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1. Introduction. In this article we study the spatially homogeneous special rela-

tivistic Landau equation with Coulomb interactions which is a basic model in kinetic

theory. The Boltzmann equation is perhaps the most widely used partial differential

equation in kinetic theory. However the Boltzmann equation does not make sense for

the important Coulomb interactions [39]. In 1936, Landau introduced a correction to

the Boltzmann equation that is generally used to model a dilute hot plasma where fast

moving particles interact via Coulomb interactions [26,30]. This partial differential equa-

tion, which is now called the Landau equation, does not include the effects of Einstein’s

theory of special relativity. However for particle velocities that are close to the speed

of light, which occurs commonly in a hot plasma, relativistic effects are very important.

The relativistic version of Landau’s equation was derived by Budker and Beliaev in 1956

[3,4]. It is a fundamental model for studying the dynamics of a dilute collisional plasma.

The relativistic Landau equation is given by

∂tF = C(F, F ). (1.1)

Here F = F (t, p) is the density, p ∈ R
3 is the momentum variable, and t ≥ 0 is the time

variable. This equation includes the initial conditions F (0, p) = F0(p). The collision

operator can be written as

C(h, g)(p) = 1

2

3∑
i,j=1

∂pi

∫
R3

dq Φij(p, q)
[
h(q)∂pj

g(p)− g(p)∂qjh(q)
]
. (1.2)

The relativistic Landau kernel (Φij(p, q))1≤i,j≤3 is then given by

Φij(p, q) = Λ(p, q)Sij(p, q). (1.3)

For the momentum p, q ∈ R
3, we set the energies to be p0 =

√
1 + |p|2 and q0 =√

1 + |q|2. Then the relativistic relative momentum is defined by

ρ
def
= p0q0 − p · q − 1 =

|p− q|2 + |p× q|2
p0q0 + p · q + 1

≥ 0. (1.4)

The proof of this identity is straightforward since in particular one can use the formula

|p× q|2 + |p · q|2 = |p|2|q|2. Then τ = ρ+ 2 and we have that

Λ(p, q) =
(ρ+ 1)2

p0q0
(ρτ )−

3
2 (1.5)

and

Sij(p, q) = ρτδij − (pi − qi)(pj − qj) + ρ(piqj + pjqi). (1.6)

In this formulation we can directly observe that the matrix of the relativistic Landau

kernel, Φ, has a first order non-isotropic singularity because of (1.4).

The main point of this article is to prove a conditional uniqueness result for large

data weak solutions to the relativistic Landau equation (1.1). This is stated in Theorem

1.5 below. To prove this theorem we introduce several new decompositions and perform

challenging pointwise estimates for the relativistic Landau kernel (1.3); these estimates

build upon recent difficult algebraic estimates in [35]. We also introduce a stochastic

representation, in (2.7) and (2.8), of solutions to the relativistic Landau equation (1.1)

with the specific coefficient matrix Σ that is introduced in Proposition 2.3. The work of
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Tanaka [38] in 1978 used a stochastic approach and proved uniqueness for the Boltzmann

equation without cutoff in the Maxwell molecules case. Further, see [17]. Our main

results make use of the approach by Fournier and Guérin in [14–16, 23], which proved

uniqueness by looking at the stochastic representation of the classical non-relativistic

spatially homogeneous Landau equation. In particular our result can be seen as the

special relativistic counterpart of the result in Fournier [14] which proved the uniqueness

for bounded solutions of the non-relativistic spatially homogenenous Landau equation

with Coulomb interactions. We refer to [35] for a recent comparison of the relativistic

and non-relativistic Landau equations.

The major new difficulties in the proof of our main theorem, Theorem 1.5, are largely

algebraic, due to the extreme complexity of the structure of the relativistic Landau kernel.

In this paper we introduce the stochastic coefficient matrix (2.5) Σ used in the stochastic

differential equations (2.7) and (2.8), and we further prove several detailed pointwise

estimates of Σ and other quantities in order to establish the uniqueness theorem.

It is well known that relativistic kinetic theory contains many extreme difficulties at

the level of the algebraic structure of the collision kernels, due to the quantities that

arise in special relativity. We note that an extensive study of the pointwise behavior

of the collision operators in relativistic kinetic theory was done by Glassey and Strauss

between 1991-1995 in their work on the relativistic Boltzmann equation; see [18–21,37].

In particular [19] gives an understanding of the very complex Jacobian of the pre-post

change of variables for the relativistic Boltzmann equation. Then [20] proves the global

asymptotic stability and uniqueness of the relativistic Boltzmann equation in the torus.

Afterwards [18] generalized the previous result to the whole space case. The first author is

very grateful for having had the opportunity to discuss the papers [18–21,37] with Walter

Strauss on several occasions while he was a graduate student at Brown University.

1.1. The literature. In this section we will describe a selection of closely related ad-

ditional results about the relativistic Landau equation. Lemou [29] in 2000 studied the

linearized relativistic Landau collision operator. Strain and Guo, in 2004 [32], proved the

global existence of unique classical solutions to the relativistic Landau-Maxwell system

with initial data that is close to the relativistic Maxwellian equilibrium. Then Hsiao

and Yu in 2006 [28] proved the existence of global classical solutions to the initial value

problem for the simpler relativistic Landau equation with nearby relativistic Maxwellian

initial data in the whole space. Yu [45] in 2009 proved the C∞ smoothing effects for

the relativistic Landau-Maxwell system with nearby equilibrium initial data under the

assumption that the electric and magnetic fields are infinitely smooth. Further, for the

relativistic Landau-Poisson equation the smoothing effects were shown in [45] without

additional assumptions. In 2010 Yang and Yu in [43] proved the hypocoercivity of the

relativistic Landau equations. Then in 2012, Yang and Yu [44] proved the existence and

uniqueness of global in time classical solutions to the relativistic Landau-Maxwell system

in the whole space R
3
x for initial data which is nearby to the relativistic Maxwellian.

The non-relativistic Landau equation has experienced a much larger amount of math-

ematical study in comparison. We will mention only a small sample of results that are

closely related to this paper. In 1977 [2] proved the existence of a local in time bounded
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solution. In 2002 [24] Guo proved the global existence and uniqueness of classical solu-

tions to the spatially dependent Landau equation with nearby Maxwellian equilibrium

initial data. The large time decay rates were shown in [33]. Recent developments in [7]

give an understanding of the case with a mild velocity tail on the initial data. Further,

[6] performs a numerical study on the large time decay rate in terms of the 2/3 law as

in [34]. We further reference [25, 36].

Now for the spatially homogeneous non-relativistic Landau equation, in [11,12] Desvil-

lettes and Villani proved the large data global well-posedness and smoothness of solutions

for the Landau equation with hard potentials. In 1998 in [39] Villani proved the exis-

tence of weak H-solutions of the spatially homogeneous Landau equation with Coulomb

potential. Later in 2015 [9] Desvillettes proved an entropy dissipation estimate for the

Landau equation, and used that estimate to conclude that the H-solutions are actually

true weak solutions. Further developments can be found in [8, 10]. Also [42] proved Lp

estimates for the Landau equation with soft potentials. In [1] a priori estimates for the

Landau equation with soft potentials including the Coulomb case are proven.

Recently [31] proved upper bounds for certain parabolic equations, including the spa-

tially dependent non-relativistic Landau equation after conditionally assuming the local

conservation laws to be bounded. And [13] proves a Harnack inequality for solutions to

kinetic Fokker-Planck equations with rough coefficients and applies that to the spatially

dependent Landau equation to obtain a Cα estimate, assuming that the local conserva-

tion laws are bounded. In [22] other estimates are proven for the homogeneous Landau

equation with Coulomb potential.

1.2. Notation. In this section we will introduce notation that will be used throughout

the rest of the article. Let P(Rd) be the set of probability measures on R
d (d ≥ 1) and

let Pr(R
d) (r ≥ 1) be the subset of P(Rd) with finite rth moments, i.e.,

Pr(R
d)

def
=
{
f ∈ P(Rd)

∣∣∣ ∫
Rd

|x|rf( dx) < ∞
}
.

We introduce the Wasserstein distance on R
3 to compare two weak solutions to the

relativistic Landau equation (1.1) as in (1.11) below. For two probability measures

f, g ∈ Pr(R
3), their r−Wasserstein distance Wr(f, g) is defined as

Wr(f, g) = inf
R∈H(f,g)

(∫
R3×R3

|x− y|rR(dx, dy)

)1/r

= inf
X∼f, Y∼g

(
E[|X − Y |r]

)1/r

,

where the first infimum is taken over R ∈ H(f, g). Here H(f, g) is the set of joint

probability measures on R
3 × R

3 with marginals f and g, respectively. Further, X ∼ f

means that X is an R
3 valued random variable with law f , and Y ∼ g is similarly defined.

Then the infimum in the second inequality above is over all possible couplings (X,Y )

of random variables with f and g as their marginal laws, respectively. It is known that

(P2,W2) is a Polish space whose topology is a bit stronger than the weak topology. It

is further known that the infimum above is reached in the sense that for f, g ∈ P2, then
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there exists R ∈ H(f, g) and X ∼ f , Y ∼ g such that

W2(f, g) =

(∫
R3×R3

|x− y|2R(dx, dy)

)1/2

=

(
E[|X − Y |2]

)1/2

.

See [40] for a thorough introduction of the Wasserstein distance.

In this article in particular we will use the 2−Wasserstein distance, which isW2(Ft, F̃t),

to quantify the distance of two weak solutions (1.11) (Ft)t∈[0,T ] and (F̃t)t∈[0,T ] to the

relativistic Landau equation (1.1). In particular for any s ∈ [0, T ], choose Rs ∈ H(Fs, F̃s)

to be the unique probability measure on R
3 × R

3 with marginals Fs and F̃s such that

W2
2 (Fs, F̃s) =

∫
R3×R3

|p− p̃|2Rs( dp, dp̃). (1.7)

We will use this distance extensively throughout the paper.

We will now define the weighted Lebesgue spaces Lr
s(R

3) (with r ≥ 1 and s ∈ R) as

follows:

‖f‖Lr
s(R

3)
def
= ‖〈·〉sf‖Lr(R3) =

(∫
R3

dp 〈p〉rs|f(p)|r
)1/r

,

where 〈p〉 def
=
(
1 + |p|2

)1/2
with the corresponding standard definition for L∞

s (R3). We

use the definition Lr
s(R

3) = {f : R3 → R, ‖f‖Lr
s(R

3) < +∞}. We write Lr
s when there

is no risk of confusion about the domain. Further, we will denote Lr
0 = Lr (when s = 0

with r ≥ 1) throughout the article.

We will now define the following useful functions.

Definition 1.1. Define the increasing continuous function Ψ : [0,∞) → [0,∞) as

Ψ(x) = x
(
1− 1{0≤x≤1} log x

)
.

Define the concave increasing continuous function Θ : [0,∞) → [0,∞) as

Θ(x) =

{
x(1− log x) if x ∈ [0, 1

2 ];

x log 2 + 1
2 if x ≥ 1

2 .

Note that for any x ≥ 0, Ψ(x)/2 ≤ Θ(x) ≤ 2Ψ(x). Since Θ is concave, we conclude

for any f ≥ 0 from Jensen’s inequality that∫
Ψ ◦ f dμ ≤ 2

∫
Θ ◦ f dμ ≤ 2Θ

(∫
f dμ

)
≤ 4Ψ

(∫
f dμ

)
, (1.8)

where μ is any probability measure.

For two quantities A and B, we will use the notation A � B to mean that there exists

a positive inessential constant C > 0 such that A ≤ CB. Then A ≈ B means that A � B

and B � A. We will use the notation C > 0 and also c > 0 to denote positive inessential

constants whose value may change from line to line.
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1.3. Weak solutions to the relativistic Landau equation (1.1). For a test function ϕ ∈
C2

b (R
3), we can formally integrate by parts the relativistic Landau equation (1.1) with

kernel (1.3) to obtain the following weak formulation:

d

dt

∫
ϕ(p)F (t, p) dp =

1

2

∫
R3×R3

F (p)F (q)
(
Φij(p, q)∂2

ijϕ(p)
)
dp dq

+
1

2

∫
R3×R3

F (p)F (q)∂pi
ϕ(p)

(
∂pj

Φij(p, q)− ∂qjΦ
ij(p, q)

)
dp dq,

where we sum over i and j. Now we introduce

Lϕ(p, q) =
1

2

3∑
i,j=1

Φij(p, q)∂2
ijϕ(p) +

3∑
i=1

Bi(p, q)∂pi
ϕ(p), (1.9)

where

Bi(p, q) =
1

2

3∑
j=1

(
∂pj

− ∂qj
)
Φij(p, q) = Λ(p, q)(ρ+ 2)(qi − pi). (1.10)

This formulation is analogous to the weak formulation of the non-relativistic Landau

equation given in [14, Equation (5)]. We obtain the expression (1.10) by using the

following lemma.

Lemma 1.2 (Strain and Guo [32]). One has

3∑
j=1

∂pj
Φij(p, q) = 2Λ(p, q) ((ρ+ 1)(qi − pi))

and
3∑

j=1

∂qjΦ
ij(p, q) = 2Λ(p, q) ((ρ+ 1)(pi − qi)) .

The proof of Lemma 1.2 can be found in [32, Lemma 3]. The detailed calculations

which show the derivation of the weak formulation of the relativistic Landau equation

(1.1) are contained in [35]. We give the following definition of a weak solution.

Definition 1.3 (Weak solutions to the relativistic Landau equation (1.1)). We call

(Ft)t∈[0,T ] a weak solution to the relativistic Landau equation (1.1) with initial data F0

a probability measure, provided that

(Ft)t∈[0,T ] ∈ L∞([0, T ],P1) ∩ L1([0, T ], L∞),

and for any ϕ ∈ C2
b (R

3) and any t ∈ [0, T ], it holds that∫
R3

ϕ(p)Ft(p) dp =

∫
R3

ϕ(p)F0(p) dp+

∫ t

0

∫
R3×R3

Fs(p)Fs(q)Lϕ(p, q) dp dq ds, (1.11)

where L is defined in (1.9).

In the recent work [35], the entropy dissipation estimate was shown for weak solutions

to the relativistic Landau equation. From the Sobolev inequality, then the entropy dissi-

pation estimate implies the gain of ∇
√
f ∈ L1([0, T ];L2(R3)) for a weak solution. Then,

with that estimate, the global existence of a standard weak solution was established.
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After that the propagation of any high order polynomial moment was shown in the sense

that

Mk(f, T ) = ess sup
t∈[0,T ]

∫
R3

f(t, p)(1 + |p|2)kdp ≤ C < ∞

holds as long as it holds initially. We refer to [35] for the complete details.

1.4. Main results. The majority of the work in this article will go towards establishing

the following integral inequality in Proposition 1.4. After that we will use this integral

inequality to establish the uniqueness in our main theorem.

Proposition 1.4 (Main integral inequality). For any two weak solutions (Ft)t∈[0,T ] and

(F̃t)t∈[0,T ] to the relativistic Landau equation (1.1), as in Definition 1.3, there exists a

bounded function ρ : [0, T ] �→ [0,∞), such that for any t ∈ [0, T ],

W2
2 (Ft, F̃t) ≤ ρ(t), ρ(t) ≤ W2

2 (F0, F̃0) +

∫ t

0

C̃(Fs, F̃s)Ψ(ρ(s)) ds,

where Ψ is from Definition 1.1 and

C̃(Fs, F̃s)
def
= c
(
‖Fs‖L∞

7 ∩L1
7
+ ‖F̃s‖L∞

7 ∩L1
7
+ 1
)
. (1.12)

We will use the integral inequality above to prove our main theorem.

Theorem 1.5 (Main theorem). Let T > 0. (i) Given the initial data F0 to the relativistic

Landau equation (1.1) satisfying F0(p) ∈ L∞
7 ∩ L1

7, then there exists at most one weak

solution to (1.1) starting from F0(p) obeying the following moment bounds:∫ T

0

‖F (s)‖L∞
7 ∩L1

7
ds < ∞.

(ii) Suppose that (Ft)t∈[0,T ] and (Fn
t )t∈[0,T ] (n ≥ 1) are weak solutions to equation (1.1),

satisfying

sup
n≥1

∫ T

0

(
‖F (s)‖L∞

7 ∩L1
7
+ ‖Fn(s)‖L∞

7 ∩L1
7

)
ds < ∞.

If initially limn W2(F0, F
n
0 ) = 0, then limn supt∈[0,T ] W2(Ft, F

n
t ) = 0.

We point out that Theorem 1.5 in particular applies to the case when Ft and F̃t are

the steady states such as

J(p) =
1

4π
e−p0

.

These are called relativistic Maxwellians or the Jüttner distributions.

1.5. A summary of the uniqueness argument. Theorem 1.5 follows the scheme intro-

duced by Fournier and Guérin in [14–16, 23], which is based on the stochastic represen-

tation of the regular homogeneous Landau equation. See also the probabilistic inter-

pretation of the Boltzmann equation in [17, 38]. Our result can be seen as the special

relativistic counterpart of the result in Fournier [14].

However the relativistic case is algebraically much more challenging. To the best of

the authors’ knowledge, the stochastic representation (2.7) and (2.8) with the particular

coefficient matrix Σ in Proposition 2.3 is new in the literature. We now give an overview

of the ideas in the proof of Theorem 1.5.
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• We use the 2−Wasserstein distance to measure the distance between two weak

solutions to (1.1), since trivially

W2(Ft, F̃t) ≤ E(|Pt − P̃t|2),

where Ft = Law(Pt) and F̃t = Law(P̃t). Thus we can instead control an easier

quantity E(|Pt− P̃t|2), whose evolution is simply given by Itô’s formula. We refer

to the proof of Proposition 1.4 for example below.

• The drift term in the evolution of E(|Pt − P̃t|2) can be controlled by Proposition

4.3, while the diffusion term can be controlled by Proposition 4.2. Those integral

estimates are established in Section 4, which further deeply depend on the crucial

pointwise estimates for Φ, Σ, and B established in Section 3. Section 3 and

Section 4 are the most technical parts in this article.

• In order to conclude the estimate for W2(Ft, F̃t), we choose very particular initial

random variables (see (2.6)) and white noises W = W ( dp, dp̃, ds) with covari-

ance measure Rs( dp, dp̃) ds where the measure Rs( dp, dp̃) ds has marginals Fs

and F̃s.

• To prove the crucial integral inequality (Proposition 1.4), we need the uniqueness

of the coupled SDEs (2.7) and (2.8), i.e., Proposition 6.1. Except for the standard

techniques in SDEs, we also apply Theorem B.1 in Horowitz-Karandikar [27] (see

also Theorem 5.2 in Bhatt-Karandikar [5]) to obtain the uniqueness of the linear

relativistic Landau (6.6), which is possible only due to our pointwise estimates

of the coefficients such as

|Φ(p, q)| ≤ c
(
1 + q0|p− q|−1

)
, |B(p, q)| ≤ c

(
1 + q0|p− q|−2

)
.

These estimates are proven in Lemmas 3.5 and 3.6 below.

2. Stochastic representation. In this section we will present a stochastic differen-

tial equation that we will use to represent the relativistic Landau equation (1.1). As a

first step, we shall further decompose the relativistic Landau kernel (1.3) as follows.

2.1. Decomposition of the kernel Φ. Now we will present a decomposition of the rela-

tivistic Landau kernel (1.3). The crucial point of this section is to introduce a new matrix

decomposition of the kernel in (2.5). This matrix decomposition will allow us to present

a useful stochastic representation of weak solutions to the relativistic Landau equation.

Proposition 2.1 ([35]). The relativistic Landau kernel Φ = (Φij) from (1.3) is symmet-

ric, positive semi-definite with null space spanned by ( p
p0 − q

q0 ). The matrix S can be

decomposed as the difference of two orthogonal projectors, i.e.,

S = Π1 −Π2,

where

Π1 = |q0p− p0q|2Id− (q0p− p0q)⊗ (q0p− p0q);

and

Π2 = |p× q|2Id− |q|2p⊗ p− |p|2q ⊗ q + (p · q) (p⊗ q + q ⊗ p) = (p× q)⊗ (p× q).
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Above Id is the standard 3 × 3 identity matrix. The above proposition is proven in

[35]. We give a different elementary proof here for the sake of completeness.

Proof. Recall from (1.6) that

S = ρτId− (p− q)⊗ (p− q) + ρ(p⊗ q + q ⊗ p)

and that

ρτ = |q0p− p0q|2 − |p× q|2.
The proof will then be done by direct calculation as seen in [35]. But we remark that

both Π1 and Π2 are orthogonal projectors. Indeed,

1

|v1|2
Π1 = P⊥v1 = Id− v1

|v1|
⊗ v1

|v1|
and

1

|v2|2
Π2 =

v2
|v2|

⊗ v2
|v2|

,

where v1 = q0p − p0q and v2 = p × q. The last equality for Π2 is guaranteed by the

observation Π2 p = Π2 q = 0 and Π2 v2 = |v2|2v2. Indeed,

Π2 p = |p× q|2p− |p|2|q|2p− |p|2(p · q)q + (p · q)2p+ (p · q)|p|2q
=
(
|p× q|2 + (p · q)2 − |p|2|q|2

)
p = 0.

Similarly, one can show that Π2 q = 0 and Π2v2 = |v2|2v2. �
Note that the rank 2 projector Π1 above has the same structure as the non-relativistic

Landau kernel a(z) = 1
|z|3 (|z|2Id−z⊗z). With this observation we then set Π1 = σΠ1

σ	
Π1

with

σΠ1
=

⎡⎣ q0p2 − p0q2 −(q0p3 − p0q3) 0

−(q0p1 − p0q1) 0 q0p3 − p0q3
0 q0p1 − p0q1 −(q0p2 − p0q2)

⎤⎦ , (2.1)

which is the analog of σ(z), a square root of a(z), as in [14, Equation (6)].

The other rank 1 projector Π2 = (p × q) ⊗ (p × q) in general can be written as

Π2 = σΠ2
σ	
Π2

with σΠ2
= (p × q) ⊗ u for any unit vector u ∈ S

2. But the particular

choice of u = 1
|p| (p3 p2 p1)

	 will be compatible with Π1 (or σΠ1
):

σΠ2

def
=

1

|p| (p× q)⊗

⎡⎣p3p2
p1

⎤⎦ . (2.2)

Here for the sake of clarity we point out that we are using the notation

(p× q)⊗

⎡⎣p3p2
p1

⎤⎦ =

⎡⎣p3(p2q3 − p3q2) p2(p2q3 − p3q2) p1(p2q3 − p3q2)

p3(p3q1 − p1q3) p2(p3q1 − p1q3) p1(p3q1 − p1q3)

p3(p1q2 − p2q1) p2(p1q2 − p2q1) p1(p1q2 − p2q1)

⎤⎦ .
We will observe the compatibility of σΠ1

and σΠ2
in the following proposition.

Proposition 2.2. The matrix S = (Sij) can be written as the following:

S = σS σ	
S ,
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where

σS = σΠ1
− |p|

p0 + 1
σΠ2

=

⎡⎣ q0p2 − p0q2 −(q0p3 − p0q3) 0

−(q0p1 − p0q1) 0 q0p3 − p0q3
0 q0p1 − p0q1 −(q0p2 − p0q2)

⎤⎦
− 1

p0 + 1
(p× q)⊗

⎡⎣p3p2
p1

⎤⎦ .
(2.3)

Proof. It is straightforward to check that

σΠ1

⎡⎣p3p2
p1

⎤⎦ = p0(p× q), σΠ1

⎡⎣q3q2
q1

⎤⎦ = q0(p× q). (2.4)

Here we define σΠ2
by (2.2). Assume that σS = σΠ1

− μσΠ2
; then

σS σ	
S = (σΠ1

− μσΠ2
)(σΠ1

− μσΠ2
)	

= σΠ1
σ	
Π1

− μσΠ1
σ	
Π2

− μσΠ2
σ	
Π1

+ μ2σΠ2
σ	
Π2

= S +Δ,

where

Δ = (μ2 + 1)Π2 −
μ

|p|σΠ1

⎡⎣p3p2
p1

⎤⎦ (p× q)	 − μ

|p|(p× q)[p3 p2 p1]σ
	
Π1

=

(
μ2 − 2p0

|p| μ+ 1

)
Π2,

where the last equality is ensured by (2.4). The difference Δ vanishes at μ = p0±1
|p| . In

particular, we can choose μ = p0−1
|p| = |p|

p0+1 such that S = σS σT
S . �

We finally obtain a useful formula for the square root Σ(p, q) of the relativistic Landau

kernel Φ(p, q)

Proposition 2.3. The relativistic Landau kernel matrix Φ(p, q) can be decomposed as

Φ = Σ Σ	,

where

Σ =
ρ+ 1

(p0q0)1/2
(ρτ )−3/4 σS

=
ρ+ 1

(p0q0)1/2
(ρτ )−3/4

{⎡⎣ q0p2 − p0q2 −(q0p3 − p0q3) 0

−(q0p1 − p0q1) 0 q0p3 − p0q3
0 q0p1 − p0q1 −(q0p2 − p0q2)

⎤⎦
− 1

p0 + 1
(p× q)⊗

⎡⎣p3p2
p1

⎤⎦}. (2.5)
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Remark 2.4. The matrix in the last line can be changed to

1

q0 + 1
(p× q)⊗

⎡⎣q3q2
q1

⎤⎦
with σΠ2

and σS changed correspondingly.

Remark 2.5. Our choice of Σ, such that ΣΣ	 = Φ, is of course not unique. But our

choice in Proposition 2.3 appears to be more compatible with our uniqueness argument

given later on in this article. We further expect this formulation can be useful in other

scenarios in the future.

2.2. Stochastic representation and weak solutions. In this section we present the sto-

chastic representation of weak solutions to the relativistic Landau equation (1.1). This

is only a brief summary and setup, in general for the full details of SDEs we refer to the

detailed discussions in [41].

We introduce two coupled Landau stochastic processes, say (Pt)t∈[0,T ] and (P̃t)t∈[0,T ],

whose laws are weak solutions (Ft)t∈[0,T ] and (F̃t)t∈[0,T ] to the relativistic Landau equa-

tion (1.1), respectively. For any s ∈ [0, T ], choose Rs ∈ H(Fs, F̃s) to be the (unique)

probability measure on R
3×R

3 with marginals Fs and F̃s such that (1.7) holds. Indeed,

Rs is the optimal transport plan which gives the 2−Wasserstein distance for Fs and F̃s

in (1.7). Consider a 3D white noise W ( dp, dp̃, ds) on R
3 × R

3 × [0, T ] with covariance

measure Rs( dp, dp̃) ds.

Then choose two R
3−valued random variables P0 and P̃0 with laws F0 and F̃0, re-

spectively, independent of the white noise W , such that initially

W2
2 (F0, F̃0) = E[|P0 − P̃0|2]. (2.6)

Then the coupled R
3−valued stochastic differential equations (SDEs) are

Pt = P0 +

∫ t

0

∫
R3×R3

Σ(Ps, p)W ( dp, dp̃, ds) +

∫ t

0

∫
R3

B(Ps, p)Fs(p) dp ds (2.7)

and

P̃t = P̃0 +

∫ t

0

∫
R3×R3

Σ(P̃s, p̃)W ( dp, dp̃, ds) +

∫ t

0

∫
R3

B(P̃s, p̃)F̃s(p̃) dp̃ds, (2.8)

where Σ is defined in (2.5) and B is defined in (1.10), respectively. Note that the filtration

is Ft = σ{P0, P̃0,W (A× [0, s]), s ∈ [0, t], A ∈ B(R3 ×R
3)}. Here B(R3 ×R

3) is the Borel

sigma algebra.

Given a weak solution (Ft)t∈[0,T ] to (1.1), then (2.7) can be regarded as a classical

stochastic differential equation (SDE). Indeed, (2.7) can be rewritten as

Pt = P0 +

∫ t

0

ΣFs
(Ps) dBs +

∫ t

0

BFs
(Ps) ds, (2.9)

where (Bt)t∈[0,T ] is a standard 3D Brownian motion and

BFs
(p) =

∫
R3

B(p, q)Fs(q) dq,
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and ΣFs
(p) is a square root of

∫
R3 Φ(p, q)Fs(q) dq. Equation (2.7) is nothing but the

standard probabilistic interpretation of the relativistic Landau (1.1). The same argument

applies to equation (2.8).

The white noise W ( dp, dp̃, ds) allows us to couple two Brownian motions (one in

equation (2.7) or its counterpart in equation (2.9), and the other in equation (2.8)) such

that the two solutions (Pt)t∈[0,T ] and (P̃t)t∈[0,T ] (or their laws (Ft)t∈[0,T ] and (F̃t)t∈[0,T ],

respectively) would remain close to each other.

2.3. Outline of the rest of the article. The rest of the article is organized as follows.

In Section 3 we prove the useful pointwise estimates of Σ and B. Then in Section 4 we

prove crucial estimates of the integrals of the quantities Σ and B. After that in Section

5 we explain a known useful generalized Gronwall inequality. Next in Section 6 we give

the proof of the crucial Proposition 1.4. Then finally in Section 7 we finally prove our

main theorem, Theorem 1.5.

3. Estimates of the coefficients Σ and B. In this section we will give new point-

wise estimates for the important quantities in the relativistic Landau equation, Σ and

B, including estimates of their differences. We initially state a useful inequality for (1.4)

which is taken from [20].

Proposition 3.1. Let p, q ∈ R
3 and define ρ = p0q0 − p · q − 1 as in (1.4). Then

0 ≤ ρ < 2p0q0

and

|p− q|2 + |p× q|2
2p0q0

≤ ρ(p, q) ≤ 1

2
|p− q|2. (3.1)

Proof. The lower bound for ρ is a direct consequence of the identity (1.4) and the fact

that p · q + 1 ≤ p0q0. Direct computations give that

ρ =
|p− q|2 − |p0 − q0|2

2
,

which then implies the upper bound for ρ. �
In the following definition we introduce a splitting of R3 ×R

3 which will be crucial in

the remainder of this article.

Definition 3.2 (Splitting of double space R3×R
3). We define the subset A of R3×R

3

as

A
def
= {(p, q)|(p0q0)1/2 ≥ |p− q|}.

Furthermore, we define the indicator function

1A(p, q) = 1− 1Ac(p, q) =

{
1 if (p, q) ∈ A,

0 if (p, q) /∈ A.

In the following remark we will explain pointwise estimates that follow from these

splittings.
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Remark 3.3. If (p, q) ∈ A, then p0q0 ≥ (p0q0)1/2 ≥ |p− q| since p0, q0 ≥ 1. Further-

more, if (p, q) ∈ A, then

p0 ≤ |p0 − q0|+ q0 ≤ |p− q|+ q0 ≤ (p0q0)1/2 + q0 ≤ p0 + q0

2
+ q0

which leads to p0 ≤ 3q0. By symmetry of p and q, one can conclude that

1

3
q0 ≤ p0 ≤ 3q0 if (p, q) ∈ A. (3.2)

Alternatively if (p, q) /∈ A, then |p− q| ≥ (p0q0)1/2 ≥ 1.

The set A and its complement Ac will be used many times in this article. Now we will

use the estimate (3.1) for ρ and recall that τ = ρ+ 2. We will use those observations in

the proof of the following lemma.

Lemma 3.4 (Estimate of Λ). The coefficient Λ(p, q) = (ρ+1)2

p0q0 (ρτ )−3/2 can be estimated

as

0 ≤ Λ(p, q) ≤ c
((

p0q0
)1/2 |p− q|−31A(p, q) + |p− q|−21Ac(p, q)

)
.

Proof. If 0 ≤ ρ(p, q) ≤ 1, then from (1.5) and (1.4) we have

Λ(p, q) ≤ 4

p0q0
(p0q0)3/2

|p− q|3 = 4(p0q0)1/2 |p− q|−3,

since ρ ≥ |p−q|2
2p0q0 by Proposition 3.1, τ = ρ+ 2 ≥ 2, and ρ+ 1 ≤ 2.

Otherwise if ρ ≥ 1, then ρ+ 1 ≤ 2ρ and similarly

Λ(p, q) ≤ 1

p0q0
(2ρ)2

(ρ2)3/2
=

4

p0q0ρ
≤ 8

|p− q|2 .

Then

Λ(p, q) � max{(p0q0)1/2|p− q|−3, |p− q|−2}.

This completes the proof after using Definition 3.2 and Remark 3.3. �
We remark that Lemma 3.4 shall be compared to [35, Lemma 12]. For instance, if

ρ ≥ 1, then using ρ+ 1 ≤ 2ρ, τ ≥ 2 again, one obtains

Λ(p, q) ≤ 1

p0q0
(2ρ)2

ρ3/2
=

4ρ1/2

p0q0
� (p0q0)1/2

p0q0
� 4

(p0q0)1/2
.

However, the estimates in Lemma 3.4 would be compatible with the indicator 1A, which

will be used throughout this article.

Now we give a useful pointwise estiamte of the kernel Φ in (1.3).

Lemma 3.5 (Estimate of Φ). The relativistic Landau kernel Φ = (Φij) can be estimated

as

|Φ(p, q)| ≤ c
(
1 + (min{p0, q0})|p− q|−1

)
.
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Proof. We recall from (1.5) and (1.6) that

Φij(p, q) =
1

p0q0
(ρ+ 1)2

(ρ(ρ+ 2))1/2
δij − Λ(p, q)(pi − qi)(pj − qj)

+
1

p0q0
(ρ+ 1)2

ρ1/2(ρ+ 2)3/2
(piqj + pjqi)

= I1 + I2 + I3.

First I1 can be estimated similarly as in Lemma 3.4. When 0 ≤ ρ ≤ 1, using ρ ≥ |p−q|2
2p0q0 ,

we have that

1

p0q0
(ρ+ 1)2

(ρ(ρ+ 2))1/2
≤ c

1

p0q0
(p0q0)1/2

|p− q| ≤ c(p0q0)−1/2|p− q|−1 ≤ c|p− q|−1.

When ρ ≥ 1, using Proposition 3.1 and ρ ≤ 2p0q0, one has

1

p0q0
(ρ+ 1)2

(ρ(ρ+ 2))1/2
� ρ

1

p0q0
� 1.

Hence |I1| ≤ c(1 + |p− q|−1).

Using Lemma 3.4 and noting that p0 ≤ 3q0 for (p, q) ∈ A, we have that

|I2| ≤ c
(
q0|p− q|−11A(p, q) + 1Ac(p, q)

)
.

The third term can be estimated as

|I3| ≤ 2
(ρ+ 1)2

ρ1/2(ρ+ 2)3/2
≤ cmax{1, (p

0q0)1/2

|p− q| } ≤ c
(
q0|p− q|−11A(p, q) + 1Ac(p, q)

)
.

We therefore conclude that

|Φ(p, q)| ≤ c
(
1 + q0|p− q|−1

)
.

We use the symmetry of p and q to complete this lemma. �
Now we proceed to estimate the drift term B = (Bi)

3
i=1, defined in (1.10).

Lemma 3.6. The drift term B has the pointwise bound

|B(p, q)| ≤ c
(
min(p0, q0)|p− q|−21A(p, q) + 1Ac(p, q)

)
.

Proof. One can estimate B as in (1.10) with (1.5) as in the following:

|B(p, q)| ≤ |p− q| 1

p0q0
(ρ+ 1)2

ρ3/2τ1/2
.

If 0 ≤ ρ ≤ 1, using the estimate ρ ≥ |p−q|2
2p0q0 again, one has

|B(p, q)| ≤ c|p− q| 1

p0q0
ρ−3/2 ≤ c(p0q0)1/2|p− q|−2.

Otherwise, if ρ ≥ 1, then ρ ≤ ρ+ 1 ≤ 2ρ and ρ ≤ ρ+ 2 = τ ≤ 3ρ. This yields

|B(p, q)| ≤ c|p− q| 1

p0q0
.

To complete the proof we use Definition 3.2 and Remark 3.3. �
In the next proposition, we will estimate for |B(p, q)−B(p̃, q̃)|.
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Proposition 3.7 (Pointwise estimate for B). For p, q, p̃, q̃ ∈ R
3, we have

|B(p, q)−B(p̃, q̃)| ≤ cmin
{
ϕ1
B(p, q) + ϕ1

B(p̃, q̃),

|p− p̃|(ϕ2
B(p, q) + ϕ2

B(p̃, q)) + |q − q̃|(ϕ2
B(q, p̃) + ϕ2

B(q̃, p̃))
}
,

where

ϕ1
B(p, q)

def
= min(p0, q0)|p− q|−21A(p, q) + 1Ac(p, q) (3.3)

and

ϕ2
B(p, q)

def
= (q0)3|p− q|−31A(p, q) + 1Ac(p, q). (3.4)

Proof. By the triangle inequality we have

|B(p, q)−B(p̃, q̃)| ≤ |B(p, q)|+ |B(p̃, q̃)| ≤ c
(
ϕ1
B(p, q) + ϕ1

B(p̃, q̃)
)
.

The last inequality is a direct consequence of Lemma 3.6. In the rest of the proof, we

only need to prove the second part, i.e., the Lipschitz estimate.

From (1.10) and (1.5) we have B(p, q) = (q − p)Λ̄(p, q), where we define the local

notation Λ̄ as

Λ̄(p, q) = (ρ+ 2)Λ(p, q) =
1

p0q0
(ρ+ 1)2

ρ3/2(ρ+ 2)1/2
.

Similar to the estimates for Λ and B, we can also estimate Λ̄(p, q) as

0 ≤ Λ̄(p, q) ≤ c
(
(p0q0)1/2|p− q|−31A(p, q) + (p0q0)−11Ac(p, q)

)
. (3.5)

Indeed, for the case ρ ≤ 1, using (3.1) we have the estimate

0 ≤ Λ̄(p, q) ≤ c
1

p0q0
ρ−3/2 ≤ c(p0q0)1/2 |p− q|−3.

When ρ ≥ 1, similarly one has

Λ̄(p, q) ≤ c
1

p0q0
,

since in this case ρ, ρ+ 1 and ρ+ 2 are all comparable.

Then we proceed as follows:

|B(p, q)−B(p̃, q̃)| ≤ |B(p, q)−B(p̃, q)|+ |B(p̃, q)−B(p̃, q̃)|
= I1 + I2.

Now we bound I1 and I2, respectively.

First, one has

I1 = |(q − p)Λ̄(p, q)− (q − p̃)Λ̄(p̃, q)|
≤ |q − p||Λ̄(p, q)− Λ̄(p̃, q)|+ |p− p̃|Λ̄(p̃, q).

By symmetry one also has

I1 ≤ |q − p̃||Λ̄(p, q)− Λ̄(p̃, q)|+ |p− p̃|Λ̄(p, q).

Therefore,

I1 ≤ min {|p− q|, |p̃− q|} |Λ̄(p, q)− Λ̄(p̃, q)|+ |p− p̃|
(
Λ̄(p, q) + Λ̄(p̃, q)

)
. (3.6)

Note that the last term above satisfies a better estimate than (3.4).
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Now it suffices to bound |Λ̄(p, q) − Λ̄(p̃, q)|. To this end we shall first compute the

derivative of ∂pj
Λ̄. Note that

∂pj
ρ =

q0

p0
pj − qj , ∂pj

(
1

p0q0

)
= − 1

(p0q0)2
q0

p0
pj .

Define a function ϕ : R+ → R+ as

ϕ(x) =
(x+ 1)2

x3/2(x+ 2)1/2
,

whose derivative is given by

ϕ′(x) = − (x+ 1)(x+ 3)

x5/2(x+ 2)3/2
< 0 for x > 0.

Therefore, we have that

∂pj
Λ̄(p, q) = ∂pj

(
1

p0q0

)
ϕ(ρ) +

1

p0q0
ϕ′(ρ)∂pj

ρ,

which can be simplified as

∂pj
Λ̄(p, q) = −Λ̄(p, q)

{
pj

(p0)2
+

ρ+ 3

ρ(ρ+ 1)(ρ+ 2)

(
q0

p0
pj − qj

)}
.

The terms inside the bracket {·} can be estimated as

|p|
(p0)2

=
|p|
p0

1

p0
<

1

p0
,

and

ρ+ 3

ρ(ρ+ 1)(ρ+ 2)

1

p0
∣∣q0p− p0q

∣∣ ≤ cρ−1|p− q| ≤ c
p0q0

|p− q| ,

where we use the lower bound for ρ, ρ ≥ |p−q|2
2p0q0 , and also observe that

|q0p− p0q| ≤ 2p0|p− q|,

and

sup
x≥0

x+ 3

(x+ 1)(x+ 2)
≤ 2.

Consequently, combining the estimate (3.5), one has

|∇pΛ̄(p, q)| ≤ c

(
1

p0
+

p0q0

|p− q|

){
(p0q0)1/2 |p− q|−31A(p, q) +

1

p0q0
1Ac(p, q)

}
.

Note that
1

p0
≤ 2

q0

|p− q| ≤ 2
p0q0

|p− q|
simply by

|p− q| ≤ 2max{p0, q0} ≤ 2p0q0.

Thus

|∇pΛ̄(p, q)| ≤ c
{
(p0q0)3/2 |p− q|−41A(p, q) + |p− q|−11Ac(p, q)

}
. (3.7)
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By symmetry, |∇qΛ̄(p, q)| satisfies the same estimate (3.7). Then further recall that

p0 ≈ q0 on A as in (3.2). Thus we have that

|∇pΛ̄(p, q)| ≤ c
{
(q0)3 |p− q|−41A(p, q) + |p− q|−11Ac(p, q)

}
. (3.8)

Now by a variant of the mean value theorem we claim that

|Λ̄(p, q)− Λ̄(p̃, q)| � |p− p̃|
[
(q0)3|p− q|−41A(p, q) + |p− q|−11Ac(p, q)

+ (q0)3|p̃− q|−41A(p̃, q) + |p̃− q|−11Ac(p̃, q)

]
. (3.9)

We will prove (3.9) at the end of the proof.

Combining (3.6) and (3.9), one finally obtains

I1 = |B(p, q)−B(p̃, q)|

≤ c |p− p̃|
[ {

(q0)3|p− q|−31A(p, q) + 1Ac(p, q)
}

+
{
(q0)3|p̃− q|−31A(p̃, q) + 1Ac(p̃, q)

}
+
{
(p0q0)1/2|p− q|−31A(p, q) + (p0q0)−11Ac(p, q)

}
+
{
(p̃0q0)1/2|p̃− q|−31A(p̃, q) + (p̃0q0)−11Ac(p̃, q)

}]
.

We can simplify it to be the following:

I1 = |B(p, q)−B(p̃, q)| ≤ c |p− p̃|
(
ϕ2
B(p, q) + ϕ2

B(p̃, q)
)
,

where the function ϕ2
B is defined in (3.4). By symmetry, one can estimate I2 similarly.

To complete the proof we need to establish the claim (3.9). To do so let us define

a smooth path r : [0, 1] → R
3 such that r(0) = p̃, r(1) = p, and |r′(t)| ≤ C|p − p̃| for

any t ∈ [0, 1]. We can choose this path around the fixed point q, such that |r(t) − q| ≥
cmin{|p− q|, |p̃− q|} for any t ∈ [0, 1]. We mention that there are many choices of such

a path. For instance, if we assume that |p̃ − q| = |p − q| = δ > 0, then we can choose

the great circle between p and p̃ on the sphere ∂B(q, δ) as the path. Otherwise, if say

0 < δ1 = |p̃ − q| < |p− q| = δ2, then we can choose a smooth path (such as a geodesic)

in B(q, δ2) \ B(q, δ1), connecting p and p̃. In particular we can choose a path r(t) with

constant speed. Then the total length of the chosen path is comparable to |p− p̃|.
Then by the fundamental theorem of calculus, we have that

|Λ̄(p, q)− Λ̄(p̃, q)| =
∣∣∣∣∫ 1

0

d

dt
Λ̄(r(t), q) dt

∣∣∣∣
≤ C|p− p̃|

∫ 1

0

|∇pΛ̄(r(t), q)| dt ≤ C|p− p̃| max
t∈[0,1]

|∇pΛ̄(r(t), q)|

= C|p− p̃||∇pΛ̄(r(t�), q)|, (3.10)

where there is a fixed t� ∈ [0, 1]. To finish the proof of (3.9), we do a case by case analysis

of the upper bound in (3.10) as follows.
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Case I. Suppose that (p, q) ∈ A (which implies that (p0q0)1/2 ≥ |p − q|) and that

(p̃, q) ∈ Ac (which implies that (p̃0q0)1/2 ≤ |p̃− q|) as in Remark 3.3.

• If |p− q| ≤ |p̃− q| and (r(t�), q) ∈ A, we have that

|∇pΛ̄(r(t�), q)| � (q0)3|r(t�)− q|−4 ≤ (q0)3|p− q|−4.

This is enough to establish (3.9) in this case. In the following in each case we

will justify that the term |∇pΛ̄(r(t�), q)| in (3.10) satisfies an upper bound which

is equivalent to (3.9).

• If |p− q| ≤ |p̃− q| and (r(t�), q) ∈ Ac, then

|∇pΛ̄(r(t�), q)| � |r(t�)− q|−1 � |p− q|−1 � (q0)3|p− q|−4,

where the last inequality is ensured by the fact (p, q) ∈ A and the pointwise

estimates as in Remark 3.3.

• If |p̃− q| ≤ |p− q| and (r(t�), q) ∈ A, then

|∇pΛ̄(r(t�), q)| � (q0)3|r(t�)− q|−4 ≤ (q0)3|p̃− q|−4.

To get a suitable estimate in this case, we will show that

(q0)3|p̃− q|−4 � |p̃− q|−1 + (q0)3|p− q|−4.

To this end if |p̃− q| ≥ 1
2 q

0, then

(q0)3|p̃− q|−4 ≤ 8|p̃− q|−1,

the conclusion then follows. Now alternatively assume that |p̃− q| ≤ 1
2q

0. Using

the same technique as in Remark 3.3, one can show that

1

2
q0 ≤ p̃0 ≤ 3

2
q0.

Now since further (p, q) ∈ A and (p̃, q) ∈ Ac we have that

1√
2
q0 ≤ (p̃0q0)1/2 ≤ |p̃− q| ≤ |p− q| ≤ (p0q0)1/2 ≤

√
3q0,

which shows that (q0)3|p̃− q|−4 � (q0)3|p− q|−4 and this establishes the desired

estimate in this case. This holds since q0 ≈ |p̃− q| ≈ |p− q| in this range.

• If |p̃− q| ≤ |p− q| and (r(t�), q) ∈ Ac, then trivially

|∇pΛ̄(r(t�), q)| � |r(t�)− q|−1 ≤ |p̃− q|−1.

This completes the proof of Case 1.

Case II. This is the case where (p, q) ∈ Ac and (p̃, q) ∈ A. This case can be treated

exactly the same as Case I by symmetry.

Case III. If both (p, q) and (p̃, q) are in A, without loss of generality we assume that

|p − q| ≤ |p̃ − q|. The case |p − q| ≥ |p̃ − q| can be handled in exactly the same way as

below.

• If (r(t�), q) ∈ A, then of course we have that

|∇pΛ̄(r(t�), q)| � (q0)3|r(t�)− q|−4 ≤ (q0)3|p− q|−4.
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• If (r(t�), q) ∈ Ac, then since (p, q) ∈ A we have

|∇pΛ̄(r(t�), q)| � |r(t�)− q|−1 ≤ |p− q|−1 ≤ (p0q0)3/2|p− q|−4 � (q0)3|p− q|−4.

This completes the estimates for Case III.

Case IV. If both (p, q) and (p̃, q) are in Ac, again without loss of generality we can

assume that |p− q| ≤ |p̃− q|.
• If (r(t�), q) ∈ Ac, we can conclude by

|∇pΛ̄(r(t�), q)| � |r(t�)− q|−1 ≤ |p− q|−1.

• Now consider the case that (r(t�), q) ∈ A. We need to establish the estimate

|∇pΛ̄(r(t�), q)| � (q0)3|r(t�)− q|−4 � (q0)3|p− q|−4 � |p− q|−1.

In particular if we establish (q0)3|p− q|−4 � |p− q|−1, then we are done. To this

end if |p− q| ≥ 1
2q

0, then we can conclude by

(q0)3|p− q|−4 ≤ 8|p− q|−1.

Otherwise, if |p− q| ≤ 1
2q

0, as in Case I, we have that

1

2
q0 ≤ p0 ≤ 3

2
q0.

Combining this with the condition that (p, q) ∈ Ac we have that

1√
2
q0 ≤ (p0q0)1/2 ≤ |p− q| ≤ 1

2
q0,

which implies that (q0)3|p−q|−4 ≈ |p−q|−1 ≈ 1/q0. This establishes the desired

estimate.

This completes the proof. �
In the next proposition, we will estimate |Σ(p, q)− Σ(p̃, q̃)|2.

Proposition 3.8 (Pointwise estimate for Σ). One first has the trivial estimate of Σ as

|Σ(p, q)− Σ(p̃, q̃)|2 ≤c
(
ϕ1
Σ(p, q) + ϕ1

Σ(p̃, q̃)
)
, (3.11)

where

ϕ1
Σ(p, q)

def
= min{(p0)3, (q0)3}|p− q|−11A(p, q) + min{(p0)2, (q0)2}1Ac(p, q), (3.12)

and the Lipschitz estimate of Σ as

|Σ(p, q)− Σ(p̃, q̃)|2 ≤ 2|Σ(p, q)− Σ(p̃, q)|2 + 2|Σ(p̃, q)− Σ(p̃, q̃)|2

≤ c|p− p̃|2
(
ϕ2
Σ(p, q) + ϕ2

Σ(p̃, q)
)
+ c|q − q̃|2

(
ϕ2
Σ(q, p̃) + ϕ2

Σ(q̃, p̃)
)
,

(3.13)

where

ϕ2
Σ(p, q)

def
= min{(p0)7, (q0)7}|p− q|−31A(p, q) + (q0)51Ac(p, q). (3.14)

Proof. We first prove (3.11). By the definition of Σ(p, q),

|Σ(p, q)|2 ≤ Λ(p, q)|σS(p, q)|2. (3.15)
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Now we only need to bound σS , i.e.,

σS =

⎡⎣ q0p2 − p0q2 −(q0p3 − p0q3) 0

−(q0p1 − p0q1) 0 q0p3 − p0q3
0 q0p1 − p0q1 −(q0p2 − p0q2)

⎤⎦
− 1

p0 + 1
(p× q)⊗

⎡⎣p3p2
p1

⎤⎦ .
As we argued before,

|q0p− p0q| ≤ 2min{p0, q0} |p− q|.
Moreover, we recall as in below (2.2) we have that

(p× q)⊗

⎡⎣p3p2
p1

⎤⎦ =

⎡⎣p3(p2q3 − p3q2) p2(p2q3 − p3q2) p1(p2q3 − p3q2)

p3(p3q1 − p1q3) p2(p3q1 − p1q3) p1(p3q1 − p1q3)

p3(p1q2 − p2q1) p2(p1q2 − p2q1) p1(p1q2 − p2q1)

⎤⎦ .
Then we have the following estimate:

|piqj − pjqi| ≤ |qi||pj − qj |+ |qj ||pi − qi| ≤ 2|q| |p− q|.

By symmetry of p and q,

|piqj − pjqi| ≤ 2min{|p|, |q|}|p− q| ≤ 2min{p0, q0}|p− q|,

which implies that

1

p0 + 1
|pk||piqj − pjqi| ≤ 2min{p0, q0}|p− q|.

Therefore

|σS(p, q)|2 ≤ c min{(p0)2, (q0)2} |p− q|2. (3.16)

Combining with Lemma 3.4 and the estimate (3.15), we obtain that

|Σ(p, q)|2

≤ c
(
min{(p0)3, (q0)3}|p− q|−11A(p, q) + min{(p0)2, (q0)2}1Ac(p, q)

)
.

The bound (3.11) follows directly from this estimate.

Now we proceed to prove (3.13). By symmetry, it suffices to control |Σ(p, q)−Σ(p̃, q)|.
The other term has a similar estimate.

The derivative of
√
Λ is given by

∂pj

√
Λ(p, q) = −1

2

√
Λ(p, q)

{
1

(p0)2
pj +

ρ2 + 2ρ+ 3

ρ(ρ+ 1)(ρ+ 2)

(
q0

p0
pj − qj

)}
.

We perform similar estimates to those in the proof of (3.7). In particular∣∣∣∣ ρ2 + 2ρ+ 3

ρ(ρ+ 1)(ρ+ 2)

(
q0

p0
pj − qj

)∣∣∣∣ � ρ−1 q
0

p0
|p− q| � (q0)2

|p− q| .

Here we used that

|q0p− p0q| ≤ 2q0|p− q|.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

UNIQUENESS FOR THE RELATIVISTIC LANDAU EQUATION 127

Then again following the proof of (3.7), we estimate |∇p

√
Λ(p, q)| as

|∇p

√
Λ(p, q)| ≤ c

√
Λ(p, q)

(
1

p0
+

(q0)2

|p− q|

)
.

We combine the estimate for
√
Λ from Lemma 3.4 and 1

p0 ≤ 2 q0

|p−q| to obtain

|∇p

√
Λ(p, q)|

�
{
1A(p, q) (q

0)2(p0q0)1/4|p− q|−5/2 + 1Ac(p, q) (q0)2 |p− q|−2
}
. (3.17)

We will use this estimate in a moment.

Now consider a function α(p, q), which denotes any entry of the matrix σS(p, q) from

(2.3). Here we just consider the (1, 1) entry of σS , i.e.,

α(p, q) = q0p2 − p0q2 −
1

p0 + 1
p3 (p2q3 − p3q2) .

One can directly check that

|∇p α(p, q)| ≤ c q0, |∇qα(p, q)| ≤ c p0. (3.18)

The above estimates also hold for any other entry of σS .

By the symmetry between p and p̃, we have that

|Σ(p, q)− Σ(p̃, q)|

≤ cmin{sup
α

|α(p, q)|, sup
α

|α(p̃, q)|}|
√
Λ(p, q)−

√
Λ(p̃, q)|

+ c
(√

Λ(p, q) +
√
Λ(p̃, q)

)
sup
α

|α(p, q)− α(p̃, q)|.

Combining the estimate in Lemma 3.4 with (3.16), (3.17), and (3.18) and applying the

same variant of the mean value theorem as in the proof of (3.9) we obtain

|Σ(p, q)− Σ(p̃, q)|

� |p− p̃|
[{

(q0)3(p0q0)1/4|p− q|−3/2 1A(p, q) + (q0)3|p− q|−11Ac(p, q)
}

+
{
(q0)3(p̃0q0)1/4|p̃− q|−3/21A(p̃, q) + (q0)3|p̃− q|−11Ac(p̃, q)

}
+
{
q0(p0q0)1/4|p− q|−3/21A(p, q) + q0|p− q|−11Ac(p, q)

}
+
{
q0(p̃0q0)1/4|p̃− q|−3/21A(p̃, q) + q0|p̃− q|−11Ac(p̃, q)

}]
.

Now we use the pointwise estimates in Remark 3.3 to simplify further as

|Σ(p, q)− Σ(p̃, q)|2

� |p− p̃|2
[{

(q0)6(p0q0)1/2|p− q|−3 1A(p, q) + (q0)51Ac(p, q)
}

+
{
(q0)6(p̃0q0)1/2|p̃− q|−31A(p̃, q) + (q0)51Ac(p̃, q)

}]
.
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By the symmetry between p and q, we also have

|Σ(p̃, q)− Σ(p̃, q̃)|2

≤ c|q − q̃|2
[{

(p̃0)6(p̃0q0)1/2|p̃− q|−31A(p̃, q) + (p̃0)51Ac(p̃, q)
}

+
{
(p̃0)6(p̃0q̃0)1/2|p̃− q̃|−31A(p̃, q̃) + (p̃0)51Ac(p̃, q̃)

}]
.

The proof of (3.13) is complete after combining the last two estimates and using Remark

3.3 again. �

4. Estimates of the integrals. In the previous section we gave a series of pointwise

estimates for the relevant quantities in the relativistic Landau equation. In this section

we prove necessary estimates of integrals of these relevant coefficients. We first recall the

following lemma from [14].

Lemma 4.1 (Lemma 4 in [14]). Let α ∈ (−3, 0]. There exists a constant cα > 0, such

that for all g ∈ L∞ ∩ L1 and ε ∈ (0, 1],

sup
p∈R3

∫
R3

|p− q|α g(q) dq ≤ ‖g‖L1 + cα‖g‖L∞ , (4.1)∫
R3

∫
R3

|p− q|α g(p)g(q) dp dq ≤ (‖g‖L1 + cα‖g‖L∞) ‖g‖L1 , (4.2)∫
|p̃−q|≤ε

|p− q|αg(q) dq ≤ cα‖g‖L∞ε3+α. (4.3)

We note that the constant cα > 0 in (4.3) is independent of p and p̃.

Furthermore, there exists a universal constant c > 0 such that for all g ∈ L∞∩L1 and

for all ε ∈ (0, 1], ∫
|p−q|≥ε

|p− q|−3g(q) dq ≤ ‖g‖L1 + c‖g‖L∞ log(1/ε). (4.4)

We note that the constant c > 0 in (4.4) is independent of p.

The proof is standard and hence we omit it. Interested readers can find the complete

proof in [14]. We further recall Definition 1.1 regarding the function Ψ used again below.

We now state two crucial propositions.

Proposition 4.2. Assume that g ∈ P ∩ L∞ and (q0)7g(q) ∈ L∞ ∩ L1. Then∫
R3

|Σ(p, q)− Σ(p̃, q)|2g(q) dq ≤ C(g)Ψ(|p− p̃|2), (4.5)∫
R3

|B(p, q)−B(p̃, q)|g(q) dq ≤ C(g)Ψ(|p− p̃|), (4.6)

where

C(g) = c
(
‖g‖L∞

7
+ ‖g‖L1

7
+ 1
)
, (4.7)

where c > 0 is a universal constant.
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Proof. We define by I the left hand side of (4.5). Recall Proposition 3.8 which shows

that

|Σ(p, q)− Σ(p̃, q)|2 � min
{
ϕ1
Σ(p, q) + ϕ1

Σ(p̃, q), |p− p̃|2(ϕ2
Σ(p, q) + ϕ2

Σ(p̃, q))
}
,

where

ϕ1
Σ(p, q) ≤ (q0)3|p− q|−11A(p, q) + (q0)21Ac(p, q),

ϕ2
Σ(p, q) ≤ (q0)7|p− q|−3 1A(p, q) + (q0)61Ac(p, q).

Hence

I � 1{|p−p̃|≥1}

∫
R3

(
ϕ1
Σ(p, q) + ϕ1

Σ(p̃, q)
)
g(q) dq

+ 1{|p−p̃|≤1}|p− p̃|2
∫
R3

1{|p−q|≥|p−p̃|2,|p̃−q|≥|p−p̃|2}
(
ϕ2
Σ(p, q) + ϕ2

Σ(p̃, q)
)
g(q) dq

+ 1{|p−p̃|≤1}

∫
R3

1{|p−q|≤|p−p̃|2}
(
ϕ1
Σ(p, q) + ϕ1

Σ(p̃, q)
)
g(q) dq

+ 1{|p−p̃|≤1}

∫
R3

1{|p̃−q|≤|p−p̃|2}
(
ϕ1
Σ(p, q) + ϕ1

Σ(p̃, q)
)
g(q) dq

� (I1 + I2 + I3 + I4) .

First, by (4.1) (with α = −1), for any p ∈ R
3,∫

R3

ϕ1
Σ(p, q)g(q) dq ≤

∫
A

|p− q|−1
(
(q0)3g(q)

)
dq +

∫
Ac

(q0)2g(q) dq

≤ c
(
‖g‖L∞

3
+ ‖g‖L1

3

)
≤ C(g),

which using the symmetry between p and p̃ implies that

I1 ≤ c1{|p−p̃|≥1}C(g) ≤ C(g)Ψ(|p− p̃|2).

Next, using (4.4) with ε = |p− p̃|2,

I2 ≤ 1{|p−p̃|≤1}|p− p̃|2
(∫

R3

1{|p−q|≥|p−p̃|2}ϕ
2
Σ(p, q)g(q) dq

+

∫
R3

1{|p̃−q|≥|p−p̃|2}ϕ
2
Σ(p̃, q)g(q) dq

)
≤ 21{|p−p̃|≤1}|p− p̃|2

(∫
|p−q|≥|p−p̃|2

|p− q|−3(q0)7g(q) dq

+

∫
|p−q|≥|p−p̃|2

(q0)6g(q) dq

)
≤ C(g)1{|p−p̃|≤1}|p− p̃|2

(
1− log |p− p̃|2

)
≤ C(g)Ψ(|p− p̃|2),

noting that p and p̃ are exchangeable in the second inequality.
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Finally, from (4.3) with α = −1 and ε = |p− p̃|2, we have

I3 + I4 ≤21{|p−p̃|≤1}

(∫
|p−q|≤|p−p̃|2

(
|p− q|−1 + |p̃− q|−1

)
(q0)3g(q) dq

+

∫
|p−q|≤|p−p̃|2

(q0)2g(q) dq

)
≤ C(g)1{|p−p̃|≤1}(|p− p̃|2)3−1 ≤ C(g)Ψ(|p− p̃|2).

Collecting these estimates yields (4.5).

We turn to the estimate of (4.6). We then denote by J the left hand side of (4.6).

Further recall Proposition 3.7, which says that

|B(p, q)−B(p̃, q)| ≤ cmin{ϕ1
B(p, q) + ϕ1

B(p̃, q), |p− p̃|(ϕ2
B(p, q) + ϕ2

B(p̃, q))}

with

ϕ1
B(p, q) ≤ |p− q|−2q01A(p, q) + 1Ac(p, q),

ϕ2
B(p, q) ≤ |p− q|−3(q0)31A(p, q) + 1Ac(p, q).

Then one can proceed to estimate J as what we have done for I

J � 1{|p−p̃|≥1}

∫
R3

(
ϕ1
B(p, q) + ϕ1

B(p̃, q)
)
g(q) dq

+ 1{|p−p̃|≤1}|p− p̃|
∫
R3

1{|p−q|≥|p−p̃|2,|p̃−q|≥|p−p̃|2}
(
ϕ2
B(p, q) + ϕ2

B(p̃, q)
)
g(q) dq

+ 1{|p−p̃|≤1}

∫
R3

1{|p−q|≤|p−p̃|2}
(
ϕ1
B(p, q) + ϕ1

B(p̃, q)
)
g(q) dq

+ 1{|p−p̃|≤1}

∫
R3

1{|p̃−q|≤|p−p̃|2}
(
ϕ1
B(p, q) + ϕ1

B(p̃, q)
)
g(q) dq

� (J1 + J2 + J3 + J4) .

Using (4.1) for α = −2, we obtain

J1 ≤ c
(
‖g‖L1 + ‖q0g‖L1 + ‖q0g‖L∞

)
1{|p−p̃|≥1} ≤ C(g)Ψ(|p− p̃|).

Again, (4.4) with ε = |p− p̃|2 yields

J2 ≤ 1{|p−p̃|≤1}|p− p̃|
(∫

R3

1{|p−q|≥|p−p̃|2}ϕ
2
B(p, q)g(q) dq

+

∫
R3

1{|p̃−q|≥|p−p̃|2}ϕ
2
B(p̃, q)g(q) dq

)
≤ 21{|p−p̃|≤1}|p− p̃|

(∫
|p−q|≥|p−p̃|2

|p− q|−3(q0)3g(q) dq

+

∫
|p−q|≥|p−p̃|2

g(q) dq

)
≤ c
(
‖g‖L1 + ‖(q0)3g‖L1 + ‖(q0)3g‖L∞

)
1{|p−p̃|≤1}|p− p̃|

(
1− log |p− p̃|2

)
≤ C(g)1{|p−p̃|≤1}|p− p̃| (1− log |p− p̃|)
≤ C(g)Ψ(|p− p̃|).
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Finally, we use (4.3) with ε = |p− p̃|2 and α = −2

J3 + J4 ≤ c‖q0g‖L∞ |p− p̃|21{|p−p̃|≤1} ≤ C(g)Ψ(|p− p̃|).

This completes the proof. �
In the next proposition we prove bounds for the integrals of differences of the quantity

B in (1.10).

Proposition 4.3. Assume that g, g̃ ∈ P ∩L∞ and also (q0)3g, (q0)3g̃ ∈ L∞ ∩L1. Then

for any two couplings Q,R ∈ H(g, g̃), we have that∫
R3×R3

∫
R3×R3

|p− p̃| · |B(p, q)−B(p̃, q̃)|Q( dp, dp̃)R( dq, dq̃)

≤ C̃(g, g̃)Ψ

(∫
R3×R3

|p− p̃|2Q( dp, dp̃)

)
+ C(g, g̃)Ψ

(∫
R3×R3

|q − q̃|2R( dq, dq̃)

)
, (4.8)

where using the constant defined in (4.7) we have that

C̃(g, g̃)
def
= C(g) + C(g̃) = c

(
‖(q0)3g‖L∞ + ‖q0g‖L1 + 1

)
+ c
(
‖(q0)3g̃‖L∞ + ‖q0g̃‖L1 + 1

)
,

where c > 0 is a universal constant.

Proof. We denote by K the left hand side of (4.8), e.g.,

K
def
=

∫
R3×R3

∫
R3×R3

|p− p̃| · |B(p, q)−B(p̃, q̃)|Q( dp, dp̃)R( dq, dq̃),

and we denote

δ(p, p̃, q, q̃)
def
= |p− p̃| · |B(p, q)−B(p̃, q̃)|.

By Proposition 3.7, we have

δ ≤c (|p− p̃|+ |q − q̃|)min
{
ϕ1
B(p, q) + ϕ1

B(p̃, q̃),

|p− p̃|(ϕ2
B(p, q) + ϕ2

B(p̃, q)) + |q − q̃|(ϕ2
B(q, p̃) + ϕ2

B(q̃, p̃))
}
,

where ϕ1
B, ϕ

2
B are defined in (3.3) and (3.4), respectively. We decompose the integral K

into integrals on different regions. For instance, if |p− p̃|+ |q− q̃| ≥ 1, we simply use the

trivial bound

δ ≤ c (|p− p̃|+ |q − q̃|)
(
ϕ1
B(p, q) + ϕ1

B(p̃, q̃)
)
.

Otherwise, outside a small neighborhood of the critical singularity |p− q|−3 appeared in

ϕ2
B, we can use the second estimate in the minimum above to obtain

δ ≤ c (|p− p̃|+ |q − q̃|)
(
|p− p̃|(ϕ2

B(p, q) + ϕ2
B(p̃, q))

+ |q − q̃|(ϕ2
B(q, p̃) + ϕ2

B(q̃, p̃))
)

≤ c
(
|p− p̃|2 + |q − q̃|2

) (
ϕ2
B(p, q) + ϕ2

B(p̃, q) + ϕ2
B(q̃, p̃)

)
.
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Near the singularity, one still uses the trivial bound. Indeed, we write

δ1(p, p̃, q, q̃) = 1{|p−p̃|+|q−q̃|≥1} (|p− p̃|+ |q − q̃|)
(
ϕ1
B(p, q) + ϕ1

B(p̃, q̃)
)
,

δ2(p,p̃, q, q̃) = 1{|p−p̃|+|q−q̃|≤1}1{|p−q|≥|p−p̃|4,|p̃−q|≥|p−p̃|4,|p̃−q̃|≥|p−p̃|4}

·
(
|p− p̃|2

) (
ϕ2
B(p, q) + ϕ2

B(p̃, q) + ϕ2
B(q̃, p̃)

)
,

δ3(p,p̃, q, q̃) = 1{|p−p̃|+|q−q̃|≤1}1{|p−q|≥|q−q̃|4,|p̃−q|≥|q−q̃|4,|p̃−q̃|≥|q−q̃|4}

·
(
|q − q̃|2

) (
ϕ2
B(p, q) + ϕ2

B(p̃, q) + ϕ2
B(q̃, p̃)

)
,

and further δ4 through δ6 are defined as

δ4(p, p̃, q, q̃) = 1{|p−p̃|+|q−q̃|≤1}1{|p−q|≤|p−p̃|4}
(
ϕ1
B(p, q) + ϕ1

B(p̃, q̃)
)
,

δ5(p, p̃, q, q̃) = 1{|p−p̃|+|q−q̃|≤1}1{|p̃−q|≤|p−p̃|4}
(
ϕ1
B(p, q) + ϕ1

B(p̃, q̃)
)
,

δ6(p, p̃, q, q̃) = 1{|p−p̃|+|q−q̃|≤1}1{|p̃−q̃|≤|p−p̃|4}
(
ϕ1
B(p, q) + ϕ1

B(p̃, q̃)
)
,

and δ7, δ8, δ9 can be defined similarly as δ4, δ5, δ6 but now the second indicator functions

are 1{|p−q|≤|q−q̃|4}, 1{|p̃−q|≤|q−q̃|4}, and 1{|p̃−q̃|≤|q−q̃|4}, respectively. Indeed, we have

that

δ7(p, p̃, q, q̃) = 1{|p−p̃|+|q−q̃|≤1}1{|p−q|≤|q−q̃|4}
(
ϕ1
B(p, q) + ϕ1

B(p̃, q̃)
)
,

δ8(p, p̃, q, q̃) = 1{|p−p̃|+|q−q̃|≤1}1{|p̃−q|≤|q−q̃|4}
(
ϕ1
B(p, q) + ϕ1

B(p̃, q̃)
)
,

δ9(p, p̃, q, q̃) = 1{|p−p̃|+|q−q̃|≤1}1{|p̃−q̃|≤|q−q̃|4}
(
ϕ1
B(p, q) + ϕ1

B(p̃, q̃)
)
.

We will decompose K in terms of all of these decompositions above.

Thus we obtain

K ≤ c
9∑

i=1

Ki,

where

Ki =

∫
R3×R3

∫
R3×R3

δi(p, p̃, q, q̃)Q( dp, dp̃)R( dq, dq̃).

We will estimate each term individually.

First, we have the estimate

δ1(p, p̃, q, q̃) ≤ (|p− p̃|+ |q − q̃|)2
(
ϕ1
B(p, q) + ϕ1

B(p̃, q̃)
)

≤ 2
(
|p− p̃|2 + |q − q̃|2

) (
ϕ1
B(p, q) + ϕ1

B(p̃, q̃)
)
.

Consequently,

K1 ≤ 2

∫
R3×R3

|p− p̃|2Q( dp, dp̃)

∫
R3×R3

(
ϕ1
B(p, q) + ϕ1

B(p̃, q̃)
)
R( dq, dq̃)

+ 2

∫
R3×R3

|q − q̃|2R( dq, dq̃)

∫
R3×R3

(
ϕ1
B(p, q) + ϕ1

B(p̃, q̃)
)
Q( dp, dp̃).
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Since R has marginals g and g̃, we have the estimate∫
R3×R3

ϕ1
B(p, q)R( dq, dq̃) =

∫
R3×R3

ϕ1
B(p, q)g(q) dq

≤
∫
R3×R3

q0|p− q|−21A(p, q)g(q) dq +

∫
R3×R3

1Ac(p, q)g(q) dq

≤ C
(
‖q0g‖L∞ + ‖q0g‖L1

)
+ ‖g‖L1 ≤ C(g),

which is deduced from (4.1) with α = −2. Similarly,∫
R3×R3

ϕ1
B(p̃, q̃)R( dq, dq̃) ≤ C(g̃)

and ∫
R3×R3

(
ϕ1
B(p, q) + ϕ1

B(p̃, q̃)
)
Q( dp, dp̃) ≤ C(g) + C(g̃).

Thus we obtain

K1 ≤ C(g, g̃)

{∫
R3×R3

|p− p̃|2Q( dp, dp̃) +

∫
R3×R3

|q − q̃|2R( dq, dq̃)

}
≤ C(g, g̃)Ψ

(∫
R3×R3

|p− p̃|2Q( dp, dp̃)

)
+ C(g, g̃)Ψ

(∫
R3×R3

|q − q̃|2R( dq, dq̃)

)
by simply using that x ≤ Ψ(x) for any x ≥ 0.

Now we estimate K2. Note that

δ2(p, p̃, q, q̃) ≤ 1{|p−p̃|≤1}1{|p−q|≥|p−p̃|4}|p− p̃|2ϕ2
B(p, q)

+ 1{|p−p̃|≤1}1{|p̃−q|≥|p−p̃|4}|p− p̃|2ϕ2
B(p̃, q)

+ 1{|p−p̃|≤1}1{|p̃−q̃|≥|p−p̃|4}|p− p̃|2ϕ2
B(q̃, p̃)

def
=

3∑
i=1

δ2,i(p, p̃, q, q̃).

Set K2 =
∑3

i=1 K2,i with K2,i =
∫
R3×R3

∫
R3×R3 δ2,i Q( dp, dp̃)R( dq, dq̃). Hence, (4.4)

with ε = |p− p̃|4 yields

K2,1 ≤
∫
R3×R3

Q( dp, dp̃)1{|p−p̃|≤1}|p− p̃|2
∫
|p−q|≥|p−p̃|4

ϕ2
B(p, q)R( dq, dq̃)

≤
∫
R3×R3

Q( dp, dp̃)1{|p−p̃|≤1}|p− p̃|2

·
(∫

|p−q|≥|p−p̃|4
|p− q|−3(q0)3g(q) dq +

∫
|p−q|≥|p−p̃|4

g(q) dq

)
,
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which leads to

K2,1 ≤
∫
R3×R3

Q( dp, dp̃)1{|p−p̃|≤1}|p− p̃|2

·
(
‖(q0)3g‖L1 + c‖(q0)3g‖L∞ log

1

|p− p̃|4 + ‖g‖L1

)
.

Thus we conclude that

K2,1 ≤ C(g)

∫
R3×R3

Q( dp, dp̃)1{|p−p̃|≤1}|p− p̃|2
(
1− log |p− p̃|2

)
≤ C(g)

∫
R3×R3

Ψ(|p− p̃|2)Q( dp, dp̃).

Jensen’s inequality, in particular (1.8), gives us

K2,1 ≤ C(g)Ψ

(∫
R3×R3

|p− p̃|2Q( dp, dp̃)

)
.

The terms K2,2 and K2,3 can be bounded similarly by symmetry. Moreover, K3 can be

bounded symmetrically also just by exchanging the role of p (p̃) and q (q̃).

Now we proceed to estimate K4, K5, and K6. Note that K7, K8, and K9 can be

bounded similarly to K4, K5, and K6. Note further that

δ4(p, p̃, q, q̃) ≤ 1{|p−p̃|≤1}1{|p−q|≤|p−p̃|4}
(
ϕ1
B(p, q) + ϕ1

B(p̃, q̃)
)
.

Hence

K4 ≤
∫
R3×R3

Q( dp, dp̃)1|p−p̃|≤1

(∫
|p−q|≤|p−p̃|4

ϕ1
B(p, q)g(q) dq

+

∫
|p−q|≤|p−p̃|4

ϕ1
B(p̃, q̃)R( dq, dq̃)

)
.

For the first part, using (4.3) with α = 0, α = −2, and ε = |p− p̃|4,

∫
|p−q|≤|p−p̃|4

ϕ1
B(p, q)g(q) dq

≤
∫
|p−q|≤|p−p̃|4

(
q0|p− q|−21A(p, q) + 1Ac(p, q)

)
g(q) dq

≤ c‖q0g‖L∞ |p− p̃|4 + c‖g‖L∞ |p− p̃|12 ≤ C(g)|p− p̃|2.
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For the second part, it is a little bit more complicated. For instance we must single out

variable q̃ first by Hölder inequality. Indeed, we have∫
|p−q|≤|p−p̃|4

ϕ1
B(p̃, q̃)R( dq, dq̃)

≤
∫
|p−q|≤|p−p̃|4

|p̃− q̃|−2q̃0R( dq, dq̃) +

∫
|p−q|≤|p−p̃|4

R( dq, dq̃)

≤
(∫

|p−q|≤|p−p̃|4
R( dq, dq̃)

)1/5(∫
R3×R3

|p̃− q̃|−5/2(q̃0)5/4R( dq, dq̃)

)4/5

+

∫
|p−q|≤|p−p̃|4

R( dq, dq̃)

≤ c‖g‖1/5L∞ |p− p̃|12/5
(
c‖(q̃0)5/4g̃‖L∞ + ‖(q̃0)5/4g̃‖L1

)4/5
+ c‖g‖L∞ |p− p̃|12

≤ C̃(g, g̃)|p− p̃|2.
Above we used (4.1) with α = 5/2. Combining those two parts, one has

K4 ≤ C̃(g, g̃)

∫
R3×R3

Q( dp, dp̃)1|p−p̃|≤1|p− p̃|2

≤ C̃(g, g̃)

∫
R3×R3

Ψ
(
|p− p̃|2

)
Q( dp, dp̃)

≤ C̃(g, g̃)Ψ

(∫
R3×R3

|p− p̃|2Q( dp, dp̃)

)
.

All the remaining terms can be estimated similarly because of symmetry. This completes

the proof. �

5. A generalized Gronwall inequality. In this section we recall a known gen-

eralization of the Gronwall lemma, which will be crucial to conclude our uniqueness

argument.

Lemma 5.1. Let T > 0, γ, ρ : [0, T ] → [0,∞) and γ ∈ L1([0, T ]), ρ ∈ L∞([0, T ]). Assume

further that

ρ(t) ≤ ρ(0) +

∫ t

0

γ(s)Ψ(ρ(s)) ds,

where we recall Ψ which is defined in Definition 1.1.

i) If ρ(0) = 0, then ρ(t) = 0 for all t ∈ [0, T ].

ii) If ρ(0) > 0, then∫ ρ(t)

ρ(0)

1

Ψ(y)
dy ≤

∫ t

0

γ(s) ds for any t ∈ [0, T ].

We include the proof of this lemma for the sake of completeness.

Proof. Since Ψ is increasing, the upper bound for ρ(t) is given by the solutions (if

any) to the integral equation

ρ(t) = ρ(0) +

∫ t

0

γ(s)Ψ(ρ(s)) ds, (5.1)
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which is equivalent to the Cauchy problem of the differential equation

ρ′(t) = γ(t)Ψ(ρ(t)), ρ(t = 0) = ρ(0).

Note that if ρ(0) > 0, then Ψ(x) is locally Lipschitz on x > 0. The Cauchy problem above

actually has a unique solution at least in a small interval [0, τ ], by the Cauchy-Lipschitz

theory. Indeed, we have that ∫ ρ(t)

ρ(0)

dy

Ψ(y)
=

∫ t

0

γ(s) ds.

Note that ρ is non-decreasing since γ is non-negative. So we can keep extending this

solution ρ = ρ(t) to any t ≤ T , since supx≥ρ(0) Ψ
′(x) ≤ C. Going back to the inequality

in this lemma, we obtain part ii) of this lemma.

Now we prove part i). We can follow the proof of part ii), for instance the upper

bound for ρ(t) is again given by the solution to the integral equation

ρ(t) =

∫ t

0

γ(s)Ψ(ρ(s)) ds.

Let t̄ = sup{t ∈ [0, T ]|ρ(t) = 0}. If t̄ = T , then the proof is finished.

We therefore assume that t̄ < T and prove i) by contradiction. So we pick a sequence

of times tn > tn+1 → t̄ as n → ∞ with each ρ(tn) > 0 but ρ(tn) > ρ(tn+1) → 0. By the

proof of part ii), one has the estimate∫ ρ(T )

ρ(tn)

1

Ψ(y)
dy ≤

∫ T

tn

γ(s) ds ≤
∫ t

0

γ(s) ds < ∞.

However, with fixed ρ(T ) > 0 but sending ρ(tn) → 0,∫ ρ(T )

ρ(tn)

1

Ψ(y)
dy → +∞ as n → ∞.

This is a contradiction. This completes the proof of part i). �

6. The main integral inequality. This section is devoted to the proof of Proposi-

tion 1.4. To this end we will use the following proposition.

Proposition 6.1 (Uniqueness of the coupled SDEs (2.7) and (2.8)). There exists a

unique pair (Pt)t∈[0,T ], (P̃t)t∈[0,T ] of continuous (Ft)t∈[0,T ]−adapted processes solving

the coupled SDEs (2.7) and (2.8). In particular, for any t ∈ [0, T ], Law(Pt) = Ft and

Law(P̃t) = F̃t.

We postpone the proof of Proposition 6.1. We will first prove Proposition 1.4, assuming

that Proposition 6.1 holds.

Proof of Proposition 1.4. By Proposition 6.1, Law(Pt) = Ft and Law(P̃t) = F̃t, which

allows us to conclude that

W2
2 (Ft, F̃t) ≤ E(|Pt − P̃t|2)

def
= ρ(t).
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By the choice of P0 and P̃0 as in (2.6), one has ρ(0) = W2
2 (F0, F̃0). Hence, with C̃(Fs, F̃s)

defined as in (1.12), it suffices to show that

ρ(t) ≤ ρ(0) +

∫ t

0

C̃(Fs, F̃s)Ψ(ρ(s)) ds. (6.1)

Since Rs has marginals Fs and F̃s, the coupled SDEs (2.7) and (2.8) can be rewritten as

Pt = P0 +

∫ t

0

∫
R3×R3

Σ(Ps, p)W ( dp, dp̃, ds) +

∫ t

0

∫
R3×R3

B(Ps, p)Rs( dp, dp̃) ds,

P̃t = P̃0 +

∫ t

0

∫
R3×R3

Σ(P̃s, p̃)W ( dp, dp̃, ds) +

∫ t

0

∫
R3×R3

B(P̃s, p̃)Rs( dp, dp̃) ds.

Applying Itô’s formula and then taking expectations, one obtains

E[|Pt − P̃t|2] = E[|P0 − P̃0|2]

+
3∑

i,j=1

∫ t

0

∫
R3×R3

E

[
(Σij(Ps, p)− Σij(P̃s, p̃))

2
]
Rs( dp, dp̃) ds

+ 2

∫ t

0

∫
R3×R3

E

[
(B(Ps, p)−B(P̃s, p̃)) · (Ps − P̃s)

]
Rs( dp, dp̃) ds

= ρ(0) +

∫ t

0

As ds+ 2

∫ t

0

Bs ds.

Here As and Bs are defined as the second and third terms in the integrals in the previous

step.

Denote by Qs( dp, dp̃) the coupled law of the pair (Ps, P̃s). Applying Proposition 4.3

and the fact that Rs, Qs ∈ H(Fs, F̃s) we then have

|Bs| ≤
∫
R3×R3

∫
R3×R3

|p− p̃||B(p, q)−B(p̃, q̃)|Qs( dp, dp̃)Rs( dq, dq̃)

≤ C̃(Fs, F̃s)Ψ

(∫
R3×R3

|p− p̃|2Qs( dp, dp̃)

)
+ C(Fs, F̃s)Ψ

(∫
R3×R3

|q − q̃|2Rs( dq, dq̃)

)
,

where

C̃(Fs, F̃s) = c
(
‖Fs‖L∞

3 ∩L1
3
+ ‖F̃s‖L∞

3 ∩L1
3
+ 1
)
,

and c > 0 here is a universal constant.
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By the estimate (4.5) in Proposition 4.2, we have

As =

∫
R3×R3

∫
R3×R3

|Σ(p, q)− Σ(p̃, q̃)|2Qs( dp, dp̃)Rs( dq, dq̃)

≤ 2

∫
R3×R3

∫
R3×R3

|Σ(p, q)− Σ(p̃, q)|2Qs( dp, dp̃)Rs( dq, dq̃)

+ 2

∫
R3×R3

∫
R3×R3

|Σ(p̃, q)− Σ(p̃, q̃)|2Qs( dp, dp̃)Rs( dq, dq̃)

= 2

∫
R3×R3

Qs( dp, dp̃)

∫
R3×R3

|Σ(p, q)− Σ(p̃, q)|2Fs(q) dq

+ 2

∫
R3×R3

Rs( dq, dq̃)

∫
R3×R3

|Σ(p̃, q)− Σ(p̃, q̃)|2F̃s(p̃) dp̃

≤ C(Fs)

∫
R3×R3

Ψ(|p− p̃|2)Qs( dp, dp̃)

+ C(F̃s)

∫
R3×R3

Ψ(|q − q̃|2)Rs( dq, dq̃),

where we recall that

C(Fs) = c‖Fs(q)‖L∞
7 ∩L1

7
, C(F̃s) = c‖F̃s(q)‖L∞

7 ∩L1
7
.

Using Jensen’s inequality (1.8), we have that

As ≤ C̃(Fs, F̃s)Ψ

(∫
R3×R3

|p− p̃|2Qs( dp, dp̃)

)
+ C(Fs, F̃s)Ψ

(∫
R3×R3

|q − q̃|2Rs( dq, dq̃)

)
,

but now C̃(Fs, F̃s) is given in (1.12).

Recalling the definition of ρ(s), we have

W2
2 (Fs, F̃s) =

∫
R3×R3

|q − q̃|2Rs( dq, dq̃) ≤
∫
R3×R3

|q − q̃|2Qs( dq, dq̃) = ρ(s).

Since Ψ is increasing, we finally obtain (6.1). We remark that as long as Fs and F̃s have

finite second moments, then ρ(s) is bounded. Indeed,

ρ(s) =

∫
R3×R3

|q − q̃|2Qs( dq, dq̃) ≤ 2

∫
R3

|q|2Fs( dq) + 2

∫
R3

|q̃|2F̃s( dq̃) < ∞.

This completes the proof. �
We will now proceed to prove Proposition 6.1.

Proof of Proposition 6.1. We only need to check the results for the SDE (2.7), while

(2.8) can be treated similarly. We follow the standard scheme of proof as in [14].

Step 1. For fixed x0 ∈ R
3 and a prior known R

3−valued progressively measur-

able process X = (Xt)t∈[0,T ], we define the R
3−valued progressively measurable process

(Φ(x0, X)t)t∈[0,T ] as

Φ(x0, X)t = x0 +

∫ t

0

∫
R3×R3

Σ(Xs, p)W ( dp, dp̃, ds) +

∫ t

0

∫
R3

B(Xs, p)Fs(p) dp ds.
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We claim that (Φ(x0, X)t)t∈[0,T ] is a.s. continuous and

E

[
sup

t∈[0,T ]

|Φ(x0, X)t|2
]

� |x0|2 +

∫ T

0

C(Fs) ds +

(∫ T

0

C(Fs) ds

)2

< ∞, (6.2)

where C(Fs) = c‖(q0)3Fs(q)‖L∞
q ∩L1

q
is uniformly bounded in time s ∈ [0, T ]. Indeed,

following the proof of (3.11) in Proposition 3.8, we obtain

|Σ(p, q)|2 ≤ c
(
(q0)3|p− q|−11A(p, q) + (q0)21Ac(p, q)

)
.

Therefore a.s. we have∫
R3

|Σ(Xs, p)|2Rs( dp, dp̃) ≤ sup
p∈R3

∫
R3

|Σ(p, q)|Fs( dq)

≤ sup
p∈R3

[ ∫
R3

|p− q|−1
(
(q0)3Fs(q)

)
dq +

∫
R3

(q0)2Fs(q) dq

]
≤ C(Fs) < ∞,

(6.3)

noting that the first marginal of Rs is Fs and using (4.1) with α = −1. Similarly, using

(4.1) with α = −2 and following the proof of Proposition 3.7, we obtain

|B(p, q)| ≤ c
(
q0|p− q|−21A(p, q) + 1Ac(p, q)

)
.

We obtain a.s.∫
R3

|B(Xs, p)|Fs(p) dp ≤ sup
p∈R3

∫
R3

|B(p, q)|Fs(q) dq ≤ C(Fs) < ∞. (6.4)

Combining (6.3) and (6.4), we can obtain that (Φ(x0, X)t)t∈[0,T ] is a.s. continuous by

Kolmogorov’s continuity theorem. The above mean square estimate (6.2) can be easily

deduced from the Doob’s martingale inequality, in particular we have that

E[ sup
t∈[0,T ]

|Φ(x0, X)t|2] ≤ 4E[|(Φ(x0, X)T |2].

Step 2. We now prove the uniqueness of the process ((Φ(x0, X)t)t∈[0,T ] given (Xt)t∈[0,T ].

Letting (Xt)t∈[0,T ] and (Yt)t∈[0,T ] be two progressively measurable processes, we want to

establish that

Δt
def
= E[|Φ(x0, X)t − Φ(x0, Y )t|2]

≤
∫ t

0

C(Fs)
{
Ψ
(
E[|Φ(x0, X)s − Φ(x0, Y )s|2]

)
+Ψ
(
E[|Xs − Ys|2]

)}
, (6.5)

where C(Fs) = c ‖Fs‖L∞
7 ∩L1

7
.

Indeed, using Itô’s formula and then taking expectation,

Δt =

3∑
i,j=1

∫ t

0

∫
R3×R3

E
[
(Σij(Xs, p)− Σij(Ys, p))

2
]
Rs( dp, dp̃) ds

+ 2

∫ t

0

∫
R3×R3

E

[(
B(Xs, p)−B(Ys, p)

)
·
(
Φ(x0, X)s − Φ(x0, Y )s

)]
× Fs(p) dp ds.
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Since Rs has the first marginal Fs, applying Proposition 4.2, we have

Δt ≤ c

∫ t

0

E

[ ∫
R3

|Σ(Xs, p)− Σ(Ys, p)|2Fs(p) dp

]
ds

+ c

∫ t

0

E

[∣∣∣Φ(x0, X)s − Φ(x0, Y )s

∣∣∣ · ∫
R3

|B(Xs, p)−B(Ys, p)|Fs(p) dp

]
ds

≤
∫ t

0

C(Fs)E
[
Ψ(|Xs − Ys|2) + |Φ(x0, X)s − Φ(x0, Y )s|Ψ(|Xs − Ys|)

]
ds.

Since Ψ is increasing and xΨ(x) ≤ Ψ(x2) for any x ≥ 0, one has for any x, y ≥ 0,

xΨ(y) ≤ 1{x≤y}yΨ(y) + 1{x≥y}xΨ(x) ≤ Ψ(x2) + Ψ(y2).

We thus have

Δt ≤
∫ t

0

C(Fs)E
[
Ψ(|Xs − Ys|2) + Ψ

(
|Φ(x0, X)s − Φ(x0, Y )s|2

) ]
ds.

Applying Jensen’s inequality (1.8) to two terms E[Ψ(·)], we finally obtain the inequality

in (6.5).

Step 3. We now check the uniqueness of (2.7). Consider two solutions P = Φ(P0, P )

and P̃ = Φ(P0, P̃ ) and let ρ(t) = E(|Pt − P̃t|2). By Step 1, ρ(t) is bounded on [0, T ]. By

Step 2, one has

ρ(t) ≤
∫ t

0

γ(s)Ψ(ρ(s)) ds,

where γ(s) = C(Fs) ∈ L∞([0, T ]). Lemma 5.1 yields that ρ(t) = 0. This means for any

t ∈ [0, T ], a.s. Pt = P̃t. The continuity of (Φ(x0, X)t)t∈[0,T ] forces that a.s. (Pt)t∈[0,T ] =

(P̃t)t∈[0,T ].

Step 4. We now prove the existence of a solution to (2.7) using Picard iteration.

Define P 0 by P 0
t ≡ P0 and then by induction Pn+1

t = Φ(P0, P
n
t ). Set ρn,k(t) =

sups∈[0,t] E[|Pn+k
s − Pn

s |2]. Again by Step 1, we have that supn,k ‖ρn,k(t)‖L∞[0,T ] < ∞.

Then by Step 2,

ρn+1,k(t) ≤
∫ t

0

γ(s) [Ψ(ρn+1,k(s)) + Ψ(ρn,k(s))] ds,

where γ(s) = C(Fs) ∈ L∞([0, T ]). We define ρn(t)
def
= supk ρn,k(t). Since Ψ is increasing,

ρn+1(t) ≤
∫ t

0

γ(s) [Ψ(ρn+1(s)) + Ψ(ρn(s))] ds.

Finally, set ρ(t)
def
= lim supn ρn(t). By (reverse) Fatou’s lemma, one has

ρ(t) ≤ 2

∫ t

0

γ(s)Ψ(ρ(s)) ds.

Then Lemma 5.1 guarantees that ρ(t) ≡ 0 for all t ∈ [0, T ]. We obtain

lim sup
n

sup
k

sup
t∈[0,T ]

E[|Pn+k
t − Pn

t |2] = 0.
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This means the sequence (Pn
t )t∈[0,T ] is a Cauchy sequence in the space L∞([0, T ], L2(Ω)).

Thus there exists a process (Pt)t∈[0,T ] such that

lim
n

sup
t∈[0,T ]

E[|Pt − Pn
t |2] = 0.

To conclude this step, it suffices to prove that

κn(t)
def
= E[|Φ(P0, P

n)t − Φ(P0, P )t|2] → 0,

as n → ∞. Combining with (Pn+1
t )t∈[0,T ] = (Φ(P0, P

n)t)t∈[0,T ] converging to (Pt)t∈[0,T ]

in L∞([0, T ], L2(Ω)), we can thus conclude P = Φ(P0, P ). The a.s. continuity of P will

follow from Step 1.

We define εn
def
= supt∈[0,T ] E[Ψ(|Pn

t −Pt|2)], which tends to 0 using Jensen’s inequality

(1.8). Applying the estimate (6.5) in Step 2 again, one obtains, for t ∈ [0, T ],

κn(t) ≤
∫ t

0

γ(s) (εn +Ψ(κn(s))) ds,

where again γ(s) = C(Fs) ∈ L∞([0, T ]). Similarly, we consider κ(t) = lim supn κn(t).

Using (reverse) Fatou’s lemma again, we obtain

κ(t) ≤
∫ t

0

γ(s)Ψ(κ(s)) ds.

Then Lemma 5.1 yields that κ(t) ≡ 0 for any t ∈ [0, T ]. We have proved that limn κn(t) =

0, which concludes this step.

Step 5. It remains to check that for any t ∈ [0, T ], Law(Pt) = Ft, where P =

(Pt)t∈[0,T ] is the unique solution to (2.7) or

Pt = P0 +

∫ t

0

∫
R3×R3

Σ(Ps, p)W ( dp, dp̃, ds) +

∫ t

0

∫
R3

B(Ps, p)Fs(p) dp ds.

Set Gs = Law(Ps) for any s ∈ [0, T ]. We note that (Gt)t∈[0,T ] solves the linear relativistic

Landau equation, i.e., for any test function ϕ ∈ C2
b (R

3),∫
R3

ϕ(p)Gt( dp) =

∫
R3

ϕ(p)F0( dp) +

∫ t

0

∫
R3×R3

Lϕ(p, q)Gs( dp)Fs(q) dq ds, (6.6)

where L is defined in (1.9). Indeed, we apply Itô’s formula to dϕ(Pt),

ϕ(Pt) = ϕ(P0) +

∫ t

0

∫
R3×R3

3∑
i,j=1

∂iϕ(Ps)Σ
ij(Ps, p)Wj( dp, dp̃, ds)

+

∫ t

0

∫
R3

3∑
i=1

∂iϕ(Ps)Bi(Ps, p)Fs(p) dp ds

+
1

2

∫ t

0

∫
R3×R3

3∑
i,j,k=1

∂ijϕ(Ps)Σ
ik(Ps, p)Σ

jk(Ps, p)Rs( dp, dp̃) ds.

Taking expectations (which makes the first integral vanish), and noting that Law(Ps) =

Gs, Law(P0) = F0 and Φ = ΣΣ	 or Φij =
∑

k Σ
ikΣjk, one reaches the conclusion.
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For the moment we will assume that we have uniqueness for the linear Landau equa-

tion. Since (Ft)t∈[0,T ] is a weak solution to the relativistic Landau (1.1), it is of course

a weak solution to the linear Landau (6.6). By the uniqueness of the linear Landau, one

concludes that Ft = Gt for all t ∈ [0, T ].

It remains to show the uniqueness for the linear Landau (6.6). We apply Theorem B.1

in Horowitz-Karandikar [27]; see also Theorem 5.2 in Bhatt-Karandikar [5]. Consider,

for t ∈ [0, T ], p ∈ R
3, and ϕ ∈ C2

b , the following operator:

Atϕ(p)
def
=

∫
R3

Lϕ(p, q)Ft(q) dq.

A stochastic process (Xt)t∈[t0,T ] is said to solve the martingale problem for (C2
b ,At) if

for all ϕ ∈ C2
b , the process ϕ(Xt)−

∫ t
t0
Asϕ(Xs) ds, defined for t ∈ [t0, T ], is a martingale.

To apply Theorem B.1 in [27], we only need to check that

(i) there is a countable family (ϕk)k≥1 ⊂ C2
b such that for all t ∈ [0, T ],

{(ϕk,Atϕk)}k≥1 is dense in {(ϕ,Atϕ)|ϕ ∈ C2
b } with respect to bounded-pointwise

convergence;

(ii) for any (t0, x0) in [0, T ]× R
3, there exists a unique (in law) solution (Xt)t∈[t0,T ]

to the martingale problem for (C2
b ,At) such that Xt0 = x0.

We now check these two points. First choose a countable family of functions (ϕk)k≥1 ⊂
C2

b , dense in C2
b , endowed with the norm ‖ϕ‖C2

b

def
= ‖ϕ‖L∞ +‖Dϕ‖L∞ +‖D2ϕ‖L∞ . Note

that

|Atϕ(p)| ≤
∫
R3

|Lϕ(p, q)|Ft(q) dq

≤ 1

2

3∑
i,j=1

∫
R3

|Φij(p, q)||∂2
ijϕ(p)|Ft(q) dq +

3∑
i=1

∫
R3

|Bi(p, q)||∂iϕ(p)|Ft(q) dq.

Recall Lemmas 3.5 and 3.6, in particular we have

|Φ(p, q)| ≤ c
(
1 + q0|p− q|−1

)
, |B(p, q)| ≤ c

(
1 + q0|p− q|−2

)
.

Hence

|Atϕ(p)| ≤ c‖ϕ‖C2
b

(
1 + ‖Ft‖L∞

1 ∩L1
1

)
by (4.1) with α = −1 and α = −2. This implies that Atϕk converges uniformly (stronger

than the bounded-pointwise convergence) to a certain Atϕ.

To prove (ii), we observe that the martingale problem for (C2
b ,At) with Xt0 = x0

corresponds to the following SDE:

Xt = x0 +

∫ t

t0

∫
R3×R3

Σ(Xs, p)W ( dp, dp̃, ds) +

∫ t

t0

∫
R3

B(Xs, p)Fs( dp) ds.

From the previous Step 1 to Step 4, we have proved the strong existence and uniqueness

but only in the case t0 = 0 and x0 = P0. The generalization to the above case is

straightforward. We have thus proved point (ii).

This completes the proof of Proposition 6.1. �
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7. Proof of the main theorem. We now prove our main theorem, Theorem 1.5.

The proof will make crucial use of Proposition 1.4 and Lemma 5.1.

Proof of Theorem 1.5. (i) Assume that (Ft)t∈[0,T ] and (F̃t)t∈[0,T ] are two weak solu-

tions to the relativistic Landau equation (1.1) with∫ T

0

‖Fs‖L∞
7 ∩L1

7
ds < ∞,

∫ T

0

‖F̃s‖L∞
7 ∩L1

7
ds < ∞.

Note that the existence of weak solutions is proven in [35]; however [35] does not obtain

L∞ bounds on the solution.

By Proposition 1.4, there exists a bounded function ρ : [0, T ] �→ [0,∞), such that for

any t ∈ [0, T ],

W2
2 (Ft, F̃t) ≤ ρ(t), ρ(t) ≤ W2

2 (F0, F̃0) +

∫ t

0

γ(s)Ψ(ρ(s)) ds,

where

γ(s) = C(Fs, F̃s) = c
(
‖Fs(q)‖L∞

7 ∩L1
7
+ ‖F̃s(q)‖L∞

7 ∩L1
7

)
∈ L1([0, T ]).

By Lemma 5.1, if initially ρ(0) = W2
2 (F0, F̃0) = 0, then for any t ∈ [0, T ], ρ(t) = 0 and

thus W2(Ft, F̃t) = 0. Thus (Ft)t∈[0,T ] = (F̃t)t∈[0,T ].

(ii) Consider a family of weak solutions (Ft)t∈[0,T ] and (Fn
t )t∈[0,T ] to (1.1) such that

sup
n

∫ T

0

(
‖Fs‖L∞

7 ∩L1
7
+ ‖Fn

s ‖L∞
7 ∩L1

7

)
ds < ∞,

and ρn(0)
def
= W2

2 (F0, F
n
0 ) → 0 as n → 0. Then applying Proposition 1.4 again, one has

a family of bounded functions ρn : [0, T ] �→ [0,∞), such that

W2
2 (Ft, F

n
t ) ≤ ρn(t), ρn(t) ≤ ρn(0) +

∫ t

0

γn(s)Ψ(ρn(s)) ds.

Lemma 5.1 part ii) implies that∫ ρn(t)

ρn(0)

1

Ψ(y)
dy ≤

∫ t

0

γn(s) ds for any t ∈ [0, T ].

Since for any ε > 0,
∫ ε
0
1/Ψ(y) dy = +∞ and supn

∫ T
0
γn(s) ds < ∞ and ρn(0) → 0 as

n → ∞, one finally obtains that limn supt∈[0,T ] ρn(t) = 0 and then consequently we have

that limn supt∈[0,T ] W2
2 (Ft, F

n
t ) = 0. �
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