landau 
equation in the whole space R3

x and they used that to prove the optimal large time decay 
rates, including lower bounds on the decay rates.

The non-relativistic Landau equation has experienced a much larger amount of math-
ematical study in comparison. We will mention only a small sample of results that are 
closely related to this paper. Arsen’ev and Peskov in 1977 in [2] proved the existence of 
a local in time bounded solution. Then the uniqueness of bounded solutions with the 
Coulomb potential is shown in Fournier [13] in 2010. The uniqueness for soft potentials 
was previously shown in [14] in 2009. In 2002 [19] Guo proved the global existence of 
classical solutions to the spatially dependent Landau equation with nearby Maxwellian 
equilibrium initial data. The large time decay rates were shown in [33]. See also the 
recent developments in [8] which study the case with a mild velocity tail on the initial 
data. Further [6] performs a numerical study on the large time decay rate in terms of 
the 2/3 law as in [34]. See also [20,35].

Now in the spatially homogeneous situation, in [11,12] Desvillettes and Villani proved 
the large data global well-posedness and smoothness of solutions for the Landau equation 
with hard potentials. In [36] Villani proved the existence of weak H-solutions of the spa-
tially homogeneous Landau equation with Coulomb potential in 1998. Then 2015 in [9]
Desvillettes proved an Entropy dissipation estimate for the Landau equation, and used it 
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to conclude that the H-solutions are actually true weak solutions. We use several of the 
methods from [9] in the proofs in this paper, as described in detail below. Further devel-
opments can be found in [10,7]. Also [37] proved Lp estimates for the Landau equation 
with soft potentials. In [1] a priori estimates for the Landau equation with soft potentials 
including the Coulomb case are proven. Recently also [30] proves upper bounds for cer-
tain parabolic equations, including the spatially dependent Landau equation by assuming 
that the local conservation laws are bounded. And [16] proves a Harnack inequality for 
solutions to kinetic Fokker-Planck equations with rough coefficients and applies that to 
the spatially dependent Landau equation to obtain a Cα estimate, assuming that the 
local conservation laws are bounded. In Gualdani-Guillen [18] estimates are proven for 
the homogeneous Landau equation with Coulomb potential.

In the quantum situation, Bagland [3] in 2004 proved large data global well-posedness 
for the Landau-Fermi-Dirac equation for hard potentials. Also a related model problem 
for the Landau equation was introduced in [24], which has been further studied in [17,18].

In the next section we will give an overview of the methods used in our proofs.

1.4. Overview of the proofs

The major new difficulties in the proofs of the Theorems 1 through 4 are largely 
algebraic. In particular the structure of the relativistic Landau kernel (3) with (16) and 
(17) causes several extreme mathematical algebraic difficulties. This is initially seen in 
the proof of Lemma 7 below, where the non-negativity of the kernel (3) is given in two 
proofs. This result is known [25,27]. However our proofs are new, and they shed new light 
on the structure of the relativistic Landau kernel that allows us to perform the analysis 
in later sections.

We start by defining the following quantities ρ and τ by

ρ = p0q0 − p · q − 1 ≥ 0. (14)

τ = p0q0 − p · q + 1. (15)

Then the kernel takes the standard form (3), Φij(p, q) = ΛSij , with

Λ def= (ρ + 1)2

p0q0 (τρ)−3/2
, (16)

Sij def= τρ δij − (pi − qi) (pj − qj) + ρ (piqj + pjqi) . (17)

Here in particular τ = ρ + 2.
Now a crucial point in our analysis is to introduce a new decomposition of Sij in (17)

as a difference of two projections as

Sij = P ij −Aij
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where

Sij = τρδij − (pi − qi) (pj − qj) +
(
p0q0 − p · q − 1

)
(piqj + pjqi) ,

with τρ =
(
(p0q0 − p · q)2 − 1

)
. Here

P ij def=
∣∣q0p− p0q

∣∣2 δij − (
q0pi − p0qi

) (
q0pj − p0qj

)
,

and

Aij def= |p× q|2 δij − |q|2pipj − |p|2qiqj + (p · q) (piqj + pjqi) .

This is shown in (29) and (30). This new complicated decomposition is the heart of our 
first proof of non-negativity of the kernel.

This decomposition is then very helpful in our second proof of non-negativity of the 
kernel, because it enables us to write down the eigenvectors and eigenvalues of the 
relativistic Landau kernel (3) in (33)-(35) as far as we know for the first time. (Note 
that the eigenvalues of the linearized relativistic Landau operator were given in [25], 
however these are very different and they are not for the kernel (3).) This eigenvalue 
decomposition of the kernel (3) directly gives us the second proof of positivity.

Both of these decompositions described above are crucial to our poof of the entropy 
dissipation estimate from Theorem 1. The proof of Theorem 1 otherwise largely uses the 
method from Desvillettes in [10,9]. In particular, we use the knowledge of eigenvalues 
and eigenvectors of the relativistic Landau kernel that comes from our decompositions to 
find the lower bound on Sijξiξj and more generally on the kernel Φijξiξj . This leads to 
an auxiliary lower bound on the entropy dissipation D(f) that will be crucially used later 
in the proof. In order to obtain this auxiliary lower bound we use the representation of 
the entropy dissipation presented in (28) in Section 2.3, namely the entropy dissipation 
can be expressed as an integral of Φijξiξj against f(p)f(q) with the particular choice of 
ξ = ∂pf(p)

f − ∂qf(q)
f . Part of this lower bound contains a vector product |(q0p −p0q) × ξ|2, 

which is rewritten as 
∑

|qij |2 with an appropriate choice of qij thanks to the general 
identity |x × y|2 = 1

2
∑3

i,j=1 (xiyj − xjyi)2. The proof proceeds by calculating three 
expressions

ˆ
qij(p, q)φ( |q|

2

2 ) f(q) dq,
ˆ

qij(p, q)
qi
q0 φ( |q|

2

2 ) f(q) dq,
ˆ

qij(p, q)
qj
q0 φ( |q|

2

2 ) f(q) dq,

where φ( |q|
2

2 ) is a given test function. These three expressions can be thought of as 
a 3 × 3 system of equations with the unknowns pi

0
∂pj

f (p) − pj
0
∂pi

f (p), ∂pi
f (p) and 
p f p f f
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∂pj
f

f (p). Now we use Cramer’s rule to express ∂pi
f

f (p) (one of the unknowns of the 
system). From there, one uses elementary inequalities to obtain a pointwise upper bound 

of 
∣∣∣∂pi

f

f (p)
∣∣∣2 and consequently of the integral 

´
f(p) 

∣∣∣∂pi
f

f (p)
∣∣∣2 dp. From that point using 

the Cauchy-Schwartz inequality on one of the terms will lead to the expression of the 
auxiliary lower bound on the entropy dissipation that can then be bounded from above 
by the entropy dissipation.

Lemma 10 provides the key estimate needed to conclude Theorem 1, namely a lower 
bound on a determinant Δφ(f) given in the statement of the lemma. The inverse of this 
determinant (and thus the need for the lower bound) naturally comes into play due to 
the use of Cramer’s rule in the proof of Theorem 1. This determinant resembles the ones 
appearing in Desvillettes [10,9]. The difference is that the entries in our determinant are 
relativistic quantities qi

q0 (as opposed to simply qi). This results in a series of extremely 
complicated algebraic expressions.

Here we summarize the challenges and strategy. The idea is to diagonalize the deter-
minant that is showing up inside the integral defining Δφ(f) to get a lower bound on 
Δφ(f) in terms of the following quantity

sup
{λ2+μ2+ν2=1}

ˆ

B(0,R)

f(q)χ∣∣∣λ+μ
qi
q0 +ν

qj

q0

∣∣∣<ε
dq.

Using the fact that entropy is bounded by H and that the domain is bounded, for any 
constant A this integral can be estimated by

H

lnA
+ A sup

{λ2+μ2+ν2=1}
Y{λ,μ,ν,R,ε},

where

Y{λ,μ,ν,R,ε} =
ˆ

B(0,R)

χ∣∣∣λ+μ
q2
q0 +ν

q3
q0

∣∣∣<ε
dq =

ˆ

B(0,R)

χ∣∣∣λ̃+μ̃
q2
q0

∣∣∣<ε
dq,

for λ2 + μ2 + ν2 = 1 and λ̃2 + μ̃2 = 1. The second equality can be obtained by rotating 
the coordinate system. Estimating 

´
B(0,R) χ

∣∣∣λ̃+μ̃
q2
q0

∣∣∣<ε
dq is quite complex because the 

variable q appears via q0 in the denominator of the expression defining the domain of 
the characteristic function. The way we overcome this difficulty is by chipping away the 
values of |μ| for which this integral is zero in a series of splitting regimes. Eventually, 
one shows that the set {q :

∣∣∣λ + μ q2
q0

∣∣∣ ≤ ε} ∩B(0, R) is non-empty only when

|μ| ≥
√

1 + δ
,
2
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where δ = δ(R) is a fixed number depending on the radius R. This bound on μ will be 

important in that it guarantees that the expressions −ε
|μ| ±

√
1
μ2 − 1 and ε

|μ| ±
√

1
μ2 − 1

are both less than one. These expressions show up in the following representation of the 
set {q :

∣∣∣λ + μ q2
q0

∣∣∣ ≤ ε}

{
q : −ε

|μ| ±
√

1
μ2 − 1 <

q2
q0 <

ε

|μ| ±
√

1
μ2 − 1

}
,

which is then used to conclude that this set lies between two rotating curves, which in 
turn is used to obtain an estimate on Y{λ,μ,ν,R,ε}, and thus the determinant Δφ(f).

We will now say few words on the proof of Theorem 4. The propagation of moments 
is proven by inductively invoking Lemma 15, which says that if the moment of order 
2k − 1 is finite up to a time T (i.e. Mk− 1

2
(f, T ) < ∞) and if the moment of order 2k is 

finite initially, then the moment of order 2k stays finite up to the time T . To prove this 
lemma, one uses the weak formulation of the relativistic Landau equation with the test 
function which is obtained by a smooth cutoff of the polynomial weight. The right-hand 
side of the weak formulation with this particular test function is then broken into three 
subdomains depending on the size of p0 and q0. Depending on the case, one then uses 
Young and Hölder inequalities, where the parameters of the corresponding Lp spaces are 
chosen so that terms can be estimated by 

´ T

0 ‖f(t, ·)‖L3(R3)dt, which is a finite quantity 
thanks to the entropy dissipation estimate from Theorem 1 and the Sobolev embedding.

Note that in Section 3.2 we prove uniform upper and lower bounds for the diffusion 
matrix aij(h) in (24) assuming only that the conserved quantities are bounded.

Lastly in Section 5, we prove the global existence of a weak solution to the relativistic 
Landau equation. The construction is rather standard along the lines of [36,9,3]. In the 
next section we will outline the rest of this article.

1.5. Outline of the remainder of this article

The rest of this paper is organized as follows. In Section 2 we explain the detailed 
complex structure of the relativistic Landau collision operator (2) and its kernel (3). In 
particular we will derive the weak formulation of the relativistic Landau equation. And we 
reformulate the entropy dissipation (8) as in (28). After that we give two direct proofs of 
the pointwise non-negativity of the kernel. Further we explain how to express the collision 
operator in non-conservative form. Then in Section 3 we prove the entropy dissipation 
estimate from Theorem 1. Following that in Section 4 we prove the propagation of high 
moment bounds. Lastly in Section 5 we prove the global existence of a true weak solution 
to the relativistic Landau equation.
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2. Structure of the relativistic Landau equation

In this section we explain in depth the structure of the relativistic Landau collision 
operator (1). In Section 2.1 we explain the conservative form of the collision operator. 
Then in Section 2.2 we will derive the weak form of the relativistic Landau equation. 
Then in Section 2.3 we discuss the entropy dissipation estimate. After that in Section 2.4, 
we will give two direct proofs of the non-negativity of the kernel, as in (19). Then 
finally in Section 2.5 we explain the non-conservative form of the relativistic Landau 
operator.

It is known that the collision kernel Φ, from (3) with (16) and (17), is a non-negative 
matrix satisfying

3∑
i=1

Φij(p, q)
(
qi
q0 − pi

p0

)
=

3∑
j=1

Φij(p, q)
(
qj
q0 − pj

p0

)
= 0, (18)

and [25,27]

∑
i,j

Φij(p, q)wiwj > 0 if w �= d

(
p

p0 − q

q0

)
∀d ∈ R. (19)

This property represents the physical assumption that grazing collisions dominate. In 
particular the momentum of colliding particles is orthogonal to their relative velocity. 
This is also a key property used to derive the conservation laws and the entropy dissi-
pation.

It follows from (18) that for any smooth decaying function g(p) we have

ˆ

R3

dp

( 1
p
p0

)
C(g, g)(p) = 0.

In particular, after integrating by parts and using (18), we have

ˆ

R3

dp p0C(g, g)(p) = −1
2

ˆ

R3

dp
pi
p0

ˆ

R3

Φij(p, q)
{
g(q)∂pj

g(p) − ∂qjg(q)g(p)
}
dq

− 1
2

ˆ

R3

dq
qi
q0

ˆ

R3

Φij(p, q)
{
g(p)∂qjg(q) − ∂pj

g(p)g(q)
}
dp

= −1
2

ˆ

R3

dp

ˆ

R3

(
pi
p0 − qi

q0

)
Φij(p, q)

{
g(q)∂pj

g(p) − ∂qjg(q)g(p)
}
dq

= 0. (20)
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The other cases follow similarly. Then these identities lead directly to the conservation 
laws above (7).

2.1. Landau operator in conservative form

In this section we will express the Landau operator in conservative form. First we 
recall a lemma from [32]:

Lemma 5. We compute a sum of first derivatives in q of (3) as

∂qjΦij(p, q) = 2Λ(p, q) ((ρ + 1)pi − qi) . (21)

This term has a second order singularity at p = q. We further compute a sum of (21)
over first derivatives in p as

∂pi
∂qjΦij(p, q) = 4(ρ + 1)

p0q0 (τρ)−1/2 ≥ 0, p �= q.

This term has a first order singularity.

Note that there is actually a Dirac mass hiding in ∂pi
∂qjΦij(p, q) when p = q as can 

be seen in Lemma 9, which is proven in [32].

Remark 6. We note that the above is very different from the non-relativistic theory. The 
following non-relativistic Landau collision operator (with normalized constants) is given 
by

Ccl(G,F ) def= ∇v ·

⎧⎨
⎩

ˆ

R3

φ(v − v′) {∇vG(v)F (v′) −G(v)∇v′F (v′)} dv′
⎫⎬
⎭ .

The non-negative 3 × 3 matrix is

φij(v) =
{
δij −

vivj
|v|2

}
1
|v| .

Then the derivatives of the classical kernel are as follows

∂vi∂v′
j
φij(v − v′) = 0, v �= v′.

This also contains a delta function when v = v′.

We now define the notation

Φij(h) = Φij(h)(p) def=
ˆ

Φij(p, q)h(q)dq. (22)

R3
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We further use this notation as

(∂pi
Φij)(h)(p) def=

ˆ

R3

∂pi
Φij(p, q)h(q)dq.

Now directly from the collision operator from (2) with kernel (3), (16) and (17) we 
can read off the expression of the Landau operator in conservative form

C(h, g)(p) = ∂pi

(
aij(h)∂pj

g(p) + (∂qjΦij)(h)g(p)
)
. (23)

Here we use the notation:

aij(h) = aij(h)(p) def=
ˆ

R3

Φij(p, q)h(q)dq, (24)

and we recall (22) and (21).

2.2. Weak formulation of the relativistic Landau equation

We will now derive the weak formulation of the relativistic Landau collision opera-
tor (2). For a test function φ(p), after integration by parts, using (p, q) symmetry we 
have

ˆ

R3

C(h, g)(p)φ(p)dp = −
ˆ

R3

ˆ

R3

Φij(p, q)
{
h(q)∂pj

g(p) − ∂qjh(q)g(p)
}
∂pi

φ(p)dqdp

= −1
2

ˆ

R3

ˆ

R3

Φij(p, q)
{
h(q)∂pj

g(p) − ∂qjh(q)g(p)
}
∂pi

φ(p)dqdp (25)

−1
2

ˆ

R3

ˆ

R3

Φij(p, q)
{
h(p)∂qjg(q) − ∂pj

h(p)g(q)
}
∂qiφ(q)dqdp.

Then after further integration by parts
ˆ

R3

C(h, g)(p)φ(p)dp = 1
2

ˆ

R3

ˆ

R3

Φij(p, q)h(q)g(p)
(
∂pj

∂pi
φ(p) + ∂qj∂qiφ(q)

)
dqdp

−1
2

ˆ

R3

ˆ

R3

h(p)g(q)
(
∂qjΦij(p, q)∂pi

φ(p) + ∂pj
Φij(p, q)∂qiφ(p)

)
dqdp

+1
2

ˆ

R3

ˆ

R3

h(p)g(q)
(
∂pj

Φij(p, q)∂pi
φ(p) + ∂qjΦij(p, q)∂qiφ(p)

)
dqdp.

This is a weak formulation of the Landau operator, but it can be further simplified.
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By collecting terms, we will use the following weak formulation:

ˆ

R3

C(h, g)(p)φ(p)dp

= 1
2

ˆ

R3

ˆ

R3

h(q)g(p)Φij(p, q)
(
∂pj

∂pi
φ(p) + ∂qj∂qiφ(q)

)
dqdp

+
ˆ

R3

ˆ

R3

h(p)g(q)
(
∂pj

Φij(p, q) − ∂qjΦij(p, q)
)
(∂pi

φ(p) − ∂qiφ(q)) dqdp. (26)

This will be useful for studying the weak formulation of approximate problem later on 
(105). Note that there is additional cancellation in ∂pj

Φij(p, q) − ∂qjΦij(p, q).
More precisely, in the specific case of (3), from (21), we have the simplification

∂qjΦij(p, q) = 2Λ(p, q) ((ρ + 1)pi − qi) , ∂pj
Φij(p, q) = 2Λ(p, q) ((ρ + 1)qi − pi) .

We plug this in to obtain that the simplified weak form of the relativistic Landau operator 
is
ˆ

R3

C(h, g)(p)φ(p)dp

= 1
2

ˆ

R3

ˆ

R3

h(q)g(p)Φij(p, q)
(
∂pj

∂pi
φ(p) + ∂qj∂qiφ(q)

)
dqdp

+
ˆ

R3

ˆ

R3

h(p)g(q)Λ(p, q)(ρ + 2) (qi − pi) (∂pi
φ(p) − ∂qiφ(q)) dqdp. (27)

Notice that both integrals have a first order singularity in the integrand when p = q.

2.3. Entropy dissipation for the relativistic Landau equation

In this section we derive several representations for the entropy dissipation of the 
relativistic Landau equation. We recall that the entropy dissipation is given by (8).

We plug (8) into (25) to formally obtain

D(f) = 1
2

ˆ

R3

ˆ

R3

Φij(p, q)
{
f(q)∂pj

f(p) − ∂qjf(q)f(p)
} ∂pi

f(p)
f(p) dqdp

+1
2

ˆ

R3

ˆ

R3

Φij(p, q)
{
f(p)∂qjf(q) − ∂pj

f(p)f(q)
} ∂qif(q)

f(q) dqdp.

We conclude the following formula for the entropy dissipation
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1
2

ˆ

R3

ˆ

R3

f(p)f(q)Φij(p, q)
(
∂pj

f

f
(p) −

∂qjf

f
(q)
)(

∂pi
f

f
(p) − ∂qif

f
(q)
)
dqdp

= 2
ˆ

R3

ˆ

R3

Φij(p, q)
((

∂pj
− ∂qj

)√
f(p)f(q)

)(
(∂pi

− ∂qi)
√
f(p)f(q)

)
dqdp

= D(f) ≥ 0.

Indeed we can take the following as the definition of D(f):

2
ˆ

R3

ˆ

R3

Φij(p, q)
((

∂pj
− ∂qj

)√
f(p)f(q)

)(
(∂pi

− ∂qi)
√
f(p)f(q)

)
dqdp

def= D(f). (28)

This expression (28) will be used in the construction of weak solutions.

2.4. Direct proof of pointwise non-negativity of the Kernel

In this subsection we would like to give an alternative direct proof of (19). Note that 
there is no proof given in [27] although the result is stated. And the proof of (19) in 
[25] uses a complicated change of variable. Here we give two direct proofs that can be 
expressed in the original coordinate system. In particular we will see that the details of 
both proofs are useful in the later sections of the paper.

Lemma 7. For Φij defined in (3), we have Φijξiξj ≥ 0.

We will give two different direct proofs of this lemma. The reason is because they give 
two different useful expressions for Φijξiξj .

To begin a discussion of the first proof, we notice first that we can decompose Sij

from (3) and (17) as follows

Sij = P ij −Aij

where recall from (17) that we have

Sij = τρδij − (pi − qi) (pj − qj) +
(
p0q0 − p · q − 1

)
(piqj + pjqi) ,

where τρ =
(
(p0q0 − p · q)2 − 1

)
. Then further

P ij def=
∣∣q0p− p0q

∣∣2 δij − (
q0pi − p0qi

) (
q0pj − p0qj

)
, (29)

and
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Aij def= |p× q|2 δij − |q|2pipj − |p|2qiqj + (p · q) (piqj + pjqi) . (30)

This can be seen by direct pointwise comparison. In particular we observe that

τρ = (p0q0 − p · q)2 − 1 =
∣∣q0p− p0q

∣∣2 − |p× q|2 . (31)

We will study P ij − Aij , this will be a crucially important expression in several places 
during the rest of this paper. In particular, recalling (17), then the first proof below will 
provide us with the formula

Sijξiξj = |(q0p− p0q) × ξ|2 − 1
|ξ|2 |(p× ξ) × (q × ξ)|2 ≥ 0. (32)

First proof of Lemma 7. Because of the structure of (3), it will be sufficient to prove the 
pointwise identity (32) and the positivity of Sijξiξj .

To establish the identity (32), first of all clearly

P ijξiξj =
∣∣q0p− p0q

∣∣2 |ξ|2 − ((
q0p− p0q

)
· ξ
)2 = |(q0p− p0q) × ξ|2.

Then we will also show that Aijξiξj = |(p × ξ) × (q× ξ)|2, however this is more involved. 
Note that directly

Aijξiξj = |p× q|2 |ξ|2 − |q|2(p · ξ)2 − |p|2(q · ξ)2 + 2(p · q)(p · ξ)(q · ξ)
= |p|2|q|2|ξ|2

(
sin2 θ1 − cos2 θ2 − cos2 θ3 + 2 cos θ1 cos θ2 cos θ3

)
.

Here for θi ∈ [0, π] and (i = 1, 2, 3), we used the definitions

p · q = |p||q| cos θ1, p · ξ = |p||ξ| cos θ2, q · ξ = |q||ξ| cos θ3.

Then further define the angle ψ ∈ [0, π] by

|p× ξ||q × ξ| cosψ def= (p× ξ) · (q × ξ).

Then by the vector identity (A × B) · (C ×D) = (A · C)(B ·D) − (B · C)(A ·D) with 
A = p, C = q, B = D = ξ we can deduce the angle identity

sin θ2 sin θ3 cosψ = cos θ1 − cos θ2 cos θ3.

Now we calculate using only trig identities that

A def= sin2 θ1 − cos2 θ2 − cos2 θ3 + 2 cos θ1 cos θ2 cos θ3

= 1 − cos2 θ1 − cos2 θ2 − cos2 θ3 + 2 cos θ1 cos θ2 cos θ3

= 1 − (sin θ2 sin θ3 cosψ + cos θ2 cos θ3)2 − cos2 θ2 − cos2 θ3
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+ 2 (sin θ2 sin θ3 cosψ + cos θ2 cos θ3) cos θ2 cos θ3

= 1 − sin2 θ2 sin2 θ3 cos2 ψ + cos2 θ2 cos2 θ3 − cos2 θ2 − cos2 θ3

= sin2 θ2 sin2 θ3 − sin2 θ2 sin2 θ3 cos2 ψ = sin2 θ2 sin2 θ3 sin2 ψ.

We use this calculation to obtain the desired expression

Aijξiξj = |p|2|q|2|ξ|2A = |p|2|q|2|ξ|2 sin2 θ2 sin2 θ3 sin2 ψ = 1
|ξ|2 |(p× ξ) × (q × ξ)|2.

One could also establish this equality using vector identities.
Now that we have the identity (32), we will finish the proof by showing that the 

expression is positive. We expand it out and use the angles defined previously

Sijξiξj = |(q0p− p0q) × ξ|2 − 1
|ξ|2 |(p× ξ) × (q × ξ)|2

= (q0)2|p× ξ|2 + (p0)2|q × ξ|2 − 2p0q0|p× ξ||q × ξ| cosψ − 1
|ξ|2 |p× ξ|2|q × ξ|2 sin2 ψ

≥ (q0)2|p× ξ|2 cos2 ψ + (p0)2|q × ξ|2 − 2p0q0|p× ξ||q × ξ| cosψ

=
(
(q0)|p× ξ| cosψ − (p0)|q × ξ|

)2 ≥ 0.

Above we used the inequality 1
|ξ|2 |p × ξ|2|q × ξ|2 sin2 ψ ≤ (q0)2|p × ξ|2 sin2 ψ. �

For the second proof of Lemma 7 we will look at the eigenvalues. Since by (18) the 

null space of Sij is a span of vector 
(

p
p0 − q

q0

)
, the first eigenvalue of Sij is zero with 

eigenvector 
(

p
p0 − q

q0

)
. The matrix Sij is real-valued and symmetric, so its eigenvectors 

are orthogonal. One can then see that p × q (which is orthogonal to both p and q, and 
thus to v1) is another eigenvector (when p and q are not co-linear). Its eigenvalue can be 
calculated to be λ2 = |q0p − p0q|2 − |p × q|2.

To find the third eigenvector we will need to use some thoughtful guesswork. One 
can look for it in the form of a linear combination v3 = Ap + Bq. As such it will 
automatically be orthogonal to v2, so one just needs to impose the requirement that 
it is orthogonal to v1. After some calculation, this leads to the third eigenvector being 
expressed as 

(
q0(p · q) − p0|q|2

)
p +

(
p0(p · q) − q0|p|2

)
q and the corresponding eigenvalue 

λ3 = |q0p − p0q|2. In summary, the set of (normalized) eigenvectors and eigenvalues of 
Sij is the following:

v1 =
p
p0 − q

q0

| p
p0 − q

q0 |
, λ1 = 0, (33)

v2 = p× q
, λ2 = |q0p− p0q|2 − |p× q|2, (34)
|p× q|
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v3 =
(
q0(p · q) − p0|q|2

)
p +

(
p0(p · q) − q0|p|2

)
q

| (q0(p · q) − p0|q|2) p + (p0(p · q) − q0|p|2) q| , λ3 = |q0p− p0q|2. (35)

We will directly use these eigenvalues and eigenvectors to establish the second proof of 
Lemma 7.

Second proof of Lemma 7. Eigenvectors v1, v2, v3 form an orthonormal basis, so any vec-
tor ξ can be represented as:

ξ = (ξ · v1)v1 + (ξ · v2)v2 + (ξ · v3)v3.

Therefore,

Sijξiξj = λ1(ξ · v1)2 + λ2(ξ · v2)2 + λ3(ξ · v3)2

= τρ

(
ξ · (p× q)

|p× q|

)2

+ |p0q − q0p|2 (ξ · v3)2 , (36)

where we used that λ1 = 0 and λ2 = τρ by (31). Clearly (36) is non-negative. �
Remark 8. Here we point out that the subtracted expression in (32) is not lower order. 
In particular if we choose ξ orthogonal to both p and q with |ξ| = 1 then as in (29) and 
(30) we have that Sijξiξj = |q0p − p0q|2 − |p × q|2. Further for any small ε > 0 consider

B
def= (1 − ε)|q0p− p0q|2 − |p× q|2.

We will find conditions where B < 0.
Suppose that |p| = |q| then B = (1 − ε) 

(
2(p0)2|p|2 − 2(p0)2|p|2 cos θ

)
− |p|4 sin2 θ. We 

can calculate that B = |p|2A2(θ) +|p|4A1(θ) for A1 and A2 that do not depend upon p. In 
particular, after some calculation, A1(θ) = 2 sin2(θ/2) (1 − cos θ − 2ε). Then A1(θ) < 0
if 1 − 2ε < cos θ < 1, and B < 0 if |p| is large enough.

Note that we effectively ignore the case when p and q are co-linear, since it is a measure 
zero set for fixed p or q. Even so, it is shown in [25], that when p = λq for some λ ∈ R

then the Landau kernel (3) is a multiple of the non-relativistic kernel φij from Remark 6.

2.5. Landau operator in non-conservative form

In this section, we will express the Landau operator (2) in non-conservative form. We 
don’t actually use these results in the rest of the paper but we think it is important to 
explain the complicated computation. First, we expand the collision operator from (2)
with kernel (3), (16) and (17) where we use the Einstein summation convention
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C(h, g)(p) = ∂pi

ˆ

R3

Φij(p, q)
{
h(q)∂pj

g(p) − g(p)∂qjh(q)
}
dq

=

⎛
⎝ ˆ

R3

Φij(p, q)h(q)dq

⎞
⎠ ∂pi

∂pj
g(p) + ∂pi

⎛
⎝ ˆ

R3

Φij(p, q)h(q)dq

⎞
⎠ ∂pj

g(p)

−

⎛
⎝ ˆ

R3

Φij(p, q)∂qjh(q)dq

⎞
⎠ ∂pi

g(p) − ∂pi

⎛
⎝ ˆ

R3

Φij(p, q)∂qjh(q)dq

⎞
⎠ g(p).

Note that these are not exactly convolutions.
Now we recall a result from [32]:

Lemma 9. Given a smooth scalar function G(q) which decays rapidly at infinity, we have

−∂pi

ˆ

R3

Φij(p, q)∂qjG(q)dq = 4
ˆ

R3

(ρ + 1)
p0q0 {τρ}−1/2

G(q)dq

+ κ(p)G(p),

where

κ(p) = 27/2πp0
π̂

0

(
1 + |p|2 sin2 θ

)−3/2 sin θdθ. (37)

For the last term we use Lemma 9 to obtain

−∂pi

⎛
⎝ ˆ

R3

Φij(p, q)∂qjh(q)dq

⎞
⎠ = 4

ˆ

R3

(ρ + 1)
p0q0

h(q)
√
τρ

dq + κ(p)h(p)

with (37). Notice further that

(
∂pi

+ q0

p0 ∂qi

)(
p0q0 − p · q

)
= pi

p0 q
0 − qi + q0

p0

(
qi
q0 p

0 − pi

)
= 0. (38)

This is a key observation from [32] which allows us do analysis on the relativistic Landau 
collision operator.

For the terms where the derivative is on the kernel, terms such as (16) and (17), we 
use (38) and the following operator

Θi
def=
(
∂pi

+ q0

p0 ∂qi

)
.

Then for the coefficient of the second term we have
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∂pi

⎛
⎝ ˆ

R3

Φij(p, q)h(q)dq

⎞
⎠ =

ˆ

R3

ΘiΦij(p, q)h(q)dq −
ˆ

R3

q0

p0 ∂qiΦ
ij(p, q)h(q)dq.

Notice that, using the notation from (22), we can interchange i and j as

(Φij)(∂qjh)(q)(∂pi
g)(p) = (Φij)(∂qih)(q)(∂pj

g)(p),

since the matrix Φij is symmetric.
Then collecting the second and third terms together we have

∂pi

⎛
⎝ ˆ

R3

Φij(p, q)h(q)dq

⎞
⎠ ∂pj

g(p) −

⎛
⎝ ˆ

R3

Φij(p, q)∂qih(q)dq

⎞
⎠ ∂pj

g(p)

=

⎛
⎝ ˆ

R3

ΘiΦij(p, q)h(q)dq

⎞
⎠ ∂pj

g(p)

+

⎛
⎝ ˆ

R3

(
1 − q0

p0

)
∂qiΦij(p, q)h(q)dq

⎞
⎠ ∂pj

g(p).

The point of this decomposition is that, fortunately, these integrands, ΘiΦij(p, q) and (
1 − q0

p0

)
∂qiΦij(p, q), have the same order singularity as Φij itself.

Then we define the following operators (24):

aij(h) = aij(h)(p) def=
ˆ

R3

Φij(p, q)h(q)dq,

bj(h) = bj(h)(p) def=
ˆ

R3

(
ΘiΦij(p, q) +

(
1 − q0

p0

)
∂qiΦij(p, q)

)
h(q)dq (39)

and

c(h) = c(h)(p) def= 4
ˆ

R3

1
p0q0

ρ + 1
√
ρτ

h(q)dq + κ(p)h(p). (40)

We will further simplify the expression in (39), regarding this expression we have 
directly that

ΘiΦij(p, q) +
(

1 − q0

p0

)
∂qiΦij(p, q) = (∂pi

+ ∂qi) Φij(p, q).

Notice from (21) and symmetry that
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∂qiΦij(p, q) = 2Λ(p, q) ((ρ + 1)pj − qj) , ∂pi
Φij(p, q) = 2Λ(p, q) ((ρ + 1)qj − pj) .

Then from the previous two expressions we obtain

(∂pi
+ ∂qi)Φij(p, q) = 2Λ(p, q)ρ (pj + qj) ,

which also has a first order singularity. We conclude that (39) can be written as

bj(h) = 2
ˆ

R3

Λ(p, q)ρ (pj + qj)h(q)dq. (41)

This is the main expression that we will use for bj .
Now we express the Landau operator in non-conservative form as

C(h, g)(p) = aij(h)∂pi
∂pj

g(p) + bj(h)∂pj
g(p) + c(h)g(p). (42)

Here we use (24), (41) and (40).
In the next section we will prove the main entropy dissipation estimate.

3. Entropy dissipation estimate

Our goal in this section is to prove the Theorem 1 which grants the uniform lower 
bound on the entropy dissipation. We use the strategy from [10] and [9]. The main 
new difficulties are algebraic and have to do with the extremely complicated relativistic 
algebraic structure.

The key estimate in proving the entropy dissipation estimate is the following lower 
bound of the determinant Δφ(f) defined below.

Lemma 10. Let f be a non-negative function in L1
1(R3), and let φ be a C1 function that 

decays sufficiently fast at infinity so that the integrals
ˆ

R3

φ2
(
|q|2
2

)
f(q)(q0)2dq,

ˆ

R3

φ′
(
|q|2
2

)
f(q)q0dq,

are finite. In particular, φ(x), φ′(x) ≤ C(1 + |x|)−k for k ≥ 10 is sufficient. Assume 
H(f) ≤ H. Then, for all i, j ∈ {1, 2, 3}, with i �= j, we have

Δφ(f) def= det

⎛
⎜⎜⎝

ˆ

R3

φ( |q|
2

2 )f(q)

⎡
⎢⎢⎣

1 qi
q0

qj
q0

qi
q0

(
qi
q0

)2
qiqj
(q0)2

qj
q0

qiqj
(q0)2

(
qj
q0

)2

⎤
⎥⎥⎦dq

⎞
⎟⎟⎠

≥ ε6
4

⎛
⎝1

4

ˆ
f(q)dq

⎞
⎠

3(
inf

B(0,R)
φ

(
|q|2
2

))3

,

R3
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where

ε4
def= inf

{
1
2 , ε0(R), ε1(R), ε2(R), ε3(M0(f),M1(f), H)

}
> 0,

R
def= sup

⎛
⎝1,

√
16
(´

R3 f(q)q0dq´
R3 f(q)dq

)2

− 1

⎞
⎠

ε0(R) def= 1
4

(
1 − R√

1 + R2

)
,

ε1(R) def= 1
4

(√
1 + 4R2

3 + 4R2 − R√
1 + R2

)
,

ε2(R) def=
1 −

√
1+4R2

2+4R2
√

2
,

ε3(M0(f),M1(f), H) def=

1
4240

⎡
⎣sup

⎛
⎝1,

√(´
R3 f(q)q0dq´
R3 f(q)dq

)2

− 1

⎞
⎠
⎤
⎦
−6

exp
(

−4H´
R3 f(q)dq

)⎛⎝ ˆ

R3

f(q)dq

⎞
⎠ .

Proof of Lemma 10. Define

B
def=

⎡
⎢⎢⎣

1 qi
q0

qj
q0

qi
q0

(
qi
q0

)2
qiqj
(q0)2

qj
q0

qiqj
(q0)2

(
qj
q0

)2

⎤
⎥⎥⎦ .

Then,

Δφ(f) = detG, (43)

where G is the following matrix

G =
ˆ

R3

φ( |q|
2

2 )f(q)B dq. (44)

Since G is a symmetric and real-valued matrix, it is diagonalizable by an orthonormal 
matrix O so that

OTGO =
[
e1 0 0
0 e2 0
0 0 e3

]
,

where the orthonormal matrix O can be represented as



1162 R.M. Strain, M. Tasković / Journal of Functional Analysis 277 (2019) 1139–1201
O =
[
λ1 λ2 λ3
μ1 μ2 μ3
ν1 ν2 ν3

]
,

where λ2
l + μ2

l + ν2
l = 1, for l = 1, 2, 3.

Therefore,

OTGO =
[
e1 0 0
0 e2 0
0 0 e3

]
= OT

⎛
⎝ ˆ

R3

φ( |q|
2

2 )f(q)B dq

⎞
⎠O

=
ˆ

R3

φ( |q|
2

2 )f(q)OTBO dq.

Therefore,

detG = det(OTGO)

= e1 e2 e3

=
3∏

k=1

ˆ

R3

φ

(
|q|2
2

)
f(q) (OTBO)kk dq. (45)

Notice that the matrix B can be represented as

B =

⎡
⎢⎣

1
qi
q0

qj
q0

⎤
⎥⎦ [1 qi

q0
qj
q0

]
,

which implies

OTBO

=
[
λ1 μ1 ν1
λ2 μ2 ν2
λ3 μ3 ν3

]⎡⎢⎣
1
qi
q0

qj
q0

⎤
⎥⎦ [1 qi

q0
qj
q0

] [λ1 λ2 λ3
μ1 μ2 μ3
ν1 ν2 ν3

]

=

⎡
⎢⎢⎣
λ1 μ1

qi
q0 ν1

qj
q0

λ2 μ2
qi
q0 ν2

qj
q0

λ3 μ3
qi
q0 ν3

qj
q0

⎤
⎥⎥⎦ [λ1 + μ1

qi
q0 + ν1

qj
q0 λ2 + μ2

qi
q0 + ν2

qj
q0 λ3 + μ3

qi
q0 + ν3

qj
q0

]
,

and so,

(OTBO)kk =
(
λk + μk

qi
q0 + νk

qj
q0

)2

.
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Recalling (45), we now have

detG =
3∏

k=1

ˆ

R3

φ( |q|
2

2 )f(q)
(
λk + μk

qi
q0 + νk

qj
q0

)2

dq

≥

⎛
⎝ inf

{λ2+μ2+ν2=1}

ˆ

R3

φ( |q|
2

2 )f(q)
(
λ + μ

qi
q0 + ν

qj
q0

)2

dq

⎞
⎠

3

. (46)

Therefore, for any R > 0 and ε ∈ (0, 12 )

Δφ(f) ≥

⎛
⎝ inf

{λ2+μ2+ν2=1}

ˆ

R3

φ

(
|q|2
2

)
f(q)

(
λ + μ

qi
q0 + ν

qj
q0

)2

dq

⎞
⎠

3

≥ ε6

⎛
⎝ inf

{λ2+μ2+ν2=1}

ˆ

R3

φ

(
|q|2
2

)
f(q)χ∣∣∣λ+μ

qi
q0 +ν

qj

q0

∣∣∣≥ε
dq

⎞
⎠

3

≥ ε6
(

inf
B(0,R)

φ

(
|q|2
2

))3

·

⎛
⎜⎝ ˆ

B(0,R)

f(q)dq − sup
{λ2+μ2+ν2=1}

ˆ

B(0,R)

f(q)χ∣∣∣λ+μ
qi
q0 +ν

qj

q0

∣∣∣<ε
dq

⎞
⎟⎠

3

. (47)

The first of the two integrals can be estimated as follows

ˆ

B(0,R)

f(q)dq ≥
ˆ

R3

f(q)dq − 1√
1 + R2

ˆ

R3

f(q)q0dq. (48)

For the second integral, fix any A > 1 and split the domain into two regions - where 
|f | > A and where |f | ≤ A. Using the fact that the entropy is bounded by H on the 
former domain, we have

ˆ

B(0,R)

f(q)χ∣∣∣λ+μ
qi
q0 +ν

qj

q0

∣∣∣<ε
dq ≤ H

lnA
+ A

∣∣∣∣
{∣∣∣∣λ + μ

qi
q0 + ν

qj
q0

∣∣∣∣ < ε

}
∩B(0, R)

∣∣∣∣ . (49)

Combining (48) and (49) with (47), we have that for any A > 1,
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Δφ(f) ≥ ε6
(

inf
B(0,R)

φ

(
|q|2
2

))3

·

⎛
⎝ ˆ

R3

f(q)dq − 1√
1 + R2

ˆ

R3

f(q)q0dq (50)

− H

lnA
− A sup

{λ2+μ2+ν2=1}
Y{λ,μ,ν,R,ε}

)3

,

where

Y{λ,μ,ν,R,ε} =
∣∣∣∣
{
q ∈ R3 :

∣∣∣∣λ + μ
qi
q0 + ν

qj
q0

∣∣∣∣ < ε

}
∩B(0, R)

∣∣∣∣
=

ˆ

B(0,R)

χ∣∣∣λ+μ
qi
q0 +ν

qj

q0

∣∣∣<ε
dq

=
ˆ

B(0,R)

χ∣∣∣λ+μ
q2
q0 +ν

q3
q0

∣∣∣<ε
dq, (51)

where the last equality exploits the fact that i �= j, and is obtained by renaming the 
variables (qk, qi, qj) �→ (q1, q2, q3). Here {k} = {1, 2, 3} \ {i, j}.

Next, by rotating the coordinate system, one can show that

Y{λ,μ,ν,R,ε} =
ˆ

B(0,R)

χ∣∣∣λ̃+μ̃
q2
q0

∣∣∣<ε
dq, (52)

for some λ̃ and μ̃ that satisfy λ̃2 + μ̃2 = 1. Indeed, consider the following rotation matrix

O1
def=

⎛
⎜⎝

1 0 0
0 −μ√

μ2+ν2
−ν√
μ2+ν2

0 −ν√
μ2+ν2

μ√
μ2+ν2

⎞
⎟⎠ . (53)

Note that O1 is symmetric, real-valued and orthogonal matrix, so

O1 = OT
1 = O−1

1 ,

O1O1 = I.

Also note that

(λ μ ν )O1 =
(
λ̃ μ̃ 0

)
,

where

λ̃ = λ, (54)

μ̃ = −
√

μ2 + ν2,
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λ̃2 + μ̃2 = λ2 + μ2 + ν2 = 1.

Recalling that O1O1 = I, from (51), we have

Y{λ,μ,ν,R,ε} =
ˆ

B(0,R)

χ∣∣∣∣∣∣∣∣∣
(
λ μ ν

)
O1O1

⎛
⎜⎜⎜⎝

1
q2
q0

q3
q0

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
<ε

dq

=
ˆ

B(0,R)

χ∣∣∣∣∣∣∣∣∣∣
(
λ̃ μ̃ 0

)
⎛
⎜⎜⎜⎜⎝

1
−μq2−νq3
q0
√

μ2+ν2

−νq2+μq3
q0
√

μ2+ν2

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣
<ε

dq.

Now apply the change of variables p = O1q, that is,

p1 = q1

p2 = −μq2 − νq3√
μ2 + ν2

p3 = −νq2 + μq3√
μ2 + ν2

,

and note that p0 = q0, dp = dq, to conclude

Y{λ,μ,ν,R,ε} =
ˆ

B(0,R)

χ∣∣∣∣∣∣∣∣∣
(
λ̃ μ̃ 0

)
⎛
⎜⎜⎜⎝

1
p2
p0

p3
p0

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
<ε

dp =
ˆ

B(0,R)

χ∣∣∣λ̃+μ̃
q2
q0

∣∣∣<ε
dq

which proves (52). Since the parameter ν no longer plays a role, we introduce the following 
notation:

Y 0
{λ,μ,R,ε}

def=
ˆ

B(0,R)

χ∣∣∣λ+μ
q2
q0

∣∣∣<ε
dq, (55)

where R > 0, λ2 + μ2 = 1 and ε ∈ (0, 12 ).
We now proceed to estimate Y 0

{λ,μ,R,ε}, for R > 0, λ2 + μ2 = 1 and ε ∈ (0, 12 ).

(a) Case: |μ| ≤ 1
2 (1 − ε). Note that for such μ we have

∣∣∣∣λ + μ
q2
q0

∣∣∣∣ ≥ |λ| − |μ| =
√

1 − μ2 − |μ| ≥ 1 − 2|μ| ≥ ε.
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Therefore, if |μ| ≤ 1
2(1 −ε), the set 

{
q :
∣∣∣λ + μ q2

q0

∣∣∣ < ε
}

is empty, that is, Y 0
{λ,μ,R,ε} =

0. So, without the loss of generality, from now on we assume that

|μ| ≥ 1
2(1 − ε) > 1

4 . (56)

(b) Case: 1
4 < |μ| ≤ 1√

2 . We will now show the set 
{
q :
∣∣∣λ + μ q2

q0

∣∣∣ < ε
}
∩ B(0, R) is 

empty for sufficiently small ε. First note that |λ + μ q2
q0 | < ε is equivalent to

−ε

|μ| ±
√

1
μ2 − 1 <

q2
q0 <

ε

|μ| ±
√

1
μ2 − 1. (57)

The function qi �→ qi
q0 is increasing, since its derivative in qi is

q0 − qi
qi
q0

(q0)2 =
1 +

∑
j �=i q

2
j

(q0)3 > 0.

Therefore, for q ∈ B(0, R) we have

−R√
1 + R2

≤ −R√
1 + q2

1 + R2 + q2
3
≤ q2

q0 ≤ R√
1 + q2

1 + R2 + q2
3
≤ R√

1 + R2
. (58)

For q to satisfy both (57) and (58), we need to have (regardless of the sign in (57))

−ε

|μ| +
√

1
μ2 − 1 <

R√
1 + R2

. (59)

However, if we define

ε0(R) def= 1
4

(
1 − R√

1 + R2

)
> 0, (60)

then for any ε ∈ (0, ε0(R)) we have

4ε < 1 − R√
1 + R2

≤
√

1
μ2 − 1 − R√

1 + R2
,

where in the last inequality we used that |μ| ≤ 1√
2 . Therefore,

R√
1 + R2

< −4ε +
√

1
μ2 − 1 <

−ε

|μ| +
√

1
μ2 − 1,

due to (56). This contradicts (59). Therefore, if |μ| ≤ 1√
2 and ε ∈ (0, ε0(R)), then 

Y 0
{λ,μ,R,ε} = 0 since the set 

{
q :
∣∣∣λ + μ q2

q0

∣∣∣ ≤ ε
}
∩B(0, R) is empty. So, from now on 

we can assume that
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|μ| > 1√
2
. (61)

(c) Case 1√
2 < |μ| ≤

√
1+δ
2 , where

δ = δ(R) := 1
2(1 + 2R2) . (62)

Again, we will show that for ε small enough Y 0
{λ,μ,R,ε} = 0. Set

ε1(R) def= 1
4

(√
1 − δ

1 + δ
− R√

1 + R2

)
. (63)

Note that ε1(R) > 0. Indeed,

√
1 − δ

1 + δ
− R√

1 + R2
=
√

4R2 + 1
4R2 + 3 − R√

1 + R2

>

√
4R2

4R2 + 4 − R√
1 + R2

= 0.

Let ε ∈ (0, ε1(R)). Then,

4ε <
√

1 − δ

1 + δ
− R√

1 + R2
≤
√

1
μ2 − 1 − R√

1 + R2
,

where in the second inequality we used that |μ| ≤
√

1+δ
2 . As before, this implies

R√
1 + R2

< −4ε +
√

1
μ2 − 1 <

−ε

|μ| +
√

1
μ2 − 1,

since |μ| > 1√
2 > 1

4 . This again contradicts (59), which implies that the set {
q :
∣∣∣λ + μ q2

q0

∣∣∣ ≤ ε
}
∩B(0, R) is empty. Thus, from now on we can assume that

|μ| >
√

1 + δ

2 . (64)

Note that (64) implies

a
def=
√

1
μ2 − 1 ∈

(
0,
√

1 − δ

1 + δ

)
. (65)



1168 R.M. Strain, M. Tasković / Journal of Functional Analysis 277 (2019) 1139–1201
We are now ready to estimate the size of the set 
{
q :
∣∣∣λ + μ q2

q0

∣∣∣ ≤ ε
}
∩ B(0, R). The 

set 
{
q :
∣∣∣λ + μ q2

q0

∣∣∣ < ε
}

is equivalent to

{
q : −ε

|μ| ±
√

1
μ2 − 1 <

q2
q0 <

ε

|μ| ±
√

1
μ2 − 1

}
,

where the sign + corresponds to the case λ < 0, and sign − corresponds to λ > 0. Let

ε2(R) := 1 −
√

1 − δ√
2

. (66)

Then for ε ∈ (0, ε2(R)), and μ that satisfies (64), we have
∣∣∣∣± ε

|μ| ±
√

1
μ2 − 1

∣∣∣∣ ≤ ε

|μ| +
√

1
μ2 − 1

<
1 −

√
1 − δ√
2

√
2√

1 + δ
+
√

1 − δ

1 + δ

= 1√
1 + δ

< 1. (67)

Let us also introduce the following notation:

c1 = c1(±) def= −ε̃± a = − ε

|μ| ±
√

1
μ2 − 1, (68)

c2 = c2(±) def= ε̃± a = ε

|μ| ±
√

1
μ2 − 1, (69)

where ε̃ = ε
|μ| . In the rest of the proof we do not identify the difference between c1(+) and 

c1(−) or between c2(+) and c2(−) because all the steps in the proof hold independent 
of whether we use the + or the − constant. Therefore we will only use the notation c1
and c2 without the ± in the rest of the proof. The estimate (67) implies that

|c1| <
1√

1 + δ
< 1 and |c2| <

1√
1 + δ

< 1,

which ensures that all the expressions below are well-defined.
The set 

{
q :
∣∣∣λ + μ q2

q0

∣∣∣ < ε
}

lies between the following two surfaces:

q2
q0 = c1,

q2
q0 = c2.

Notice that for c ∈ (−1, 1)
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q2
q0 = c ⇐⇒ q2

2 = c2(1 + q2
1 + q2

2 + q2
3)

⇐⇒ q2
2(1 − c2) = c2(1 + q2

1 + q2
3)

⇐⇒ q2
2 = c2

1 − c2
(1 + q2

1 + q2
3)

⇐⇒ q2 = c√
1 − c2

√
1 + q2

1 + q2
3 ,

where in the last line we use the fact that q2 and c need to have the same sign (since 
q0 is positive). Therefore, the set {q : c1 < q2

q0 < c2} ∩ B(0, R) can also be obtained by 
rotation around the y-axis of the region between the following two curves:

l(x) def= c1√
1 − c21

√
1 + x2

u(x) def= c2√
1 − c22

√
1 + x2.

Hence, its volume can be calculated as follows:

Y 0
{λ,μ,R,ε} = 2π

R̂

0

x (u(x) − l(x)) dx

= 2π
(

c2√
1 − c22

− c1√
1 − c21

) R̂

0

x
√

1 + x2dx

= 2π
(

c2√
1 − c22

− c1√
1 − c21

)
1
3

(
(1 + R2) 3

2 − 1
)
. (70)

Note that

c2√
1 − c22

− c1√
1 − c21

= ε̃± a√
1 − c22

− −ε̃± a√
1 − c21

= (ε̃± a)2 − (−ε̃± a)2√
1 − c22

√
1 − c21

(
(ε̃± a)

√
1 − (−ε̃± a)2 + (−ε̃± a)

√
1 − (ε̃± a)2

)
= ±4aε̃√

1 − c22
√

1 − c21

(
(ε̃± a)

√
1 − (−ε̃± a)2 + (−ε̃± a)

√
1 − (ε̃± a)2

)
= 4aε̃√

1 − c22
√

1 − c21

(
(a± ε̃)

√
1 − (−ε̃± a)2 + (a∓ ε̃)

√
1 − (ε̃± a)2

) .
It is easy to check that

√
1 − (ε̃± a)2 ≥

√
1 − (a + ε̃)2 (71)
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√
1 − (−ε̃± a)2 ≥

√
1 − (a + ε̃)2

Also, we have

(a± ε̃)
√

1 − (−ε̃± a)2 + (a∓ ε̃)
√

1 − (ε̃± a)2 ≥ 2a
√

1 − (a + ε̃)2. (72)

Namely, (72) is in fact stating two inequalities:

(a + ε̃)
√

1 − (a− ε̃)2 + (a− ε̃)
√

1 − (a + ε̃)2 ≥ 2a
√

1 − (a + ε̃)2,

(a− ε̃)
√

1 − (a + ε̃)2 + (a + ε̃)
√

1 − (a− ε̃)2 ≥ 2a
√

1 − (a + ε̃)2.

Both of them are true thanks to (71).
The estimates (71)-(72) imply

c2√
1 − c22

− c1√
1 − c21

≤ 2ε̃ 1
(1 − (a + ε̃)2)

3
2
.

By (67) we know that a + ε̃ < 1√
1+δ

< 1, and by (64) we have that ε̃ = ε
|μ| <

ε
√

2√
1+δ

. 
Therefore,

c2√
1 − c22

− c1√
1 − c21

≤ ε
2
√

2√
1 + δ

(
1 + δ

δ

) 3
2

= 2ε
√

2 (1 + δ)
δ3/2 .

Recalling from (62) that

δ = 1
2 + 4R2 <

1
2 ,

we see that

c2√
1 − c22

− c1√
1 − c21

≤ 3ε
√

2 1
δ3/2 = 3ε

√
2 (2 + 4R2)3/2.

Since R will be chosen so that it is greater than 1, we further have

c2√
1 − c22

− c1√
1 − c21

≤ 3ε
√

2 (6R2)3/2 ≤ 63 εR3.

Therefore, from (70) we have

Y 0
{λ,μ,R,ε} ≤ 42πεR3

(
(1 + R2) 3

2 − 1
)
≤ 1060εR6, (73)

where in the last inequality we use that (1 +R2)3/2 ≤ 8R3 for R ≥ 1. Finally, note that
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sup
{λ2+μ2+ν2=1}

Y{λ,μ,ν,R,ε} = sup
{λ2+μ2=1}

Y 0
{λ,μ,R,ε}.

Therefore, for R ≥ 1 and

0 < ε ≤ inf{1
2 , ε0(R), ε1(R), ε2(R)},

with ε0(R), ε1(R), ε2(R) defined as in (60), (63) and (66), we have

sup
{λ2+μ2+ν2=1}

Y{λ,μ,ν,R,ε} ≤ 1060εR6. (74)

With this estimate we can now find the bound for Δφ(f). Namely, from (50), we now 
have

Δφ(f) ≥ ε6
(

inf
B(0,R)

φ

(
|q|2
2

))3

·

·

⎛
⎝ ˆ

R3

f(q)dq − 1√
1 + R2

ˆ

R3

f(q)q0dq − H

lnA
− 1060εR6A

⎞
⎠

3

.

First, choose R ≥ 1 so that

1√
1 + R2

ˆ

R3

f(q)q0dq ≤ 1
4

ˆ

R3

f(q)dq.

In other words,

R
def= sup

⎛
⎝1,

√
16
(´

R3 f(q)q0dq´
R3 f(q)dq

)2

− 1

⎞
⎠ . (75)

Then, choose A so that

H

lnA
= 1

4

ˆ

R3

f(q)dq.

In other words,

A
def= exp

(
4H´

R3 f(q)dq

)
. (76)

Finally, impose an additional condition on ε so that
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1060εR6A ≤ 1
4

ˆ

R3

f(q)dq,

that is,

ε ≤ ε3(M0(f),M1(f), H),

where

ε3(M0(f),M1(f), H) def=

1
4240

⎡
⎣sup

⎛
⎝1,

√(´
R3 f(q)q0dq´
R3 f(q)dq

)2

− 1

⎞
⎠
⎤
⎦
−6

exp
(

−4H´
R3 f(q)dq

)⎛⎝ ˆ

R3

f(q)dq

⎞
⎠ . (77)

Gathering all conditions on ε, set

ε4
def= inf

{
1
2 , ε0(R), ε1(R), ε2(R), ε3(M0(f),M1(f), H)

}
> 0. (78)

With this choice of R, A, ε we have the following estimate:

Δφ(f) ≥ ε6
4

⎛
⎝1

4

ˆ

R3

f(q)dq

⎞
⎠

3(
inf

B(0,R)
φ

(
|q|2
2

))3

,

which is the desired estimate. �
With the lower bound of Δφ(f) at our disposal, we are now ready to prove Theorem 1. 

The main idea is to consider a 3 × 3 system of equations (83) with three unknowns, one 

of which is ∂pi
f(p)

f(p) . Then Cramer’s rule will be used to express ∂pi
f(p)

f(p) . As a result the 
inverse of Δφ(f) will show up, and that is how Lemma 10 will be used at the very end of 
the proof. But before this system of 3 equations is set up, we first find an auxiliary lower 
bound of the entropy dissipation (81) which exploits the fact that we know eigenvalues 
of the relativistic Landau operator. This auxiliary bound will be used again towards the 
end of the proof after an appropriate application of the Cauchy-Schwartz inequality.

Proof of Theorem 1. In order to control the kernel in the entropy dissipation we recall 
the expansion from (36) and the expression (31). With these, we have the following lower 
bound

Sijξiξj = τρ

(
ξ · (p× q)

)2

+ |p0q − q0p|2 (ξ · v3)2
|p× q|
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≥ τρ

((
ξ · (p× q)

|p× q|

)2

+ (ξ · v3)2
)

= τρ
(
|ξ|2 − (ξ · v1)2

)
= τρ |v1 × ξ|2

=
(∣∣q0p− p0q

∣∣2 − |p× q|2
) ∣∣(q0p− p0q

)
× ξ

∣∣2
|q0p− p0q|2

. (79)

Here we used that the eigenvectors {v1 = (q0p−p0q)
|q0p−p0q| , v2 = (p×q)

|p×q| , v3} from (33)-(35) form 
an orthonormal basis for R3 (when p and q are not colinear). We also used the inequality

∣∣q0p− p0q
∣∣2 ≥

∣∣q0p− p0q
∣∣2 − |p× q|2 = τρ.

Then more generally we have the following lower bound for (3) with (16) and (17) as

Φijξiξj ≥ Λτρ
∣∣(q0p− p0q

)
× ξ

∣∣2
|q0p− p0q|2

= (ρ + 1)2

p0q0 (τρ)−1/2
∣∣(q0p− p0q

)
× ξ

∣∣2
|q0p− p0q|2

. (80)

Then from (28) and (80), we have the lower bound for the entropy dissipation

D(f) = 1
2

ˆ

R3

ˆ

R3

f(p)f(q)Φij(p, q)
(
∂pj

f

f
(p) −

∂qjf

f
(q)
)(

∂pi
f

f
(p) − ∂qif

f
(q)
)
dqdp

≥ 1
2

ˆ

R3

ˆ

R3

f(p)f(q) (ρ + 1)2

p0q0 (τρ)−1/2

∣∣∣( p
p0 − q

q0

)
×
(

∇pf
f (p) − ∇qf

f (q)
)∣∣∣2∣∣∣ p

p0 − q
q0

∣∣∣2

= 1
4

ˆ

R3

ˆ

R3

f(p)f(q) (ρ + 1)2

p0q0 (τρ)−1/2
∣∣∣∣ pp0 − q

q0

∣∣∣∣
−2 3∑

i,j=1
|qij(p, q)|2 dqdp, (81)

where due to the identity

|x× y|2 = 1
2

3∑
i,j=1

(xiyj − xjyi)2 , (82)

we have

qij(p, q) =
(
pi
p0 − qi

q0

)(
∂pj

f

f
(p) −

∂qjf

f
(q)
)
−
(
pj
p0 − qj

q0

)(
∂pi

f

f
(p) − ∂qif

f
(q)
)

=
(
pi
p0

∂pj
f

f
(p) − pj

p0
∂pi

f

f
(p)
)

+ qj
q0

∂pi
f

f
(p) − qi

q0
∂pj

f

f
(p)

− pi
p0

∂qjf

f
(q) + pj

p0
∂qif

f
(q) +

(
qi
q0

∂qjf

f
(q) − qj

q0
∂qif

f
(q)
)
.
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From here, the strategy for finding the lower bound of D(f) is to consider the following 
three integrals as a system of equations:

ˆ
qij(p, q)φ( |q|

2

2 ) f(q) dq,
ˆ

qij(p, q)
qi
q0 φ( |q|

2

2 ) f(q) dq, (83)
ˆ

qij(p, q)
qj
q0 φ( |q|

2

2 ) f(q) dq,

where φ( |q|
2

2 ) is a generic radially symmetric function that we will assume decays at 
infinity sufficiently fast. These quantities will lead to a 3 by 3 system of equations, with 

the unknowns pi

p0
∂pj

f

f (p) − pj

p0
∂pi

f

f (p), ∂pi
f

f (p) and 
∂pj

f

f (p). Cramer’s rule will be then used 

to express and estimate ∂pi
f

f (p). We now expand the three integrals. Let us introduce 
the notation:

X1
def= pi

p0
∂pj

f

f
(p) − pj

p0
∂pi

f

f
(p),

X2
def= ∂pi

f

f
(p),

X3
def=

∂pj
f

f
(p).

Then we have

ˆ
qij(p, q)φ( |q|

2

2 ) f(q) dq = X1

⎛
⎝ ˆ

R3

φ( |q|
2

2 ) f(q) dq

⎞
⎠

+ X2

⎛
⎝ ˆ

R3

qj
q0φ( |q|

2

2 ) f(q) dq

⎞
⎠−X3

⎛
⎝ ˆ

R3

qi
q0φ( |q|

2

2 ) f(q) dq

⎞
⎠

+ pi
p0

⎛
⎝ ˆ

R3

qjφ
′( |q|

2

2 ) f(q) dq

⎞
⎠ − pj

p0

⎛
⎝ ˆ

R3

qiφ
′( |q|

2

2 ) f(q) dq

⎞
⎠ .

Also,

ˆ
qij(p, q)

qi
q0 φ( |q|

2

2 ) f(q) dq = X1

⎛
⎝ ˆ

R3

qi
q0 φ( |q|

2

2 ) f(q) dq

⎞
⎠

+ X2

⎛
⎝ ˆ

qj
q0

qi
q0φ( |q|

2

2 ) f(q) dq

⎞
⎠−X3

⎛
⎝ ˆ (

qi
q0

)2

φ( |q|
2

2 ) f(q) dq

⎞
⎠

R3 R3



R.M. Strain, M. Tasković / Journal of Functional Analysis 277 (2019) 1139–1201 1175
+ pi
p0

ˆ

R3

f(q)
(
qiqj
q0 φ′( |q|

2

2 ) − qiqj
(q0)3φ( |q|

2

2 )
)

dq

− pj
p0

ˆ

R3

f(q)
(
φ( |q|

2

2 ) + (qi)2φ′( |q|
2

2 )
q0 − (qi)2

(q0)3φ( |q|
2

2 )
)

dq

+
ˆ

R3

qj
(q0)2φ( |q|

2

2 )f(q)dq.

Finally,

ˆ
qij(p, q)

qj
q0 φ( |q|

2

2 ) f(q) dq = X1

⎛
⎝ ˆ

R3

qj
q0 φ( |q|

2

2 ) f(q) dq

⎞
⎠

+ X2

⎛
⎝ ˆ

R3

(
qj
q0

)2

φ( |q|
2

2 ) f(q) dq

⎞
⎠−X3

⎛
⎝ ˆ

R3

qi
q0

qj
q0φ( |q|

2

2 ) f(q) dq

⎞
⎠

+ pi
p0

ˆ

R3

f(q)
(
φ( |q|

2

2 ) + (qj)2φ′( |q|
2

2 )
q0 − (qj)2

(q0)3φ( |q|
2

2 )
)

dq

− pj
p0

ˆ

R3

f(q)
(
qiqj
q0 φ′( |q|

2

2 ) − qiqj
(q0)3φ( |q|

2

2 )
)

dq

−
ˆ

R3

qi
(q0)2φ( |q|

2

2 )f(q)dq.

Therefore, we have the following 3 × 3 system:
⎛
⎝ ˆ

R3

φ( |q|
2

2 ) f(q) dq

⎞
⎠X1 +

⎛
⎝ ˆ

R3

qj
q0φ( |q|

2

2 ) f(q) dq

⎞
⎠X2

−

⎛
⎝ ˆ

R3

qi
q0φ( |q|

2

2 ) f(q) dq

⎞
⎠X3 =

ˆ

R3

φ( |q|
2

2 ) f(q)
(
qij + P1(f)

)
dq

⎛
⎝ ˆ

R3

qi
q0 φ( |q|

2

2 ) f(q) dq

⎞
⎠X1 +

⎛
⎝ ˆ

R3

qj
q0

qi
q0φ( |q|

2

2 ) f(q) dq

⎞
⎠X2

−

⎛
⎝ ˆ

R3

(
qi
q0

)2

φ( |q|
2

2 ) f(q) dq

⎞
⎠X3 =

ˆ

R3

φ( |q|
2

2 ) f(q)
(
qij

qi
q0 + P2(f)

)
dq
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⎛
⎝ ˆ

R3

qj
q0 φ( |q|

2

2 ) f(q) dq

⎞
⎠X1 +

⎛
⎝ ˆ

R3

(
qj
q0

)2

φ( |q|
2

2 ) f(q) dq

⎞
⎠X2

−

⎛
⎝ ˆ

R3

qi
q0

qj
q0φ( |q|

2

2 ) f(q) dq

⎞
⎠X3 =

ˆ

R3

φ( |q|
2

2 ) f(q)
(
qij

qj
q0 + P3(f)

)
dq,

where

P1(f)(p, q) = − pi
p0

qj φ
′

φ
+ pj

p0
qi φ

′

φ
,

P2(f)(p, q) = − pi
p0

(
qiqj φ

′

q0 φ
− qiqj

(q0)3

)
+ pj

p0

(
φ + (qi)2φ′

q0 φ
− (qi)2

(q0)3

)
− qj

(q0)2

P3(f)(p, q) = − pi
p0

(
φ + (qj)2φ′

q0 φ
− (qj)2

(q0)3

)
+ pj

p0

(
qiqj φ

′

q0 φ
− qiqj

(q0)3

)
+ qi

(q0)2 .

Cramer’s formula yields

∂pi
f

f
(p) = Δφ(f)−1 det

⎛
⎜⎝ ˆ

R3

φ( |q|
2

2 )f(q)

⎡
⎢⎣

1 qi
q0 qij + P1(f)

qi
q0

(
qi
q0

)2
qij

qi
q0 + P2(f)

qj
q0

qiqj
(q0)2 qij

qj
q0 + P3(f)

⎤
⎥⎦dq

⎞
⎟⎠ .

Taking into account that all the elements in the first two columns can be bounded by ´
R3 φ( |q|

2

2 )f(q)dq, we have

∣∣∣∣∂pi
f

f
(p)
∣∣∣∣ ≤ 2Δφ(f)−1

⎛
⎝ ˆ

R3

φ( |q|
2

2 )f(q)dq

⎞
⎠

2

(84)

·

⎛
⎝ ˆ

R3

φ( |q|
2

2 )f(q)
(
|P1(f)| + |P2(f)| + |P3(f)| + 3|qij |

)
dq

⎞
⎠ .

Since 
∣∣∣ pi

p0

∣∣∣ ≤ 1 etc., we have

|φ|
(
|P1(f)| + |P2(f)| + |P3(f)|

)
≤ 3|φ′|

(
|qi| + |qj |

)
+ 8|φ|

≤ 3
√

2|q||φ′| + 8|φ|.

Therefore,

∣∣∣∣∂pi
f

f
(p)
∣∣∣∣ ≤ 2Δφ(f)−1

⎛
⎝ ˆ

φ( |q|
2

2 )f(q)dq

⎞
⎠

2

R3
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·

⎡
⎣3

√
2
ˆ

R3

f(q)φ′( |q|
2

2 )|q|dq + 8
ˆ

R3

f(q)φ( |q|
2

2 )dq

+ 3
ˆ

R3

f(q)φ( |q|
2

2 )|qij |dq

⎤
⎦ .

By squaring this inequality and using that (a + b + c)2 ≤ 3(a2 + b2 + c2), we have

∣∣∣∣∂pi
f

f
(p)
∣∣∣∣
2

≤ 4Δφ(f)−2

⎛
⎝ ˆ

R3

φ( |q|
2

2 )f(q)dq

⎞
⎠

4

·

⎡
⎢⎣54

⎛
⎝ ˆ

R3

f(q)φ′( |q|
2

2 )|q|dq

⎞
⎠

2

+ 192

⎛
⎝ ˆ

R3

f(q)φ( |q|
2

2 )dq

⎞
⎠

2

+27

⎛
⎝ ˆ

R3

f(q)φ( |q|
2

2 )|qij |dq

⎞
⎠

2
⎤
⎥⎦ .

Integrating the last inequality against f(p), and using the Cauchy-Schwartz inequality 
on the last term, we get

ˆ

R3

f(p)
∣∣∣∣∂pi

f

f
(p)
∣∣∣∣
2

dp ≤ 4 Δφ(f)−2

⎛
⎝ ˆ

R3

φ( |q|
2

2 )f(q)dq

⎞
⎠

4

·

⎧⎨
⎩
⎛
⎝ ˆ

R3

f(p)dp

⎞
⎠
⎡
⎢⎣54

⎛
⎝ ˆ

R3

f(q)φ′( |q|
2

2 )|q|dq

⎞
⎠

2

+ 192

⎛
⎝ ˆ

R3

f(q)φ( |q|
2

2 )dq

⎞
⎠

2
⎤
⎥⎦

+27
ˆ

R3

f(p)

⎛
⎝ ˆ

R3

f(q)|qij |2Adq

⎞
⎠
⎛
⎝ ˆ

R3

f(q)φ(|q|2/2)2A−1dq

⎞
⎠ dp

⎫⎬
⎭ ,

where we now choose A as

A = (ρ + 1)2

p0q0 (τρ)−1/2
∣∣∣∣ pp0 − q

q0

∣∣∣∣
−2

, (85)

so that we can recognize the right hand side of (81) to obtain

ˆ ˆ
f(p)f(q)|qij |2Adqdp ≤ 4D(f).
R3 R3
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Then we have

ˆ

R3

f(p)
∣∣∣∣∂pi

f

f
(p)
∣∣∣∣
2

dp ≤ 4 Δφ(f)−2

⎛
⎝ ˆ

R3

φ( |q|
2

2
)f(q)dq

⎞
⎠

4

·

⎧⎨
⎩
⎛
⎝ ˆ

R3

f(p)dp

⎞
⎠
⎡
⎢⎣54

⎛
⎝ ˆ

R3

f(q)φ′( |q|
2

2 )|q|dq

⎞
⎠

2

+ 192

⎛
⎝ ˆ

R3

f(q)φ( |q|
2

2 )dq

⎞
⎠

2
⎤
⎥⎦

+108D(f) sup
p

⎛
⎝ ˆ

R3

f(q)φ(|q|2/2)2A−1dq

⎞
⎠
⎫⎬
⎭ .

Here we claim that

sup
p∈R3

⎛
⎝ ˆ

R3

f(q)φ(|q|2/2)2A−1dq

⎞
⎠ � 1. (86)

This claim will be established below after the proof. Finally observe that

ˆ

R3

∣∣∣∇√f(p)
∣∣∣2 dp = 1

4

3∑
i=1

ˆ

R3

f(p)
∣∣∣∣∂pi

f

f
(p)
∣∣∣∣
2

dp.

Therefore, if the function φ is chosen so that all integrals involving φ are finite, then we 
will have that

ˆ

R3

∣∣∣∇√f(p)
∣∣∣2 dp ≤ C1Δφ(f)−2 + C2D(f),

and then Lemma 10 can be used to conclude
ˆ

R3

∣∣∣∇√f(p)
∣∣∣2 dp ≤ C1 + C2D(f).

This completes the proof. �
Next we will prove the claim in (86). But first we briefly recall a useful inequality 

taken from Glassey & Strauss [15]:

Proposition 11. Let p, q ∈ R3 then

|p− q|2 + |p× q|2
2p0q0 ≤ ρ ≤ 1

2 |p− q|2. (87)
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We multiply and divide by p0q0 + p · q + 1 to observe that

ρ = |p− q|2 + |p× q|2
p0q0 + p · q + 1 .

Then we note that p0q0 + p · q ≥ 1 and p · q + 1 ≤ p0q0. Plugging these into the above 
yields Proposition 11.

Proof of the claim in (86). We recall that A = (ρ+1)2
p0q0 (τρ)−1/2

∣∣∣ p
p0 − q

q0

∣∣∣−2
, and then 

since τ = ρ + 2 and 
∣∣∣ p
p0 − q

q0

∣∣∣ ≤ 2 we have

A−1 ≤ 4 p0q0

(ρ + 1)2 ((ρ + 2) ρ)1/2 � p0q0

(ρ + 1) .

Case 1: |p| ≤ 2|q|. Since ρ + 1 ≥ 1, then on this set

A−1 � (q0)2,

and so
ˆ

R3

f(q)φ(|q|2/2)2A−1dq �
ˆ

R3

f(q)φ(|q|2/2)2(q0)2dq. (88)

The last integral is finite since we allow φ(|q|2/2) to be rapidly decaying.
Case 2: |p| ≥ 2|q| and |p| ≥ 1. On this set we use |p − q| ≥ |p| − |q| ≥ 1

2 |p|, then we 
further have from (87) that

ρ ≥ |p− q|2
2p0q0 ≥ |p|2

8p0q0 ≥
1
2 (p0)2

8p0q0 = 1
16

p0

q0 .

Thus on this region

A−1 � (q0)2,

and so
ˆ

R3

f(q)φ(|q|2/2)2A−1dq �
ˆ

R3

f(q)φ(|q|2/2)2(q0)2dq. (89)

Case 3: |p| ≥ 2|q| and |p| ≤ 1. On this set we have

A−1 � p0q0

ρ + 1 � p0q0 � q0 � (q0)2,
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and so
ˆ

R3

f(q)φ(|q|2/2)2A−1dq �
ˆ

R3

f(q)φ(|q|2/2)2(q0)2dq. (90)

From (88), (89) and (90) we see that for any p ∈ R3 we have that
ˆ

R3

f(q)φ(|q|2/2)2A−1dq �
ˆ

R3

f(q)φ(|q|2/2)2(q0)2dq.

The proof follows since the last integral is finite because we allow φ(|q|2/2) to be rapidly 
decaying as in the statement of Lemma 10. �
3.1. Estimates on the kernel Φij(p, q)

In this section we will prove estimates on the kernel Φij(p, q) from (3) and we will 
further prove uniform upper and lower bounds on the matrix aij(h) from (24).

Lemma 12. For the kernel from (3) with (14) we have the uniform pointwise upper bound:

∣∣Φij(p, q)
∣∣ �

⎧⎨
⎩

√
p0q0

|p−q| , for ρ < 1
8 ,

p0

q0 + q0

p0 , for ρ ≥ 1
8 .

(91)

Further, recalling (16) we have the uniform upper bound:

Λ(p, q)(ρ + 2)|p− q|2 �

⎧⎨
⎩

√
p0q0

|p−q| , for ρ ≤ 1
8 ,

p0

q0 + q0

p0 , for ρ ≥ 1
8 .

(92)

Proof. We recall (16) and (17) to get

∣∣Φij(p, q)
∣∣ � (ρ + 1)2

p0q0 (ρ(ρ + 2))−
3
2
(
ρ(ρ + 2) + |p− q|2 + ρ p0q0

)

� (ρ + 1)1/2

p0q0 ρ−3/2
(
ρ(ρ + 2) + |p− q|2 + ρ p0q0

)
.

Next, from (87) we have ρ ≥ |p−q|2
2p0q0 . Therefore on ρ < 1/8 we have

∣∣Φij(p, q)
∣∣ � (ρ + 1)1/2

p0q0

((
p0q0

|p− q|2
)3/2

|p− q|2 +
(

p0q0

|p− q|2
)1/2

p0q0

)

�
√
p0q0

|p− q| .
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Further note that on ρ ≥ 1/8 we have that

∣∣Φij(p, q)
∣∣ � (ρ + 1)1/2

p0q0 ρ−3/2
(
ρp0q0 + |p− q|2 + ρ p0q0

)
� 1 + p0

q0 + q0

p0 � p0

q0 + q0

p0 .

These two together prove (91). Now recall (16). Next we prove (92) for ρ ≤ 1
8 :

Λ(p, q)(ρ + 2)|p− q|2 = (ρ + 1)2

p0q0 (ρ(ρ + 2))−
3
2 (ρ + 2)|p− q|2

� 1
p0q0

(
p0q0

|p− q|2
) 3

2

|p− q|2

�
√

p0q0

|p− q| .

On the other hand, if ρ > 1
8 , then

Λ(p, q)(ρ + 2)|p− q|2 =
(
ρ + 1
ρ + 2

)2(
ρ + 2
ρ

) 3
2 |p− q|2

p0q0

� |p− q|2
p0q0 � (p0)2 + (q0)2

p0q0 ,

which establishes (92). �
3.2. Uniform bounds for aij(h)

With the bounds on the kernel from the previous section, we can now establish the 
uniform upper bounds for aij(h):

Lemma 13. Let ξ ∈ R3, and h ∈ L1
s(R3) ∩ L3(R3) with s > 2. Then

aij(h)ξiξj ≤ C1|ξ|2.

Here C1 > 0 is explicitly computable and C1 = C1(‖h‖L1
s(R3), ‖h‖L3(R3)).

Alternatively if we only have g ∈ L1
1(R3) ∩ L3(R3) then we have that

aij(g)ξiξj ≤ p0C̃1|ξ|2.

Here C̃1 > 0 is explicitly computable and C̃1 = C̃1(‖g‖L1
1(R3), ‖g‖L3(R3)).

We also have the uniform pointwise lower bound as follows:
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Lemma 14. For h = h(p) ≥ 0 satisfying 
´
R3 h(p)dp > 0, M1(h) ≤ M and H(h) ≤ H we 

have the following estimate

aij(h)ξiξj ≥ C2|ξ|2.

Here the constant C2 > 0 is explicitly computable and only depends upon 
´
R3 h(p)dp, 

M > 0 and H > 0.

We will first prove Lemma 14, and afterwards we will prove Lemma 13.

Proof of Lemma 14. The proof of the lower bound is an application of the proof of 
Theorem 1 that was recently completed above. We will follow that proof very closely. 
We note from (16) and (17) that

aij(h)ξiξj =
ˆ

R3

dq Λ(p, q)
(
Sijξiξj

)
h(q).

Here as in (80) we have that

Λ(p, q)
(
Sijξiξj

)
≥ (ρ + 1)2

p0q0 (τρ)−1/2
∣∣(q0p− p0q

)
× ξ

∣∣2
|q0p− p0q|2

.

And then due to the identity (82) we have that

aij(h)ξiξj ≥
ˆ

R3

dq h(q) (ρ + 1)2

p0q0 (τρ)−1/2
∣∣∣∣ pp0 − q

q0

∣∣∣∣
−2 3∑

i,j=1
|qij(p, q)|2 . (93)

Above the qij(p, q) is not the same as in the proof of Theorem 1 even though we use the 
same notation. Here again recalling (82) then qij(p, q) is defined as

qij(p, q) =
(
pi
p0 − qi

q0

)
ξj −

(
pj
p0 − qj

q0

)
ξi.

From this point we will follow the proof of Theorem 1, in an easier case. In particular 
we define

X1
def= pi

p0 ξj −
pj
p0 ξi, X2

def= ξi, X3
def= ξj .

By integrating against the three integrals in (83) then we can establish a (simpler) linear 
system. We use Cramer’s formula as in just above (84) to establish that

ξi = Δφ(h)−1 det

⎛
⎜⎝ ˆ

R3

φ( |q|
2

2 )h(q)

⎡
⎢⎣

1 qi
q0 qij

qi
q0

(
qi
q0

)2
qij

qi
q0

qj
q0

qiqj
(q0)2 qij

qj
q0

⎤
⎥⎦dq

⎞
⎟⎠ .
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And then as in (84) we have the estimate

|ξi| � Δφ(h)−1

⎛
⎝ ˆ

R3

φ( |q|
2

2 )h(q)dq

⎞
⎠

2⎛
⎝ ˆ

R3

φ( |q|
2

2 )h(q)|qij |dq

⎞
⎠ .

We then square the above and multiply and divide by the square root of (85) inside the 
integral containing |qij |, and use Cauchy-Schwartz to obtain that

|ξi|2 � Δφ(h)−2

⎛
⎝ ˆ

R3

φ( |q|
2

2 )h(q)dq

⎞
⎠

4⎛
⎝ ˆ

R3

φ( |q|
2

2 )h(q)|qij |2Adq

⎞
⎠

×

⎛
⎝ ˆ

R3

φ( |q|
2

2 )2h(q)A−1dq

⎞
⎠ .

However 
´
R3 φ( |q|

2

2 )2h(q)A−1dq � 1 as in the proof of (86). Then summing the above, 
the proof follows from (93) and Lemma 10. �

Now we will prove Lemma 13.

Proof of Lemma 13. Suppose without loss of generality that |ξ| = 1. We have that

aij(h)ξiξj =
ˆ

R3

dq
(
Φijξiξj

)
h(q)

≤
ˆ

R3

dq Λ(p, q)
∣∣q0p− p0q

∣∣2 ∣∣(q0p− p0q
)
× ξ

∣∣2
|q0p− p0q|2

h(q)

≤
ˆ

R3

dq Λ(p, q)
∣∣q0p− p0q

∣∣2 h(q).

In this calculation we used (36), and the fact that ρ(ρ + 2) ≤
∣∣q0p− p0q

∣∣2. The reverse 
of this type of inequality was used in (79). We will estimate this upper bound below.

In particular we first recall that

∣∣q0p− p0q
∣∣2 = ρ(ρ + 2) + |p× q|2 .

Now we plug this into the above and estimate each of the terms on the right individually.
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In particular for the ρ(ρ + 2) term we have

ˆ

R3

dq Λ(p, q)ρ(ρ + 2)h(q) =
ˆ

R3

dq
(ρ + 1)2

p0q0 ((ρ + 2)ρ)−3/2
ρ(ρ + 2)h(q)

≤
ˆ

R3

dq
(ρ + 1)3/2

p0q0 ρ−1/2h(q).

We will estimate this upper bound on several different regions. Firstly if ρ ≥ 1/8 then 
we use ρ ≤ p0q0 to obtain

ˆ
dq

(ρ + 1)3/2

p0q0 ρ−1/2h(q) ≤
ˆ

R3

dq h(q).

This is the upper bound that we will use in this regime. Next if ρ < 1/8 then we have 
using (87) that

ˆ
dq

(ρ + 1)3/2

p0q0 ρ−1/2h(q) �
ˆ

R3

dq
1

p0q0

(√
p0q0

|p− q|

)
h(q) �

ˆ

R3

dq
h(q)
|p− q| .

Now we further split into |p − q| ≥ 1 and |p − q| ≤ 1. On |p − q| ≥ 1 we use Young’s 
inequality as

∥∥∥∥h ∗ 1
| · |1{|·|≤1}

∥∥∥∥
L∞

≤ ‖h‖Lr(R3)

∥∥∥∥ 1
| · |1{|·|≤1}

∥∥∥∥
Lr′ (R3)

� ‖h‖Lr(R3) . (94)

Here 1 = 1
r + 1

r′ and we require r′ < 3 or equivalently r > 3/2. We conclude that
ˆ

R3

dq Λ(p, q)ρ(ρ + 2)h(q) ≤ ‖h‖L1(R3) + ‖h‖Lr(R3).

This concludes our estimates for the ρ(ρ + 2) terms.
For the |p× q|2 terms above we have

ˆ

R3

dq Λ(p, q) |p× q|2 h(q) =
ˆ

R3

dq
(ρ + 1)2

p0q0 ((ρ + 2)ρ)−3/2 |p× q|2 h(q)

≤
ˆ

R3

dq
(ρ + 1)1/2

p0q0 ρ−3/2 |p× q|2 h(q).

This is the general upper bound that we will use. Now if ρ > 1/8 then using (87) we 
have
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ˆ
dq

(ρ + 1)1/2

p0q0 ρ−3/2 |p× q|2 h(q) ≤
ˆ

R3

dq
|p× q|2

p0q0 ρ−1 h(q)

≤
ˆ

R3

dq
|p× q|2

p0q0

(
p0q0

|p× q|2
)

h(q) ≤
ˆ

R3

dq h(q).

Alternatively if ρ < 1/8 then p0 ≤ 2 implies q0 ≤ 5, and these conditions also imply 
|p −q| ≤ 2. This holds since the estimate (87) and the Cauchy-Schwartz inequality imply

q0 ≤
√

2ρp0q0 + p0 ≤
√

q0

2 + 2 ≤ 1
2

(
q0 + 1

2

)
+ 2, (95)

and so q0 ≤ 9
2 ≤ 5. In addition, together with (87), this implies

{ρ ≤ 1
8} ⊂ {|p− q|2 ≤ 2ρp0q0 ≤ 5

2} ⊂ {|p− q| ≤ 2}.

Then, on this region, we further use the lower bound in (87) to obtain

ˆ
dq

(ρ + 1)1/2

p0q0 ρ−3/2 |p× q|2 h(q) ≤
ˆ

R3

dq
|p× q|2

p0q0 ρ−3/2 h(q)

≤
ˆ

R3

dq
|p× q|2

p0q0

(
p0q0

|p× q|2 + |p− q|2
)3/2

h(q) ≤
ˆ

R3

dq
h(q)
|p− q| .

Now as in (94) we obtain that
ˆ

R3

dq
h(q)
|p− q| ≤ ‖h‖L1(R3) + ‖h‖Lr(R3).

This holds for any r > 3/2. This is the main estimate in this region.
Lastly if ρ < 1/8 and p0 ≥ 2 then q0 ≥ 1, and p0 ≈ q0. Namely, using again (87) and 

the Cauchy-Schwartz inequality one can easily see that

q0 ≥ p0 − |p− q| ≥ p0 −
√

2ρp0q0 ≥ p0 −
√

1
4p

0q0 ≥ p0 − 1
4(p0 + q0).

Therefore, q0 ≥ 3
5p

0 ≥ 6
5 ≥ 1. In addition, one can similarly show that p0 ≥ 3

5q
0, which 

implies

5
3p

0 ≥ q0 ≥ 3
5p

0. (96)

In this regime, using (87), we have
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ˆ
dq

(ρ + 1)1/2

p0q0 ρ−3/2 |p× q|2 h(q)

≤
ˆ

R3

dq
|p× q|2

p0q0

(
p0q0

|p× q|2 + |p− q|2
)3/2

h(q) ≤
ˆ

R3

dq

√
p0q0

|p− q| h(q).

On the one hand we can estimate this, using p0 ≈ q0, as above as

ˆ
dq

√
p0q0

|p− q| h(q) � p0 (‖h‖L1(R3) + ‖h‖Lr(R3)
)
.

This would give the second estimate in Lemma 13.
On the other hand, splitting into |p − q| ≥ 1 and |p − q| ≤ 1, and using p0 ≈ q0, as in 

(94) we obtain

ˆ
dq

√
p0q0

|p− q| h(q) �
(
‖h‖L1

1(R3) + ‖h‖Lr
1(R3)

)
.

This above holds for r > 3/2 as in the previous case. Further by interpolation inequality, 
see for example [9, Proposition 6], we can bound

‖h‖Lr
1(R3) � ‖h‖βL1

s(R3)‖h‖
1−β
L3(R3).

Here we take r = 3
2 + ε where

1 = βs + (1 − β)0,

1
r

= β

1 + 1 − β

3 .

So that we need to use the weight s = 1/β where β = 3−2ε
2(3+2ε) . Since β < 1

2 then we 
need to use s > 2. Note that this interpolation can be proven directly from the Hölder 
inequality. Collecting all of these estimates completes the proof. �
4. Propagation of high moment bounds

The main result in this section will be to prove Theorem 4. Before we proceed, recall 
from (11) moment notation

Mk(f, T ) def= ess sup
t∈[0,T ]

ˆ

R3

f(t, p)(1 + |p|2)kdp.

Theorem 4 will be proved by inductively applying the following lemma:
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Lemma 15. Let k > 1. Suppose that Mk(f, 0) < ∞ and Mk− 1
2
(f, T ) < ∞. Then

Mk(f, T ) < C,

where C < ∞ depends only on T, k, the collision kernel Φ, QT (f) def=
´ T

0 ‖f‖L3(R3)dt, the 
initial moment Mk(f, 0) and the moments M 8

11 (k−1)(f, T ) and Mk− 1
2
(f, T ).

Proof of Lemma 15. Let α ∈ C∞
c (R3), 0 ≤ α ≤ 1, be such that α|[0,1] = 1 and α|[0,2]c = 0

and let η ∈ (0, 1). Define

ϕ(p) def= (1 + |p|2)kα(η
√

1 + |p|2).

We let ∂i = ∂pi
. Then for any i, j ∈ {1, 2, 3} we have

∂iϕ(p) = 2kpi(1 + |p|2)k−1α(η
√

1 + |p|2) + ηpi(1 + |p|2)k− 1
2α′(η

√
1 + |p|2),

and letting ∂ij = ∂pi
∂pj

we have

∂ijϕ(p) = 2k
(
δij + 2(k − 1)pipj(1 + |p|2)−1

)
(1 + |p|2)k−1α(η

√
1 + |p|2)

+
(
δijηp

0 + (4k − 1)ηpipj(1 + |p|2)− 1
2

)
(1 + |p|2)k−1α′(ηp0)

+ η2pipj(1 + |p|2)k−1α′′(η
√

1 + |p|2).

We denote the norm ‖ · ‖L∞ by ‖ · ‖∞. Then, for some constant C(k) that depends on 
k, ‖ϕ′‖∞ and ‖ϕ′′‖∞, we have

|∂pipj
ϕ(p)| ≤ C(k)(1 + |p|2)k−1.

We use the weak formulation of the collision operator in (27) to obtain

ˆ

R3

f(T, p)ϕ(p)dp−
ˆ

R3

f(0, p)ϕ(p)dp =
T̂

0

dt

ˆ

R3

C(f, f)(p)ϕ(p) dp

= 1
2

T̂

0

dt

ˆ

R3

ˆ

R3

f(p)f(q)Φij(p, q)
(
∂pjpi

ϕ(p) + ∂qjqiϕ(q)
)
dqdp

+
T̂

dt

ˆ ˆ
f(p)f(q)Λ(p, q)(ρ + 2) (qi − pi) (∂pi

ϕ(p) − ∂qiϕ(q)) dqdp

0 R3 R3
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�
T̂

0

dt

ˆ

R3

ˆ

R3

f(p)f(q)
∣∣Φij(p, q)

∣∣ (1 + |p|2 + |q|2)k−1dqdp

+
T̂

0

dt

ˆ

R3

ˆ

R3

f(p)f(q)Λ(p, q)(ρ + 2)|p− q|2(1 + |p|2 + |q|2)k−1dqdp. (97)

Estimating (97) using (91) and (92) we have

ˆ

R3

f(T, p)ϕ(p)dp−
ˆ

R3

f(0, p)ϕ(p)dp

�
T̂

0

¨

{ρ≤ 1
8}

f(p)f(q)
√
p0q0

|p− q| (1 + |p|2 + |q|2)k−1dqdp

+
T̂

0

¨

{ρ> 1
8}

f(p)f(q)
(
p0

q0 + q0

p0

)
(1 + |p|2 + |q|2)k−1dqdp

�
T̂

0

¨

{ρ≤ 1
8 ,p

0≤2}

f(p)f(q)
√
p0q0

|p− q| (1 + |p|2 + |q|2)k−1dqdp (98)

+
T̂

0

¨

{ρ≤ 1
8 ,p

0≥2}

f(p)f(q)
√
p0q0

|p− q| (1 + |p|2 + |q|2)k−1dqdp

+
T̂

0

¨

{ρ> 1
8}

f(p)f(q)
(
p0

q0 + q0

p0

)
(1 + |p|2 + |q|2)k−1dqdp

=: I1 + I2 + I3,

where integrals I1, I2 and I3 correspond to the domains D1 = {ρ ≤ 1
8 , p

0 ≤ 2}, D2 =
{ρ ≤ 1

8 , p
0 ≥ 2} and D3 = {ρ ≥ 1

8}, respectively. We will estimate them separately.
First note that the set D1 is a subset of {ρ ≤ 1

8 , p
0 ≤ 2, q0 ≤ 5, |p − q| ≤ 2} as in (95). 

Therefore for some constant C(k) depending only on k we have

I1
def=

T̂

0

¨

D1

f(p)f(q)
√
p0q0

|p− q|
(
1 + |p|2 + |q|2

)k−1
dqdpdt

≤ C(k)
T̂ ˆ

f(p)

⎛
⎝ ˆ

f(q) 1
|p− q|1{|p−q|≤2} dq

⎞
⎠ dpdt
0 R3 R3
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≤ C(k)
T̂

0

‖f‖L1(R3)

∥∥∥∥f(·) ∗ 1
| · |1{|·|≤2}

∥∥∥∥
L∞(R3)

dt.

By Young’s inequality for convolutions
∥∥∥∥f(·) ∗ 1

| · |1{|·|≤2}

∥∥∥∥
L∞(R3)

≤ ‖f‖L3(R3)

∥∥∥∥ 1
| · |1{|·|≤2}

∥∥∥∥
L

3
2 (R3)

.

Since the second term on the right-hand side is a finite number, we can further estimate 
the integral in the domain D1 as follows

I1 � C(k)‖f‖L∞
T L1(R3)

T̂

0

‖f(t, ·)‖L3(R3) dt (99)

= C(k)‖f0‖L1(R3)QT (f)

= C (k, f0,QT (f)) < ∞.

The domain D2 is a subset of {(p, q) ∈ R3+3 : ρ ≤ 1
8 , p0 ≥ 2, q0 ≥ 1, p0 ≈ q0} as in 

(96). The comparability (96) further implies

(p0)2 ≤ 1 + |p|2 + |q|2 ≤ 8
3(p0)2

(q0)2 ≤ 1 + |p|2 + |q|2 ≤ 8
3(q0)2,

so the weight function (1 + |p|2 + |q|2)k−1 can be estimated as follows for any l ∈ R:

(1 + |p|2 + |q|2)k−1 = (1 + |p|2 + |q|2)l/2(1 + |p|2 + |q|2)k−1−l/2

≤ sup(1, (8/3)l/2) sup(1, (8/3)k−1−l/2)(p0)l(q0)2k−2−l.

Therefore, the integral in the domain D2 can be bounded as follows

I2
def=

T̂

0

¨

D2

f(p)f(q)
√
p0q0

|p− q|
(
1 + |p|2 + |q|2

)k−1
dqdpdt

≤ C(k, l)
T̂

0

¨

D2

f(p)f(q) 1
|p− q| (p

0)2( l
2+ 1

2 )(q0)2(k−1− l
2+ 1

2 )dpdqdt

≤ C(k, l)
T̂

0

‖〈·〉2( l
2+ 1

2 )f‖Lr′ (R3)‖〈·〉2(k−1− l
2+ 1

2 )f‖L1(R3)

∥∥∥∥ 1
| · |1{|·|≤2}

∥∥∥∥
Lr(R3)

dt,

(100)
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for a pair of Hölder conjugate indexes r and r′ and for some constant C(k, l) that depends 
on k and l. In the last inequality we used Hölder and Young inequalities. We require that 
r < 3 in order for the last term to be finite. Note that here we also only considered the 
case when |p − q| ≤ 2. However the case |p − q| ≥ 2 satisfies a better estimate involving 
only the weighted L1 norms, as in the I3 term in (103) below.

Now, by interpolation inequality, see for example [9, Proposition 6], we can bound 
the weighted Lr′ norm appearing above in terms of the weighted L1 and the L3 norm 
as follows

‖〈·〉2( l
2+ 1

2 )f‖Lr′ (R3) ≤ ‖f‖βL3(R3) ‖〈·〉
2(k−1− l

2+ 1
2 )f‖1−β

L1(R3),

where

l

2 + 1
2 = (1 − β)

(
k − 1 − l

2 + 1
2

)
,

1
r′

= β

3 + 1 − β.

We note here also that this interpolation can be proven directly from the standard Hölder 
inequality.

For 
∥∥∥ 1
|·|1{|·|≤2}

∥∥∥
Lr(R3)

to be finite we need r < 3, so let r = 12/5. Then r′ = 12/7, 

β = 5
8 and l = (2k−1)(1−β)−1

2−β , so in particular we have

k − 1 − l

2 + 1
2 = 8

11(k − 1). (101)

Therefore, continuing from (100) we have

I2 � C(k, l)
T̂

0

‖f‖βL3(R3) ‖〈·〉
2(k−1− l

2+ 1
2 )f‖2−β

L1(R3)dt (102)

≤ C(k, l)M2−β
8
11 (k−1)(f, T )

T̂

0

‖f‖
1+ε
2

L3(R3)dt

≤ C
(
k, l,M 8

11 (k−1)(f, T )
)⎛⎝ T̂

0

‖f‖L3(R3)dt

⎞
⎠

1+ε
2
⎛
⎝ T̂

0

dt

⎞
⎠

1−ε
2

≤ C
(
k, l, T, ε,M 8

11 (k−1)(f, T ),QT (f)
)
< ∞.
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Finally, in the domain D3 = {(p, q) ∈ R3+3 : ρ ≥ 1
8} we have

I3 =
T̂

0

¨

D3

f(p)f(q)
(
p0

q0 + q0

p0

)(
1 + |p|2 + |q|2

)k−1
dqdpdt (103)

≤ 2
T̂

0

¨

D3

f(p)f(q)
(
(p0)2(k−1+ 1

2 )(q0)2(k−1+ 1
2 )
)
dqdpdt

≤ 2T
(
Mk− 1

2
(f, T )

)2
.

By gathering estimates (98), (99), (102) and (103) we get

ˆ

R3

f(T, p)ϕ(p)dp ≤ C
(
k, l, T,M 8

11 (k−1)(f, T ),QT (f),Mk− 1
2
(f, T )

)
< ∞.

Finally let η → 0 to conclude the proof of the lemma. �
With Lemma 15 in hand, we now proceed to the proof of Theorem 4.

Proof of Theorem 4. Define the sequence

k0 = k,

kn+1 = kn − 1
2 , forn ∈ N.

Note that the sequence is decreasing and we can find n0 ∈ N such that kn0 > 1
and kn0+1 ≤ 1. Then, starting from kn0 and using Lemma 15 repeatedly, we get that 
Mkn

(f, T ) < ∞ for all n = n0, n0 − 1, ..., 0, so that in particular Mk(f, T ) < ∞. �
5. Global existence of a true weak solution

In this section we use the approach from [36] and [9]. We recall also [3]. We will give 
a sketch of the standard construction of global in time weak solutions to the relativistic 
Landau equation using our estimates from the previous sections.

5.1. Existence for a regularized problem

We recall the kernel (3):

Φij(p, q) = Λ(p, q)Sij(p, q),
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with (16) and (17). We will smoothly approximate Λ(p, q)τρ by Λn such that Λn →
Λ(p, q)τρ pointwise as n → ∞. We remove the singularity of the kernel at p = q. In 
particular we can choose

Λn(p, q) def= (ρ + 1)2

p0q0

(
τρ + n−2)−1/2

.

Now let n = 1/ε and define Φij
ε (p, q) def= Λ1/ε(p, q)Sij(p, q)/τρ. We choose this decompo-

sition so that Λ1/ε(p, q) develops a first order singularity as ε → 0. Further Sij(p, q)/τρ
is bounded due to (17). Then Φε(p, q) satisfies the null space (18) and the non-negativity 
(19) with the same proof as in Lemma 7. Further Φε(p, q) → Φ(p, q) as ε → 0 on compact 
sets when p �= q. In particular we have that

ˆ

B(0,R)

dp

ˆ

B(0,R)

dq
∣∣Φij

ε (p, q) − Φij(p, q)
∣∣r → 0, ε → 0. (104)

This convergence (104) holds for any 1 ≤ r < 3 by the dominated convergence theorem. 
Also ∂pi

Φε(p, q) → ∂pi
Φ(p, q) and ∂qiΦε(p, q) → ∂qiΦ(p, q) pointwise as ε → 0 on compact 

sets when p �= q.
Let Cε(h, g)(p) be the relativistic Landau operator (2) with kernel Φε(p, q) instead of 

Φ(p, q). Analogous to C(h, g)(p) defined in (2), we have

Cε(f, g)(p) def= ∂pi

ˆ

R3

Φij
ε (p, q)

{
f(q)∂pj

g(p) − ∂qjf(q)g(p)
}
dq.

Then, similar to (23), we introduce the following approximate problem:

∂tf
ε = ∂pi

(
aijε (f ε)∂pj

f ε + biε(f ε) f ε
)

+ εΔf ε, (105)

where the coefficients are

aijε (f ε) def=
ˆ

R3

Φij
ε (p, q)fn(q)dq, (106)

and

biε(f ε) def=
ˆ

R3

∂qjΦij
ε (p, q)f ε(q)dq.

This type of reduced parabolic system (105) is well known to have global in time unique 
smooth solutions using the Schauder fixed point theorem. We only give a very brief 
outline. Essentially identical arguments are shown in detail in [11] and [3]. We consider 
smooth initial data f ε(0, p) = f ε

0(p) which satisfies
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f ε
0(p) ≥ α1(ε)e−β1(ε)p0

.

For suitably chosen α1, β1 > 0. Then by the comparison principle, for a D > 0, it can 
be shown that

f ε(t, p) ≥ α̃1(ε)e−β̃1(ε)p0
e−Dt. (107)

And further

‖f ε‖L∞([0,T ];L1(R3
p)∩W 2,∞(R3

p)) + ‖f ε‖W 1,∞([0,T ];W−2,1(R3
p)) ≤ C(ε).

Here W k,p are the standard Sobolev spaces. Note that we assume the initial data f ε
0(p)

satisfies a high moment bound, and then this moment bound can be propagated in time 
as in Theorem 4, proven in Section 4. The solution to (105) will also satisfy the high 
moment bound. Then using the estimates in Section 5.2, also as in Section 3.1, we can 
further show that (106) satisfies

|ξ|2cε ≤
(
aijε (f ε) + εδij

)
ξiξj ≤ Cε|ξ|2.

Note that the lower bound in (107) can also give another proof of the lower bound above 
using the eigenvalue expansion as in [25]. For further details, one can see a very similar 
problem carefully described in the arguments from [11, Section 5].

5.2. Uniform estimates

We can readily observe that, for solutions to (105), we also have a uniform conservation 
of the mass as

ˆ

R3

f ε(t, p) dp =
ˆ

R3

f ε
0(p)dp. (108)

This grants the uniform estimate f ε ∈ L∞([0, T ]; L1(R3)). In addition following the 
calculation from (20) for (105) then the energy satisfies

ˆ

R3

f ε(t, p)p0dp =
ˆ

R3

f ε
0(p)p0dp + tε

ˆ

R3

f ε(t, p)dp =
ˆ

R3

f ε
0(p)p0dp + tε

ˆ

R3

f ε
0(p)dp.

This grants the uniform estimate f ε ∈ L1([0, T ]; L1
1(R3)). Additionally if we let Dε(f ε)

be the entropy dissipation defined in (28) with Φij replaced by Φij
ε then the calculations 

as in (9) rigorously hold for solutions to (105). We have that

H(f ε(t)) +
tˆ
Dε(f ε(s))ds + 2ε

tˆ
ds

ˆ
dp |∇

√
f ε(t, p)|2 ≤ H(f ε

0).

0 0 R3



1194 R.M. Strain, M. Tasković / Journal of Functional Analysis 277 (2019) 1139–1201
These estimates give uniform bounds on f ε(t, p) in L1
1 and L logL. In particular it is well 

known that H(f ε(t)) � H(f ε(t)) + 1.
Notice that Theorem 1 still holds for Dε with Φij replaced by Φij

ε . Thus from the 
lower bound on Dε(f ε(s)) in Theorem 1 we obtain a uniform bound on

tˆ

0

ds

ˆ

R3

|∇
√

f ε(s, p)|2 dp � 1.

This grants a uniform estimate 
√
f ε ∈ L2([0, T ]; Ḣ1(R3)). Then we further recall the 

Sobolev inequality:

⎛
⎝ ˆ

R3

|f ε(p)|3 dp

⎞
⎠

1/3

�
ˆ

R3

|∇
√

f ε(p)|2 dp,

which grants us the following uniform bound f ε ∈ L1([0, T ]; L3(R3)).
We consider the standard L2 based Sobolev space Hm

k (R3) to have m derivatives and 
the k-th order polynomial momentum weight 〈p〉k. Then given ϕ ∈ Hm

k (R3) we observe 
that

ˆ

R3

dp ∂tf
εϕ = 1

2

ˆ

R3

ˆ

R3

f ε(q)f ε(p)Φij
ε (p, q)

(
∂pj

∂pi
ϕ(p) + ∂qj∂qiϕ(q)

)
dqdp

+
ˆ

R3

ˆ

R3

f ε(p)f ε(q)
(
∂pj

Φij
ε (p, q) − ∂qjΦij

ε (p, q)
)
(∂pi

ϕ(p) − ∂qiϕ(q)) dqdp

+ ε

ˆ

R3

dp f ε(p) ∂pi
∂pi

ϕ(p). (109)

Here we remark that it can be seen directly from the proof that the derivative compu-
tation (21) still holds for ∂qjΦij

ε (p, q) and ∂pj
Φij

ε (p, q) with Λ replaced by Λ1/ε(p, q)/τρ. 
Therefore we obtain the bound

∣∣∣∣∣∣
ˆ

R3

dp ∂tf
εϕ

∣∣∣∣∣∣ � ‖ϕ‖W 2,∞

ˆ

R3

ˆ

B(0,R)

f ε(q)f ε(p)
∣∣Φij(p, q)

∣∣ dqdp

+ ‖ϕ‖W 2,∞

ˆ

R3

ˆ

B(0,R)

f ε(p)f ε(q)Λ(p, q)(ρ + 2)|p− q|2dqdp

+ ε‖ϕ‖W 2,∞

ˆ

R3

dp f ε
0(p).
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Then, using Lemma 16 with r′ = 3, then after integration in time the upper bounds are 
uniformly bounded. We also use the continuous embedding of W 2,∞ into Hm. So that 
we can also conclude that (∂tf ε)ε>0 is uniformly bounded in L1([0, T ]; (Hm

k (R3))′) for 
suitable m and k.

We use the notation f ∈
√
Ḣ1(R3) to mean that 

√
f ∈ Ḣ1(R3). Then we observe 

that
√
Ḣ1(R3) ∩ L1

1(R3) ⊂ L1(R3) ⊂ (Hm
k (R3))′.

The embedding of 
√
Ḣ1(R3) ∩ L1

1(R3) ⊂ L1(R3) is compact, and the embedding 

L1(R3) ⊂ (Hm
k (R3))′ is continuous. Next we use the compactness result [31, Corollary 4]

to observe that (f ε)ε>0 is relatively compact in L2([0, T ]; L1(R3)). Therefore there ex-
ists a function f ∈ L2([0, T ]; L1(R3)) and a subsequence of (f ε)ε>0 such that (f ε)ε>0

converges to f in L2([0, T ]; L1(R3)) and a.e. on [0, T ] ×R3.
Now we also have the following lemma:

Lemma 16.

ˆ

R3

dq

ˆ

B(0,R)

dp g(p)h(q)
∣∣Φij(p, q)

∣∣
� ‖g‖L1

1(B(0,R))‖h‖L1
−1(R3) + ‖g‖L1

−1(B(0,R))‖h‖L1
1(R3)

+ min{‖h‖L1(R3)‖g‖L1
1(B(0,R)), ‖h‖L1

1(R3)‖g‖L1(B(0,R))}

+ min{‖h‖L1
1(R3)‖g‖Lr′ (B(0,R)), ‖h‖Lr′ (R3)‖g‖L1

1(B(0,R))},

where we can choose any r′ ∈ (3/2, ∞]. Here the implicit constant can be chosen to be 
independent of R > 0.

Further, we can use (92) in place of (91) in the proof. Then this lemma also holds 
when 

∣∣Φij(p, q)
∣∣ is replaced by Λ(p, q)(ρ + 2)|p − q|2.

Proof of Lemma 16. We will use the bounds in (91). Then we have

ˆ

R3

dq

ˆ

B(0,R)

dp g(p)h(q)
∣∣Φij(p, q)

∣∣ �
ˆ

R3

dq

ˆ

B(0,R),ρ< 1
8

dp g(p)h(q)
√

p0q0

|p− q|

+
ˆ

R3

dq

ˆ

B(0,R),ρ≥ 1
8

dp g(p)h(q)
(
p0

q0 + q0

p0

)
.

We will estimate these upper bound integrals one at a time. Notice that



1196 R.M. Strain, M. Tasković / Journal of Functional Analysis 277 (2019) 1139–1201
ˆ

R3

dq

ˆ

B(0,R)

dp g(p)h(q)
(
p0

q0 + q0

p0

)

≤ ‖g‖L1
1(B(0,R))‖h‖L1

−1(R3) + ‖g‖L1
−1(B(0,R))‖h‖L1

1(R3).

Further on ρ < 1
8 as in (95) then p0 ≤ 2 implies that q0 ≤ 5 and we further have 

|p − q| ≤ 2. We conclude using Young’s inequality that

ˆ

R3

dq

ˆ

B(0,R), ρ< 1
8 , p0≤2

dp g(p)h(q)
√
p0q0

|p− q|

�
ˆ

R3

dq

ˆ

B(0,R),|p−q|≤2

dp g(p)h(q) 1
|p− q|

� ‖h‖L1(R3)‖g‖Lr′ (B(0,R))

∥∥∥∥ 1
| · |1{|·|≤2}

∥∥∥∥
Lr(R3)

.

Here 1 = 1
r + 1

r′ and we require 1 ≤ r < 3 to conclude that 
∥∥∥ 1
|·|1{|·|≤2}

∥∥∥
Lr(R3)

� 1. 
Similarly we have

ˆ

R3

dq

ˆ

B(0,R),|p−q|≤2

dp g(p)h(q) 1
|p− q| � ‖h‖Lr′ (R3)‖g‖L1(B(0,R))

∥∥∥∥ 1
| · |1{|·|≤2}

∥∥∥∥
Lr(R3)

.

Thus for this term we conclude

ˆ

R3

dq

ˆ

B(0,R), ρ< 1
8 , p0≤2

dp g(p)h(q)
√
p0q0

|p− q|

� min{‖h‖L1(R3)‖g‖Lr′ (B(0,R)), ‖h‖Lr′ (R3)‖g‖L1(B(0,R))}.

This holds as long as we have r′ ∈ (3/2, ∞].
Lastly on the region ρ < 1

8 with p0 ≥ 2, then we further have q0 ≥ 1 and also p0 ≈ q0. 
See (96). If |p − q| ≥ 1 also then we have

ˆ

R3

dq

ˆ

B(0,R),ρ< 1
8 ,p

0≥2,|p−q|≥1

dp g(p)h(q)
√
p0q0

|p− q|

� min{‖h‖L1(R3)‖g‖L1
1(B(0,R)), ‖h‖L1

1(R3)‖g‖L1(B(0,R))}.

On the other hand when further |p − q| ≤ 1 then we have
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ˆ

R3

dq

ˆ

B(0,R),ρ< 1
8 ,p

0≥2,|p−q|≤1

dp g(p)h(q)
√

p0q0

|p− q|

� ‖h‖Lr′ (R3)‖g‖L1
1(B(0,R))

∥∥∥∥ 1
| · |1{|·|≤1}

∥∥∥∥
Lr(R3)

.

Similarly we also have

ˆ

R3

dq

ˆ

B(0,R),ρ< 1
8 ,p

0≥2,|p−q|≤1

dp g(p)h(q)
√

p0q0

|p− q|

� ‖h‖L1
1(R3)‖g‖Lr′ (B(0,R))

∥∥∥∥ 1
| · |1{|·|≤1}

∥∥∥∥
Lr(R3)

.

Therefore again when r′ ∈ (3/2, ∞] then we further have

ˆ

R3

dq

ˆ

B(0,R),ρ< 1
8 ,p

0≥2,|p−q|≤1

dp g(p)h(q)
√

p0q0

|p− q|

� min{‖h‖L1
1(R3)‖g‖Lr′ (B(0,R)), ‖h‖Lr′ (R3)‖g‖L1

1(B(0,R))}.

Collecting all of these estimates completes the proof. �
Now we integrate (109) in time to obtain that

∣∣∣∣∣∣
ˆ

R3

dp f ε(t)ϕ−
ˆ

R3

dp f ε(s)ϕ

∣∣∣∣∣∣
� ‖ϕ‖W 2,∞

tˆ

s

dτ

ˆ

R3

ˆ

B(0,R)

f ε(q)f ε(p)
∣∣Φij(p, q)

∣∣ dqdp

+ ‖ϕ‖W 2,∞

tˆ

s

dτ

ˆ

R3

ˆ

B(0,R)

f ε(p)f ε(q)Λ(p, q)(ρ + 2)|p− q|2dqdp

+ ε(t− s)‖ϕ‖W 2,∞‖f ε
0‖L1 .

Now we use Lemma 16 with r′ = 3
2 + ε for a small ε > 0 to estimate the two terms in 

the middle above. Then we interpolate ‖f ε‖Lr′ (R3) ≤ ‖f ε‖θL1(R3)‖f ε‖1−θ
L3(R3). After using 

a Hölder inequality in the time integral we obtain∣∣∣∣∣∣
ˆ

dp f ε(t)ϕ−
ˆ

dp f ε(s)ϕ

∣∣∣∣∣∣ ≤ C(t− s)θ‖ϕ‖W 2,∞ + C(t− s)‖ϕ‖W 2,∞ ,
R3 R3
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where the constant C > 0 depends on ‖f ε‖L1(R3), ‖f ε‖L1
1(R3), and ‖f ε‖L1([0,T ];L3(R3))

which quantities have been shown to be uniformly bounded.
Therefore the sequence (

´
f εϕdp)

ε>0 is uniformly bounded and equicontinuous in 
C([0, T ]). By the Arzela-Ascoli theorem this sequence is further relatively compact in 
C([0, T ]). We can conclude from the convergence of (f ε)ε>0 to f that (

´
fϕdp) is the 

unique cluster point of (
´
f εϕdp)

ε>0.

5.3. Weak solutions

Given f0 ∈ L1
s(R3) ∩ L logL(R3) for some s > 1 we choose smooth initial data 

f ε
0(p) as described in Section 5.1 that satisfies f ε

0 ∈ L1
s(R3) and f ε

0 → f0 as ε → 0 in 
L1
s(R3) ∩ L logL(R3).
Then the calculations in the proof of Theorem 4 allow us to conclude that

ˆ

R3

f ε(t, p)(1 + |p|2)s/2dp ≤ C, (110)

where the constant C is uniform in [0, T ] and in ε > 0. Then by the pointwise convergence 
of (f ε)ε>0 to f and Fatou’s lemma we conclude that

ˆ

R3

f(t, p)(1 + |p|2)s/2dp ≤ C.

Now we look at the weak formulation.
First to simplify the notation we define

b̃iε(p, q)
def= ∂pj

Φij
ε (p, q) − ∂qjΦij

ε (p, q),

and

b̃i(p, q) def= ∂pj
Φij(p, q) − ∂qjΦij(p, q).

From the (26), for the approximate problem (105), as in (12) and (13), we have the 
following weak formulations

−
ˆ

R3

dp f ε
0ϕ(0, p) −

T̂

0

dt

ˆ

R3

dp f ε∂tϕ

= 1
2

T̂

dt

ˆ ˆ
f ε(q)f ε(p)Φij

ε (p, q)
(
∂pj

∂pi
ϕ(p) + ∂qj∂qiϕ(q)

)
dqdp
0 R3 R3
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+
T̂

0

dt

ˆ

R3

ˆ

R3

f ε(p)f ε(q)b̃iε(p, q) (∂pi
ϕ(p) − ∂qiϕ(q)) dqdp

+ ε

T̂

0

dt

ˆ

R3

dp f ε(p) ∂pi
∂pi

ϕ(p).

And with no approximation the weak formulation is:

−
ˆ

R3

dp f0ϕ(0, p) −
T̂

0

dt

ˆ

R3

dp f∂tϕ

= 1
2

T̂

0

dt

ˆ

R3

ˆ

R3

f(q)f(p)Φij(p, q)
(
∂pj

∂pi
ϕ(p) + ∂qj∂qiϕ(q)

)
dqdp

+
T̂

0

dt

ˆ

R3

ˆ

R3

f(p)f(q)b̃i(p, q) (∂pi
ϕ(p) − ∂qiϕ(q)) dqdp.

Note that the first two terms on the left side, and the last term containing the Laplacian, 
clearly converge as ε → 0. Now we consider the remaining two terms. First we have

∣∣∣∣∣∣
T̂

0

dt

ˆ

R3

ˆ

R3

f ε(q)f ε(p)Φij
ε (p, q)

(
∂pj

∂pi
ϕ(p) + ∂qj∂qiϕ(q)

)
dqdp

−
T̂

0

dt

ˆ

R3

ˆ

R3

f(q)f(p)Φij(p, q)
(
∂pj

∂pi
ϕ(p) + ∂qj∂qiϕ(q)

)
dqdp

∣∣∣∣∣∣
�

∣∣∣∣∣∣∣
T̂

0

ˆ

B(0,R′)

ˆ

B(0,R)

(
f(q)f(p)Φij(p, q) − f ε(q)f ε(p)Φij

ε (p, q)
)
∂pj

∂pi
ϕ(p)

∣∣∣∣∣∣∣
+ ‖ϕ‖W 2,∞

T̂

0

dt

ˆ

B(0,R′)c

dq

ˆ

B(0,R)

dp f(q)f(p)
∣∣Φij(p, q)

∣∣

+ ‖ϕ‖W 2,∞

T̂

0

dt

ˆ

B(0,R′)c

dq

ˆ

B(0,R)

dp f ε(q)f ε(p)
∣∣Φij

ε (p, q)
∣∣ .

The last two terms in the upper bound, after using Lemma 16, will go to zero as R′ → ∞
because of the uniform higher moment bound in (110). Now the first term in the upper 
bound converges to zero by the strong convergence of Φij

ε (p, q) to Φij(p, q) as in (104)



1200 R.M. Strain, M. Tasković / Journal of Functional Analysis 277 (2019) 1139–1201
and again using Lemma 16 and the strong convergence of f ε to f that we have previously 
established.

The convergence in the last term above involving b̃i(p, q) can be shown similarly. This 
completes the proof of Theorem 3.
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