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ABSTRACT: Tetragonal tungsten bronze (TTB) materials are one of the most
promising classes of materials for ferroelectric and nonlinear optical devices, owing to
their very unique noncentrosymmetric crystal structure. In this work, a new TTB phase of
LiNb6Ba5Ti4O30 (LNBTO) has been discovered and studied. A small amount of a
secondary phase, LiTiO2 (LTO), has been incorporated as nanopillars that are vertically
embedded in the LNBTO matrix. The new multifunctional nanocomposite thin film
presents exotic highly anisotropic microstructure and properties, e.g., strong
ferroelectricity, high optical transparency, anisotropic dielectric function, and strong
optical nonlinearity evidenced by the second harmonic generation results. An optical
waveguide structure based on the stacks of α-Si on SiO2/LNBTO−LTO has been
fabricated, exhibiting low optical dispersion with an optimized evanescent field staying in
the LNBTO−LTO active layer. This work highlights the combination of new TTB
material designs and vertically aligned nanocomposite structures for further enhanced
anisotropic and nonlinear properties.
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■ INTRODUCTION

Nonlinear optical (NLO) materials have aroused growing
interests since the discovery of second-harmonic generation
(SHG) in the early 1960s.1 NLO phenomena occur when
high-intensity light travels in a nonlinear medium where the
polarization density responds nonlinearly to the incident
electromagnetic fields. NLO materials have imposed broad
impacts on information technology and photonic applications,
such as waveguides, resonators, optical probes and sensors,
optical data storage, optical information processing, etc.2−7 For
example, LiNbO3 (LNO) is one of the most attractive NLO
materials, owing to its high second-order nonlinear and
electro-optical coefficients, which make it desirable for
nonlinear frequency conversions and integrated optical
devices,8−10 although its optical damage threshold is relatively
low. BaTiO3 (BTO) is another important NLO material with
strong second-harmonic generation, high third order suscept-
ibility, as well as its successful epitaxial integration on Si.11−13

Searching for new NLO materials is critical toward even
more pronounced nonlinearities and understanding the
fundamental nonlinear polarization mechanisms. Tetragonal
tungsten bronze (TTB) materials have been considered as one
of the promising candidates since their NLO properties were
first investigated in IBM and Bell Laboratories back in 1967.14

TTB materials are often also accompanied by a ferroelectric
response, which makes them attractive for various device
applications.15,16 In addition, the number of cationic sites in

TTB materials is higher than those in traditional perovskites,
which allows versatile substitutions to tailor their properties.
The general chemical formula for TTB materials can be
described as (A2)4(A1)2(C)4(B1)2(B2)8O30

17 where B1O6
and B2O6 are octahedra sharing corners, and A2, A1, and C
are interstices (C sites are typically vacant). Some of the
reported TTB materials include Ba5LaxSm1−xTi3Nb7O30,

18

Ba4Sm2Fe2Nb8O30,
19 and so forth. However, most of the

synthesized TTB materials are in bulk form;20−22 limited
efforts have been devoted to the growth of TTB thin films,
especially epitaxial thin films.23−25 Up to date, there are very
limited or no prior reports on the atomic scale microstructure
of the TTB thin film materials.
In this work, we demonstrate a new TTB thin film of

LiNb6Ba5Ti4O30 (LNBTO) with high epitaxial quality on a
SrTiO3 (STO) (001) substrate using a pulsed laser deposition
(PLD) technique. The crystal structure of such an LNBTO
phase is revealed by detailed microstructure analysis, in both
plan-view and cross-section. Furthermore, LiTiO2 (LTO) is
introduced as a secondary phase to form a unique vertically
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aligned nanocomposite (VAN) structure, which provides
additional tuning for the anisotropic properties, such as
enhanced ferroelectric and anisotropic optical response. VAN
structures have been extensively explored in oxide−oxide26,27
and recently extended to other systems such as metal−
oxide28−30 and metal−nitride31,32 systems. These VAN
structures present highly anisotropic electrical, magnetic, and
optical responses. The new TTB material in this work,
combined with its unique VAN structure, paves a way toward
novel NLO material designs for advanced optical devices.

■ RESULTS AND DISCUSSION

Microstructure characterization was first carried out to explore
the overall crystallinity and morphology of the as-deposited
film. Figure 1a is the 3D demonstration composed of low-
magnification plan-view and cross-sectional STEM images.
The large-scale plan-view image in Figure 1b presents a very
interesting and unique nanonecklace-like structure, which can
be observed more clearly in a typically enlarged area in Figure
1c (an enlarged image is shown in Figure S1 to demonstrate
the uniform growth of the entire film over a large area). The
corresponding EDS mapping in Figure 1d shows that Ba, Nb,
and Ti exist in the main phase, and only Ti appears in the
phase boundary areas (i.e., the “necklace”-like regions), which
is also clearly presented in Figure S2a where line scans across a
typical necklace-like area reveal the element distribution in the
main phase and dark contrast phase, as shown in Figure S2b.
The low-magnification cross-sectional STEM image in Figure
1e exhibits an obvious VAN structure. The enlarged area in
Figure 1f and its corresponding EDS mapping in Figure 1g
further confirm the element distribution in the film. Therefore,
the main phase can be determined as LiNbxBa5Ti4Oy (Ba/Ti
ratio was determined to be ∼5:4 by EDS), and the dark
contrast phase at the phase boundaries is LixTiyOz. To further
explore the two phases, standard θ−2θ XRD was conducted,
and the results are plotted in Figure S3. The peak observed at

45.123° can be assigned to the LiNb6Ba5Ti4O30 (002) plane
(PDF#39-0134, a tetragonal phase, a = b = 12.4839 Å, c =
4.0117 Å), and the peak at 44.3315° corresponds to the
LiTiO2 (002) plane (PDF#16-0223, a cubic phase, a = b = c =
4.14 Å). The results are consistent with the SAED pattern
obtained in the cross-sectional view along the [100]STO in the
inset of Figure 1e. Therefore, we can determine the main phase
to be LiNb6Ba5Ti4O30 (LNBTO) and the dark contrast
secondary phase to be LiTiO2 (LTO).
To further explore and understand the epitaxial growth of

the nanocomposite thin film, comprehensive microscopy study
has been conducted. Figure 2a exhibits a local area to show
both phases in plan view, and Figure 2b shows the LNBTO
phase in an atomic scale where periodic lattice arrangement
can be clearly observed. The unit cell in Figure 2c matches well
with TTB crystal structure as shown in Figure 2d (the square
symbol presents one unit cell), which confirms a new
synthesized TTB phase. The complex in-plan SAED patterns
(see Figure S4) can be decomposed into two sets of
subpatterns, as illustrated by orange and blue dots in Figure
2e, resulting from the in-plane rotation (∼37°) of two
equivalent domains (some weak diffraction dots could be
identified and attributed to the LTO phase). This is further
confirmed by the φ scan of LNBTO (420) and STO (110)
(see Figure S5), revealing a 37° rotation between two LNBTO
domains and perfect matching between LNBTO {420} and
STO {110} planes. The results agree well with the SAED
pattern in Figure 2e, and the overall orientation relationship
between LNBTO and STO can be determined as LNBTO
(420)//STO (110) and LNBTO [13̅0]//STO [010] or
LNBTO [310]//STO [100]. Furthermore, the atomic
resolution plan-view STEM image of the secondary LTO
phase is shown in Figure 2f and exhibits high epitaxial quality
with in-plane d spacing of 2.10 Å. Figure 2g presents the cross-
sectional view along the [100]STO direction, showing the
interface area between the LNBTO and LTO phases where

Figure 1. Overall microstructure characterization of the new nanocomposite thin film. (a) 3D overview of the sample. (b) Low-magnification plan-
view STEM image and (c) typically enlarged area with (d) corresponding EDS mapping. (e) Low-magnification cross-sectional STEM image with
selected area electron diffraction (SAED) patterns and (f) typical enlarged area with (g) corresponding EDS mapping.
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LNBTO and LTO are in [310] and [100] directions,
respectively. Figure S6 shows the simulated (in kinetic
approximation) electron diffraction pattern of LNBTO in the
[310] direction. The (001) plane spacing of LNBTO can be
estimated as ∼3.96 Å from the high-resolution STEM image in
Figure 2h, and the LNBTO (001) plane is in parallel with the
STO (001) plane, consistent with the orientation relationship
described earlier. Additionally, the LTO (002) plane spacing is
estimated to be 2.03 Å from the atomic-scale STEM image in
Figure 2i, corresponding to an out-of-plane lattice parameter
about 4.06 Å, which indicates the presence of an out-of-plane
compressive strain in the LTO phase due to the LNBTO
phase. The composition of the LTO phase could be tuned by
varying the target composition. In addition, such secondary
phase could be other materials, such as LiNbO3. For example,
as shown in Figure S7, the TEM images demonstrate the
successful growth of the nanocomposite thin film of LNBTO
and LiNbO3.
Ferroelectricity is one of the most intriguing properties for

TTB materials, and therefore, we conducted a piezoelectric
force microscopy (PFM) study to investigate the local
ferroelectric response of the new LNBTO−LTO nano-
composite. A poling process was first conducted by first
applying a DC bias of +10 V to a 5 μm × 5 μm square and
then −10 V to reverse the polarization over a 2 μm × 2 μm
square centered at the previous 5 μm × 5 μm square. The
resultant out-of-plane amplitude and phase switching maps are
presented in Figure 3a,b, respectively. Obvious color contrast is
observed for the different writing regions, which indicates the
ferroelectric nature of the film. Furthermore, a butterfly-like
displacement−voltage (D−V) loop (red curve in Figure S8)
and the hysteresis phase−voltage loop with a sharp 180°

Figure 2. Detailed microstructure study on the VAN structure. (a)
Plan-view STEM image to show both LNBTO and LTO phases. (b)
Enlarged LNBTO area. (c) Atomic-scale STEM image to show one
unit cell of the new LNBTO phase and (d) its crystal structure in-
plane. (e) SAED pattern of a plan-view sample. (f) High-resolution
STEM image of the dark contrasted LTO phase. (g) Cross-sectional
STEM image showing the interface area. High-resolution STEM
image of the (h) LNBTO and (i) LTO phases.

Figure 3. Ferroelectric measurements of the LNBTO−LTO nanocomposite thin film. The out-of-plane (a) amplitude and (b) phase switching
maps. (c) Piezoelectric coefficient d33−voltage (d33−V) curve. (d) Polarization hysteresis measurement.
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change (blue curve in Figure S8) demonstrate the excellent
ferroelectric switching behavior of the film. Based on the D−V
“butterfly” curves, the piezoelectric coefficient d33−voltage
(d33−V) loop (Figure 3c) is given by d33 = Ad/Vac,

33,34 where
Ad is the amplitude of the electric-field-induced deformation
(pm), and Vac is the amplitude of the testing ac voltage (V).
The d33−V loop clearly shows the switchable piezoelectric
behavior of the nanocomposite film with an estimated
maximum d33 value of ∼270 pm/V, which indicates that the
thin film can be used as an environment-friendly lead-free
piezoelectric material. To further investigate the ferroelectric
behavior of the entire film, the polarization−electric field (P−
E) loop was measured at room temperature. The well-defined
hysteresis loop presented in Figure 3d shows that the
saturation polarization (Ps) is 26 μC/cm2 and exhibits the
remnant polarization (Pr) of 8.1 μC/cm2 for a coercive field
(Ec) of 74.6 kV/cm, which is in the same range as or higher
than those of other ferroelectric materials such as LNO or
BTO.35,36

This new LNBTO-based nanocomposite thin film exhibits
very interesting optical properties, such as high transparency,
anisotropic performance, and strong nonlinearity. Optical
transmission measurements have shown that the film (note
that a companion sample grown on a MgO substrate has been
used for the transmittance measurement since the band gap of
STO is relatively low, which might block the band edge of the
film) is highly transparent from ∼310 to 2500 nm, as shown in
Figure 4a. Spectral oscillation was observed, indicating a
smooth surface and high-quality film, which was further
confirmed by the atomic force microscopy (AFM) image
shown in the inset to Figure 4a with a small roughness of Ra =
0.977 nm. The optical bandgap of this nanocomposite thin film

was estimated to be Eg = 4.64 eV from the Tauc plot shown in
the inset of Figure 4a. Angular-dependent ellipsometry
measurements were conducted to further investigate the
optical properties of the film, and its complex dielectric
function (real part ε′ and imaginary part ε″) was derived by
fitting the ellipsometric psi (φ) values (see Figure S9) by
applying a uniaxial model because of the anisotropic nature of
the nanocomposite film. As plotted in Figure 4b, the real part
of the dielectric function exhibits different values but with
similar wavelength dependence in the ordinary (ε∥′) and
extraordinary (ε⊥′) directions. For the imaginary part, both ε

∥″ and ε⊥″ are close to zero throughout the entire measured
wavelength range, suggesting high transparency of the thin
film, and are consistent with the transmittance measurements.
The effective complex refractive index (refractive index n,
extinction coefficient k) is presented in Figure S10. In order to
investigate the NLO properties of the composite film, we also
measured the SHG (excitation at 800 nm and SHG at 400 nm)
as a function of polarization angle of the incident beam with
output polarization fixed at 0 (P-out) and 90° (S-out), with the
results shown in Figure 4c,d, respectively. The strong SHG
signal could be attributed to two factors: (i) the LNBTO
phase, owing to its noncentrosymmetric crystal structure; and
(ii) the interface between LNBTO and LTO.
The new tetragonal tungsten bronze phase LNBTO enriches

the materials library for the design of nonlinear optical devices
and components. Compared to some typical ferroelectric
materials, such as BaTiO3(BTO), the TTB phase in this work
is more reliable in terms of growth reproducibility and film
uniformity, i.e., no or very little difference from area to area in
the film. Therefore, as a new ferroelectric and nonlinear
material, it is certainly of interests to demonstrate the

Figure 4. Optical characterizations on the new LNBTO−LTO nanocomposite thin film. (a) Transmittance measurement of the film from 250 to
2500 nm, inset is the derived Tauc plot and AFM image of a typical film surface. (b) Real and imaginary parts of the complex dielectric function of
the film. SHG intensity versus incident polarization angle with output polarization fixed at (c) 0° (P-out) and (d) 90° (S-out).
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feasibility of this new VAN film for waveguide application.
Here, we present an integrated SiNx/LNBTO−LTO slot
waveguide structure, as schematically illustrated in Figure 5a.
The SiNx ridge (slab layer) and the buffered SiO2 (slot layer)
were created on the LNBTO−LTO (slab) functional layer. We
first numerically calculated the field distribution of the
propagation mode within different material layers using finite
element methods (FEM) upon the excitation at λ = 2.5 μm
(Figure 5b) in which the following values of refractive indices
have been used: nSiN = 2.10, nSiO2 = 1.45, nLNBTO−LTO = 2.27,
and nSTO = 2.25. With a 1 μm-tall SiNx ridge, the mode in the
submicron slot is transverse magnetic (TM) polarized with the
optical field mainly confined inside the SiO2-buffered layer and
field extended into the top SiNx layer and the lower LNBTO−
LTO functional layer. The latter enables light interaction with
the grown ferroelectric layer, thereby realizing active optical
functionalities. To further analyze the field distribution of the
propagation mode, 1D field profiles with different SiNx ridge
heights are plotted in Figure 5c. When the SiNx ridge height is
reduced from 1 to 0.2 μm, the fields in both SiNx and
LNBTO−LTO decrease, and light is mostly localized in the
SiO2-buffered layer. This provides a simple route to tune the
confinement of the light wave and its interaction with the
LNBTO−LTO layer by changing the height of the SiNx ridge.
In addition, the effective refractive index n becomes larger for
the thicker SiNx layer (shown in Figure 5d). Therefore, we
chose the 1 μm SiNx structure in the actual device fabrication
to maximize the light confinement. For the fabricated

waveguide, its optical properties were evaluated using a testing
station. As shown in Figure 5e, a clear fundamental mode was
captured by the mid-IR camera at wavelengths ranging from λ
= 2.5 to λ = 2.7 μm with similar mode profiles. At the same
time, there is no mode deformation observed, which indicated
a flat sidewall and smooth interfaces among SiNx, buffered
SiO2, and LNBTO−LTO layers.
The demonstration of this unique LNBTO nanocomposite

thin film with a TTB phase gives rise to a new VAN structure
design. This nanocomposite thin film exhibits room-temper-
ature ferroelectricity, which is comparable or better than some
of the representative ferroelectric oxides such as BTO and
LNO.35,36 In addition, the introduction of the secondary phase
provides more optical anisotropy and strong nonlinearity,
owing to the high-density vertical interface region. Besides
searching for a new nanocomposite system, one main effort
needed is to grow a single-domain LNBTO phase. The
LNBTO in this work presents two primary domains with 37°
in-plane rotation, and the domain boundaries could be
eliminated to further enhance the overall ferroelectric and
optical properties. Potential methods include selecting
appropriate substrate, such as miscut STO substrates,37 or
oblique-angle deposition (OAD) with a small angle substrate
tilt.38 Furthermore, it is expected that the other TTB-based
materials can also be grown into thin film structures, such as
Ba4Sm2Fe2Nb8O30 and Ba5LaxSm1−xTi3Nb7O30, previously
reported.18,19 It is also interesting to prepare the bulk
counterparts of pure LiNb6Ba5Ti4O30 to compare with the

Figure 5. Demonstration of α-Si-based waveguide on a SiO2/LNBTO−LTO multilayer stack. (a) Schematic configuration of SiNx on the
LNBTO−LTO waveguide. (b) FEM simulation of the optical waveguide mode at λ = 2.5 μm. The mode intensity was confined inside the SiO2-
buffered layer, and the evanescent field extended to the adjacent SiNx and the LNBTO−LTO layers. (c) Calculated 1D mode profiles when the
thickness of the SiNx layer, TSiN, increased from 0.2 to 1 μm. (d) Calculated effective refractive index of the waveguide when TSiN increases from 0.2
to 1 μm. (e) Waveguide modes at wavelengths of 2.5, 2.6, and 2.7 μm, respectively. Similar mode profiles were similar in those three wavelengths.
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new TTB phase identified in this work. Overall, the discovery
of the new tetragonal tungsten bronze phase of LNBTO
provides strong electrical and optical anisotropy, nonlinearity,
very high film quality, and smooth film surface, all important
toward new room-temperature ferroelectric material designs
and nonlinear optic component designs.

■ CONCLUSIONS

A new highly epitaxial vertically aligned nanocomposite (VAN)
system based on LNBTO, a newly discovered tetragonal
tungsten bronze phase, has been designed and successfully
fabricated by PLD. Highly epitaxial LNBTO phase coupled
with a vertically aligned LTO secondary phase present a novel
VAN structure. The LNBTO phase shows two primary
domains with 37° in-plane rotation to compensate the in-
plane mismatch with the STO substrate. Both the strong
nonlinear structure of the LNBTO phase and the LTO VAN
structure result in the strong ferroelectric response and SHG
signals along with many other interesting optical properties,
such as high transparency in the visible and near-infrared
wavelength regime, anisotropic complex dielectric function,
and optical smooth surface. Finally, α-SiNx-based waveguide
on SiO2/LNBTO−LTO has been successfully fabricated and
demonstrates the power of this new nonlinear nanocomposite
material and its feasibility of integration with Si-photonic
devices.

■ MATERIALS AND METHODS
Target and Thin Film Preparation. The nanocomposite target

was made by a standard solid-state mixing approach followed by a
high-temperature sintering process. Specifically, high-purity LiNbO3,
Ba2CO3, and TiO2 powders were first mixed and pressed into a pellet
with diameter of 1 in., then it was sintered at 1300 °C for 6 h in air.
The thin film was deposited on an STO (001) substrate using a PLD
system with a KrF excimer laser (Lambda Physik, λ = 248 nm). The
optimized deposition parameters were as follows: a deposition
temperature of 700 °C, 100 mTorr of O2 inflowing during deposition,
target−substrate distance of 4.5 cm, and deposition frequency of 5
Hz. Before deposition, the base pressure was pumped down to lower
than 1 × 10−6 Torr.
Microstructure Characterizations. The crystallinity of the film

was characterized by XRD (Panalytical X’Pert X-ray diffractometer).
An FEI Titan G2 80−200 STEM with a Cs probe corrector and
ChemiSTEM technology (X-FEG and SuperX EDS with four
windowless silicon drift detectors) operated at 200 kV was applied
for the microstructure study. STEM using a high-angle annular dark-
field (HAADF) detector and energy-dispersive x-ray spectroscopy
(EDS) were employed for high-resolution imaging and EDS mapping.
Ferroelectric Measurements. Ferroelectric polarization−electric

field (P−E loops) measurement was carried out by a Precision LC II
Ferroelectric tester (Radiant Technologies, Inc.). The phase and
amplitude maps and hysteresis loops were collected using a
conductive Pt−Ir coated Si tip (model: SCM-PIT V2) with a Bruker
Dimension Icon AFM.
Optical Measurements. Transmittance measurement was carried

out using UV−visible spectroscopy (Lambda 1050). Variable angle
ellipsometry experiments were conducted by an RC2 spectroscopic
ellipsometer (J.A. Woollam Company). Two parameters of psi (ψ)
and delta (Δ) correlated to the ratio of the reflection coefficients for
the light of p polarization rp and s polarization rs: rp/rs =
tan(ψ)exp(iΔ), were collected by the measurements. Afterward, the
effective refractive index and optical dielectric functions were
extracted by fitting the ellipsometry data using appropriate models
in the VASE software. Here, a biaxial layer with general oscillator layer
models consisting of hybrid Tauc−Lorentz oscillators and Drude
oscillators have been applied to fit ε⊥ and ε∥, respectively.

Waveguide Fabrication. A 300 nm-thick SiO2 and 1 μm SiNx
were deposited on a 300 nm-thick LNBTO−LTO thin film by
PECVD at 350 °C, successively. Next, a negative tone photoresist was
patterned on the top SiNx layer to define the etching area. The
developed photoresist had a negative-sloping sidewall to better
process the lift-off step afterward. A layer of 50 nm Cr was then
deposited by electron beam evaporation, which is the etching mask to
define the waveguide structure. During the plasma etching process,
CHF3 and O2 were utilized to remove the SiNx. At last, an array of 1
μm-high SiN ridge waveguides was obtained on the SiO2-buffered and
LNBTO−LTO layers.

Waveguide Simulation. Numerical calculations were conducted
to simulate the waveguide modes at λ = 2.5 μm. The simulations were
taken by a two-dimensional finite element method (FEM). The size of
the SiNx waveguide is 10 μm wide and 1 μm high. Underneath the
waveguide, there is a 0.3 μm-thick SiO2-buffered layer and another
300 nm-thick LNBTO−LTO active layer. The whole device was
fabricated on the STO substrate. The refractive indices are nSiN =
2.10, nSiO2 = 1.45, calculated nLNBTO−LTO = 2.27, and nSTO = 2.25
respectively. A 10 μm × 10 μm light source was applied to excite the
waveguide mode because its size is close to the mid-IR fiber, which
has a core diameter of 9 μm.

Waveguide Characterization. To characterize the performance
of the fabricated waveguide, a broad mid-IR test station was built. The
light source is a pulsed laser with a tunable wavelength and an
emission linewidth of 3 cm−1. Its pulse repetition rate is 150 kHz, its
pulse duration is 10 ns, and its average power is 150 mW. The probe
light is first collimated into a fluoride fiber (9 μm core and 125 μm
cladding) by a reflective lens and then butt coupled into the
waveguide. The core of the mid-IR fiber is lined up with the smoothly
cleaved front facet of the waveguide. A calcium fluoride biconvex lens
(25 mm focal length) was used to focus the mid-IR signals from the
waveguides, and then a liquid nitrogen cooled 640 × 512 pixel InSb
camera was employed for imaging.
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