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Abstract. We prove the uniqueness of weak solutions to the spatially homogeneous
special relativistic Landau equation under the conditional assumption that the solution
satisfies (p®)"F(¢,p) € L1([0,T]; L>). The existence of standard weak solutions to the
relativistic Landau equation has been shown recently in [J. Funct. Anal. 277 (2019), pp.
1139-1201].
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108 R. M. STRAIN anxp Z. WANG

1. Introduction. In this article we study the spatially homogeneous special rela-
tivistic Landau equation with Coulomb interactions which is a basic model in kinetic
theory. The Boltzmann equation is perhaps the most widely used partial differential
equation in kinetic theory. However the Boltzmann equation does not make sense for
the important Coulomb interactions [39]. In 1936, Landau introduced a correction to
the Boltzmann equation that is generally used to model a dilute hot plasma where fast
moving particles interact via Coulomb interactions [26,30]. This partial differential equa-
tion, which is now called the Landau equation, does not include the effects of Einstein’s
theory of special relativity. However for particle velocities that are close to the speed
of light, which occurs commonly in a hot plasma, relativistic effects are very important.
The relativistic version of Landau’s equation was derived by Budker and Beliaev in 1956
[BL4]. Tt is a fundamental model for studying the dynamics of a dilute collisional plasma.

The relativistic Landau equation is given by

O,F = C(F, F). (1.1)

Here F' = F(t,p) is the density, p € R3 is the momentum variable, and ¢ > 0 is the time
variable. This equation includes the initial conditions F'(0,p) = Fy(p). The collision
operator can be written as

3
Ch o)) =5 > B [ da 89(p.q) [h0)D,,90) ~ 9O A0 (12

Q=1 R

The relativistic Landau kernel (®%(p, q))1<; j<3 is then given by

©(p, q) = Alp, 0)S” (. q)- (1.3)
For the momentum p,q € R?, we set the energies to be p° = /1+ [p|?2 and ¢° =
v/1+1¢|?. Then the relativistic relative momentum is defined by

_ a2 % |2
1= Ip0 gl tlpxa
P +p-g+l

The proof of this identity is straightforward since in particular one can use the formula
Ip x q]* + |p-q|* = |p|*|¢|>. Then 7 = p + 2 and we have that

def
p = p° —p-q— (1.4)

1)2 3
Alpeg) = oy (15)
and
S (p,q) = prdi; — (pi — a;)(p; — 4j) + p(Pidj + pjai)- (1.6)

In this formulation we can directly observe that the matrix of the relativistic Landau
kernel, ®, has a first order non-isotropic singularity because of (L4).

The main point of this article is to prove a conditional uniqueness result for large
data weak solutions to the relativistic Landau equation (IT]). This is stated in Theorem
below. To prove this theorem we introduce several new decompositions and perform
challenging pointwise estimates for the relativistic Landau kernel (I.3)); these estimates
build upon recent difficult algebraic estimates in [35]. We also introduce a stochastic
representation, in (27) and (28], of solutions to the relativistic Landau equation (ITI)
with the specific coefficient matrix ¥ that is introduced in Proposition 2.3l The work of
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UNIQUENESS FOR THE RELATIVISTIC LANDAU EQUATION 109

Tanaka [38] in 1978 used a stochastic approach and proved uniqueness for the Boltzmann
equation without cutoff in the Maxwell molecules case. Further, see [I7]. Our main
results make use of the approach by Fournier and Guérin in [I4HI6L23], which proved
uniqueness by looking at the stochastic representation of the classical non-relativistic
spatially homogeneous Landau equation. In particular our result can be seen as the
special relativistic counterpart of the result in Fournier [I4] which proved the uniqueness
for bounded solutions of the non-relativistic spatially homogenenous Landau equation
with Coulomb interactions. We refer to [35] for a recent comparison of the relativistic
and non-relativistic Landau equations.

The major new difficulties in the proof of our main theorem, Theorem [[L5] are largely
algebraic, due to the extreme complexity of the structure of the relativistic Landau kernel.
In this paper we introduce the stochastic coefficient matrix (28] ¥ used in the stochastic
differential equations (227)) and (28], and we further prove several detailed pointwise
estimates of ¥ and other quantities in order to establish the uniqueness theorem.

It is well known that relativistic kinetic theory contains many extreme difficulties at
the level of the algebraic structure of the collision kernels, due to the quantities that
arise in special relativity. We note that an extensive study of the pointwise behavior
of the collision operators in relativistic kinetic theory was done by Glassey and Strauss
between 1991-1995 in their work on the relativistic Boltzmann equation; see [I8H211[37].
In particular [I9] gives an understanding of the very complex Jacobian of the pre-post
change of variables for the relativistic Boltzmann equation. Then [20] proves the global
asymptotic stability and uniqueness of the relativistic Boltzmann equation in the torus.
Afterwards [I8] generalized the previous result to the whole space case. The first author is
very grateful for having had the opportunity to discuss the papers [I8H211[37] with Walter
Strauss on several occasions while he was a graduate student at Brown University.

1.1. The literature. In this section we will describe a selection of closely related ad-
ditional results about the relativistic Landau equation. Lemou [29] in 2000 studied the
linearized relativistic Landau collision operator. Strain and Guo, in 2004 [32], proved the
global existence of unique classical solutions to the relativistic Landau-Maxwell system
with initial data that is close to the relativistic Maxwellian equilibrium. Then Hsiao
and Yu in 2006 [28] proved the existence of global classical solutions to the initial value
problem for the simpler relativistic Landau equation with nearby relativistic Maxwellian
initial data in the whole space. Yu [45] in 2009 proved the C*° smoothing effects for
the relativistic Landau-Maxwell system with nearby equilibrium initial data under the
assumption that the electric and magnetic fields are infinitely smooth. Further, for the
relativistic Landau-Poisson equation the smoothing effects were shown in [45] without
additional assumptions. In 2010 Yang and Yu in [43] proved the hypocoercivity of the
relativistic Landau equations. Then in 2012, Yang and Yu [44] proved the existence and
uniqueness of global in time classical solutions to the relativistic Landau-Maxwell system
in the whole space R? for initial data which is nearby to the relativistic Maxwellian.

The non-relativistic Landau equation has experienced a much larger amount of math-
ematical study in comparison. We will mention only a small sample of results that are
closely related to this paper. In 1977 [2] proved the existence of a local in time bounded
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110 R. M. STRAIN anD Z. WANG

solution. In 2002 [24] Guo proved the global existence and uniqueness of classical solu-
tions to the spatially dependent Landau equation with nearby Maxwellian equilibrium
initial data. The large time decay rates were shown in [33]. Recent developments in [7]
give an understanding of the case with a mild velocity tail on the initial data. Further,
[6] performs a numerical study on the large time decay rate in terms of the 2/3 law as
in [34]. We further reference [25]36].

Now for the spatially homogeneous non-relativistic Landau equation, in [TT,12] Desvil-
lettes and Villani proved the large data global well-posedness and smoothness of solutions
for the Landau equation with hard potentials. In 1998 in [39] Villani proved the exis-
tence of weak H-solutions of the spatially homogeneous Landau equation with Coulomb
potential. Later in 2015 [9] Desvillettes proved an entropy dissipation estimate for the
Landau equation, and used that estimate to conclude that the H-solutions are actually
true weak solutions. Further developments can be found in [8,[10]. Also [42] proved L?
estimates for the Landau equation with soft potentials. In [I] a priori estimates for the
Landau equation with soft potentials including the Coulomb case are proven.

Recently [31] proved upper bounds for certain parabolic equations, including the spa-
tially dependent non-relativistic Landau equation after conditionally assuming the local
conservation laws to be bounded. And [I3] proves a Harnack inequality for solutions to
kinetic Fokker-Planck equations with rough coefficients and applies that to the spatially
dependent Landau equation to obtain a C'* estimate, assuming that the local conserva-
tion laws are bounded. In [22] other estimates are proven for the homogeneous Landau
equation with Coulomb potential.

1.2. Notation. In this section we will introduce notation that will be used throughout
the rest of the article. Let P(R?) be the set of probability measures on R? (d > 1) and
let P,.(R?) (r > 1) be the subset of P(R?) with finite 7th moments, i.e.,

Po(rY) < {1 eP(Rd)‘/ 2l f(da) < oo .
Rd
We introduce the Wasserstein distance on R? to compare two weak solutions to the

relativistic Landau equation ([l) as in (III) below. For two probability measures
f, g € P.(R3), their r—Wasserstein distance W,.(f, g) is defined as

1/r
inf x —y|"R(dz,d
Rewg)< [ e y>)

—  inf (]EHX_YV])W,

X~ f,Yr~g

Wi (f.9)

where the first infimum is taken over R € H(f,g). Here H(f,g) is the set of joint
probability measures on R? x R? with marginals f and g, respectively. Further, X ~ f
means that X is an R? valued random variable with law f, and Y ~ ¢ is similarly defined.
Then the infimum in the second inequality above is over all possible couplings (X,Y)
of random variables with f and g as their marginal laws, respectively. It is known that
(P2, Ws) is a Polish space whose topology is a bit stronger than the weak topology. It
is further known that the infimum above is reached in the sense that for f, g € Po, then
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UNIQUENESS FOR THE RELATIVISTIC LANDAU EQUATION 111

there exists R € H(f,g) and X ~ f, Y ~ g such that

witro = ([ weranay) = (s -ve)

See [40] for a thorough introduction of the Wasserstein distance.

In this article in particular we will use the 2—Wasserstein distance, which is Wh (F, Ft),
to quantify the distance of two weak solutions (LIT)) (F}):efo,r) and (Ft)te[O,T] to the
relativistic Landau equation (IT)). In particular for any s € [0, T, choose R; € H(Fs, FS)
to be the unique probability measure on R? x R? with marginals F, and F, such that

WEELF) = [ o= bPR.(dp ). (1.7
R3 xR3
We will use this distance extensively throughout the paper.
We will now define the weighted Lebesgue spaces L”(R?) (with r > 1 and s € R) as
follows:

1/r
e P X R

where (p) . (1+ |p|2)1/2 with the corresponding standard definition for L°(R3). We
use the definition L7(R?) = {f : R® = R, || fllzrms) < +o0}. We write L when there
is no risk of confusion about the domain. Further, we will denote L = L" (when s =0
with 7 > 1) throughout the article.

We will now define the following useful functions.

DEFINITION 1.1. Define the increasing continuous function ¥ : [0, 00) — [0, 00) as
U(z) = (1 — Lyg<p<iy log ).
Define the concave increasing continuous function © : [0, 00) — [0, 00) as

(1 —logz) ifze€l0,1];
O(x) = L | 2
xlog2+ 5 if @ > 5

Note that for any > 0, ¥U(x)/2 < O(z) < 2¥(z). Since O is concave, we conclude
for any f > 0 from Jensen’s inequality that

/\I/ofdu§2/60fdu§2®</fdu>§4\I/</fdu>, (1.8)

where p is any probability measure.

For two quantities A and B, we will use the notation A < B to mean that there exists
a positive inessential constant C' > 0 such that A < CB. Then A ~ B means that A < B
and B < A. We will use the notation C' > 0 and also ¢ > 0 to denote positive inessential
constants whose value may change from line to line.
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112 R. M. STRAIN anD Z. WANG

1.3. Weak solutions to the relativistic Landau equation (LI). For a test function ¢ €
CZ(R3), we can formally integrate by parts the relativistic Landau equation (L)) with
kernel (I3 to obtain the following weak formulation:

% o(p)F(t,p)dp = %/Rm@ F(p)F(q) (27 (p,q)0};¢(p)) dpdq
5 [ FP@0,00) (0,87 (0) - 0,87(p,) dpda
R3 xR3

where we sum over ¢ and j. Now we introduce

3 3

Lo(.a) = 3 3 #9(p.0)0%0() + > Bilp 03y 0(0). (19)

ij=1 i=1

where
3
pra :%Z by = 00,) B9 (0,0) = A, @)(p+ 2)(ai —p). (110)

This formulation is analogous to the weak formulation of the non-relativistic Landau
equation given in [I4, Equation (5)]. We obtain the expression (LI0) by using the
following lemma.

LEMMA 1.2 (Strain and Guo [32]). One has

Za B9 (p, ) = 2A(p,) ((p + 1)(gs — 1))

and

3
> 00,2 (p.q) = 2A(p, ) ((p + V)i — a2)) .
j=1
The proof of Lemma can be found in [32, Lemma 3]. The detailed calculations
which show the derivation of the weak formulation of the relativistic Landau equation
(L) are contained in [35]. We give the following definition of a weak solution.
DEFINITION 1.3 (Weak solutions to the relativistic Landau equation (L])). We call
(Ft)tefo,r) @ weak solution to the relativistic Landau equation (LII) with initial data Fj
a probability measure, provided that

(Ft)tG[O T] S LOO([Oa T]a Pl) N Ll([07 TL Loo)v
and for any ¢ € CZ(R?) and any t € [0, 7], it holds that

/Wso(p)Ft()dp / ) Fo(p dp+//RSXR3 (q)Lp(p, q) dpdgds, (1.11)

where L is defined in (3.

In the recent work [35], the entropy dissipation estimate was shown for weak solutions
to the relativistic Landau equation. From the Sobolev inequality, then the entropy dissi-
pation estimate implies the gain of Vv/f € L1([0,T]; L?(R?)) for a weak solution. Then,
with that estimate, the global existence of a standard weak solution was established.
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UNIQUENESS FOR THE RELATIVISTIC LANDAU EQUATION 113

After that the propagation of any high order polynomial moment was shown in the sense
that

Mi(f,T) = esssup [ £(t,p)(1+[p)rdp < C < oo
te[0,T] JRR3
holds as long as it holds initially. We refer to [35] for the complete details.
1.4. Main results. The majority of the work in this article will go towards establishing
the following integral inequality in Proposition [[L4l After that we will use this integral
inequality to establish the uniqueness in our main theorem.

PROPOSITION 1.4 (Main integral inequality). For any two weak solutions (F});c[o,7] and
(Ft)te[O,T] to the relativistic Landau equation (IL1J), as in Definition [[3] there exists a
bounded function p : [0,T] — [0, 00), such that for any ¢ € [0, T,

W3 (Fy, ) < p(t),  p(t) < W3(Fy, Fy) + /0 C(Fy, Fy)T(p(s)) ds,

where ¥ is from Definition [[.T] and
C(Fy B (I ers + 1 Bllznrs +1) (1.12)
We will use the integral inequality above to prove our main theorem.

THEOREM 1.5 (Main theorem). Let 7' > 0. (i) Given the initial data Fy to the relativistic
Landau equation (1)) satisfying Fy(p) € L N L, then there exists at most one weak
solution to (L)) starting from Fy(p) obeying the following moment bounds:

T
/ 1F ()| ez ds < oo.
0

(ii) Suppose that (F})iejo,7] and (F{")sefo,r) (n = 1) are weak solutions to equation (L),
satisfying
T
sup/ (||1 () Lgorrs + | Fn(s)HL;onL;) ds < oo.
n>1.J0

If initially lim,, Wa(Fo, F¢') = 0, then lim, sup, ¢ 71 Wa(F, FY*) = 0.

We point out that Theorem in particular applies to the case when F, and F} are
the steady states such as

1 0
= — ¢ P
J(p) O

These are called relativistic Maxwellians or the Jiittner distributions.

1.5. A summary of the uniqueness argument. Theorem follows the scheme intro-
duced by Fournier and Guérin in [I4HI6]23], which is based on the stochastic represen-
tation of the regular homogeneous Landau equation. See also the probabilistic inter-
pretation of the Boltzmann equation in [I7L[38]. Our result can be seen as the special
relativistic counterpart of the result in Fournier [14].

However the relativistic case is algebraically much more challenging. To the best of
the authors’ knowledge, the stochastic representation (2.7) and (2.8]) with the particular
coefficient matrix ¥ in Proposition 2.3lis new in the literature. We now give an overview
of the ideas in the proof of Theorem
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114 R. M. STRAIN anD Z. WANG

e We use the 2—Wasserstein distance to measure the distance between two weak
solutions to (L)), since trivially

Wa(Fy, Fy) < E(|P, — PJ?),

where Fy = Law(P;) and F, = Law(ﬁt). Thus we can instead control an easier
quantity E(| P, — P,|?), whose evolution is simply given by It&’s formula. We refer
to the proof of Proposition [[L4] for example below.

e The drift term in the evolution of E(|P, — P;|?) can be controlled by Proposition
A3 while the diffusion term can be controlled by Proposition Those integral
estimates are established in Section[d] which further deeply depend on the crucial
pointwise estimates for ®, X, and B established in Section [Bl Section [] and
Section [ are the most technical parts in this article.

e In order to conclude the estimate for Wy (F, F}), we choose very particular initial
random variables (see (2.6])) and white noises W = W(dp, dp, ds) with covari-
ance measure Rs(dp, dp)ds where the measure R,(dp, dp) ds has marginals Fj
and FS.

e To prove the crucial integral inequality (Proposition[[4]), we need the uniqueness
of the coupled SDEs [2.7)) and ([2.8), i.e., Proposition[6.Il Except for the standard
techniques in SDEs, we also apply Theorem B.1 in Horowitz-Karandikar [27] (see
also Theorem 5.2 in Bhatt-Karandikar [5]) to obtain the uniqueness of the linear
relativistic Landau (6.0]), which is possible only due to our pointwise estimates
of the coeflicients such as

2(p,q)| <c(1+¢"p—qI™"), |Bma)<c(1+¢°p—q7?).

These estimates are proven in Lemmas and below.

2. Stochastic representation. In this section we will present a stochastic differen-
tial equation that we will use to represent the relativistic Landau equation (LIJ). As a
first step, we shall further decompose the relativistic Landau kernel ([I3]) as follows.

2.1. Decomposition of the kernel ®. Now we will present a decomposition of the rela-
tivistic Landau kernel (IL3]). The crucial point of this section is to introduce a new matrix
decomposition of the kernel in (2X). This matrix decomposition will allow us to present
a useful stochastic representation of weak solutions to the relativistic Landau equation.

PROPOSITION 2.1 ([35]). The relativistic Landau kernel ® = (&%) from ([.3) is symmet-

ric, positive semi-definite with null space spanned by (1% — q%). The matrix S can be

decomposed as the difference of two orthogonal projectors, i.e.,
S =1I; — Iy,
where
I = |¢"p — p"qI*1d — (¢°p — p°0) © (¢°p — P°9);
and

I =[pxqld—|g’p@p—pPe®q+ (p-q) (P®a+q@p) = (pxq) ® (p X q).
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UNIQUENESS FOR THE RELATIVISTIC LANDAU EQUATION 115

Above Id is the standard 3 x 3 identity matrix. The above proposition is proven in
[35]. We give a different elementary proof here for the sake of completeness.

Proof. Recall from (L6 that

S=prld—(p-q)@((—-q) +p(pRq+qp)
and that
pr = 1d°p —p%a® = |p x q*.

The proof will then be done by direct calculation as seen in [35]. But we remark that
both II; and IlI; are orthogonal projectors. Indeed,

1 U1 U1
—2H1:Plv1:Id——®—
|v1] lor]  foi

and
1 Vo (%)
a2 2 Joa] el

where v1 = ¢% — p%q and v2 = p x ¢q. The last equality for I, is guaranteed by the
observation Ils p =1Is ¢ = 0 and Iy v = |v2|2v2. Indeed,

Iy p=[pxql’p—[pPlal’p = pl*(0- @)+ (p-0)*p+ (p- a)Ipl*q
=(pxa’+®-a)?*—1Ipfla*)p=0.

Similarly, one can show that Ily ¢ = 0 and Ilovy = |va|?vs. O
Note that the rank 2 projector II; above has the same structure as the non-relativistic
Landau kernel a(z) = #(|z|2fd—z®z). With this observation we then set II; = oty o7y,
with
¢°p2 = %2 —(¢"ps — p°q3) 0
om, = [ —(¢"p1 —P°q1) 0 ¢°ps —1°qz | . (2.1)
0 ’p—"ar —(¢"p2 — 1°¢2)
which is the analog of o(z), a square root of a(z), as in [14], Equation (6)].
The other rank 1 projector IIs = (p X q) ® (p X ¢q) in general can be written as
I, = o, oy, with o, = (p X ¢) ® u for any unit vector u € S%. But the particular
)T

choice of u = ﬁ(pg p2 p1)  will be compatible with II (or o, ):

1 p3
o, = H(pxq)éb P2l - (2.2)

Here for the sake of clarity we point out that we are using the notation

b3 PS(P2Q3 - P3Q2) D2 (P2CI3 - p3CI2) Pl(PQCB - P3QQ)
(pxq)® |p2| = |p3(p3qr — P1g3) p2(P3q1 — p1g3) P1(P3qL — P1g3)
1 3(P1q2 — p2q1)  P2(P1g2 — p2q1) Pi1(P1g2 — P2q1)

We will observe the compatibility of o, and or, in the following proposition.
PROPOSITION 2.2. The matrix S = (S%) can be written as the following:

S =o0g U;—,
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116 R. M. STRAIN anD Z. WANG

where
_ lp|
O—S - UH1 po + 1 UHQ
¢°p2 =12 —(¢"ps — P q3) 0
= | —(¢"p1 = P’a1) 0 ¢°ps — P a3 23)
0 ’m =11 —(¢°p2 — P q2) '
1 b3
- (pxq)® |p2
PP +1
1
Proof. Tt is straightforward to check that
p3 a3
om, |P2| = pO(p X q)a om, |92 = qO(p X q)' (24)
1 q1
Here we define oy, by (22). Assume that og = o, — pior,; then
gs U.—S’r = (UHI - /LUHZ)(UHI - Nanz)—r
= om, 011, — Hom, 07y, — pom,oy, + plomor, =S + A,
where
1 Ps 1
A=+ DI, — manl po| (pxq)' — H(P X q)[p3 p2 Pl]Uﬂ—l
1
2 0
= <u2 S Nt 1> II,,
[p|
where the last equality is ensured by ([24]). The difference A vanishes at p = 2 T;lﬂ. In
particular, we can choose p = psz‘l = p(ﬂ1 such that S = og og. ([l

We finally obtain a useful formula for the square root X(p, ¢) of the relativistic Landau
kernel ®(p, q)

PROPOSITION 2.3. The relativistic Landau kernel matrix ®(p, ¢) can be decomposed as

P=x2",
where
__ptl —3/4
= (p0q°)1/2 lpr)™" o5
pi1 ¢°p2 —1°q2  —(a°p3 — P a3) 0
B (p0q0)1/2'(/’ )~ = (a1 — P'qn) 0 ¢°ps — p°qs
0 pr—°a —(¢"p2 — P°2)

1 p3
T (pxq)® |p2| ¢ (2.5)
1

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



UNIQUENESS FOR THE RELATIVISTIC LANDAU EQUATION 117

REMARK 2.4. The matrix in the last line can be changed to

qs3
(Pxq)® |q2
q1

¢°+1

with o, and og changed correspondingly.

REMARK 2.5. Our choice of ¥, such that ¥X T = ®, is of course not unique. But our
choice in Proposition 23] appears to be more compatible with our uniqueness argument
given later on in this article. We further expect this formulation can be useful in other
scenarios in the future.

2.2. Stochastic representation and weak solutions. In this section we present the sto-
chastic representation of weak solutions to the relativistic Landau equation (IIJ). This
is only a brief summary and setup, in general for the full details of SDEs we refer to the
detailed discussions in [41].

We introduce two coupled Landau stochastic processes, say (P;)c[o,r] and (Pt)te[O,T]7
whose laws are weak solutions (F})¢cjo,7] and (Ft)te[O,T] to the relativistic Landau equa-
tion (), respectively. For any s € [0,T], choose R, € H(Fj, F,) to be the (unique)
probability measure on R3 x R3 with marginals F, and F, such that () holds. Indeed,
R, is the optimal transport plan which gives the 2—Wasserstein distance for F and F,
in (7). Consider a 3D white noise W (dp, dp, ds) on R? x R? x [0, T] with covariance
measure R(dp, dp) ds.

Then choose two R3—valued random variables Py and PO with laws Fjy and }7_'0, re-
spectively, independent of the white noise W, such that initially

W3(Fo, Fo) = E[|Py — Py’ (2.6)

Then the coupled R3—valued stochastic differential equations (SDEs) are

P, = Po+// Py, p) W(dp, dp, ds) // P, p)Fs(p)dpds  (2.7)
R?’XR3 R3

and
B— B+ / / S(Bo. ) W (dp, dp, ds) + / B(B.p)Fu(p) dpds,  (28)
R3 xR3 0 R3

where ¥ is defined in ([Z3]) and B is defined in (II0), respectively. Note that the filtration
is Fy = o{Po, Py, W(Ax[0,3]),s € [0,t], A € B(R® x R?)}. Here B(R? x R?) is the Borel
sigma algebra.

Given a weak solution (F}):epo,7) to (LI, then (27) can be regarded as a classical
stochastic differential equation (SDE). Indeed, ([27) can be rewritten as

t t
P, = P0+/ Sr (P,)dB, +/ Bp, (P,) ds, (2.9)
0 0

where (Bi)icjo,7] is a standard 3D Brownian motion and

/qu q)dq,
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and Xp, (p) is a square root of [ps ®(p,q)Fs(q)dg. Equation (Z7) is nothing but the
standard probabilistic interpretation of the relativistic Landau (ILI]). The same argument
applies to equation (2.8]).

The white noise W (dp, dp, ds) allows us to couple two Brownian motions (one in
equation (27]) or its counterpart in equation ([Z.9)), and the other in equation (2.8])) such
that the two solutions (P;).e[o,7) and (Pt)te[O,T] (or their laws (F});eo,r) and (Ft)te[O,T]v
respectively) would remain close to each other.

2.3. Outline of the rest of the article. The rest of the article is organized as follows.
In Section B] we prove the useful pointwise estimates of ¥ and B. Then in Section [] we
prove crucial estimates of the integrals of the quantities ¥ and B. After that in Section
we explain a known useful generalized Gronwall inequality. Next in Section [6] we give
the proof of the crucial Proposition [[L4l Then finally in Section [ we finally prove our
main theorem, Theorem

3. Estimates of the coefficients ¥ and B. In this section we will give new point-
wise estimates for the important quantities in the relativistic Landau equation, ¥ and
B, including estimates of their differences. We initially state a useful inequality for (4)
which is taken from [20].

PROPOSITION 3.1. Let p,q € R? and define p = p°¢° —p- ¢ —1 as in (L4). Then
0<p<2p’q’

and
p—al* +Ip < ql?
2p%¢°
Proof. The lower bound for p is a direct consequence of the identity (I4]) and the fact
that p- ¢+ 1 < p°°. Direct computations give that

1
< p(p.q) < ilp—q|2~ (3.1)

po P df — " - g
2 )
which then implies the upper bound for p. (|
In the following definition we introduce a splitting of R? x R? which will be crucial in
the remainder of this article.
DEFINITION 3.2 (Splitting of double space R3 x R3). We define the subset A of R® x R3
as

def
A= A, 9 (0°d")* > [p— al}-
Furthermore, we define the indicator function

1 if (p,q) € A,
0 if (p,q) ¢ A.

In the following remark we will explain pointwise estimates that follow from these
splittings.

]-A(pa q) =1- ]-Ac(pa q) = {
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REMARK 3.3. If (p,q) € A, then p°¢° > (p°q°)*/2 > |p — ¢| since p°, ¢® > 1. Further-
more, if (p,q) € A, then

P’ +¢°

0
5 ta

P <’ =1+ <lp—al+¢° <) +¢" <
which leads to p® < 3¢°. By symmetry of p and g, one can conclude that
1
30" <p°<3¢" if (p,q) € A. (3.2)

Alternatively if (p,q) ¢ A, then |p — q| > (p°¢°)'/? > 1.

The set A and its complement A° will be used many times in this article. Now we will
use the estimate (B.I)) for p and recall that 7 = p + 2. We will use those observations in
the proof of the following lemma.

LEMMA 3.4 (Estimate of A). The coefficient A(p,q) = (’;#32 (pr)~3/% can be estimated
as

1/2 _ -
0<A(p,g) <c ((poqo) a7 1a.) + o — al P 1ac(p, q)) :
Proof. If 0 < p(p,q) < 1, then from (LH) and (L4) we have

(p°q°)3/?

b dF = 4(p°¢°)""* Ip—q|7%,

4
Alp, g—
(P, q) 200

since p > ‘g oq‘o by Proposition B, 7 =p+2>2,and p+1 < 2.
Otherwise 1f p > 1, then p+ 1 < 2p and similarly

1 (2p)? 4 8

Alp, = < .
(pra) < p°q° (p2)3/2 p°¢°p = |p—qf?

Then
A(p, @) £ max{(p°¢")"?lp — q| >, Ip — a7}

This completes the proof after using Definition and Remark 3.3 O
We remark that Lemma [3.4] shall be compared to |35, Lemma 12]. For instance, if
p > 1, then using p+ 1 < 2p, 7 > 2 again, one obtains

2 1/2 0,0\1/2
1 (202 4p2 _ ()2 4

A(p,q) < = N S :
( quO p3/2 quO quO (quO)l/Z

However, the estimates in Lemma [3.4] would be compatible with the indicator 14, which
will be used throughout this article.
Now we give a useful pointwise estiamte of the kernel ® in (L3J).

LEMMA 3.5 (Estimate of ®). The relativistic Landau kernel ® = (®%) can be estimated
as

[®(p, q)| < c(1+ (min{p°,¢°})lp—q|7").
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Proof. We recall from (L) and (L6) that

J 1 (p+1)?
" (p,q) = dij — Ap, @) (pi — @) (pj — a5
( ) poqo (p(p+2))1/2 J ( )( )( J j)
1 (pt1)?
P90 p12(p + 2)3/2 (pigj + pjai)
- Il + I2 + Ig.
First I; can be estimated similarly as in Lemma B4 When 0 < p < 1, using p > |§;0‘;L2,

we have that
L (1?1 )
<c
PP (p(p+2))t/2 = "p°%° [p—dl
When p > 1, using Proposition B and p < 2p°q°, one has
2
VR N S
P°q° (p(p+2))1/2 ~ " plgP
Hence |I1| < e(1+|p—q|™h).
Using Lemma [3.4] and noting that p° < 3¢" for (p,q) € A, we have that
L] <c(lp—al ' 1a(p.q) + Lac(p,q)) -

The third term can be estimated as
(p°¢%)1/?

(p+1)? -
W < cmax{l, W} < C(qo‘p_ ql 11A(p,CI) + 1AC(?;Q)) .

We therefore conclude that

<c(@’q®) M p—qTt <cp—qlt

|13 <2

®(p, )l <c(1+¢"lp—ql™").

We use the symmetry of p and ¢ to complete this lemma. O
Now we proceed to estimate the drift term B = (B;)?_,, defined in (LI0).

LEMMA 3.6. The drift term B has the pointwise bound
1B(p,q)| < ¢ (min(p®, ¢°)[p — q| *1a(p, q) + Lac(p,q)) -
Proof. One can estimate B as in (ILI0) with (A as in the following:

L (p+1)°
|B(p,q)| < |p— Q|poqo 3212

If 0 < p <1, using the estimate p > ‘Z;)q‘; again, one has
1 _
Bp.g)l < clp—al 55 82 < e(p°") Pl — a7

Otherwise, if p > 1, then p < p+1<2p and p < p+2 =17 < 3p. This yields

1
[B(p, )| < clp—dl—5-
P°q°
To complete the proof we use Definition and Remark 3.3 O

In the next proposition, we will estimate for |B(p,q) — B(p, q)|-
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PROPOSITION 3.7 (Pointwise estimate for B). For p,q,p,§ € R?, we have

|B(p,q) — B, )| < cmin{oh(p,q) + ¢h(5,d),

Ip = Bl(eh (p.0) + (5, 0) + g — al(e% (0. ) + ¢5 (0. 5) |-
where
050, 0) < min(®, ¢°)p — gl *1a(p,q) + Lac(p, ) (3.3)
and
o3(p.0) < ()0 — al*1a(p, q) + Lac(p. ). (3.4)
Proof. By the triangle inequality we have

|B(p,q) — B(3.9)| < |B(p.q)| + BB, )| < c(epp.q) + ¢55:q)) -

The last inequality is a direct consequence of Lemma In the rest of the proof, we
only need to prove the second part, i.e., the Lipschitz estimate.

From (LI0) and (LH) we have B(p,q) = (¢ — p)A(p, q), where we define the local

notation A as

- B 1 (p+1)°
A(p.q) = (p+2)A(p,q) = P0q0 p3/2(p+ 2)1/2

Similar to the estimates for A and B, we can also estimate A(p, q) as
0<A(p,g) <c ((poqo)l/le — a7 1a(p,q) + (0°4°) " 1ac (p, Q)> : (3.5)

Indeed, for the case p < 1, using (BI]) we have the estimate

_ 1 ~
0<A(p,q) <o 32 < (") p — g2

When p > 1, similarly one has

1
Apvq SC—;

since in this case p,p + 1 and p + 2 are all comparable.
Then we proceed as follows:

|B(p,q) — B(p,q)| < |B(p,q) — B(p,9)| + |B(p,q) — B(p, )|
— I+ I

Now we bound I; and I5, respectively.
First, one has

AP, )
|

I =|(g—p)Ap.q) — (¢ —

—(g-p
< lg = pllA(p, @) — A(B, )
By symmetry one also has
I < g = plIA(p, @) — A(B, )| + Ip — BIA(p, ).
Therefore,
I < min{|p —q|, [p — I} [Ap, @) = AB. @)| + [p — Bl (Alp.@) + A(B.@) . (3.6)
Note that the last term above satisfies a better estimate than (3.4)).
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Now it suffices to bound |A(p,q) — A(p,q)|. To this end we shall first compute the
derivative of (’9ij. Note that

9, p= L o, (L)1 @
piP = ij — 945, Op,; g0 ) _(pqu)z Zﬁpj*

Define a function ¢ : Ry — R as

(x+1)2
p(r) = W7

whose derivative is given by

(x+1)(z+3)

/ —

Therefore, we have that
_ 1 1
0800 =0y, (305 ) #0) + 350910, 0

which can be simplified as

X _ % P p+3 q°
08000 = =300 {5+ 2 (=) |

The terms inside the bracket {-} can be estimated as

b1 _1
()2 pop° " p®’
and
p+3 1o o 1 ¢
——— g P—DPq <cp p—q| < ci—,
S [ Sl —dl < e

2
where we use the lower bound for p, p > Igp—ozlo , and also observe that

1¢°p — p°q| < 20°p — ql,
and
r+3
sup -————— < 2
@t (@+2) =

Consequently, combining the estimate ([3.3]), one has

v A <. (L p°¢° 0 0\1/2(, =3 1
IVpAlp,g)| <c| 5+ (®"¢")""lp—d 1A(p,q)+p0q01Ac(p,q) :

P’ [p—q
Note that . 00
io <9 q < pq
P Ip — 4 lp — 4
simply by
lp — gl < 2max{p°, "} < 2p°¢".
Thus

IVoA(p,q)| < c {(poqo)?’/2 Ip—al~*1a(p,q) +Ip— gl " Lac(p, q)} : (3.7)
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By symmetry, |V,A(p,q)| satisfies the same estimate (B.7). Then further recall that
P’ =~ ¢° on A as in (3.2). Thus we have that

IVoA(p, )| < c{(d°)*Ip—al™*1a(p,q) +|p—a| ' Lac(p,q)}. (3.8)

Now by a variant of the mean value theorem we claim that
Ap.a) = AB, @) S lp =Bl (6)lp — al " *La(p,q) + Ip — a| "' 1ac(p, )

+(@?1p—al ™" 1a(B,q) + 1P —al " Lac (B q) |- (3.9)

We will prove (B.9) at the end of the proof.
Combining (3.6) and ([B.3), one finally obtains

I = |B(p,q) — B(p,q)|
<clp-pl [ {(@*’lp—al"*1a(p,q) + 1a-(p,0)}
+{(@")%p —a|*1a(B, @) +1ac(Byq)}

+{0°0") 2p — 0l *1a(p,0) + (2°6) e (,0)}
+ {4 21p — a1 (5. q) + (7°6") 'L (.0)} ]
We can simplify it to be the following:

I = |B(p,q) = BB, q)| < clp— bl (¢ (pa) + ¢, q)) ,

where the function ¢% is defined in ([34). By symmetry, one can estimate I similarly.
To complete the proof we need to establish the claim 30). To do so let us define
a smooth path r : [0,1] — R? such that 7(0) = p, r(1) = p, and |r'(¢)| < C|p — p| for
any t € [0,1]. We can choose this path around the fixed point ¢, such that |r(t) — q| >
cmin{|p — ¢/, |p — ¢q|} for any ¢ € [0,1]. We mention that there are many choices of such
a path. For instance, if we assume that |p — ¢| = |p — ¢| = 6 > 0, then we can choose
the great circle between p and p on the sphere 9B(q,d) as the path. Otherwise, if say
0<d1 =1p—q| <|p—gq|] = b2, then we can choose a smooth path (such as a geodesic)
in B(q,d2) \ B(q,d1), connecting p and p. In particular we can choose a path r(¢) with
constant speed. Then the total length of the chosen path is comparable to |p — 7.
Then by the fundamental theorem of calculus, we have that

M) = Ao = | [ GA0.0

1
<Clp 5| [ 9,A0(0).0)dt < Clp— 5l max [V, R(r(2). )|
0 >
= Clp— #lIV,AG (), 0), (310

where there is a fixed ¢, € [0, 1]. To finish the proof of [B.9]), we do a case by case analysis
of the upper bound in (BI0) as follows.
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CASE 1. Suppose that (p,q) € A (which implies that (p°¢°)*/? > |p — ¢|) and that
(P, q) € A° (which implies that (p°¢°)"/2? < |p — ¢|) as in Remark B3]
o If [p—q| < |p—q| and (r(ts),q) € A, we have that

IVoA(r(t), @) < (6°)°r(t) —ql ™ < (¢°)%lp— g

This is enough to establish ([39) in this case. In the following in each case we
will justify that the term |V,A(r(t,), ¢)| in (BI0) satisfies an upper bound which
is equivalent to (39).

o If [p—g| <[p— gl and (r(t),q) € A% then

IVoA(r(t), )| Slrtd) —al ™ Slp—al ™" S (°)Plp —al ™,

where the last inequality is ensured by the fact (p,q) € A and the pointwise
estimates as in Remark
o If [p— g/ < |p—q| and (r(t.), q) € A, then

IVpl(r(te), )l S (@°)Ir(t) —al ™ < (¢°)°1p — a7

To get a suitable estimate in this case, we will show that

@Pp—al™ Slp—a ™ +(@*)Plp—al
To this end if |p — ¢| > %qo, then

(@*)Plp—aql™* <8lp—ql ",
the conclusion then follows. Now alternatively assume that |p — ¢| < %qo. Using
the same technique as in Remark [3.3] one can show that
Lo_ 2o
—q < <
2(] =P =
Now since further (p,q) € A and (p,q) € A® we have that
1 N -

ﬁqo < (") <lp—al <lp—ql < (°¢°)"/* < V3¢,

which shows that (¢°)3|p — ¢|™* < (¢°)3|p — ¢/=* and this establishes the desired
estimate in this case. This holds since ¢° ~ |p — q| = |p — ¢| in this range.
o If |p—q| < |p—q| and (r(t+),q) € A€, then trivially

[VpA(r(t), )l Slr(t) —al ™' < [p—ql™"

This completes the proof of Case 1.
CASE II. This is the case where (p,q) € A° and (p,q) € A. This case can be treated
exactly the same as Case I by symmetry.

q°.

N W

Cask III. If both (p,q) and (p, q) are in A, without loss of generality we assume that
Ip— ¢l < |p—gq|. The case |[p—¢q| > |p — ¢| can be handled in exactly the same way as
below.

o If (r(ty),q) € A, then of course we have that

VoA (r(t), o) S (6°)°r(t) —al = < (¢°)%lp— g™
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o If (r(ts),q) € A, then since (p,q) € A we have
VpA(r(t), @)l S Irt) —d ™ < lp—al™ < (0°¢")Plp — a7 S (@)l —al ™.

This completes the estimates for Case III.

Case IV. If both (p,q) and (p,q) are in A°, again without loss of generality we can
assume that |p — ¢| < [p — q|.
o If (r(t4),q) € A°, we can conclude by

IVpA(r(t), @)l S Ir(t) —al ™" <lp—ql™"
e Now consider the case that (r(¢4),q) € A. We need to establish the estimate
IVl (r(t), )l £ (@°)r(t) —al ™ S @Plp—a ™ Slp—d ™

In particular if we establish (¢°)3|p—q|=* < |p— ¢/}, then we are done. To this
end if [p —¢q| > %qo, then we can conclude by

(@*)Plp—ql™* <8lp—q™".
Otherwise, if |p — ¢| < %qo, as in Case I, we have that
1

3
20 < p0 < 240
2q _p_2q

Combining this with the condition that (p,q) € A® we have that

L o 0,0\1/2 Ly
—q < <lp—q < =q",
ﬁq,(pq) <lp—dl =354
which implies that (¢°)3|p—q|™* ~ |p—q|~ = 1/¢°. This establishes the desired
estimate.
This completes the proof. O

In the next proposition, we will estimate |X(p, q) — X(p, §)|*.

PROPOSITION 3.8 (Pointwise estimate for 3). One first has the trivial estimate of ¥ as

12(p,q) — 25, 0)? <c (o5 (pq) + 055, d)) (3.11)

where

oL (0, q) < min{(1°)%, (°)*}p — gl L a(p, ) + min{(1°)%, (¢°)*}ac (p,q),  (3.12)

and the Lipschitz estimate of ¥ as
2(pq) = 23, DI < 22(p,q) — BB, @)” + 225, ) — (5, 9)

i ) ] . o (3.13)
<clp = p* (¢%(p, ) + 925, q)) + cla — d* (v%(a, ) + ©%(3, ) ,
where
de . _
02(p,q) < min{(1°)7, (@°)Hp — al P 1a(p, 9) + (¢°)°Lac (p, q). (3.14)
Proof. We first prove ([B.I1]). By the definition of X(p, q),
1S(p. q)* < Alp,q)|os(p, q)|*- (3.15)
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Now we only need to bound og, i.e.,

p2 =12 —(¢"p3 — P°q3) 0
os = |—(¢°p1 — p°q1) 0 q°ps — pOgs
0 p1—°c1 —(¢°p2 — P°q2)
D3
— X

1
As we argued before,
|4°p — p°ql < 2min{p®, ¢} Ip — g,

Moreover, we recall as in below (Z2]) we have that

P3 p3(P2g3 — p3q2)  p2(P293 — P3q2)  P1(P2g3 — P3q2)
(Pxq)® |p2| = |p3(p3q1 — p1a3) p2(p3q1 — p1g3) P1(P3q1 — P1G3)
1 3(p1g2 — p2q1)  P2(P1g2 — p2q1) Pi(P1g2 — P2q1)

Then we have the following estimate:
pigj — piail < laillps — a5 + lasllpi — @il < 2lqlp — gl
By symmetry of p and g,
pig; — pja;l < 2min{lpl, |gl}[p — g < 2min{p’, ¢°}p —ql,

which implies that

1 .
T ————|pillpig; — pjai| < 2min{p°, ¢"}p — q|.
Therefore
los(p,9)|* < ¢ min{(p°)?, (¢°)*} Ip — qI*. (3.16)

Combining with Lemma [34] and the estimate [B.I5]), we obtain that
S q)f
< C(min{(pO)B, (@*)*}Hp — al ™ 1a(p, q) + min{(p°)?, (¢°)*}Lac (p, q))-

The bound BII)) follows directly from this estimate.

Now we proceed to prove (B13). By symmetry, it suffices to control |X(p, ¢) — X(p, ¢)|-
The other term has a similar estimate.

The derivative of v/A is given by

2 0
P +2p+3 q
Ip; VA(p,q) = \/ (P, q { 219; )<ij_%’)}-

p(p+1)(p+2
We perform similar estimates to those in the proof of (3.7). In particular
P> +2p+3 (qop >‘ - £| a < (¢°)°
plp+1)(p+2) \p°’ PP TS T

Here we used that
1¢°p — pYq| < 2¢°p — 4.
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Then again following the proof of B.1), we estimate |V,+/A(p, ¢)| as

VoAl < VA (5 ).

Ip q|
We combine the estimate for v/A from Lemma 3.4 and 5 <24 g’ to obtain

Tp—dl
Vv Alp, 9|
< {lA(p, ) (@*)?(°¢")*p — q| 7 + 1ac(p,q) (¢°)* Ip — q|‘2} . (317)

We will use this estimate in a moment.
Now consider a function a(p, q), which denotes any entry of the matrix og(p, ¢) from
@3). Here we just consider the (1,1) entry of og, i.e.,

a(p,q) = q0p2 - POQ2 - P3 (P2q3 — P3q2) -

P’ +1
One can directly check that
Vyalp,q)l <cd’,  |Vealp,q)| < cp’. (3.18)

The above estimates also hold for any other entry of og.
By the symmetry between p and p, we have that

1X(p,q) — (P, 9)|
< cmin{sup|a(p, q)|, sup|a(p, q Q)HVAPp, @) — VAB, q)

+c (\/A(p, q) + /A, q)) sup|a(p,q) - a(p,q)l-

Combining the estimate in Lemma B4 with (816), (3117), and (BI8)) and applying the
same variant of the mean value theorem as in the proof of ([3.9) we obtain

1%(p,q) — 2(p,q)

Slp— 5l {(qo)g(p°q°)1/4lp —q|7¥214(p, ) + (¢°)%Ip — a1 ac(p, q)}

+{@)? @)~ a4, 0) + (@15~ al M ac(Ba)}

+ {qo(p°q°)1/4lp —q|™**14(p,q) + ¢°Ip — q| ' 1ac(p, q)}
+ {q (B°¢") Y4 — a|721a(Bq) + Ol — a1 ac (5, q)}] :

Now we use the pointwise estimates in Remark [B.3] to simplify further as

1%(p, q) — (5, q)|

< Ip—ﬁlgl{( N5 (p°°)2p — q| > 1a(p. q) + (q0)51Ac(p,q)}

+ {(q )8(5°°) 215 — |72 14(B, @) + (¢°)°1a< (B, q)}]-
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By the symmetry between p and ¢, we also have

1S5, q) — (5, §)

< clg—qf* [{(ﬁO)G(ﬁoqo)l/zlﬁ — a7 La(B.0) + () 1ac (P 0) |

{5~ 214 @) + () Lac (5 q*)}] -

The proof of ([BI3)) is complete after combining the last two estimates and using Remark
B3 again. O

4. Estimates of the integrals. In the previous section we gave a series of pointwise
estimates for the relevant quantities in the relativistic Landau equation. In this section
we prove necessary estimates of integrals of these relevant coefficients. We first recall the
following lemma from [I4].

LEMMA 4.1 (Lemma 4 in [I4]). Let a € (—3,0]. There exists a constant ¢, > 0, such
that for all g € L N L' and € € (0, 1],

sup | |p—q|*g(q)dg < llgllzr + callgllz=, (4.1)
peR3 JR3
L, 1ol stwlsta) dpda < (gl +calgl=) ol (1.2
[ - ag@da < ol (4.3
|p—q|<e

We note that the constant ¢, > 0 in ([@3) is independent of p and p.
Furthermore, there exists a universal constant ¢ > 0 such that for all g € LN L! and
for all € € (0, 1],

/ lp—ql%g(q) dg < [|gll + cllgll L~ log(1/e). (4.4)
[p—ql>e

We note that the constant ¢ > 0 in ([£4) is independent of p.

The proof is standard and hence we omit it. Interested readers can find the complete
proof in [I4]. We further recall Definition [[Tlregarding the function ¥ used again below.
We now state two crucial propositions.

PROPOSITION 4.2. Assume that g € PN L* and (¢°)"g(q) € L> N L. Then

[, 1500 = 2.0)Pata) da < Cloy¥p i), (4.5)
[, 1B.0) = B@.a)lsta)da < Clo)¥(lo— . (1.6

where
Clg) = ¢ (llglez +llgllzs +1) . (4.7)

where ¢ > 0 is a universal constant.
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Proof. We define by I the left hand side of ([&3]). Recall Proposition B.8 which shows
that

1%(p. q) — (5, ¢)” < min {¢5:(p, q) + o5(5,9). [p — 51> (¥%(p. q) + ¥%(5,9)) } ,
where

er,q) < (@")%p —al ' 1a(p, @) + (¢°)*1a<(p, q),

030, 9) < (@")7lp— a7 1alp.q) + (¢°)1ac(p, q).

Hence
IS Lp-plz1} /R3 (e2(p,a) + ¥5(5:9)) 9(a) dg
+ L(jppl<ylp — I’ /R Lp—ql> 12 l5-al> o512 (PP, 4) + #5(P. 9)) 9(a) da
+ Lijp-pi<i) /]R Lp—al<to—pl2} (5P, 0) + 955, 9)) 9(a) dg

+ Ljp-pl<1} /R Lijp-al<lp-sl2} (5P, 0) + 55, 9)) 9(a) dg
Sh+h+Is+14).

First, by @) (with o = —1), for any p € R3,

/ vt (p,2)9(q) dqé/ lp—al™" ((¢°)°9(9)) dq+/ (¢°)?9(q) dq
R3 A

< c(llgles +lgllzz) < Clo),

which using the symmetry between p and p implies that
I < el p1>13C(9) < C(9)¥(|p — BI?).

Next, using &4) with ¢ = |p — p|?,
Iy < 1{p—pj<nyIp —252(/]1{3 L{ip-al2lp-512} #5(P; 0)9(q) dg
+ /Rs L5—qi>p—p21 05 (D 0)9(q) dq)
< 21{|pﬁ|<1}|p—ﬁ|2</ lp—d*@”)79(q) dg
[p—ql>|p—5|?

+/ (a°)%qg(q) dq)
|p—q|>|p—pl?

<12 <12
< C(9)1p—p<iylp — B> (1 —log |p — p|?)

< C(9)¥(p—pl*),

noting that p and p are exchangeable in the second inequality.
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Finally, from (&3] with « = —1 and € = |p — p|?, we have

I3+ I <214, p<1y (/ (lp—al™ +15—d™") (¢")°9(q) dg

p—q|<|p—p|?

+ / (4°)*9(q) dq)
lp—al<|p—p|°
< C(9)1{p-pi<ny(lp = BI*)*1 < Cl9)¥(lp — B).-
Collecting these estimates yields (Z3]).

We turn to the estimate of (£6]). We then denote by J the left hand side of (4.
Further recall Proposition [3.7] which says that

|B(p,q) — B(p,q)| < cmin{pp(p, q) + ¢5(B,9), [p — bl(E (0, q) + ¢5(5,9))}
with
e, q) < lp—al 2" 1a(p, @) + 1ac(p, q),
¢5(p,q) < Ip—al7*(¢")’1a(p,q) + Lac(p, ).

Then one can proceed to estimate .J as what we have done for I

S 1{\p—mzl}/R (¢B(p,q) + ¢B(5,9)) 9(q) dg

3
+ Lip-pi<1Ip = Pl /IRs Lp—al2lp—52 5-al> -2} (95 (P 0) + 5 (5. 0)) 9(a) da
+ L p—pi<1) /Rs Lp—ai<ip-5P} (#5090 + v5(5,9)) 9(q) dg

+ L{jp—pl<1) /Rs L-qi<ip—py (950 q) + BB 9)) 9(q) dg
S(J1+J2+J3+J4).
Using (1) for o = —2, we obtain

Ji<c(llgllp + lq%gllr + Hq09||L°°) Lp—pi>13 < C(9)¥(lp — D).
Again, [@4) with e = |p — p|* yields

J2 < Lyp—pi<iylp —ﬁl(/Rs L{jp—q>lp—5123B (P, 0)9(q) dg
+ /RS L(i5—q> 152y 5 (P 0)9(0) dq)

< 21{|p—5§1}p—ﬁ</ p—al7*(q")%g(q) dg
|p—q|>|p—p|?

/Ip—tzlzlp—ﬁl2 o) dq>

_|_

<c(lgllr + 1@ gl + 116°)?gll~) 1(p—p<13lp — Bl (1 = log |p — p|*)
< C(9)1qp—pi<13lp — Pl (1 = log|p — p|)
<C(9)¥(lp — ).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



UNIQUENESS FOR THE RELATIVISTIC LANDAU EQUATION 131

Finally, we use [{3) with e = |p — p|? and o = —2

Js + Ju < cllq®gllLelp = BI*Lijp—pi<1y < C(9)¥(Ip — Bl).

This completes the proof. |
In the next proposition we prove bounds for the integrals of differences of the quantity

B in ([IID).
PROPOSITION 4.3. Assume that g,§ € P N L> and also (¢°)%g, (¢°)3g € LN L'. Then
for any two couplings @, R € H(g, §), we have that
Lo L =l 1B~ BGDIQ(dp, dp)R(dg. d)
R3xR3 JR3 xR3
<0l ([ =P )
R3 xR3

20 ([ lo-iPrgan). @
R3xR3
where using the constant defined in (7)) we have that

~ -\ de ~
Clg,5) 2 Clg)+C @) = e (1)l + gl +1)
+c (13l + 6%l +1) 4

where ¢ > 0 is a universal constant.

Proof. We denote by K the left hand side of (L)), e.g.,

de B o ) ~
K= / / lp =Bl - |B(p,q) — B(5,9)|Q(dp, dp)R(dg, dg),
R3xR3 JR3 xR3

and we denote

By Proposition B.7, we have

6 <c(lp =5l +la - dl) min { £ (p. q) + 05 (5.0
P =Pl @) + 5 @) + la — dl(0h(a.P) + ¢h(@) |-

where ¢k, % are defined in B3] and ([B.4]), respectively. We decompose the integral K
into integrals on different regions. For instance, if |p — p| 4+ |¢ — ¢| > 1, we simply use the
trivial bound

§<c(lp—pl+lg—dl) (esP0) + ¢5(/5,9) -

Otherwise, outside a small neighborhood of the critical singularity |p — ¢| = appeared in
©%, we can use the second estimate in the minimum above to obtain

§<c(lp—pl+lg—4ql) (Ip plleB(p,0) + ¢5(5,9))

+lq — l(¢B(q, ) + ¢5(4, P )
<c(lp=p1*+1lq—d?) (e, 0) + ¢5(B,9) + ¢B(3.D)) -
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Near the singularity, one still uses the trivial bound. Indeed, we write

61(p. 5.4, @) = Lipp—pi+la—ai>1y (P — Dl + g — @) (¢B(p,0) + ©5 (5, 0)) »

62(pBs 4, @) = L{jp—p|+lq—a1<1} L{p—a|>|p—51%,[5—al > |p—5|% |5~ > |p—5|*}

(lp—1%) (B(p.q) + 05D q) + ¢5(3 D)) ,

33(:B, 4, Q) = 1{p—pl-+lg—a1<1} H{Ip—gl>1q—a14,[5—a|>la—al4,[5—a|>lg—al*}
(lg =) (¢B(p, a) + €3 (B, a) + ¢34, D)) ,
and further é4 through dg are defined as
51(p: B4, @) = L{jp—p|+lq—al<1} L{lp—al<lp—sl*} (PBP, @) + 055, 7)),
5(p B4, @) = L{jp—p|+lq—al<1} L{lp—ai<lp—sl*} (PBP, @) + 955, 7)),

86(D D> 4 @) = L jp—pl+la—al<1} L{p—al<ip—p1*} (2B ) + 055, 7)) ,
and d7, dg, 09 can be defined similarly as d4, 05, dg but now the second indicator functions

are 1¢, g1<jg—al1}> 1{p—ql<|a—q*}> and 1y g/<|q—q|4}, respectively. Indeed, we have
that

57(p, D 4:@) = Ljp—pi+1a-a1<1) Lip—al<la—a1} (#B(P:0) + 55, @) ,
58(p7137 q, (j) = 1{‘P—I3‘+|q—§|§1}1{\ﬁ—q\S\q—lj|4} (<P1B(pa Q) + wlB(ZN)a (j)) ;

89(p By 4, @) = L{jp—pl+iq—a1<1} L{lp-d1<la—q11r (PB(P. Q) + 5P, q)) -

We will decompose K in terms of all of these decompositions above.
Thus we obtain

9
K<c) K,
1=1
where
K, = / / 5:(p.5. 0. ))Q(dp, dF)R(dq, dg).
R3xR3 JR3xR3

We will estimate each term individually.
First, we have the estimate

81(p,5:0.@) < (Ip— Bl + g — a)* (b (P, q) + ¥5 (5, D)

<2(lp—pI*+1lg—q?) (B(p,q) + ¢5(5.9)) -

Consequently,

K, < 2/ lp = pI*Q(dp, dﬁ)/ (e q) + ¢5(5,q) R(dq, dg)
R3 xR3 R3 xR3

+2 / lg— @ R(dg, d) / (05 (p.a) + ©h(5. @) Q(dp, 7).
R3xR3 R3xR3
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Since R has marginals g and §, we have the estimate

/ ¢5(p,q)R(dg, dg) = / e5(p,q)9(q) dg
R3 xR3 R3 xR3

< / lp — a|7*1a(p, 9)g9(q) dg + / 14<(p,q)9(q) dg
R3 xR3 R3 xR3

< C ([l¢°llL= + 1d°gllzr) + llgllz: < C(g),

which is deduced from [@I]) with o = —2. Similarly,
[ eblo.0R( ) < C@)
R3 xR3

and

L, (b(o0) +b(5.0) @dp. d7) < Cla) + C(a)

Thus we obtain

xiscn{ [ lp-ketan s [ lo-iPRaan)

R3 x

<cae ([ -t )
+C@av ([l PR(a.an)

by simply using that z < ¥(z) for any = > 0.
Now we estimate K5. Note that

62(p. 54, d) < Lijp—pi<1yLp—al>p—p13 1P — B20B (P, @)
+ L pi<y Lip—gl>lp—pi3 [P — B 0B (P, @)
+ L pi<y Lip-ai>lp—piy [P — B 05(7, D)
3
def - ~
= 62i(p. 5,4, @)-
=1
Set Ko = Z?:l Ky with Ko = [oo,ps Jpswps 02,6 Q(dp, dp)R(dg, dg). Hence, ([E4)
with & = |p — p|* yields
Ky, < / Q(dp, dp)1(p_pi<1ylp — B % (p, ) R(dg, dg)
R3 xR3 [p—q|>|p—p|*

< / Q(dp, dp)1yp—s<1ylp — I
R3 xR3

: (/ lp—al~*(a°)*9(q) dg +/ 9(q) dq) :
[p—q|>|p—p|* lp—q|>|p—p|*

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



134 R. M. STRAIN anD Z. WANG

which leads to

Ks1 < / Q(dp, dp)1yp—p<1ylp — DI
R3 xR3

1
- (ll(q0)39|L1 ell@® gl tog - + ||g||L1) .

Thus we conclude that

Ky < C(9) / Qdp, dp)1q_pienylp — 312 (1 —log p — )
R3 xR3

<clo) [ o P)Q(dp. ).
R3xR3
Jensen’s inequality, in particular (L)), gives us

Kon=Clow ([ - ilatan ).

The terms K9 and K 3 can be bounded similarly by symmetry. Moreover, K3 can be
bounded symmetrically also just by exchanging the role of p (p) and ¢ (§).

Now we proceed to estimate Ky, K5, and Kg. Note that K7, Kg, and K9 can be
bounded similarly to K4, K5, and Kg. Note further that

64(p, D 4,@) < Lip—pi<1y L {p—ai<ip—pi1 (0B @) + 5P, ) -

Hence

Ky < / Q(dp, dﬁmpmq( / o (0. )g(a) dg
R3 xR3 [p—q|<|p—p|*

+f eb(DR(d0, ) ).
[p—ql<|p—p|*
For the first part, using (@3] with a =0, a = —2, and € = |p — p|*,

/ e5(p,q)9(q) dg
[p—q|<|p—p|*

< / (¢°lp — a|™*1a(p,q) + Lac(p. q)) 9(q) dq
[p—ql<|p—pl*

< clld®gllzelp — pI* + cllgllze=lp — " < Clg)lp — BI*-
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For the second part, it is a little bit more complicated. For instance we must single out
variable ¢ first by Holder inequality. Indeed, we have

/ o5 (5, DR(dg, dg)
lp—q|<|p—p|*

< / 15— a2 R(dg, dg) + / R(dg, dg)
[p—q|<|p—p|*

[p—q|<|p—p|*

1/5 4/5
< ( / R(dg, d@) < / 15— al~**(q°)*/*R(dq, dq)>
lp—q|<|p—p|* R3 xR3

+f R(dg, dj)
[p—q|<|p—p|*

4/5
1/5 _ - - . - _
< ellglli2lp = B1"/° (ell@)* gl + 1@ 3l ) + cllgllz<lp - 51"
< Clg,9)lp - .
Above we used (LI with o = 5/2. Combining those two parts, one has
Ki<C(9.9) [ QUdp A, palp -~ 5P
R3 xR3

<Cla.d) [, ¥ (p=iP) Qdp. )

<G ([ w-ikatan ).

All the remaining terms can be estimated similarly because of symmetry. This completes
the proof. O

5. A generalized Gronwall inequality. In this section we recall a known gen-
eralization of the Gronwall lemma, which will be crucial to conclude our uniqueness
argument.

LEMMA 5.1. Let T > 0,7, p: [0,T] — [0,00) and v € L([0,T]), p € L>([0,T]). Assume
further that

pt) < p(0) + / ()T (p(s)) ds,

where we recall ¥ which is defined in Definition [[.1]
i) If p(0) = 0, then p(t) = 0 for all ¢ € [0, T].
ii) If p(0) > 0, then

et q t (
—dyg/vs ds for any t € [0,T].
/p(O) Y(y) 0 ) | ]

We include the proof of this lemma for the sake of completeness.
Proof. Since ¥ is increasing, the upper bound for p(¢) is given by the solutions (if
any) to the integral equation

p(t) = pl0) + / ()W (p(s)) ds, (5.1)
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which is equivalent to the Cauchy problem of the differential equation

p'(t) =) (p(t), pt=0)=p0).

Note that if p(0) > 0, then ¥(z) is locally Lipschitz on 2 > 0. The Cauchy problem above
actually has a unique solution at least in a small interval [0, 7], by the Cauchy-Lipschitz

O t
5

—— = [ 7(s)ds.
/p(O) V(y) 0

Note that p is non-decreasing since <y is non-negative. So we can keep extending this
solution p = p(t) to any t < T', since sup, >,y ¥'(x) < C. Going back to the inequality
in this lemma, we obtain part ii) of this lemma.

theory. Indeed, we have that

Now we prove part i). We can follow the proof of part ii), for instance the upper
bound for p(t) is again given by the solution to the integral equation

) = [ (o) s

Let t = sup{t € [0,T]|p(t) = 0}. If t = T', then the proof is finished.

We therefore assume that ¢ < T and prove i) by contradiction. So we pick a sequence
of times t,, > t,11 — ¢ as n — oo with each p(t,) > 0 but p(t,) > p(tn+1) — 0. By the
proof of part ii), one has the estimate

/p(T) 1 T ( t (
—dy§/73d8§/73d5<oo.
p(tn) U(y) t ) 0 )

n

However, with fixed p(T") > 0 but sending p(t,) — 0,

p(T)
——dy - +o0 as n — oo.
/pan) Y(y)
This is a contradiction. This completes the proof of part i). O

6. The main integral inequality. This section is devoted to the proof of Proposi-
tion [[L4l To this end we will use the following proposition.

PROPOSITION 6.1 (Uniqueness of the coupled SDEs ([2.7) and (2.8])). There exists a
unique pair (Pt):efo,1), (Pt)te[O,T] of continuous (F¢)ejo,rj—adapted processes solving
the coupled SDEs ([2.7) and (28). In particular, for any ¢ € [0,T], Law(P;) = F; and
Law(P,) = F}.

We postpone the proof of Proposition6.Il We will first prove Proposition[[4] assuming
that Proposition holds.

Proof of Proposition [L4l By Proposition 6.1, Law(P,) = F; and Law(P,) = F}, which
allows us to conclude that

def

W3 (F, Fy) SE(P - P*) = p(t).
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By the choice of Py and P, as in (28], one has p(0) = W2(Fy, Fy). Hence, with C(Fy, Fy)
defined as in ([I2]), it suffices to show that

t
p(t) < p(0) + | CUELF)(p(s) ds. (6.1)
0
Since R, has marginals F, and Fj, the coupled SDEs (Z7) and (238) can be rewritten as

t t
PP+ / / S(Po.p) W (dp, dp, ds) + / / B(P.p)Ry(dp, dp) ds,
0 R3 xR3 0 R3xR3

t t
B=tos [ [ sPapwiap s+ [ [ BRLpR(Ap 45 ds
0 JR3xR3 0 JR3xR3
Applying It6’s formula and then taking expectations, one obtains
E[|P, — P,*] = E[|P, — Py|?]
3 t
3 [ B[ - SR Rl dp, ap)ds
=170 JRSxRS

+2/0t /R$XR3E [(B(Ps,p) — B(P,,p)) - (P, _]53)] Ru(dp, dp) ds

t t
:p(O)—l—/ Asds—f-Q/ Bs ds.
0 0

Here A, and B, are defined as the second and third terms in the integrals in the previous

step.
Denote by Qs(dp, dp) the coupled law of the pair (P, PS). Applying Proposition 4.3
and the fact that Ry, Qs € H(Fs, Fs) we then have

1B, < / / p— #1B(p.q) — B, D)|Qu(dp, dp)Ru(dg, dd)
R3xR3 JR3 xR3
< G(F,, v ( [ w-sraua, dﬁ))
R3xR3

O(F, ( [ iR d@)) |
R3xR3

where

C(F ) = e (I Fllnzons + 1l pgnn +1)

and ¢ > 0 here is a universal constant.
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By the estimate (45) in Proposition [£.2] we have
A, = / / IS0, q) — 25, )P Qu( dp, dp)Ro(dg, dd)
R3xR3 JR3 xR3
<2 [ 500 - SG.0PQ.(dp. )R, (dg, 40
R3xR3 JR3xR3
+2 / / 205, @) — S5, @) Q. (dp, dj) Ro(dg, dd)
R3xR3 JR3xR3
= 2/ Qs(dp, dﬁ)/ 12(p. q) — Z(p, q)|*Fs(q) dg
R3 xR3 R3 xR3
4o / R.(dg, dd) / S, 9) — £, @) 2F.(5) dp
R3 xR3 R3 xR3
<C(F) / (| - 7%)Qu(dp, dp)
R3xR3

+C(R) [ Wllg = dP)R.(dg. da),
where we recall that

C(Fy) = ellFs( @l rgenras  C(Fo) = el Fo(@)ll poerra-
Using Jensen’s inequality (L), we have that

A, < C(Fy, F) ( [ w-skauan d:ﬁ))

3 % R3
O(F, ( [ iR d@)) |
R3xR3

but now C(Fy, Fy) is given in ([12).
Recalling the definition of p(s), we have

W2(F,, F,) = / g — §2R.(dq, dd) < / I — §2Q.(dg, dd) = p(s).
R3xR3 R3xR3

Since V¥ is increasing, we finally obtain (6.1]). We remark that as long as F and F, have
finite second moments, then p(s) is bounded. Indeed,

ps) = / g — aPQu(dq, dg) < 2 / g2 Fy(dg) + 2 / G2 Fu(dg) < oo
R3 xR3 R3 R3

This completes the proof. (Il

We will now proceed to prove Proposition [6.1]

Proof of Proposition 61l We only need to check the results for the SDE ([27), while
[238) can be treated similarly. We follow the standard scheme of proof as in [I4].

STEP 1. For fixed zy € R? and a prior known R3—valued progressively measur-
able process X = (X¢)¢ejo,7], we define the R3—valued progressively measurable process

(®(20, X)t)iefo,) as

O(x0, X t—xo+// X, p)W (dp, dp, ds) // (p)dpds.
R3><]R3 R3
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We claim that (® (20, X)¢)e[0,7) is a.s. continuous and

|20 —|—/OTC’(FS)d5+ (/OTC’(FS)ds> < o0, (6.2)

where C(Fy) = C||(q0)3Fs(Q)||L;°mL; is uniformly bounded in time s € [0,7]. Indeed,
following the proof of (BI1]) in Proposition B8 we obtain

2(p, ) < c((¢°)°lp—al " 1alp, @) + (¢°)*1ac(p.q)) -

Therefore a.s. we have

/ IS(Xs, ) 2R (dp, d5) < sup | [S(, )| Fu(dg)
]RS

(¢)2F.(q) dq] (6.3)

E | sup |<I>(x0,X)t|2

te[0,T7]

< sup [ 9 lp—al™" ((¢°)*Fs(q)) dq+/

pER3 R3
< C(Fs) < 00,

noting that the first marginal of R is Fs and using ([@I]) with o = —1. Similarly, using
T with o = —2 and following the proof of Proposition B we obtain

1B(p,q)| < c(¢°lp—ql71a(p,q) + 1a-(p,q)) -

We obtain a.s.

/RS |B(Xs,p)|Fs(p)dp < sup | IB(p7 q)|Fs(q) dg < C(F,) < 0. (6.4)

Combining (@3] and (6.4, we can obtain that (®(xo, X)t)se[o,7) is a.s. continuous by
Kolmogorov’s continuity theorem. The above mean square estimate ([@2]) can be easily
deduced from the Doob’s martingale inequality, in particular we have that

E[ sup |®(x0, X):|?] < 4E[|(® (20, X)7[*].
t€[0,T)

STEP 2. We now prove the uniqueness of the process ((®(zo, X )¢)tejo,r] given (X¢)ie[o,77-
Letting (X¢)seo,7) and (Y;)¢ejo, 7] be two progressively measurable processes, we want to
establish that

A B ®(z0, X)i — B0, Y),[?]
/ C(E){ W (B0, X)s — @0, V)s[2) + 9 (EIX, - V]) |, (65)
where C(F;) = c||Fs||L$omL%.

Indeed, using It6’s formula and then taking expectation,

Ay = Z//MRS [(29(X,,p) — £9(Y;,p))?] Ry(dp, dp)ds

1,7=1

w2 [ [ E[(B0G) - BOWR) - (¥ X - 0 ),)]
x Fy(p)dpds.
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Since R has the first marginal F, applying Proposition 2] we have
t
Avse [ B [ 5060 - S000PRG) O] as
0 R3

+ c/OtED@m,X)s — D0, V),

[ 1B - B0 an] as
< [ CPIB[H0X, = YiP) + 19(a0, X). = Do, V)X, - Vi) s

Since W is increasing and 2V (x) < ¥(2?) for any x > 0, one has for any z,y > 0,
2V(Y) < Lpcyyy¥(y) + Lasyy2¥(z) < U(a?) + (2.
We thus have

Av< [ OIE[R(X, = ViP)+ ¥ (180, X). — Do, V). )] ds.

Applying Jensen’s inequality (L8) to two terms E[U(-)], we finally obtain the inequality
in (G5).

STEP 3. We now check the uniqueness of ([27)). Consider two solutions P = ®(FP, P)
and P = ®(Py, P) and let p(t) = E(|P, — P,|?). By Step 1, p(t) is bounded on [0, T]. By
Step 2, one has

plt) < / 7(5)(p(s)) ds,

where (s) = C(Fs) € L*([0,T]). Lemma 5] yields that p(¢) = 0. This means for any
t €10,T], a.s. P, = P;. The continuity of (®(xo, X)t):e[o,) forces that a.s. (P)iecjo,r) =

(Pt)tefo.1)-

STEP 4. We now prove the existence of a solution to (Z7) using Picard iteration.
Define P° by P) = P, and then by induction P! = ®(Py, P/'). Set pni(t) =
SUP4e(0,4] E[|PPHF — P2|?]. Again by Step 1, we have that sup,, ;. ||on,k(t)]|Lo[0,r) < 00.
Then by Step 2,

pnii a(t) < / () [W(pns14(5)) + U i(5))] ds,
where y(s) = C(Fy) € L*([0,T]). We define p, () e supy, pn k(t). Since ¥ is increasing,
pria(b) < / () [¥(pns1(5)) + (pn(5))] ds.

Finally, set p(t) S Yim sup,, pn(t). By (reverse) Fatou’s lemma, one has

t
o) <2 [ (6 W(p(s) d.
Then Lemma 5] guarantees that p(t) = 0 for all ¢ € [0, T]. We obtain

limsupsup sup ]E[|Pt"+k — P"? =0.
n k te[0,T]
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This means the sequence (P/")¢c[o,7) is a Cauchy sequence in the space L>([0,T], L*(2)).
Thus there exists a process (P;).e[o,r) such that

lim sup E[P; — P"[*]=0.
™ tel0,T]

To conclude this step, it suffices to prove that

Kn(t) =

as n — oco. Combining with (P”Jr )eepo,1] = (®(Po, P™)¢)eejo,r) converging to (Pr)iecjo,1]
in L°°([0,T7], L*(R)), we can thus conclude P = ®(P,, P). The a.s. continuity of P will
follow from Step 1.

YR (|B(Py, P"), — ®(Py, P)y Y] —

We define ¢, </ sup,c(o,r) E[¥(|P/* — P;|*)], which tends to 0 using Jensen’s inequality
(C8). Applying the estimate (G.5) in Step 2 again, one obtains, for ¢ € [0, T,

bnlt) < / 7(5) (En + T(rin(s))) ds,

where again 7(s) = C(F,) € L*([0,T]). Similarly, we consider x(t) = limsup,, xn(t).
Using (reverse) Fatou’s lemma again, we obtain

n(t)g/o ~v(8)¥(k(s)) ds.

Then Lemma BTl yields that x(t) = 0 for any ¢ € [0, T]. We have proved that lim,, &, (t) =
0, which concludes this step.

STEP 5. It remains to check that for any ¢ € [0,T], Law(FP;) = F;, where P =
(Py)teo, is the unique solution to (1) or

P, = Po+// Py, p) W(dp, dp, ds) // Py, p)Fy(p) dpds.
]R?’XR3 R3

Set G5 = Law(P;) for any s € [0,T]. We note that (G¢);c[o,] solves the linear relativistic
Landau equation, i.e., for any test function ¢ € CZ(R?),

[ ewcian= [ coman+ [ [ s amr@ads  ©0
R3 R3 ><R3
where L is defined in ([3)). Indeed, we apply Ito’s formula to dp(P;),

©(Py) = o(Py) / / ©(Ps)SY (P, p)W;(dp, dp, ds)
R3><R3

//WZ@@ Bi(Py,p)Fy(p) dpds

1 . : -
1 / / S 0, p(PS (P p) S (P ) B dpy ) .
2 Jo Jrexme Rryaltt

Taking expectations (which makes the first integral vanish), and noting that Law(Ps) =
Gy, Law(Py) = Fy and ® = X7 or &7 = Y, $*%9% one reaches the conclusion.
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For the moment we will assume that we have uniqueness for the linear Landau equa-
tion. Since (F})icjo,r) is @ weak solution to the relativistic Landau (L)), it is of course
a weak solution to the linear Landau (6.6). By the uniqueness of the linear Landau, one
concludes that F; = G, for all t € [0,T].

It remains to show the uniqueness for the linear Landau (6.6]). We apply Theorem B.1
in Horowitz-Karandikar [27]; see also Theorem 5.2 in Bhatt-Karandikar [5]. Consider,
for t € [0,T], p € R3, and ¢ € CZ, the following operator:

Avp(p) < /RB Lo(p, q)Fi(q) dg.

A stochastic process (X¢)sefs,,7] is said to solve the martingale problem for (CZ, A;) if
for all ¢ € CZ, the process ¢(X¢) j; s) ds, defined for ¢ € [tg, T], is a martingale.
To apply Theorem B.1 in [27], we only need to check that
(i) there is a countable family (px)r>1 C C7 such that for all ¢t € [0,7],
{(¢r, Aror) tr>1 is dense in { (¢, Arp) | € CZ} with respect to bounded-pointwise
convergence;
(ii) for any (to,zo) in [0,7] x R?, there exists a unique (in law) solution (X;)eqs,, 1]
to the martingale problem for (C?, A:) such that X, = .
We now check these two points. First choose a countable family of functions (¢x)r>1 C
C}, dense in C}, endowed with the norm |||z L ol Lo + [ Dl o + | D?p|| L. Note
that

Aio(p)] < / Lo(p, )| Fi(q) dg

1 3
iy 1w .ana TCLULED> [ 1B alowera

2,7=1

Recall Lemmas and [3.6] in particular we have

®(p,q)| <c(1+¢"p—qI™"), |1Bpa)<c(1+¢°p—q7?).
Hence
()] < ellellez (14 1B zenzt)

by (@I with o = —1 and @ = —2. This implies that A;py converges uniformly (stronger
than the bounded-pointwise convergence) to a certain Az .

To prove (ii), we observe that the martingale problem for (C?, A;) with X;, = zg
corresponds to the following SDE:

t t
X, = a0 + / / (X, p)W (dp, dp, ds) + / B(X.,p)Fs(dp) ds.
to JR3 xR3 to JR3

From the previous Step 1 to Step 4, we have proved the strong existence and uniqueness
but only in the case t¢ = 0 and xg = P,. The generalization to the above case is
straightforward. We have thus proved point (ii).

This completes the proof of Proposition O
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7. Proof of the main theorem. We now prove our main theorem, Theorem
The proof will make crucial use of Proposition [[L4] and Lemma 5.1

Proof of Theorem [LH. (i) Assume that (F})ycjo,7] and (Ft)tE[O,T] are two weak solu-
tions to the relativistic Landau equation (L.I) with

T T
/ | Fsll ooz ds < oo, / [ Fsll Lenrs ds < oo
0 0

Note that the existence of weak solutions is proven in [35]; however [35] does not obtain
L*° bounds on the solution.

By Proposition [[4] there exists a bounded function p : [0,T] — [0, c0), such that for
any t € (0,77,

WE(F, ) < p(t),  plt) < WE(Fo, Fo) + / ()T (p(s)) ds,
where
v(s) = C'(FS,FS) =¢ (”Es(Q)HL?CmL% + ||Fs(Q)||L;°nL;) e L*([0, 7).

By Lemma 5 if initially p(0) = W3(Fy, Fy) = 0, then for any ¢ € [0,T], p(t) = 0 and
thus Wg(Ft7Ft) = 0. Thus (Ft)tG[O,T] = (Ft)tE{O,T]'
(ii) Consider a family of weak solutions (F}).cpo,7) and (F{*);cpo,r) to (1)) such that

T
sup [ (IFuony + 1Fory ) ds < o,
n Jo
and p,(0) def W3 (Fy, E3') — 0 as n — 0. Then applying Proposition [.4] again, one has
a family of bounded functions p,, : [0,T] — [0, 00), such that

Wi (F, F') < pa(t), pa(t) Spn(0)+/0 Tn(8)¥(pn(s)) ds.

Lemma [5.T] part ii) implies that

/p"(t) ! (o) 0.7)
—dyg/fy s)ds for any t € [0,T].
pn(0) Y(y) 0 "

Since for any € > 0, fos 1/%¥(y)dy = 400 and sup,, fOT Tn(s)ds < oo and p,(0) — 0 as
n — 00, one finally obtains that lim,, sup,cjo ) pn(t) = 0 and then consequently we have
that lim,, sup,e(o 79 W5 (Fi, F}*) = 0. O
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