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population in areas with risk of transmission [1]. As these diseases
utilize a mosquito host for part of their life cycle, it is essential to
consider dynamics of the pathogen in the mosquito. A key
quantity in understanding the spread of these diseases involves
the time period of pathogen development in the mosquito until
transmissibility. This period, known as the extrinsic incubation
period (EIP), from acquired infection in the mosquito until the
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EIP is difficult to quantify in part because many factors influence its outcome, and accounting for these [ 2 |
factors is experimentally difficult. Here, we focus on EIP of malaria in individual Anopheles mosquitoes.
Typically, malaria parasites enter the mosquito via a blood meal from an infectious vertebrate.
Although asexual parasites may be present in the blood meal, only the sexually dimorphized mature
gametocytes will be able to survive in the environmental conditions in the mosquito [3]. Once in the
mosquito, gametocytes undergo gametogenesis to form male and female gametes. These haploid male
and female gametes fuse to form diploid zygotes, which develop into ookinetes. The ookinetes traverse
the lining of the midgut and develop into tetraploid oocysts [4]. This all happens on a time scale of
minutes to a day [5]. Then, oocysts remain attached to the midgut wall while the parasites themselves
multiply repeatedly within them [6,7]. After about 10-11 rounds of endomitosis, the oocysts burst,
leading to release of parasites in the sporozoite form [8]. The time period from oocyst formation to
oocyst bursting differs by species with Plasmodium falciparum bursting after as few as 10 days [9], while
Plasmodium berghei burst closer to 14 days [10]. Once burst from the oocyst, sporozoites must transit to
the salivary glands before the mosquito is considered infectious. Although individual oocysts may burst
over a series of days, the arrival of the first sporozoites in the salivary glands heralds the ending of the EIP.

Many factors probably influence the length of the EIP including parasite subspecies, mosquito
species, initial densities and environmental conditions (see [11-13] for examples of estimating EIP
duration under different experimental conditions). To estimate EIP duration and to examine the
effect of initial parasite densities on EIP, we considered data resulting from a series of experiments
measuring temporal oocyst and sporozoite densities of Plasmodium berghei in Amnopheles stephensi
mosquitoes reported in the doctoral thesis [14]. While the results of several related experiments are
published in [14-17], along with some preliminary temporal oocyst count data in [18], the data
extracted for our manuscript remain unpublished. These unpublished data are especially informative
in that the authors reduce variability by starting infections at the ookinete stage rather than with
gametocytes in the blood. This reduces fluctuations arising from gamete formation and mating. We
draw upon this data to examine the role of parasite life stage parameters on the EIP.

Mathematical models have been an important tool in understanding malaria dynamics both at the
epidemiological level, e.g. [19-24] and references within, and the within-host level [5,25-29]. However,
only a limited set of mathematical work has focused on understanding parasite dynamics in the
mosquito, including [5,14,15,18,25,29], with some of the models remaining unpublished [14]. While
the models in [14], which fit to the same data we consider, provide insight into parasite dynamics
within the mosquito, these models are not intended to examine the EIP and, thus, are not able to
reproduce the oocysts and sporozoite dynamics simultaneously. Here, we build upon these works,
incorporating experimental data from [14] on oocyst counts and sporozoite score from particular
ookinete starting densities. These data allow us to examine in detail the dynamics in the oocyst phase,
the primary driver of the length of the EIP.

We begin in §2 with a discussion of the data. In §3, we introduce two versions of our model of
parasite development between the ookinete stage and the sporozoite stage within mosquitoes. In §4,
we discuss our choice of parametrization and model selection with regard to various starting ookinete
densities. In §5, we assess the implications for EIP and find that intermediate ookinete densities lead
to the shortest predicted EIP and that bursting rate has the largest impact on EIP. Finally, in §6, we
discuss our findings, and in §7, we summarize the implications.
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2. Data

In [14], a series of three controlled experiments were conducted to examine the role of ookinete density
on counts of subsequent parasite stages (oocyst number and sporozoite score). Specific details of the
methodology can be found in [14], chapter 4. Each experiment involved three experimental
conditions (different ookinete densities). Three ookinete densities (100, 400 and 2000 pl™') were used
for each of experiments 1 and 2. In experiment 3, the ookinete densities (50, 250 and 1000 ™) were
altered to explore additional initial conditions [14]. In short, for each experiment, approximately
1500-2000 mosquitoes were fed on blood containing various ookinete densities. Ookinete blood was
formed by taking gametocytaemic blood from infected mice and incubating for 24 hours, before
processing to form the defined ookinete levels. Following blood feeding, 20 mosquitoes were
dissected every day for the first 6 days and every 1-2 days after that until the end of each
experiment, which varied in length with the longest being 42 days. Within each dissected mosquito,
the number of oocysts were counted, and the sporozoites in the salivary glands were assigned a score.
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(a) Model 1 (b) Model 2

Figure 1. Model schematics. Our models consist of ookinetes (£), bursting oocysts (0), non-bursting oocysts (0,) and sporozoites (S)
compartments. Qokinetes die at rate £z, and transition to oocysts at rate o with f fraction ultimately bursting. Non-bursting oocysts
die at rate t1o. (@) Model 1 assumes gamma-distributed bursting with shape parameter N and scale parameter 1/(BN) and N
bursting oocyst compartments. (b) Model 2 assumes time-dependent bursting at the rate k/(1+ exp (t, — t)). Upon bursting,
m sporozoites burst from each oocyst and reach the salivary gland with probability p.

Two microlitres of blood were considered to be the average size of a mosquito blood meal. Thus, initial
starting ookinete numbers were approximately double the densities reported above.

Sporozoites were not directly counted; instead, sporozoite abundance levels were assigned a score
between 0 and 4 on a log scale. A score of 0 indicated an absence of sporozoites. A score of 1 indicated
1 to 10 sporozoites; a score of 2 meant 11 to 100 sporozoites; a score of 3 meant 101 to 1000 sporozoites;
and a score of 4 meant 1001 to 10 000 sporozoites. No record of sporozoites above 10 000 was indicated [14].

We extracted the data on mean oocyst number (figure 6.14 in [14]) and mean sporozoite score (figure
6.16 in [14]) using Plotdigitzer version 4.2 [30] and GRABIT version 1.0.0.1 [31]. Raw data (not means) can
be found in figures 6.2 and 6.3 within [14], but as the points overlap, we could not accurately digitize this
data. Only sporozoite scores and prevalence, not counts, were reported in [14]. To account for manual error
during the digitization process, we rounded all times to integer days post engorgement and rounded
oocyst counts to whole numbers. We rounded sporozoite scores to nearest tenth decimal place.

In electronic supplementary material, figure S1, we present the data—mean oocyst count and mean
sporozoite score—by experiment and condition extracted from [14]. Because experiment 2 is a replicate of
experiment 1, we combined these datasets for our analysis and refer to the resulting six datasets (or
treatments) by their corresponding initial ookinete number, E(0). The data can also be seen in our
main text, figure 3, black dots.

3. Model formulation and selection

To focus on the timing of sporozoite arrival in the salivary glands, we build deterministic, ordinary
differential equation (ODE) models (autonomous and non-autonomous). In particular, we compare two
models, which differ in how they capture the delay in oocyst rupture following oocyst formation.
Schematics of the two models are shown in figure 1. In Model 1, the rupturing oocyst stage is divided
into N sequential equally long stages, which is analogous to assuming time to oocyst rupture is gamma
distributed when N>1, and exponential when N=1 [32]. In Model 2, the delay in oocyst rupture is
captured by a time-dependent rupture function. Both models include a single ookinete stage and
separate oocysts into bursting oocysts and non-bursting oocysts. We find the separation into two oocyst
categories necessary to account for the simultaneous persistence of oocysts and stabilization of
sporozoite score. Oocyst counts were positive to the final day counts were performed, past 30 days in
all cases and up to day 42 in the longest experiment (electronic supplementary material, figure S1, blue
squares). After about 25 days, the sporozoite scores do not appear to increase, indicating that oocysts
were no longer bursting (electronic supplementary material, figure S1, red triangles).

Our modelling is motivated by the work of [14]. The author considers two successive model
structures with the goal of studying possible density-dependence in the ookinete-to-oocyst transition
and oocyst-to-sporozoite transition: (i) multiple ookinete stages to produce a single oocyst stage, and
(ii) multiple oocyst stages starting at day 10 to produce sporozoites. Model (i) allows for a gamma-
distributed ookinete stage, whereas model (ii) allows for a gamma-distributed oocyst stage. They fit (i)
to oocyst data and fit (ii) to sporozoite data. Although we find excellent replicability of their results
assuming a similar model structure (not shown), we find that neither of their models alone can fit
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both the oocyst and sporozoite data simultaneously. Here, we build two models to account for both
oocyst and sporozoite data together, to investigate questions about the EIP duration.

Our two formulations differ in how bursting of oocysts is modelled. Model 1 incorporates multiple,
identical oocyst compartments representing a gamma-distributed time until bursting. Model 2 uses a
time-dependent bursting function that is sigmoidal in shape. Electronic supplementary material,
figure S3, shows the difference in the bursting time of the two models. As N increases, the cumulative
distribution function of Model 1 approaches that of Model 2. However, the probability density
function (PDF) for Model 1 always remains lower than for Model 2.

3.1. Model 1: gamma-distributed bursting time model

In Model 1, we assume a single ookinete stage and multiple oocyst stages for those that eventually burst,
but a single stage of non-bursting oocysts. This is equivalent to assuming that the ookinete duration is
exponentially distributed, time to oocyst rupture is gamma-distributed, and oocyst mortality is
exponentially distributed. This latter fact arises because we only allow for death of oocysts in the
population of non-bursting oocysts. Our Model 1 system of equations for ookinetes (E), bursting
oocysts of stage i (O;), non-bursting oocysts (O,), and sporozoites (S) is

% = —ugE — o¢E,

% — forE — BNOy,

dd?i =PBNO; 1 —BNO;, i=2,...,N,
% =1 —fHoeE — no04,

% = pmBNOy,

where up is the mortality rate of ookinetes, o is the transition rate of ookinetes to oocysts, f is the
proportion of transitioning ookinetes that become bursting oocysts, uo is the mortality rate of non-
bursting oocysts, SN is the transition rate between the N oocyst stages, m is the number of sporozoites
that burst from an oocyst, and p is the probability of sporozoites reaching the salivary glands. See
table 1 for a list of the parameters.

3.2. Model 2: time-dependent bursting model

In Model 2, we assume single stages for ookinetes, bursting oocysts and non-bursting oocysts. However,
we assume that bursting oocysts follow a time-dependent bursting function as in [25], similar to the step
function employed in [5,29]. Our Model 2 system of equations for ookinetes (E), bursting oocysts (O),
non-bursting oocysts (O,) and sporozoites (S) is

dE

5 = MeE - ok,

do k
a_fUEEil +exp (tp —t)O’
do,

5 = U= PorE — poOs,

ds_ mik O
a P T+explt,—8H

where yg, o, f, uo, m and p are as in Model 1. Here, m is the time-dependent bursting rate of
oocysts with k being the maximal rate and f;, being the time when bursting occurs at half the maximal
rate. See table 1 for a full description of parameters, compared between models. See §4.3 for a
discussion on how k and ¢, relate to EIP.

4, Parameter estimation

In order to examine these models and their parameters for implications on the EIF, we fit the models to
the data described above and found in [14]. We do not fit parameters m and p, which together determine
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Table 1. Parameter descriptions.

Symbol Description Model Bounds
Ur mortality rate of ookinetes 1,2 U, 2)
O_E TP OocyS'[S e 12 y L{(OZ)
; uo e mortahtyrateofnonburstmgoocysts O 12 i L{(O 2) y
f  proportion of transitioning ookinetes that become bursting ooqysts 12 U0, 1)
1//3 e averageduratlonof burstmgoocyst stage SR B L{(O 10) ;
A maXImalburStIngra'[e T L{(O10)
t,, S t|mewhenburstmgoccursathalfthe o L{(O 42) y
..p. e probablllty o spor020|tes reachmgthesahvaryglands B 12 e
S numberofsporozmtes e oocyst 12 S

the number of sporozoites per oocyst that reach the salivary glands. Previous work shows a range of
54-72 sporozoites per oocyst reach the salivary glands [17]. As p and m always appear as a product,
we choose pm = 60.

4.1. Likelihood function

We fit both models to a combination of the oocyst and sporozoite score data. We use the Poisson
likelihood for the oocysts

Mo 10i (4 a—Ao(t)
A (t) e Mot
Lolo|Ao) = Holi

i=1

O,‘! !
where o; is the data of mean total oocysts (combining bursting and non-bursting) at time point t;
Ao(t) = O4(t) + le\lzl O;(t)) is the model output of the total oocysts at time point i and Mo is the total
number of time points in the oocyst data.

Likewise, we use the Poisson likelihood for the sporozoite number

Ms )\Zi(ti) e Ast)

Ls(s|As) = H

1
i1 Si:

7

where s; is the data of sporozoite count (calculated by raising 10 to the power equal to the sporozoite
score) at time point t;, As(t;) = S(t;) is the model output of the total sporozoite number at time point ¢,
and Mg is the total number of time points in the sporozoite data. We combine the oocyst and
sporozoite likelihoods such that the negative log-likelihood (NLL) is

NLL = —In(Ls) —In(Lp)

Mo i
=— Z (01‘ In(Ao(t) — Ao(t) — Z In (m))

i=1 j=1

Ms i
- Z (Si In (As()) — As(t) — Zln (51‘)) .
i=1 j=1

For the model output, we add a small value, £ =0.01, to the mean scores to ensure non-zero values enter
the likelihood [33].

We employ this likelihood function in two fitting methods, multistart optimization and Markov
chain Monte Carlo (MCMC), described below. The former allows us to explore the parameter space of
both models, but does not provide information on parameter variability or correlations. The latter
allows us to explore both of these aspects (parameter variability and correlations) but is more
computationally expensive, particularly for large ODE systems, so we restrict this methodology to
Model 2.

Our model differs from the data in how sporozoites are quantified. In the data, sporozoite score is a
measurement of the abundance of sporozoites on a log scale, while we track the calculated density
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directly in the model. For comparison, we transform the sporozoite score to sporozoite number by raising [ 6 |
10 to the reported average value, i.e. the ‘anti-log’. As noted in the original presentation of the data [14],
there are other ways to transform the sporozoite score such as the arithmetic or geometric mean. We
examine the effect of other choices for transforming the sporozoite score in the electronic
supplementary material, figure S2 and find that our results for EIP are not sensitive to the method for
transforming the score. The ‘anti-log’ transformation consistently overestimates the true value.
However, it is unclear if there is over- or under-estimation with other methods, so we present results
using 10 raised to the average score.

4.2. Parameter bounds

We fit five parameters for Model 1 (ug, o, uo, f, B) for varying numbers of oocyst compartments, N, and
fit six parameters for Model 2 (ug, o, o, f, k, t,). See table 1 for a full set of parameter definitions and how
they are used in the models. We bound the region of optimization for our parameters based on biological
knowledge, discussed below.

There is evidence that the rate of leaving the ookinete compartment is constrained such that ug +
op <2, indicating an average time of 0.5 days as an ookinete [29,34]. However, this constraint is
observed for P. falciparum, not P. berghei, the parasite studied in the data presented here. Thus, as the
ookinete stage is known to be short, we bound ug and of separately between 0 and 2. As oocysts
persist from days to weeks, we expect the mortality rate, equivalent to one over the average time as a
non-bursting oocyst, to be quite small. For consistency with mortality of the ookinete stage, ug, we
bound up between 0 and 2.

The idea of two oocyst sub-populations, one which bursts and one which does not, has not, to
our knowledge, been modelled before. However, consistent with observations made in [14],
given both the persistence of oocysts for a long period (up to the maximum 42 days) and lack
of the additional appearance of sporozoites after about day 25, we find the presence of two
separate types a consistent way to account for this observation. However, given the lack of prior
discussion on this, we allow f, which is the proportion of oocysts that burst, to vary over its full range
between 0 and 1.

As expected from the form of the bursting equation in Model 2, we find that k and t, are correlated
and bound them accordingly. To understand their correlation, we examine a population, x, only subject
to bursting described by
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which can be solved explicitly for x(t) in terms of f;, k and the initial population, x(0) = x,, as

i\ K
x(t) = xo (i) .

ef +efv
We find the time, #*, when the burst population is half the size of the initial population as
' =InQ7* (1 +e") —e). @1

This quantity, t*, will form a component in our computation of EIP for Model 2. There is
clear interdependence on k and t, (electronic supplementary material, figure S4). Rapid decreases in
t* are seen with increases in k when k <0.1, but only a slow decrease in t* with k when k> 0.1. For t,
there are roughly linear increases in t* as t; increases. In electronic supplementary material, figure 54,
we show the level curves of t* as k and t, are varied. When k=1, we find that t*~t, with
the approximation getting better as #, increases. We consider f;, across all time values of the data,
t, €10, 42]. As a result of our analysis of +* found above, we restricted k to be between 0 and 10.

4.3. Extrinsic incubation period

We estimated the extrinsic incubation period (EIP) using the formula

1
EIP = ——+ 1, 4.2)
Of + U



where for Model 1, t* is the time at which the cumulative distribution function for the gamma
distribution with shape N and scale 1/(8N) equals 0.5 (i.e. the time at which the PDF attains its
median value), and for Model 2, t* is defined as in equation (4.1) (the time at which half of the initial
oocysts have ruptured). The first term, 1/(og + 1), is the average duration of the ookinete stage. Note
that the epidemiological definition for EIP, the time from gametocyte ingestion until emergence of
sporozoites in the salivary glands, is slightly different. Our two approaches for calculating +* lead to
the most parsimonious comparison of EIP across models.

4.4, Parameter fitting: multistart

The likelihood function may have many local minima. To obtain initial point estimates for the parameters
for Model 1, o, ug, o, f and B, and for Model 2, o, ug, uo, f, t, and k, we implement the multistart
routine within the Matlab Global Optimization Toolbox, using 10 starting points for the initial vector
of parameter values. The function fmincon was used to find a local minimum for each starting point.
For each starting parameter set, we fit Model 1 for N {2, 3, 10, 20, 30, 40, 50, 75, 100}. Likewise, we
fit Model 2 ten times, once for each starting parameter set. This procedure resulted in up to 10 unique
parameter estimates, where each parameter set corresponds to a local minimum. The exact number of
unique parameter sets depended on whether the optimization routine converged or not for a
particular starting point and whether those that converged to different minima. Convergence was
determined by the exit flag in the algorithm with a flag of 1 or 2 indicating at least one incidence of
convergence. See electronic supplementary material, table S1, for records of our convergence. For each
model, we chose the parameter set resulting in the smallest local minimum as our best estimate. The
first initial parameter vector in the multistart routine was chosen to be {og, ug, to, B, ft =10.14, 1.85,
0.045, 0.057, 0.045} for Model 1 and {og, ug, uo, k, f, tp,}=1{0.14, 1.85, 0.045, 0.057, 0.045, 10} for
Model 2. The remaining nine starting parameter sets are automatically selected at random within the
prescribed bounds. The parameter bounds used in multistart are identical to the range of priors
found in table 1.

4.4.1. Model selection

We choose between the proposed models using a modification of the Akaike information criteria (AIC).
AIC uses the likelihood of the model in the context of the number of parameters necessary, penalizing
more complicated models [35]. The AIC is given by

AIC =2D —21In (L),

where D is the number of parameters and £ is the likelihood, described above.
We instead consider the AIC with correction (AICc), which is more appropriate for small sample sizes
assuming normality, as it penalizes more complicated models more severely [35]. The AICc is given by

2D? 4+ 2D
AlCc=AIC + ————
Cc C+M7D71'

where D and AIC are as above, and M is the sample size, i.e. the number of data points.

4.5. Parameter fitting: Markov chain Monte Carlo

Following our original parameter sweep using multistart, described above in §4.4, we fit Model 2 to the
oocyst count and sporozoite score data using MCMC. We use the debInfer package in R [33,36-38],
which is designed for Bayesian inference of dynamical models. It uses a random-walk Metropolis—
Hastings algorithm [33]. We chose uninformative priors as specified in table 1. Discussion of choices of
the parameter bounds is found in §4.2. We use an asymmetric uniform proposal distribution to ensure
that all parameters are positive as given by U((a/b)6, (b/a)6). The parameter set is given by 6, and we
chose 2=3 and b=4. Our choices of a2 and b provide a narrow proposal, which reduces our acceptance
rate in certain situations. To compensate for this, we run five chains of at least 100 000 steps for each of
the initial oocyst numbers. We choose our starting parameters for the chains using Latin-hypercube
sampling with evenly spaced bins across the priors to ensure our starting parameter sets are sufficiently
separated. We use the Gelman—Rubin convergence diagnostic [39,40] to confirm our chains have
converged. All chains show point estimates of the potential scale reduction factor of 1.05 or less and an
upper confidence limit of 1.10 or less (electronic supplementary material, table S2).
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4.6. Parameter sensitivity analysis

We performed extended Fourier amplitude sensitivity test (eFAST) [41] to determine the impact of our
parameters on the fixed output, EIP, and temporally varying output such as oocyst and sporozoite
numbers. eFAST can account for non-monotonic relationships between parameters and output [41,42].
In addition, it can give a measure of the total sensitivity to a particular parameter. The first-order
sensitivity for parameter i, given by S;, is computed from the variance from parameter i, denoted by
s7, divided by the total variance, 2,

Stotal
Variance is calculated from the Fourier coefficients at the frequency j of interest by s? = 2(Aj2 + B]Z), where
Aj=1[" f(x)cos(jx)dx and B; =21 [" f(x)sin(jx)dx are the Fourier coefficients. The total sensitivity
index, given by Sr; for parameter i, is found by summing the sensitivity index of all parameters
except i, given by the complementary set S.;, and looking at the remaining variance: Sr;=1—-S.. We
perform eFAST using code originally developed by the Kirschner lab [43].

5. Results
5.1. Model structure

5.1.1. Characteristics required to capture oocyst and sporozoite data simultaneously

Previous modelling efforts have fit the oocyst data and the sporozoite data independently in order
to study the transitions between consecutive stages of the sporogonic cycle and explore the
possibility that these transitions are density-dependent [14]. In particular, an ookinete-to-oocyst
model was fit to oocyst data only and an oocyst-to-sporozoite model was fit to the sporozoite
data alone. These two models cannot be used to study our questions about the duration of the
EIP and possible dependence of EIP on initial ookinete density. In the case of the ookinete-to-
oocyst model, there is no sporozoite compartment to fit to the sporozoite data; whereas the oocyst-
to-sporozoite model cannot provide a suitable fit to both oocyst and sporozoite datasets
simultaneously (not shown). A major reason for this is that the sporozoite score data rise
rapidly following 18 days post infection and plateau by 25 days. With regard to oocyst counts,
even out to 42 days, the longest time point measured, there are still oocysts present. These
oocysts are falling rapidly between 10 and 42 days, but only the initial portion of this can be
explained by the bursting of oocysts. In other words, the previous models either capture the
timing and level of the oocyst peak accurately or capture the timing and level of the sporozoite
population, but not both.

A parsimonious model change that allows for both of these features simultaneously is to split the
oocyst compartment into two populations: one that bursts and one that does not. The bursting oocysts
form sporozoites while the non-bursting oocysts merely die off over time. This allows for both a
sudden increase in the sporozoite population around day 20 and a significant, but much slower,
decrease in the oocyst counts from the peak until the end of the experiments.

Both models introduced here are able to capture these features of the data. For Model 1, a larger
number of compartments is often needed to delay the formation of sporozoites. For Model 2, the
time-dependent bursting keeps the rate of transition to sporozoites low until near the time of f,.
Electronic supplementary material, figure S5, demonstrates our fits for our best parameter
combinations using multistart. Best fit parameters for both models using multistart as well as the
median values of the posterior distributions of MCMC are found in table 2.

5.1.2. Comparison of model with gamma-distributed bursting (Model 1) to model with time-dependent
bursting (Model 2)

Across both models and two fitting methods, there is high consistency in fitting results. Figure 2 indicates
that, for some N € {2, 3, 10, 20, 30, 40, 50, 75, 100}, Model 1 provides a better fit to the data than Model 2 in
three of the six scenarios. In particular, for an initial ookinete density E(0) =100, 200, and 2000, Model 1
with gamma-distributed bursting and an intermediate number of bursting oocyst stages, N, produces a
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Table 2. Fitted parameter values. Best fit parameters for both models using multistart as well as the median values of the posterior [JEJ}
distributions of MCMC. The 95% highest density posterior intervals for parameters fit with MCMC can be found in electronic

supplementary material, table S4. The best overall model as determined by multistart is indicated in the last column by a star. 2
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better fit to the data than Model 2 with time-dependent bursting. However, for these initial experimental
conditions, the AICc value for Model 2 is relatively close to that of Model 1 with an optimal number of
bursting oocyst stages. In fact, the fits to both the oocyst and sporozoite score data are nearly identical
between the Model 2 MCMC median of posterior draws and the best fit model using multistart (figure 3).

A summary of parameter estimates is provided in table 2; the best overall model as determined by
multistart is indicated in the last column by a star (*). For the gamma-distributed bursting model, Model
1, the number of bursting oocyst stages that yields the best fit increases with initial ookinete density E(0).
Again, there is high agreement between parameter estimates for the best fit Model 1 and Model 2, and
between the two fitting methods (MCMC and multistart). Using Model 1 and a fixed initial ookinete
density E(0), we also obtain estimates for parameters uo, f and 3, that are similar in magnitude across the
number of rupturing oocyst stages, N, provided that the fit to data is reasonable (see electronic
supplementary material, figure 56). In other words, as long as the fitted solution visually aligns with the
data, the optimal parameters found via fitting for each N are similar across all N. There is more
variability in the values of o and uf across N, which is probably a consequence of the two parameters
being correlated (electronic supplementary material, table S5); in particular, ug and ug+or appear,
roughly, to increase with increasing number of rupturing oocyst stages N (see electronic supplementary
material, table S5, and figures provided in our Zenodo Repository [44]). This suggests that the average
duration of the bursting oocyst stage is relatively stable across initial ookinete densities, despite the fact
that the distribution of this random variable changes depending on the initial conditions. In other words,
if we assume that the time from oocyst formation to oocyst bursting is gamma distributed, the
expectation 1/4 is fairly constant, while the shape parameter changes with initial ookinete density. Recall
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Figure 2. Model selection for multistart parameter fitting. AlCc plot for each initial ookinete density £(0) for Model 1 with N oocyst
stages, where N € {2, 3, 10, 20, 30, 40, 50, 75, 100}. The AlCc for Model 2 is demonstrated by the dashed horizontal line. AlCc
values are given in electronic supplementary material, table S3.

that a gamma distribution with mean 1/ and shape N is equivalent to a gamma distribution with shape N
and scale 1/(8N), which is also the duration of each stage O; in Model 1.

5.2. Qocyst count and sporozoite score with increasing ookinete density

As the initial ookinete density increases, the estimated peaks of oocyst density generally increase and are
shifted to later time points (see figure 4), although this is not always the case, as the peaks for 200 and 500
ookinetes are out of order, and similarly for 800 and 2000 ookinetes. While fitting only the ookinete-to-
oocyst transition, the results in [14] show a general increase in peak height and shift to the right in peak
position for Experiments 1 and 2. The fitted oocyst peaks for all three conditions in Experiment 3 are earlier
than expected in relation to initial conditions in Experiments 1 and 2 (considering peaks from fits in figure
6.14 in [14]). Considering a fixed set of parameters and only varying the initial ookinete number, Dawes
observes an increase in peak height and a shift in peak location to the right (shown in figure 6.21 in [14]).

The relationship between initial ookinete number and final sporozoite score, however, is consistent
with larger initial values corresponding to higher scores. Thus, interestingly the separation of oocyst
levels is not directly reflected in the sporozoite scores. Furthermore, as initial ookinete numbers
increase, the variability of the timing of sporozoite appearance narrows and is earlier, except for the
4000 ookinetes ul™". This reflects the U-shaped EIP values (figure 5), discussed below.

5.3. Extrinsic incubation period varies with initial ookinete density

A U-shaped relationship between initial ookinete number, E(0), and EIP is seen across all fitting methods
(see figure 5). The highest calculated EIP values are for the lowest initial ookinete numbers, 100, for both
model types. Intermediate ookinete densities show shorter EIPs with the shortest obtained for 500
ookinetes. At high ookinete numbers, i.e. 4000, the calculated EIP values are again larger. In addition,
we see the most variation in the calculated EIP values for the lowest initial ookinete number (see
figure 5). Interestingly, for higher initial ookinete numbers, the time as an ookinete increases (although
not to the same extent for 2000 initial ookinetes) while the calculated t* is much higher for the lowest
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Figure 3. Best fit model solutions and data. Comparison of best fit model and data with oocyst count on the left and sporozoite
score on the right. The panels are ordered by initial ookinete number, as indicated by their titles. The median of MCMC posterior
draws using Model 2 in dashed blue with the 95% highest density posterior interval shown in shaded grey and best fit multistart,
which may be Model 1 or Model 2 (see table 2) in solid red. The black points represent data on oocyst count and sporozoite score,
extracted from [14].

and highest initial ookinete numbers and relatively similar for intermediate initial ookinete numbers (see
electronic supplementary material, figure S7).

5.4, Parameter correlations

Focusing on Model 2, which often gives the best fit and is much less computationally expensive, we
examined the correlation and variability in parameters using MCMC.

Across all initial conditions we observed strong, yet nonlinear, correlation between the time when
bursting occurs at half-maximal rate, t, and the maximal bursting rate, k (electronic supplementary
material, table S5, figures available online at the Zenodo Repository [44]). Similar to the shape of the
level curves from electronic supplementary material, figure S4, we observe strong nearly linear
increases in t, with k when k is small. Near k=1, the relationship shifts from large increases to much
smaller increases over a short range of k (electronic supplementary material, figure S4). This
relationship was expected for a given t*, as shown from our analysis above in §4.2.

We also observed strong, negative correlations between the proportion of transitioning ookinetes that
become bursting oocysts, f, and the mortality rate of non-bursting oocysts, u¢ (electronic supplementary
material, table S5). This correlation was also expected because the size of the non-bursting oocyst class is
dictated by the balance of the input, (1 — f)ogE(t) and, the loss, 1£cO,. When f is higher fewer oocysts enter
the O, class. Recall that only non-bursting oocysts, O, are subject to oocyst mortality, uo. As some
oocysts are present in all experiments at the final time point (42 days for longest experiment) the
transition of fewer ookinetes to non-bursting oocysts, i.e. lower 1 — f, necessitates a lower mortality for
non-bursting oocysts to persist the entire length of the experiment.

Finally, we observe strong, positive correlations between the mortality rate of ookinetes, u, and the
transition rate of ookinetes to oocysts, or (electronic supplementary material, table S5). The sum of ug and
o forms the rate leaving the ookinete class. Consequently, an earlier appearance of oocysts indicates a
larger value of this sum. As there is no ookinete data to fit (apart from the initial condition), these
values are highly impacted by the levels and timing of oocyst appearance.

In addition, we observed weaker correlations between f and both o and yg (electronic supplementary
material, table S5). While the correlations with yx were always positive, those with o can be both positive
and negative. This suggests that the correlations are probably the result of some higher order interaction.
We observed weaker, negative correlations between uo and both o and ug (electronic supplementary
material, table S5). These are probably mediated through the high correlations of f and 0.

€11761 21 s todg 205 'y sosy/jeunol/bioBusygndisaposeror [



4 T T T 300
®
E ° ® 250 1
< 3 4 et
s 3
= ° B 200t
g |® & °
2 2 150 [
g, [ ] § [ ]
8 5]
ks % 1007 °
g 1 = .
5 501
[ ]
0 - - - 0 ’ ’ ’
0 1000 2000 3000 4000 0 1000 2000 3000 4000
_ 109 T T T l 3.0 T T T Py
. le 2 25} ® 1
3 [ e 3 o
= ® 2 Hot
2 £ 201
g ° g °
é % 1.5¢
@ 4 r E
3 2 1.0f
=
£ Ll E
= E 05
0 - - - 0 ’ ’ ’
0 1000 2000 3000 4000 0 1000 2000 3000 4000
ookinete number, E, ookinete number, E
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Figure 5. Variation in EIP across different initial ookinete numbers. Distribution of EIP with median (black line) for MCMC
simulations. Red stars are the EIP from Model 2 fitted with multistart and blue circles are the EIP from Model 1 with
optimized N fitted with multistart. All optimized parameters are found in table 2 with 95% highest density posterior intervals
found in electronic supplementary material, table S4.

5.5. Parameter variability

High variation was found among some parameters (figure 6). We estimated the ookinete-to-oocyst
transition rate, og, in a tight distribution for higher initial ookinete number, i.e. above 200. For
E(0) =500, ~800, and 2000, the 95% highest posterior interval (HDPI) for o was within 0.1 and 0.3.
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MCMC fit parameters are found in electronic supplementary material, table S4.

In contrast, the fits for the ookinete mortality rate, g, are inconsistent across initial ookinete numbers
and highly variable, with the 95% HDPI spanning large portions of the prior interval. As described in
§5.4, there are interdependencies between the rates associated with entering and persistence in the
oocyst classes.

As seen in figure 6, tight fits are found for the fraction of bursting oocysts, f, and the oocysts mortality
rate, yo. In general, the 95% HDPI only spread 0.01 for f and uo (electronic supplementary material,
table S4). In fact, values only in a narrow range of the prior (table 1) are recovered (note that the
y-axis of figure 6 does not cover the entire prior of fe[0, 1] and uo €0, 2]). Furthermore, for any
given initial ookinete number, the distribution of these parameters was very narrow. Interestingly,
there is a clear visual correlation between experiment and the fits for f and xo. Recall that experiments
1 and 2 used initial ookinete densities of 100, 400 and 2000 ul~!, while Experiment 3 considered 50,
250 and 1000 ul~". We hypothesize that there may have been some experimental difference between
the experiments, e.g. the precision of data collection, the mosquito cohort or any number of
environmental conditions. Two differences are noted between experiments in [14]: the age of the
cohort of mosquitoes and the researcher performing counts. For experiment 1, the mosquitoes were 4—
8 days old at the start of the experiment while for experiments 2 and 3, they were 7-11 days old.
Reported oocyst counts and sporozoite score were performed by one researcher for experiments 1 and
2 while they were performed by a different researcher for experiment 3. While statistical analysis was
done in [14] to ensure there were no significant differences in the counting, this subtle difference may
be appearing in the fits. As this is a re-analysis of data from [14], we are unable to determine the
contribution of experimental factors beyond what is reported.
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Figure 7. Global sensitivity of extrinsic incubation period. Proportion of variation in EIP with respect to each varied parameter in
Model 1 (left) and Model 2 (right) using eFAST. Orange bars indicate individual sensitivity index while blue bars are the total
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N, is not able to be varied in eFAST. For each initial ookinete density, sensitivity is shown for the optimal N: N=30 for o=
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Finally, the variation in t, and k was clearly correlated. The distribution for t, and k are highly skewed
towards higher values for 500 and 4000 ookinetes. Under both conditions, the 95% HDPI frequently
included the upper bound of k=10 (electronic supplementary material, table S4). As discussed above,
we expect these values to be positively, but nonlinearly correlated.

5.6. Sensitivity of extrinsic incubation period and temporal output

We used extended Fourier amplitude sensitivity test (e€FAST) to determine the global sensitivity of EIF,
total oocyst count over time, and the sum of each bursting stage over time. This method is able to tell
both the proportion of variation by each parameter individually as well as the total sensitivity of each
parameter, including all higher order interactions [41,42]. In Model 1, the variation in EIP is
dominated by the average time in each bursting oocyst stage, 1/. This is probably due to the wider
range of J relative to the variation in this parameter (figure 7, left panel). In contrast, in Model 2, the
variation in EIP is dominated by the time to half-maximal bursting, f,, in both individual parameter
sensitivity and the total sensitivity index (figure 7, right panel). Interestingly, the rate of maximal
bursting, k, shows comparatively smaller effect on the variation, approaching that of parameters that
do not even directly affect EIP. It is important to note that although only certain parameters directly
enter the formula for EIP (equation (4.2)), all parameters are involved in the fitting process. Thus, all
parameters can indirectly affect the calculated EIP.

For the temporal output, for Model 1, we find that the ookinete number is controlled mostly by the
rates leaving the ookinete compartment, ur and of (electronic supplementary material, figure S8). For
bursting oocysts and total oocysts, the early time points are dominated by the fraction of bursting
oocysts, f, and, the rate of transition from ookinetes to oocysts, or. At later time points, these
compartments are impacted by the average time in the bursting oocyst stage, 1/8. In contrast, the
non-bursting oocysts are affected by oocyst mortality, uo, at later time points. The sporozoite counts
are primarily affected by p. Similar results are seen for the total sensitivity index (electronic
supplementary material, figure S9).

For Model 2, the ookinete number is controlled mostly by the rates leaving the ookinete
compartment, ug and of (electronic supplementary material, figure S10). For oocysts, the rates leaving
the ookinete compartment, ur and of, are important at early time points. At later time points, the
timing of half-maximal bursting, t,, followed by the maximal bursting rate, k, impact the variation in
bursting oocyst count most significantly (electronic supplementary material, figure S10). At later time
points, the impact of the variation cannot be truly determined. In contrast, non-bursting oocysts and
the total oocysts, are impacted by the oocyst mortality, 1 at later time points. The sporozoite count is
affected by t, early on, but by the fraction of bursting oocysts, f, and, interestingly, the rate of
transition from ookinetes to oocysts, o, at later time points. Similar results are seen for the total
sensitivity index (electronic supplementary material, figure S11).
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6. Discussion

We build two models of malaria parasite development within the mosquito host and evaluate these
models using daily data on oocyst counts and sporozoite measurements from a controlled set of
experiments initiated with blood containing standardized ookinete densities [14]. Our Model 1
incorporates a delay to bursting by the inclusion of multiple oocyst stages, while Model 2 includes
a time-dependent delay in the oocyst bursting function. With these models, we are able to
estimate the extrinsic incubation period, an important metric for determining the probability of
parasite transmission from mosquitoes to vertebrate hosts, across varying initial ookinete levels.
Because EIP is of the same order of magnitude as the mosquito lifespan, a small decrease in EIP
can lead to increased transmission. A key finding of our models is the non-monotonic relationship
between initial ookinete numbers and EIP, with intermediate ookinete numbers producing the
shortest EIP.

Shorter EIP increases the likelihood that a mosquito will survive the parasite incubation period. While
final sporozoite score tends to increase with initial ookinete density, EIP has a non-monotonic
relationship with initial ookinete density, with the shortest EIP occurring at intermediate initial
ookinete densities. This result suggests the possibility of within-mosquito density-dependent parasite
interactions that promote onward transmission to vertebrate hosts at these intermediate initial parasite
densities. Without such density-dependent interactions, one might expect EIP to decrease with E(0);
however, the lengthening of EIP at higher E(0) indicates that there is probably competition at higher
densities that is either prolonging the ookinete stage, delaying oocyst rupture, or increasing oocyst
mortality. However, because final sporozoite score increases with E(0) and because there is not an
increasing relationship between the proportion of non-bursting oocysts f and E(0), it is unlikely that
the density-dependent interactions are resulting in increased oocyst mortality. Likewise, there is no
consistent pattern in the duration of the ookinete stage 1/(cg+ug) with increasing E(0). For both
Models 1 and 2, however, we do observe a U-shaped pattern in t*, the time following oocyst
formation at which the probability of having burst is one-half. Consequently, the effect of density-
dependence appears to be on the time between oocyst formation and oocyst bursting.

An alternative hypothesis is that an increase in EIP at high initial ookinete numbers may occur due to
a dose-response, such as through increased immune pressure in the presence of many parasites. In this
case, we would expect a monotonic increase in the EIP with increasing E(0). This is in contrast to the
U-shaped relationship between E(0) and EIF, which we observe and, thus, find density-dependence to
be a more parsimonious explanation.

Overall, both Model 1, with an appropriate number of oocyst stages, and Model 2 can fit the oocyst
count and sporozoite score data reasonably well. From our results, it is clear that models that lack a delay
prior to oocyst bursting will not be able to account for both the timing and output of the sporozoite
population. Accuracy in both of these factors is essential for good estimates of transmission.
Furthermore, separating bursting from non-bursting oocysts was critical for capturing the continued
gradual decrease in oocyst counts beyond the time point at which sporozoite numbers no longer
increased. Despite a clear need for separation of bursting and non-bursting oocysts, there remain
several parameters that appear to have poor identifiability. In particular, parameters related to the
ookinete compartment, f, ug and op, show wide variability. Further, experimental studies that also
track early stages of parasite development, such as the formation and loss of the ookinete stage would
be needed to more accurately fit these parameters.

While both Model 1 and 2 fit the data quite well, neither Model 1 nor Model 2 definitively described
the oocyst bursting process, because each model was selected as the best model for half of the initial
ookinete treatments. Thus, our study is unable to confirm whether the time from oocyst formation to
oocyst bursting is in fact truly gamma-distributed. However, when Model 1 is selected as the best
performing model, Model 2 yields very similar estimates in the parameter +*. This consistency in t*
estimates, but discrepancy in the corresponding estimates of EIP for treatments E(0) =100, 200, 2000,
by the two models suggests that the uncertainty in our estimates of EIP arises mainly from
uncertainty in the estimation of the ookinete stage duration 1/(og +ug). Experiments that specifically
seek to estimate these parameters through tracking of the ookinete stage could help to reduce the
uncertainty in our estimates of EIP.

Despite the fact that Model 1 and Model 2 are each selected as the best model for half of the
treatments, the close agreement across several metrics when Model 1 is selected as the best fit model
indicates that Model 2 is an appropriate representation of Model 1. Implementing Model 2 in lieu of

11261 £ s uadp 205y sosyjeuwmol/biobunsyqndfaanosiedor i



Model 1 is computationally advantageous when the differential equation needs to be solved a large [ 16 |
number of times (as in the implementation of MCMC), particularly if a large number of bursting
oocyst stages N is required.

EIP is sensitive in both Model 1 and Model 2 to parameters directly related to oocyst bursting. In
Model 1, this is 8, while in Model 2 this is ¢, and to a lesser extent k. Such a dominating sensitivity to
B in Model 1 is probably due to the examination of a significantly larger range within which the value
actually varies (we consider 0.5 times the minimum fitted S as a lower bound and 2 times the
maximum fitted g as an upper bound). It is interesting that despite the variation in or and ug
observed between conditions, the EIP appears highly insensitive to changes in these values. This may
be due to the fact that we only perform sensitivity under each initial condition, but not across
conditions. The variability across conditions is apparent from our MCMC fits.
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7. Conclusion

EIP, the time period of pathogen development in the vector until transmissibility, is a key quantity in
understanding and evaluating the spread of vector-borne diseases. This quantity remains poorly
understood, particularly in diseases such as malaria. A quantitative description of parasite
development within the mosquito, as in this work, provides more basis for determining the EIP and
which factors most impact its length. Using our quantitative framework, we show that intermediate
ookinete densities produce the shortest EIP and the process of bursting produces highest sensitivity to
this timing. This knowledge could lead to improved intervention strategies to mitigate disease spread.
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