SICS: Secure and Dynamic Middlebox Outsourcing

Huazhe Wang, Xin Li, Yang Wang, Member, IEEE, Yu Zhao, Student Member, IEEE
Ye Yu, Hongkun Yang, Chen Qian, Senior Member, IEEE,

Abstract—There is an increasing trend that enterprises out-
source their middlebox processing to a cloud for lower cost and
easier management. However, outsourcing middleboxes brings
threats to the enterprise’s private information, including the
traffic and rules of middleboxes, all of which are visible within
the cloud. Existing solutions for secure middlebox outsourcing
either incur significant performance overhead or do not support
incremental updates. In this paper, we present a secure and
dynamic middlebox outsourcing framework, SICS, short for
Secure In-Cloud Service. SICS encrypts each packet header and
uses a label for in-cloud rule matching, which enables the cloud
to perform its functionalities correctly with minimum header
information leakage. Evaluation results show that SICS achieves
higher throughput, faster construction and update speed, and
lower resource overhead at the enterprise and in the cloud when
compared with existing solutions.

Index Terms—Middlebox outsourcing; Stateful middlebox;
Packet transformer; Privacy-preserving; Label matching

I. INTRODUCTION

IDDLEBOXES are vital parts of modern networks,
Mranging from security appliances (e.g. firewalls and
Intrusion Detection Systems (IDSes) [1]) to performance
boosting devices (e.g. Web proxies and WAN optimizer [2]).
Reported in a study, enterprise networks employ a large
number of middleboxes [3]. While traditionally, middleboxes
have been deployed as dedicated hardware devices inside an
enterprise, the introduction of the Network Functions Virtu-
alization (NFV) technology [4] and the cloud services has
opened a new opportunity to outsource middleboxes to third-
party clouds. An initial effort [3] indicates that middlebox
outsourcing can be achieved without significantly impacting
performance. Recently, there are also some industrial compa-
nies and communities working on providing in-cloud traffic
processing capabilities [5][6][7].

However, it brings up an obvious concern about privacy,
because in the new model, both the cloud provider and the
middlebox provider may see the user’s traffic and the middle-
box rules, which may contain sensitive user information. For
example, rules of a firewall contain sensitive information such
as what traffic is not welcome, and its leakage could expose
a severe security hole.

How to perform generic computing in the cloud while
keeping the privacy of data has been studied extensively. The
introduction of the hardware enclaves (e.g., Intel SGX [8])

Huazhe Wang is with Microsoft. Chen Qian is with the Department of
Computer Science and Engineering, University of California, Santa Cruz.
Chen Qian (cqian12@ucsc.edu) is the corresponding author. Yang Wang is
with The Ohio State University. Yu Zhao is with University of Kentucky. Xin
Li, Ye Yu and Hongkun Yang are with Google.

This work was completed while Huazhe Wang, Xin Li and Ye Yu were
with UC Santa Cruz and Univeristy of Kentukcy.

provides a way to perform generic private computation; it
can verify the binary before running it and can encrypt data
before storing the data to enclave memory. However, this
approach assumes one knows the hash of a correct binary [9]
[10] and thus cannot prevent a curious middlebox provider
from leaving a backdoor in the middlebox. Moreover, current
implementations of enclaves still suffer from side channel
attacks [11].

In another approach, the user can encrypt packets before
sending them to the cloud/middleboxes, and previous works
have studied how middleboxes can perform computation over
encrypted data. These solutions are usually not generic, but
it turns out that most middlebox functionalities only need a
limited number of operations. For example, keyword matching,
which is widely used for intrusion detection, can be performed
efficiently over encrypted data [12][13].

One key challenge of the cryptographic approaches is
how to handle packet headers. Headers are involved in both
middlebox processing and traffic steering [14][15] (e.g., route
all HTTP traffic through firewall-IDS-proxy), which need to
detect whether or not an address lies within a range of values
(e.g., if a header belongs to a prefix). With traditional IP
addresses, one can implement such rule matching efficiently by
aggregating IPs from the same subnet, because they share the
same prefix. When headers are encrypted, however, such prefix
property is lost, and building a lookup table using keyword
matching, though possible, will create a memory explosion.
Moreover, because of the dynamic nature of the network, the
matching rules may change at runtime, and an ideal solution
should not incur a high overhead when network configuration
is changed. In summary, an ideal mechanism to handle packet
headers should achieve the following properties:

1. Security guarantee. The cloud and middlebox should
be able to fulfill its functionalities without learning the user’s
packet headers.

2. Low overhead. The mechanism should incur low pro-
cessing overhead at both the enterprise side and the middlebox
side, so that they can process packets at high speed. The
mechanism should not consume much extra bandwidth be-
cause cloud providers usually charge traffic redirected to the
cloud by volume.

3. Supporting incremental update. In modern networks,
operators frequently modify network configurations (e.g.,
rerouting traffic to backup middlebox instances; changing
the Access Control Lists (ACLs) of a firewall) to perform
tasks, ranging from traffic engineering to patching security
vulnerabilities [19]. SDN/NFV provides the ability to update
a middlebox instance or launch a new one and reroute traffic to
the new instance in a matter of milliseconds [20]. To support
frequent rule updates, an ideal secure middlebox outsourcing

Mini Overhead
Throughput fmum Lveriea Incremental Update | Function Chain Security Guarantee
(per packet)
Melis et al. [16] very low 119 Bytes X X high
Embark [17] high 20 Bytes X v Possible leakage of
& e packet headers and rules
. . . Possible leakage of
Splitbox [18 d 2x traffi
plitbox [18] medium > 2X traffic X X packet headers and rules
SafeBricks [9] < Embark - X v Suffer from side-channel attack
SICS > Embark 4 Bytes v 4 high

TABLE I: Comparison of existing secure middlebox outsourcing schemes.

mechanism should be able to update incrementally, i.e. the
overhead of performing such an update should be proportional
to the number of rules to be changed.

So far, none of the existing mechanisms can achieve all of
the properties shown in Table 1.

We design and implement a middlebox outsourcing scheme
SICS, short for Secure In-Cloud Service chaining. SICS
protects the private information of packet headers and rules
by only allowing packets with encrypted headers into the
cloud. However, encrypted headers cannot be used for for-
warding and middlebox rule matching. Inspired by the con-
cept of forwarding equivalence classes in packet forwarding
networks [21][22][23], SICS assigns a label to each encrypted
packet. Each label uniquely identifies the forwarding and rule-
matching behavior of the packet. Switches and middleboxes in
the cloud are also configured with label matching tables and
processing incoming packets based on their labels. To apply
forwarding equivalence classes for middlebox outsourcing,
there are key domain-specific challenges. First, middlebox
policies typically require a set of packets to go through a
sequence of middleboxes, which is called a service function
chain [24]. Those independently specified polices should be
efficiently combined for packets that are subject to multi-
ple requirements. Second, most middleboxes employ stateful
processing (e.g., a firewall allows an inbound packet if it
belongs to an established connection) and may modify packet
headers (e.g., a source NAT converts internal addresses to
external ones). However, forwarding equivalence classes can
only analyze forwarding behavior of static networks [25] and
cannot be directly used to handle the complexity and dynamics
in middlebox chaining.

To address these challenges, we first logically group packets
with the same middlebox processing chain and actions into
policy equivalence classes and thus we eliminate the need to
assign a unique label to every single flow. Second, building on
configurations for header transformation, we propose a label-
to-label replacement scheme. The new labels correspond to the
new modified headers and are used for subsequent processing.
Table I summarizes results from evaluations and compares
SICS with the four recent secure middlebox outsourcing
schemes in five desired properties: throughput, bandwidth
overhead, incremental update, service function chaining, and
security guarantee. SICS achieves all of the desired properties,
while every other design contains several weaknesses.

Note that SICS focuses on how to handle packet headers
securely. Middleboxes processing packet payloads can also
take advantages of SICS if the header privacy becomes a

concern. Similar to previous work [17], SICS is compatible to
existing secure Deep Packet Inspection (DPI) over encrypted
traffic and can be perfectly combined with existing methods
[12][13] to handle the whole packet securely.

The rest of the paper is organized as follows. In §II we
present related work. We introduce the system overview in
SII. We present our detailed design in §IV (the enterprise
side) and in §V (the cloud side). We show how SICS supports
frequent rule updates in §VI and analyze its security in §VIL.
We present the implementation of SICS in §VIII and our
evaluation results in §IX before concluding in §X.

II. RELATED WORK

APLOMB [3] and Jingling [26] are the pioneer of mid-
dlebox outsourcing. APLOMB demonstrates that the latency
inflation due to outsourcing is negligible. Neither of them
takes privacy issues into consideration. Blindbox [12] enables
equality based operations on encrypted payload of packets
for a specific class of middleboxes, DPI; However, it cannot
examine packet headers and/or perform range queries. Melis
et al. [16] model the behavior of common middleboxes and
proposed a privacy preserving middlebox outsourcing scheme
based on fully homomorphic encryption [27], which has very
poor performance. Meanwhile, it’s not clear whether the
mechanism in [16] can support function chaining. Embark [17]
presents the method PrefixMatch to hide the packet header
and rule information from the cloud. PrefixMatch uses the set
of processing rules to divide each header field into multiple
intervals and then it assigns a random IPv6 prefix to each
interval. At a local gateway, every header field of a packet is
mapped to a pseudorandom value of an IPv6 field separately
and the entire IP packet header is mapped to a new IPv6
header. PrefixMatch does not support incremental rule updates
and updating one rule requires all rules to be reconstructed,
which may take as long as 100s. Before that, packets are
still routed and processed as the old configuration which may
incur unexpected packet loss and inaccurate processing. From
a security perspective, such a field-by-field encryption scheme
is vulnerable to certain types of attack, such as chosen plaintext
attack. More details will be analyzed in §VII. Splitbox [18]
distributes a single rule to several virtual machines (VMs),
which reside on multiple clouds assuming an adversary cannot
corrupt all VMs simultaneously. Computation results from all
VMs are collected by a local middlebox and the final actions of
the packets are calculated at the local middlebox. It is difficult
for Splitbox to support service function chaining. Meanwhile,
Splitbox increases bandwidth overhead several-fold as it needs

Middlebox |
providers 7= Cloud
Configure/Update ____————+= -
// - |
Internal
H-Gateway
Network _ Traffic External Sites
Enterprise

Fig. 1: The architecture of SICS

to send multiple copies of a packet to different VMs for the
same network function.

SafeBricks [9] and Shieldbox [28] are state of the art
enclave-based middlebox outsourcing solutions. Besides the
potential security threats from curious middlebox providers
and side channel attacks, they impact performance by around
15% across different in-cloud middleboxes due to the use of
SGX enclaves [9] and do not support incremental update.
Changing of service chains and provisions (e.g., number of
deployed middlebox instances) requires rebuilding the whole
enclave which takes a few minutes.

Some work [29][30][31] try to combine header based clas-
sifications and assign labels to packets for faster middlebox
processing. They mostly only apply to a single service chain
and focus on reducing processing time instead of traffic
privacy.

III. OVERVIEW

In modern networks, most middleboxes choose the appropri-
ate processing actions based on headers of incoming packets.
When a middlebox processes a packet, it finds a rule that
matches the packet header and follows the action of the rule.
Hence, rule information specifies the packet processing poli-
cies of the middleboxes. Both packet headers and rules contain
private information belonging to the enterprise network. To fa-
cilitate middlebox outsourcing without compromising privacy,
we design and implement SICS, a Secure In-Cloud Service
function chaining framework.

A. The SICS Outsourcing Architecture

As shown in Fig. 1, SICS contains three parties: an en-
terprise (middlebox user), middlebox providers, and a third
party cloud that holds in-cloud middlebox processing. The
middlebox providers set up middleboxes per request. The
enterprise configures and updates rules in these middleboxes.
The enterprise has a gateway that connects the internal and the
external network. All incoming packets to the enterprise will
be forwarded to the gateway. The gateway encrypts the packet
headers and payload and sends the packets to the cloud for
middlebox processing. The encryption can use symmetric-key
algorithms, such as the Advanced Encryption Standard (AES),
which can be performed in near line speed for 10Gbps links
[17]. The encryption key is only known by the enterprise. The
in-cloud middleboxes process packets following the service
function chains and then the cloud transmits the packets back
to the enterprise. The gateway decrypts the packets and sends
them to the internal network.

The key challenge in this architecture is how the in-cloud
middleboxes correctly match packets to rules given that the
packet headers are encrypted. To enable correct rule-matching,
SICS assigns each packet a label. The label represents all
behavior of the packet in the cloud, including to which
middleboxes the packet should be forwarded and in which
order, as well as which rules the packet should match at a
middlebox.

The operations on outgoing packets from the enterprise to
an external site are similar: before being transmitted over
the Internet, outgoing packets are encrypted at a gateway,
redirected to the cloud, and sent back to the gateway.

Note the SICS gateway does not encrypt the checksum or
TTL and instead adds a new checksum based on ciphertexts.
Middleboxes can recompute checksums as usual.

An optimization that saves on bandwidth and latency can
be adopted when communications are between two networks
belonging to a same enterprise or two enterprises that have
established a secure channel. After in-cloud processing, the
traffic can directly go to the destination site without sending
back since the same encryption key is shared by the two
networks.

B. Security Model

In our security model, we assume the cloud and middlebox
providers to be “honest but curious” [32]. They are honest
to perform their services correctly. However, they might be
curious to learn the user-configured processing policies at
middleboxes or peek at the traffic received. This security
model is practical and reflects the following real situations.
First, the cloud or middlebox providers will not interrupt the
normal cloud services because such an interruption will be
detected [33][34]. However, it is possible that the customer
data might be gathered and sold by disgruntled employees
[35][36]. Additionally, hackers may try to steal the customer
traffic and policy data [37][38]. SICS aims to protect the
enterprise network privacy from all these attacks. We do not
consider “active” attackers which manipulate customers’ traffic
maliciously.

SICS provides two security properties of middlebox out-
sourcing: (1) For an encrypted packet, the cloud and middle-
box providers should not be able to infer its packet headers
based on its in-cloud behavior. (2) The cloud and middlebox
providers should not be able to learn the plaintext of header
spaces specified by the enterprise’s processing rules. In SICS,
label assignment of packet headers does NOT need to be
collision-resistant. Distinct packets can be assigned with the
same label if they have identical behavior in the cloud. Distinct
flows can still be differentiated based on their encrypted header
fields if needed.

C. Middlebox with Label Matching

Label matching (known as label switching in layer 3 rout-
ing) is a technique of network relaying that is much faster
than traditional IP-header switching. Each packet is assigned
a label and the switching takes place after examination of the
label assigned to each packet. SICS applies label matching

to middlebox outsourcing which provides two promising ad-
vantages. It can simultaneously achieve privacy protection and
efficient packet processing.

Privacy protection of packet headers and rules. We
name the service function chain and middlebox rule matching
behavior of a packet as its cloud-wide behavior. A set of
packets that have the same cloud-wide behavior form a policy
equivalence class. In SICS, we assign the same label to
all packets belonging to the same policy equivalence class,
even if their packet headers are different. Given an encrypted
packet with a label, SICS prevents an attacker from obtaining
its original packet header. For example, # specifies a set of
packet headers, and packets whose headers fall in % share
the same cloud-wide behaviors. At the gateway, a packet is
assigned a label (A label is represented as a binary string,
e.g, “10110110”, whose value has no relationship to the
packet header) if its header belongs to h. The length of a
label is determined by the total number of policy equivalence
class. A label only includes two types of information: 1)
which middlebox the packet should visit in the cloud, and
2) which action a middlebox should apply to this packet.
The rule tables at the in-cloud middleboxes consist of label-
matching entries as opposed to header matching entries. In
this way, neither the cloud nor middlebox providers can learn
the original middlebox processing policies with respect to the
packet headers.

Note that label matching does not protect packet behavior,
such as forwarding and middlebox actions. These are known
to the cloud no matter what type of protection is used.

Efficient table lookup. Label matching can achieve better
performance compared to the traditional header based match-
ing (e.g., IPv4 header), especially in software middlexboxes
running on general-purpose servers: (1) A label corresponds
to a policy equivalence class and may cover multiple header
ranges, the number of entries in a label matching table could
be much smaller than that in a header matching table. In
our experiment, a rule set with approximately 100K header
matching rules of a function network is converted to less than
250 labels. (2) With a properly designed hash table, label
matching can achieve O(1) lookup time, without the use of
specialized hardware such as TCAM. (3) Label matching adds
little per-packet bandwidth overhead. In our experiments, a 16-
bit long label is sufficient to represent cloud-wide behavior in
a network with nearly one million rules. The label can be
placed in the options field in IPv4 protocol header.

While the use of label matching is not new in a general
networking, our specific contributions lie in the design of
header space mapping in the context of secure middlebox
outsourcing.

D. Design Framework

Fig. 2 shows the system model of SICS. Those modules
run on a controller in the enterprise network. At runtime,
the enterprise network administrator decides middlebox pro-
cessing rules and the service function chaining requirements
based on the business objective of the enterprise. The rule
preprocessing module takes these rules and specifications
as input and converts them into label-based rules. A SICS

@ Admin

v Middlebox Processing Rules
v' Service Function Chain

. Cloud

Configurations for In-cloud

3 . Middlebox Processing
Specifications
/ Rule Preprocessing\ / An Abstract
Function Network
Rule Composition - o T
Label Action abe ction
T = MB
Header Space Mapping MB, MB,
7 Ingress """ Egres,
] Switch @
Gateway Construction InPort | Label | Out Port

N 7

Fig. 2: The system model of SICS

gateway is constructed which assigns labels to packets based
on the header space mapping relationship. To simplify in-cloud
deployment, the controller then creates an abstract function
network which includes configurations for all middleboxes and
an abstract switch that is connected to all middleboxes. For
each middlebox, there is a rule table identifying the action
applied to each packet based on the label. The abstract switch
is equipped with a forwarding table. Besides label and output
port entry, the forwarding table has an extra entry classifying
packets based on their input ports. The input ports are used
to identify the segment in the service function chain that the
packet is currently in. The abstract switch determines the next
hop of a packet based on its label and input port.

The abstract function network can be easily mapped to
the configurations of a practical deployment in the cloud that
ensures packets are processed by required middleboxes in a
specified sequence. Configurations are sent to the cloud from
the enterprise using a VPN tunnel. When there exist processing
policy or rule changes, this procedure is called repeatedly
to update both the enterprise gateway and the middleboxes
running in the cloud.

IV. ENTERPRISE MODULES OF SICS

To enable secure middlebox outsourcing, SICS dynami-
cally maps the header spaces specified by the middlebox
processing policies to labels at the enterprise gateway. To
keep the complexity low and maintain scalability, the gateway
performs only inexpensive per-packet operations, which are
parallelizable. In this section, we present the design of three
key modules at the SICS enterprise side.

A. Rule Composition

The rule composition module takes the service function
chain requirements and the middlebox processing rules as its
input and implement its functionality in two steps.

It first combines different service function chain require-
ments and determines the overall service function chains
for each set of packets. A service function chain requires
that a class of packets must be processed by a number of
middleboxes in a designated sequence. For example, all HTTP

Algorithm 1: Compute equivalence classes for mid-
dlebox chaining requirements.

Input : Predicates of service function chain
requirements (P; for i =1,...,m).
Output: A list of predicates F = {f1, f2,...fa}-
1 71 =0, =9, Ti.add(Py), Ti.add(—P;)
2 for i=2 to m do

3 for each f €7, do

4 if fAP; # false then
5 | T.add(f AP)

6 end

7 if f A —P; #false then
8 | Tz.add(f A —P;)

9 end

10 end
11 Ti=ThT,=92
12 end
1B F=T
14 Return F

packets should go through IDS — Proxy. Packets from an
internal site should be processed by NAT — Firewall. A
service function chain is formulated with respect to a set of
packets, specified by their packet headers, represented as a
predicate P. P specifies the set of packets X for which P(x)
is true for a packet x € X. A packet may relate to multiple
service function chain requirements and needs to be processed
by all the middleboxes included in those chains. Consider m
service function chain requirements: (P;,¢;,r;), fori=1,...,m.
For the i-th requirement, let P; be the predicate specifying
the set of packets, ¢; be the sequence of middleboxes, and
r; be the priority which is provided by administrators to
determine the order of middlebox processing when two chains
are combined. Requirements are listed in descending order of
priorities. To ensure that packets are processed by all required
middleboxes, SICS uses Algorithm 1 to calculate a set of
middlebox chaining equivalence class, each of which specifies
a set of packets with an identical service chain.

The output of Algorithm 1 is a list of predicates F =
{f1,f2,---fn}. The conjunction of any two predicates in F
is false (referring to an empty set). Therefore packet sets
specified by any two predicates have no intersection. Each
predicate f; corresponds to a service function chain, which
can be obtained by concatenating c; of P;, if the conjunction
of f; and P; is not false. The order is determined by their
corresponding priorities.

Based on the combined service chain requirements, the
rule composition module generates the forwarding table at the
abstract switch to steer traffic along the required middleboxes
in a sequence. Based on the input port field, we can partition
the forwarding table into sub-tables. In each sub-table, we
calculate one predicate for each output port by combining
corresponding packet header prefixes or ranges. In our im-
plementation, by representing packet sets as predicates, the
merge operation can be performed efficiently using graph-
based algorithms with Binary Decision Diagrams (BDDs) [39].

NAT

PI'OXy

F

[1,3]:

I J I (3,7]: 2
Ingress % e Egress ==
(7,10] :--|_.I_,
(@)
Input a ' Input b i Input ¢ ! Input d
Header | Output | Header Output || Header Output || Header Output
space port : space Port i space Port : space port
[1,3] c I 03] e || L3 b ol -
(7] bl 3.7 a | - (3.7 e
(7,10] b (7,10] d (7,10] e (7,10] c
other e other e other e other e
| © |
Header | Output || Header | Output ||| Header | Output || Header | Output
space port || space Port [| space Port || space port
[1,3] ¢ | Gao d | 3 bl @0 ¢
(3,10] b i other e i other e i other e
other e i - i - i -
T T T
1 I(d) 1

Fig. 3: (a) An abstract function network. (b) Service function
chain requirements. (c¢) Original forwarding table. (d) Merged
forwarding table.

With predicate aggregation, there exists at most one predicate
per output port in each sub-table. We use the example shown
in Fig. 3 to illustrate this process. Fig. 3(a) is an abstract
function network with three middleboxes. All middleboxes
are connected by an abstract switch with five ports. Port b,
c and d are used to link the middleboxes and port a and e are
ingress and egress ports. Fig. 3(b) shows three sample service
function chains. The set of packets in each chain is specified
by an integer range. ! Fig. 3(c) is the original forwarding table
at the virtual switch that steers traffic across the middleboxes
according to the service chains in Fig. 3(b). From Fig. 3(c),
we see that many items in each sub-table share the same
output port. This allows us to reduce the size of each table by
merging ranges which have the same output port. The resulting
forwarding table is shown in Fig. 3(d). We reduce the total
items in the forwarding table from 14 to 9.

The second step of the rule composition module is com-
bining user-configured middleboxes processing rules which
are created locally either by the network administrator or
middlebox providers. We define the middlebox rules with the
3-tuple: (P;,b;,r;), where P; denotes the predicate from the i-
th rule, b; is the action performed on packets matching this
rule and r; is the priority. We sort all rules at a middlebox
in descending order with respect to priorities. When a packet
is checked against the rules at a middlebox, it is matched
by the first rule whose predicate evaluates to true. We use
Algorithm 2 to convert the rules of a middlebox to a list
of predicates F = {f1, f2,...fx}, each of which specifies the
packets sharing the same behavior at the middlebox, where n
is the total number of distinct behavior. For example, a firewall
may have a predicate specifying packets allowed by the ACLs

'In our implementation, all packet sets are converted to predicates and
represented by binary decision diagrams (BDDs) [39]. Here we use integer
ranges for simplicity.

Field, a i
_ a; éﬁ ‘

——
Label | Action

FW H %

a,— a

a ag |
Field, | Field,

Fig. 4: Header space divided by predicates

and another predicate specifying the ones denied.

Algorithm 2: Compute a predicate for each action.

Input : Sorted processing rules at a middlebox (P; for
i=1,...m)
Output: A list of predicates F = {f1, f2,..-fu}
1 for j=1 tondo
2 ‘ fj < false
3 end
4 valid < false
s fori=1tomdo
6 if P; shares the same action as f € F then
7 < fV(PiAN-valid)
8 valid < valid v P;
9 end
10 end
11 Return F

B. Header Space Mapping

After rule composition is performed, we obtain a list of
predicates for each middlebox and the abstract switch. Pred-
icates from a box can be seen as a partition which divides
the packet header space into several disjoint sub-spaces, each
with the same action. If we place predicates from all of the
boxes together, the partition of the header space will become
combinatorically finer due to the intersection of predicates
from different boxes.

Fig. 4 shows an example illustrating the process of placing
predicates from two boxes into a single header space. Each
predicate is associated with two header fields®. Five predicates
P ~ Ps from the two boxes are placed together in one packet
header space. Then, the header space is partitioned into 15
blocks. Each block represents a set of headers belonging
to the same set of predicates. The packet headers within
one block will match the same set of predicates and exhibit
identical behavior at all boxes. Therefore, they have the same
cloud-wide behavior and hence belong to the same policy
equivalence class. Note that a policy equivalence class is not
necessarily a single block. Blocks that are specified by the
same set of predicates belong to the same equivalence class.
As shown in Fig. 4, the original predicate P; is divided into
three segments. The right and left segments are only covered
by P; and form an equivalence class a;. The segment in the
middle is covered by both P; and Ps and forms an equivalence
class ay. In total, the partition of 15 blocks forms 6 equivalence
classes represented by aj ~ ag.

To obtain the policy equivalence classes, SICS reuses Algo-
rithm 1 given a list of predicates. At this time, the input is the

’In practice, a predicate may be defined over multiple fields, e.g., 5-tuple
in TCP/IP packets. Here, we use two dimension headers as an example.

Label | Action
a, Allow ! &;@2 ’ LB Label | Action
;,ésv éy‘i as as— a,
...... "G >
Input | Label | Action Sy ° ;’V S, Input | Label | Action
m | a | FW oS : as | LB
FW | a, S, E’ Proxy . 3 Out
il 55 Label | Action
a) 423

Fig. 5: An example Abstract Function Network

set of predicates from all middleboxes and the abstract switch.
The set of policy equivalence classes has two key properties:
(1) Packets within the same class have identical cloud-wide
behavior. That is, these packets will traverse the same sequence
of middleboxes and have same behaviors at each middlebox
in the network. (2) Each input predicate is equal to the
disjunction of a subset of policy equivalence classes, shown
in Fig. 4 where P =a; Vaq and Ps = a3 VasVas.

SICS maps packet headers within an policy equivalence
class to one label. In the rule tables of the in-cloud boxes,
predicate P is represented as a set of labels, which are
determined by the subset of policy equivalence classes whose
disjunction is P.

C. Example

We show an example abstract function network configured
with labels in Fig. 5. The abstract switch is divided into four
separate switch instances with each connecting to a single
middlebox. We have two flows A and h,. Flow h; is required
to go through a firewall, a NAT and a load balancer, while flow
hy should go through a proxy. For simplicity, we assume the
sets of predicates for all middleboxes and switches in Fig. 5
have a similar partition of the packet header space as in Fig. 4.
For example, switch §; has two predicates that specify the
same partition as Py and Ps. Ps specifies the set of packets
that are forwarded to the firewall and other packets specified
by P, are forwarded to S3. The NAT has three predicates
which specify the same partition as P; ~ P3. Packets matching
P are translated to packets specified by P,. P; represents a
default drop predicate. The set of policy equivalence classes
are still a; ~ ag as in Fig. 4. h; and h; belong to the packet
sets specified by a4 and aj, respectively. Relevant entries
for the two flows are shown in the label matching tables of
middleboxes. The two forwarding tables are for switch S and
S4. From the figure, we can see packets in i (red arrows)
will be forwarded to and allowed by the firewall. After that,
the label is changed to as and then ap by the NAT and the
load balancer sequentially based on label replacement actions.
Details on label replacement are presented in § V-B. Finally the
packets are forwarded to the egress by S4 with the label a;.
Similarly, packets in hy (greed dotted arrows) are processed
by the proxy before they are sent back to the gateway. Note
the input port field at a switch is necessary when incoming
and outgoing packets share the same label.

D. Packet Classification

To assign labels to packets, the gateway determines to
which policy equivalence class a given packet belongs. Policy
equivalence classes can be represented as the conjunction of
input predicates. SICS uses all predicates obtained from the
rule composition module to build a packet classifier, using
the algorithms in [25][40]. The proposed classifier includes a
binary tree whose root has a predicate P;. At level i, the 2/
internal nodes each has a predicate P;. Starting from the root,
at each internal node, the input packet header is evaluated
by the predicate of the node. If the result is true, the packet
continues to be evaluated in the left sub-tree. Otherwise, it
goes to the right sub-tree. A leaf node represents an policy
equivalence class and the set of packets that can reach this leaf
belong to the policy equivalence class. In practice, for a tree
constructed by k predicates, its height is considerably lower
than k and the number of leaves is significantly smaller than
2%, The reason behind this observation is that conjunctions of
a large number of predicates are are false and specify empty
sets of packets, no new node will be created. More importantly,
using the methods in [25], the classifier supports incremental
updates when there exist policy changes. For example, new
predicates can be added at the bottom of the tree with little
overhead.

The gateway classifies packets into one of the policy equiv-
alence classes, with each has a unique cloud-wide behavior.
This corresponds to the provable coarsest refinement of packet
header space and thus can be used to provide best computation
time and space performance of the gateway.

V. IN-CLOUD MODULES OF SICS

SICS aims to protect the privacy of packet headers for in-
cloud middleboxes. To also hide packet payload (e.g., keyword
matching in intrusion detection), SICS can be combined with
recent work of secure DPI [12][13].

Note that for very simple middleboxes, such as a stateless
firewall blocking certain IPs, the gateway can fulfill its task
when computing the label, packets that only traverse these
middleboxes are processed locally and do not need to be
redirected to the middleboxes running in the cloud. However,
we observe many middleboxes involve expensive operations
and for this reason enterprises tend to outsource them.

A. Stateful Middlebox

So far, SICS gateway identifies the cloud wide behavior of
a packet solely based on an equivalence class obtained from
the rule preprocessing phase. However, unlike switches or
routers, common middleboxes conduct stateful functionalities
(e.g., bidirectional firewall and address translation [41][42],
stateful load balancing [43][44]) and use advanced statistical
techniques to detect and prevent potential security threats
(e.g., flood protection [45][7]). For an incoming packet, most
stateful middleboxes first check if the packet belongs to an
existing state, if it does, it will be applied with the action
corresponding to the state. Otherwise it is searched against a
rule table and processed based on the first entry it matches.
Such functions can be resource-consuming since they need

to maintain a separate state for every single connection.
Since such functions rely on per-connection states, in-cloud
middleboxes should be able to recognize packets of the same
connection based on encrypted packet headers.

In SICS, all header fields are encrypted as a whole to
provide high security guarantee and thus cannot be used to
identify packets of the same connection. To support per-
connection states, SICS adds a 32-bit connection identifier
to each packet based on a pseudorandom function. In our
prototype, prf is implemented using AES and truncated to
32 bits.

I. = prf((IPS"CHportsrc) * (IPdﬂ”portdst))

Using the equation above, the inbound and outbound packets
of the same connection will have the same identifier. By
conducting experiments using a real dataset [46], we observe
that the probability that two packets from different connections
having the same identifier is negligible. Note adding an iden-
tifier to recognize packets of the same connection is a general
approach that can be applied to other middlebox outsourcing
work, such as Embark [17] and Splitbox [18].

Algorithm 3: Compute equivalence classes after
adding header transformers.

Input : A list of predicates P and a set of packet
transformers 7
Output: A list of predicates F = {f1, fo...fu}
1 F+EC(P), P+ F
2 for T € T and f; € F that can be transformed by T do
3 | P+«PUT)
4 end
s F«<EC(P), P+ F
6 for each deterministic T € T and f; € F do
7 Compute the set B = {b1,b2,...b;} C F whose
disjunction is T'(f;)
8 | R« {T!(b;)| for each b; € B}
9 P+~PUR
10 end
u F«+ EC(P)
12 Return F

B. Header Transformer

In SICS, a single label is sufficient to guide all rule matching
behavior of a packet if it does not traverse middleboxes
that modify packet headers. As shown in Fig. 5, header
transformers such as NAT, load balancer may modify packet
headers. When a packet goes through a header transformer,
the behavior of the packet at downstream boxes is determined
by its new header. With label matching, the subsequent packet
behavior must be determined by the new label corresponding
to the new header. Hence, middleboxes must be able to assign
new labels to packets they have just modified without ever
learning their headers.

To address the above problem, we design a label-to-label
replacement scheme. A packet transformer maps an input
packet set to an output packet set. For a packet transformer T
and a predicate P specifying its input packet set, T (P) denotes

Fie1d2 a a

4 ay ‘ P,
T

a4y as | P,

g, D men

Fig. 6: Compute equivalence classes with a header transformer

the transformed predicate specifying the output packet set.
More specifically, given a predicate P, T(P) can be calculated
by replacing constraints on corresponding header bits. For
example, a transformer for a four-bit prefix 11 %* modifies
the second bit from 1 to 0. This operation can be modeled
by applying existential quantification and conjunction of the
new constraints to the second bit. The transformed predicate
represents prefix 10%x. Similarly, 7~! can be calculated using
the inverse process. SICS supports both deterministic (e.g., one
to one mapping from a prefix to another) or non-deterministic
(e.g., randomly choose a new address from a given prefix)
packet transformers.

Header transformers may produce new policy equivalence
classes. Given a list of predicates P, we extend Algorithm 1
to calculate the new set of policy equivalence classes, de-
noted as EC(P), when header transformers exist. As shown
in Algorithm 3, a new set of policy equivalence classes is
calculated after a set of transformed predicates are added (line
5). For a transformer T, the transformed predicate T(f;) for
a policy equivalence class f; is equal to the disjunction of a
subset of equivalence classes B = {b1,b2,...b;}. If T is non-
deterministic, a packet in the packet set specified by f; is
randomly transformed into a packet that belongs to either one
of equivalence classes within 3. However, if T performs a
one-to-one mapping, a transformed packet must belong to a
deterministic policy equivalence class. To decide into which
equivalence class a packet should be transformed, lines 6-11
of Algorithm 3 calculate the inverse predicate for each b; € B
and update the set of equivalence classes. Then, each deter-
ministic transformer has a one-to-one mapping for all policy
equivalence classes. With the refined set of policy equivalence
classes, SICS can easily build a label replacement table for
each header transformer. Upon receiving a packet with a label
that can be processed by the transformer, a non-deterministic
header transformer randomly modifies the label to one of the
multiple labels, whereas a deterministic header transformer
always conducts a unique label replacement action. We revisit
the example in Fig. 4 to illustrate how Algorithm 3 works.
As shown in Fig. 6, originally there are three predicates P,
P3; and Py, producing four equivalence classes aj, a3, a4 and
ag. We assume a NAT with a transformer 7 modifies headers
from P; to P». Following the line 3 ~ 5 in Algorithm 3, a
new set of equivalence class is obtained a; ~ ag. To build the
label replacement table, line 6 ~ 11 calculate the reverse of
transformed predicates and check whether a new equivalence
class is produced. In Fig. 6, no new equivalence class is added
since T~ (a2) = a; and T~ '(as) = a4,

In addition to replacing labels, the middlebox also assigns
an index corresponding to the modified header, e.g., an index

for an IP in a prefix stored at the gateway. When the gateway
receives a packet with such an index, it restores the modified
header fields.

To keep the connection identity, a header transformer main-
tains a mapping from the newly assigned header/index to the
original connection identifier. For reverse packets, the gateway
does not encrypt assigned header fields (e.g., random port
number ranges assigned by a NAT). Upon receiving packets
with the same assigned header fields, the transformer restores
the connection identifier. So the same processing policy is
applied in subsequent middleboxes.

C. Case Studies

Next, we use a proxy and a firewall-NAT chain as examples
to discuss how SICS combines the two techniques above to
support more complex real-world middleboxes.

Proxy. An HTTP proxy accepts a TCP connection from
a client, decides whether it is a hit or miss by looking up
the URL in the local cache. (a) Hit: The proxy creates a
reply packet with encrypted headers from the request packet
as well as the requested content. It also adds an address index
pointing to its own address to indicate it is a proxy reply
packet. When the gateway receives the reply packet, it decrypts
the packet header and restores the source and destination
addresses of the packet. (b) Miss. The proxy creates a new
request with the same encrypted headers. The proxy adds an
address index pointing to the server which is configured for
the requested URL. When the packet bounces back to the
gateway, the gateway decrypts the packet header and replaces
the destination address with the server’s address. In the reverse
direction, reply packets from the server are encrypted and
received by the proxy. The proxy caches the replied content
and sends the content back, as in case (a). During this process,
packets are forwarded and processed by the proxy in the cloud
without exposing the headers.

Firewall-NAT. We consider a firewall-NAT chain that ex-
amines packets headers. The NAT function can be divided
into two categories: source NAT and destination NAT. A
source NAT translates the headers of connections initiated
within internal networks, while a destination NAT applies to
connections started from outside networks.

For a packet initiated within the inside network, the firewall
first applies its label-based ACLs and stores the connection
identifier if the packet is allowed. Then, the NAT adds an index
for a reserved external IP, a random port number and assigns
a new label to the packet based on the label replacement
table. Note header transformers may break the connection
identity between outbound and inbound packets. To make the
connection reversible, the NAT maintains a mapping from the
newly assigned port number to the packet’s original encrypted
headers as well as the connection identifier. Before packets
are sent out to external networks, the gateway decrypts and
restores the header fields assigned by the source NAT. For a
reverse packet, if the destination port belongs to the range
of random port numbers assigned by the source NAT, the
gateway encrypts the packet and places the port number in
the options field of the packet. Using the port number, the

NAT restores reverse packets with the corresponding origi-
nal encrypted headers and the connection identifier. So the
same processing policy is applied to reverse packets at the
firewall. Packets initiated from outside networks have similar
processing schemes, except that a destination NAT maintains
a deterministic one-to-one mapping from a public address to
a private address.

VI. UPDATE OPERATIONS

Overload is a common cause of middlebox failures [47].
Traffic should be steered across different middlebox instances
dynamically. Service function chain requirements and middle-
box processing rules are also changing constantly to meet
the new costumers’ needs or reduce security threats. All
changes in traffic processing result in rule updates at the
enterprise and on the cloud sides. To keep the correctness
and performance of in-cloud processing, it is necessary for a
middlebox outsourcing framework to support incremental rule
updates with low latencies. A rule insertion or deletion can
be converted to predicate changes [22]. If there are predicate
changes after the rule updates, SICS performs the following
methods to update both the enterprise side and the in-cloud
boxes.

Update at the enterprise side. SICS starts by updating
the packet classifier at the gateway. When a new predicate is
added, SICS adds the new predicate to the bottom of the packet
classifier. If the update produces new equivalence classes,
the packet classifier starts to classify packets to the new set
of equivalence classes. When existing predicates are deleted,
SICS updates the set of equivalence classes by merging
the equivalence classes if they identify the same cloud-wide
behavior. Updates to the classifier can be executed very fast.
In our experiments, the average cost of adding/deleting a
predicate is less than 0.5 ms.

To figure out the update schemes of in-cloud boxes, the
enterprise controller maintains a representation list for each
predicate. This list includes all equivalence classes whose
disjunction is equal to the predicate. In the example shown in
Fig. 4, the representation list of Ps is {a3,a4,as} and for P it
is {ay,as}. Representation lists of predicates are maintained
dynamically, so when the list of a predicate is modified, the
controller sends update instructions to the in-cloud box which
produces the predicate.

Update in the Cloud. In SICS, a rule update in the cloud
consists of the updating of the rule tables (hash tables) at each
middlebox and the abstract switch. The forwarding table of the
abstract switch is partitioned into several sub-tables which are
updated independently. When a new equivalence class is added
into the representation list of a predicate, its label-action pair
is inserted into the rule table of the in-cloud box that produced
the predicate. Here, the key is the label which corresponds to
the policy equivalence class and the value is the action of the
predicate. In contrast, a label-action pair is removed from the
rule table when the corresponding equivalence class is deleted
from the representation list of the predicate.

The connection states maintained in the stateful middle-
boxes will not be disrupted during an update since states are
identified by encrypted packet headers or connection IDs.

Maintaining Processing Consistency. Rule updates need
to be treated carefully. Any inconsistency in state between
the gateway and the boxes in the cloud may lead to incorrect
middlebox processing. To maintain per-packet consistency, the
controller first calculates the incremental rule update schemes
for the enterprise gateway and boxes involved in the cloud.
During this time, the gateway and in-cloud middleboxes con-
tinue to encrypt and process traffic according to the old rules.
Once the update schemes are determined, the gateway buffers
incoming packets until all in-cloud packets finish processing
in the cloud (The buffering time is bounded by the packet
processing time, which is typically hundreds of milliseconds
[3]). Then, the gateway and in-cloud boxes install updates and
start processing new packets. To maintain flow consistency,
ongoing flows should continue traversing the original sequence
of middleboxes while they are updating. SICS employs the
migration avoidance mechanism in [48]. New flows are steered
to new middlebox instances while existing flows are still
processed by old ones.

VII. SECURITY ANALYSIS

SICS converts IP prefixes and other header spaces from
middlebox processing rules to a list of predicates. Each
predicate is represented as a set of labels that are used as
matching fields to enable in-cloud functionalities. Labels do
not leak size, order or borders of header spaces specified
in the rules. The cloud is unable to learn to which field of
the packet header a match corresponds. Labels at in-cloud
middleboxes are updated independently and the information
about header spaces represented by these labels cannot be
inferred from updates. A gateway encrypts packet headers and
assigns a label to each packet in order to identify its in-cloud
processing. In this case, given an encrypted packet with a
label, its original packet header cannot be reversed from the
label. For any two packets that are assigned the same label,
the cloud is limited to learning that the two packets have the
same cloud-wide behavior, but prevented from determining
any other information about their orders or values.

Information leakage. From an information-theoretic point
of view, information leakage of a communication system is at
least logyN bits, where N is the number of observable equiv-
alence classes [49]. In the context of SICS, each equivalence
class identifies a cloud-wide behavior, which is represented
by one label. The label instructs the in-cloud boxes to process
the packet as configured. With fewer number of cloud-wide
behaviors, the cloud may not be able to correctly perform
its functionalities. In this sense, SICS achieves minimal in-
formation leakage. On the other hand, Embark employs a
field-by-field encoding to convey the information about how
packets should be processed in the cloud. The set of cloud-
wide equivalence classes are the Cartesian product of per-field
equivalence classes. Consequently, Embark exposes a larger
number of observable equivalence classes and hence more
information leakage.

Next, we demonstrate that the security of SICS is stronger
than the PrefixMatch in Embark [17] under two attacks.

Chosen Plaintext Attack. A chosen plaintext attack allows
an attacker to determine which plaintext message is encrypted

into an input ciphertext message. We assume that an attacker
(e.g., the cloud itself or a hacker) selectively sends sample
packets to the gateway and observes their cloud-wide behav-
ior, attempting to figure out the plaintext of the rules at a
middlebox. PrefixMatch adopts a per-field encryption scheme
where prefixes or ranges for each header field are encrypted
separately. For an encrypted prefix or range, the attacker
knows to which field of the packet header the prefix or range
corresponds. The plaintext of the encrypted prefix or range
can then be obtained by traversing the entire search space of
that field.

An example of such attack is the following: for the desti-
nation port field in the packet header, PrefixMatch encrypts
a port number interval [s,e] to a random interval [S,E].
All port numbers falling in [s,e] are encrypted to values in
[S,E]. Knowing the interval [S,E], it takes an attacker at
most 2'¢ queries (e.g., sample packets with a destination port
traversing from 0 to 2'°) to find all port numbers in [s,e],
where 16 is the length of the port field. Now the attacker
has successfully deciphered the encrypted interval [S, E] in the
cloud. In addition, when a future packet matches the interval
[S,E], the attacker learns that the original destination port of
the packet falls in [s,e]. Similarly, the attacker could learn
mapping relationships for other fields. Since a chosen packet
header can test each header field simultaneously, the number
of required queries to decipher all header fields is determined
by the length of the longest header field. For a 5-tuple, the
longest header field is 32 bits. So it takes at most 232 queries
to decipher a 5-tuple based ruleset which is encrypted using
PrefixMatch.

As described in §IV-B, SICS encrypts packet header fields
as a whole. This means all packet header fields are involved in
the header space mapping process, i.e., the label of a packet is
determined by all of the bits in its header. When considering
the same attack just described, we clearly see the benefit of
SICS which require 2'% queries to decipher, a significant
improvement over PrefixMatch’s 232. PrefixMatch cannot be
modified to encrypt all fields as a whole since the encryption in
PrefixMatch is based on comparing per-field values of packets
and the endpoints of rules.

Frequency Analysis Attack. Frequency analysis is a clas-
sic inference attack that has been historically used to recover
plaintexts from substitution-based ciphertexts, and is known to
be useful for breaking deterministic encryption. In frequency
analysis, an adversary acquires knowledge of the frequency
distribution of plaintext messages (e.g., via unintended data
release or data breaches), counts the frequency of ciphertext
messages and maps each ciphertext to the plaintext in the same
frequency rank. To conduct frequency analysis, we assume the
cloud is able to obtain the plaintext enterprise traffic from a
previous time period and tries to infer the current encrypted
traffic using the previous frequency distribution. To prevent
frequency analysis, SICS adds randomness to the encryption
of the original packet headers and the connection identifiers
by changing the seed for symmetric key generation and the
pseudorandom function after a certain time period. In SICS,
it is not useful to add randomness to the labels of packets.
For example, if a new label is assigned to a packet when

@ Admin Amazon VPC
Processin trol i
3 g Contro Set up and Update Click
Requirements Layer {Adapter;
Plaintext Tunnel i vod Packet Ingress
packets Layer ficTyplec Tackets Egress
Enterprise Cloud

Fig. 7: SICS software architecture

the behavior of the packet does not change, the cloud can
easily determine the new label is equivalent to the old label
because they specify the same cloud-wide behavior. However,
frequency analysis only achieves low inference accuracy in
SICS. One reason is that because a label in SICS covers a
range of packet headers, the cloud cannot infer the frequency
of each single packet header using the frequency of the label.
Another reason is that the frequency analysis is sensitive to
label updates that occur during middlebox load balancing and
the changes in processing policy over time. An update to a la-
bel can change the frequency rank of multiple labels, including
the label itself as well as other labels with similar frequencies.
In contrast, PrefixMatch uses a one-to-one deterministic header
mapping which is less secure in terms of frequency analysis.

VIII. IMPLEMENTATION

We have built a SICS prototype in our laboratory using
middleboxes running in the Amazon Virtual Private Cloud
(VPC) [50] and a gateway running on a general purpose
desktop computer with eight cores, 3.20 GHz Intel Core i7-
6700 Processor and 32GB memory. The gateway redirects
traffic from another machine of the same model connected
with a 10GbE link.

Fig. 7 shows the software architecture of SICS. The en-
terprise side consists of two layers: a control layer and a
tunnel layer. The control layer takes the service function chain
requirements and processing rules of the middleboxes as its
input to calculate an abstract function network. When there are
changes, the control layer updates the packet classifier in the
tunnel layer and calculates the necessary updates in the cloud.
Then, it sends batched update instructions to the middlebox
instances running in the cloud. The tunnel layer, built on
Intel’s DPDK [51], acting as a gateway, performs packet
manipulation, header encryption and VPN tunnels connecting
remote instances in the cloud.

On the cloud side, the abstract function network can be eas-
ily converted into a practical deployment within the Amazon
VPC. SICS supports all header-related in-cloud functions (e.g.,
firewall, NAT, traffic steering). We implemented middleboxes
using Click [52] and rule tables using the Cuckoo hash table
[53][54]. To enable in-cloud middlebox chaining, SICS adds
an adapter layer which holds a sub-forwarding table from the
abstract switch at each middlebox instance. Based on their
labels, the adapter decapsulates incoming packets for current
processing and encapsulates outgoing packets with the address
of the next middlebox.

A possible limitation of SICS is that SICS employs label
matching which requires modifications to the existing header
matching based middlebox implementations.

IX. EVALUATION

We now investigate the performance of SICS at both the
enterprise side and in-cloud middleboxes.

A. Enterprise-side performance

1) Gateway: We first evaluate the performance of the SICS
gateway. For most experiments, we use a synthetic workload
generated by the Pktgen traffic generator powered by DPDK
[55]. We create an abstract function network using Stanford
dataset [46] with three types of middleboxes: firewalls, source
NATs and destination NATs. A destination NAT is used to
implement a L4 load balancer. The Stanford dataset has 16
routers (2 backbone routers connected to 14 zone routers)
with 757170 IPv4 forwarding rules and 1584 ACL rules.
Firewalls can be placed on any router. For each firewall, we
randomly select ACLs from the ruleset and shuffle the order
to achieve different security policies. NATs are added to the
dataset connecting zone routers to private subnets. For each
NAT added, we use a different public IP address for the
newly created port of the zone routers and a different private
prefix for the subnet. A subset of forwarding rules are used
to steer traffic along middlebox chains. We vary the number
of middleboxes from O to 16 with the total number of rules
increasing from 100K to 800K to show how the performance
of SICS is affected by the network size. We compare the SICS
gateway with PrefixMatch in Embark [17] since PrefixMatch is
the only existing cryptographic approach that supports service
function chaining. We report the median of 10 iterations for
each experiment.

Construction time. Table II shows the construction time
of the gateway with respect to the network size. For SICS,
rule composition accounts for the most of the overhead while
computing equivalence classes and constructing the packet
classifier can be finished in tens of milliseconds. In Embark,
the time cost is the time to construct the data structure for
PrefixMatch. The PrefixMatch structure in Embark works only
on one header field, so PrefixMatch needs to be run for every
header field, one after another. In Table II, we see that the
time cost of PrefixMatch in Embark is at least 5 times larger
than SICS for all six network sizes. The reason is that the total
number of sub-intervals for each header field in PrefixMatch is
much larger than the number of policy equivalence classes in
SICS. For example, the test network with 100K rules produces
approximately 200 equivalence classes; whereas the number of
sub-intervals calculated using PrefixMatch is over 9000. This
highlights the efficiency of the SICS approach compared with
the process used by PrefixMatch when it finds the intervals
pertaining to the same set of prefixes, especially when the size
of the network is large. As shown in Table II, the construction
of the gateway in SICS only uses 368.3ms for the network
with 100K rules and it is still less than 10s when the size of
the network increases to 800K.

Incremental rule update cost. In this set of experiments,
we first construct the packet classifier using a subset of

No. of Rule Computing Packet Embark
Rules (K) | Composition (s) ECs (ms) Classifier (ms) (s)
100 0.3 14.9 53.4 7.2
200 1.1 15.2 83.2 12.6
400 2.9 224 129.0 18.8
600 7.1 25.2 148.2 50.3
800 9.4 30.5 249.8 76.43

TABLE II: Construction time of the gateway.

@

\E/ -

S | 1
32 T o
& | | |

< T ! | |

on 1 ! Q : =
AP
fob = & & ‘ =
= 100 200 400 600 800

Number of rules (K)

Fig. 8: Box plot of update cost.

predicates and then keep adding new or deleting existing
predicates. In Fig. 8, we measure the time cost to update each
predicate. We find that the medium time cost for updating a
predicate does not have a distinct difference when the network
size increases. The medium time cost for updating a predicate
is less than 0.5 ms for all networks.

PrefixMatch in Embark may need to be reconstructed when
a rule changes and the reconstruction process costs nearly
100s. PrefixMatch can still process packets using old configu-
rations during the reconstruction; however, the long update
delay may incur packet losses and harm the accuracy of
middlebox processing. The situation worsens when updates
happen frequently.

Throughput.

We first measure how throughput of SICS gateway scales
with network size. Packets used in the experiments are gener-
ated uniformly with respect to equivalence classes and results
for various network sizes are shown in Fig. 9. From the figure,
we find that the gateway in SICS can achieve 3.92 Mpps for
the network with 100K rules. For the largest network with
800K rules, the throughput is 2.2 Mpps. For all networks, the
throughput of the gateway in SICS is higher than Embark by
approximately 20%.

To investigate the potential overhead introduced by SICS
gateway, we measure throughput of SICS gateway when
encrypting traffic to send to the cloud and a simple redirection
[3] as the baseline. As shown in Table III, SICS gateway
averages 8.49 Gbps and 8.80 Gbps for a mixed and a full size
trace. No significant regression is observed when comparing
the throughput of SICS gateway with a simple redirection. For
minimal size traces, the throughput goes down when packet
classification in SICS gateway becomes a bottleneck.

Thoughput (Gbps) \ Min Size Max size Realistic (Mixed)
Redirection 7.25 8.82 8.56
SICS 1.41 8.80 8.49

TABLE II: Throughput on a single core at SICS gateway.

A SICS® Embark

400 600
Number of rules (K)

1 L
100 200

800

Query Throughput (Mgps)

Fig. 9: Throughput as the number of rules increases.

Memory usage. The SICS gateway only stores predicates,
calculated by the rule composition module, instead of rules.
Predicates are represented as BDDs in our implementation.
For each predicate, the controller maintains a representation
list recording a subset of equivalence classes and their corre-
sponding labels whose disjunction is equal to the predicate.
Each equivalence class is represented as a set of pointers to
predicates which contain the equivalence class. With Embark,
the memory cost of the data structure for PrefixMatch is also
calculated. For all network sizes, the gateway of SICS uses less
memory than Embark. The memory cost is 0.267MB for SICS
and 0.274MB for Embark when the network size is 100K. For
the largest network with 800K rules, SICS and Embark uses
0.349MB and 1.345MB respectively. Neither the gateway in
SICS nor Embark consumes appreciable memory since they
only store the classifier and not the rules.

Scalability of the gateway. As shown in previous results,
the performance of Embark degrades sharply as the total
number of rules increases. Compared with Embark, the perfor-
mance of SICS mainly depends on the number of equivalence
classes calculated from these rules, which is a much smaller
value than the number of rules. Given processing rules and
service chaining requirements, the number of equivalence
classes is determined by the number of various possible actions
at the middleboxes and the service function chains, not by
the total number of rules. For example, a firewall with 10K
ACL rules produces only two equivalence classes, with each
one corresponding to the action deny and allow, respectively.
Fig. 10 shows the number of equivalence classes with respect
to the number of rules in the function network. With fewer
equivalence classes, SICS is more likely to achieve high
throughput and good scalability. In the figure, we can see that
the number of equivalence classes grows at a rate of less than
2. To show how the number of equivalence classes increases
when middleboxes are added to existing networks, we keep
adding middleboxes into the network with 100K rules. Fig. 11
shows the number of equivalence classes versus the number of
middleboxes added. The increase in the number of equivalence
classes is about 2 for each middlebox on average.

2) Bandwidth Overhead: We evaluate the extra bandwidth
overhead between the enterprise and the cloud. Embark intro-
duces a 20-byte overhead per IPv4 packet because it converts
them to IPv6. SICS only inserts a 16-bit label into the options
field of IPv4 packets which encodes up to 65536 equivalence
classes (cloud-wide behavior). For middleboxes that modify
packet headers, SICS uses another 16 bits as the identifier

[e

175} /

0

ﬁ 1000 Slope=2_ //

S 800 >/

(5]

2 600 7 emmm——— |
Z 400 //.

3 200

(5]

© 0

% 100 200 400 600 800

Number of rules (K)

Fig. 10: Number of ECs as the number of rules increases.

% 280
2
3
S 260+
5t
= L]
S 240} =
<
2 -
3 220} =
Qo
[
5 ot
200 : ‘ :
*= 0 4 8 12 16

Number of middleboxes

Fig. 11: Number of ECs as the number of middleboxes
increases.

to represent rewritten header fields. For stateful middelboxes,
SICS adds a 32-bit connection ID. Hence, the total per-packet
bandwidth overhead introduced by SICS is 64 bits or 8 bytes.
This is placed in the options field of IPv4 protocol header.

3) Processing Delay: SICS employs a similar middlebox
outsourcing architecture as Embark which involves encryption
and redirection overhead. Compared with local processing,
deploying SICS in the Amazon VPC incurs hundreds of mil-
liseconds processing delay; whereas an ISP based deployment
with a larger footprint with respect to the Amazon VPC can
reduce the delay to tens of milliseconds [17].

B. In-cloud Middleboxes

In this section, we evaluate the performance of label match-
ing based in-cloud middleboxes. We develop middleboxes with
existing Click elements [52] and lookup tables using (2,4)-
Cuckoo hash tables [54], which each uses 64 KB memory.

Throughput of in-cloud middleboxes. For comparison, we
also implement prefix matching based firewall and NAT using
raw click elements. The only difference between RAW-Click
and SICS-Click is how middleboxes search for a match for
an incoming packet. Each middlebox has 1000 IPv4 5-tuple
rules. Fig. 12 shows the throughput in thousand of packets per
second (kpps, log scale) for the two middleboxes. We see that
the throughput of label matching based firewall and NAT in
SICS is about 8000 kpps, which shows an improvement of two
orders of magnitude over their header based pattern matching
counterparts.

Reacting to middlebox failures and overload. We consider
two dynamic scenarios: (1) a middlebox fails and (2) traffic
overload at a middlebox. We measure the reaction time of
SICS for each scenario and the results are shown in Fig. 13.
When a middlebox fails, we need to migrate the state of the

M Raw-Click
Il SICS-Click

Throughput (kpps)
S

FW NAT
Fig. 12: Lookup throughput of Middleboxes.

M Failover
= Overload

~

(5]

Time Cost (ms)
—_ []

100

200 400 600
Number of rule (K)

800

Fig. 13: Response time in the case of a middlebox failure and
traffic overload.

failed middlebox to a new instance and configure the network
to reroute packets with certain labels to the new instance.
To prevent traffic overload at a middlebox, in addition to
middlebox state migration, we need to add new predicates
to split a portion of traffic on the current middlebox to
another middlebox. This requires additional updating of the
packet classifier at the gateway and representation lists at
the controller. From Fig. 13, we see that the overall time to
react to middlebox failure and traffic overload is low (several
milliseconds) and in fact the overhead is negligible.

X. CONCLUSION

SICS is a middlebox outsourcing framework that protects
the private information of packet headers and middlebox
rules. Compared with existing methods, SICS has several
unique advantages including a stronger security guarantee,
high-throughput processing, and support for quick updates.
SICS assigns each packet a label identifying its matching
behavior in a service chain and all middlebox processing in the
cloud is based on labels. We use a prototype implementation
and evaluation on VPC and local computers to demonstrate
the feasibility, high performance, and efficiency of SICS.

ACKNOWLEDGEMENT

H. Wang, X. Li, Y. Zhao, Y. Yu, and C. Qian were partially
supported by NSF Grants 1701681, 1717948, and 1932447.
Y. Wang is partially supported by NSF grant CNS-1908020.
We thank the anonymous reviewers for their comments.

REFERENCES

[1] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23-24, pp. 2435-2463, 1999.

[2] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi, “The
middlebox manifesto: enabling innovation in middlebox deployment,”
in Proc. of ACM HotNets, 2011.

[3] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” in Proc. of ACM SIGCOMM, 2012.

[4]
[5]
[6]
[7]
[8]

[9]
(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]

[26]
[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

R. Guerzoni et al., “Network functions virtualisation: an introduction,
benefits, enablers, challenges and call for action, introductory white
paper,” in SDN and OpenFlow World Congress, 2012.

“WAN Optimization as-a-Service,” http://www.routeviews.org.
“Zscaler Cloud Firewall,” https://www.zscaler.com/products/
next-generation-firewall.

“Palo Alto Networks,” https://www.paloaltonetworks.com/products/
secure-the-network/next- generation- firewall.

F. McKeen, 1. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.” in Proc. of ACM HASP, 2013.
R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “Safebricks: Shielding
network functions in the cloud,” in Proc. of USENIX NSDI, 2018.

H. Duan, C. Wang, X. Yuan, Y. Zhou, Q. Wang, and K. Ren, “Lightbox:
Sgx-assisted secure network functions at near-native speed,” arXiv:
1706.06261v2, 2018.

Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” in Security and
Privacy (SP), 2015 IEEE Symposium on, 2015.

J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep packet
inspection over encrypted traffic,” in Proc. of ACM SIGCOMM, 2015.
X. Yuan, X. Wang, J. Lin, and C. Wang, “Privacy-preserving deep packet
inspection in outsourced middleboxes,” in Proc. of IEEE INFOCOM,
2016.

Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using SDN,” in Proc. of ACM
SIGCOMM, 2013.

Y. Zhang et al., “StEERING: A Software-Defined Networking for Inline
Service Chaining,” in Proc. of IEEE ICNP, 2013.

L. Melis, H. J. Asghar, E. De Cristofano, and M. A. Kaafar, “Private pro-
cessing of outsourced network functions: Feasibility and constructions,”
in Proc. of ACM SDN-NFV Security, 2016.

C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark:
Securely outsourcing middleboxes to the cloud,” in Proc. of USENIX
NSDI, 2016.

H. J. Asghar, L. Melis, C. Soldani, E. De Cristofaro, M. A. Kaafar,
and L. Mathy, “Splitbox: Toward efficient private network function
virtualization,” in Proc. of ACM HotMiddlebox, 2016.

M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proc. of ACM SIGCOMM, 2012.
J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in Proc. of USENIX NSDI, 2014.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in Proc. of USENIX
NSDI, 2013.

H. Yang and S. S. Lam, “Real-time verification of network properties
using atomic predicates,” in Proc. of IEEE ICNP, 2013.

——, “Scalable verification of networks with packet transformers using
atomic predicates,” IEEE/ACM Transactions on Networking, 2017.
“Service Function Chaining,” https://datatracker.ietf.org/wg/sfc.

H. Wang, C. Qian, Y. Yu, H. Yang, and S. S. Lam, “Practical network-
wide packet behavior identification by ap classifier,” in Proc. of ACM
CoNEXT, 2015.

G. Gibb, H. Zeng, and N. McKeown, “Outsourcing network functional-
ity,” in Proc. of ACM HotSDN, 2012.

D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formulas on
ciphertexts,” in Theory of cryptography, 2005, pp. 325-341.

B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer,
“Shieldbox: Secure middleboxes using shielded execution,” in Proc. of
ACM SOSR, 2018.

A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: A software-defined
framework for developing, deploying, and managing network functions,”
in Proc. of ACM SIGCOMM, 2016.

G. P. Katsikas, M. Enguehard, M. Kuzniar, G. Q. Maguire Jr, and
D. Kosti¢, “Snf: Synthesizing high performance nfv service chains,”
PeerJ Computer Science, 2016.

G. P. Katsikas, T. Barbette, D. Kostic, R. Steinert, and G. Q. Maguire Jr,
“Metron:NFV service chains at the true speed of the underlying hard-
ware,” in Proc. of USENIX NSDI, 2018.

M. T. Goodrich and R. Tamassia, Introduction to computer security.
Pearson, 2011.

S. K. Fayazbakhsh, M. K. Reiter, and V. Sekar, “Verifiable network
function outsourcing: requirements, challenges, and roadmap,” in Proc.
of ACM HotMiddlebox, 2013.

X. Yuan, H. Duan, and C. Wang, “Bringing practical execution assur-
ances to outsourced middleboxes,” in Proc. of IEEE ICNP, 2016.

(351

[36]

(371
(38]
[39]

[40]

[41]
[42]
[43]

[44]

[45]
[46]

[47]

(48]

[49]

(501

[51]
[52]

(53]
[54]

[55]

“AT&T fined $ 25 omillion after call center employees
stole customers,” http://arstechnica.com/techpolicy/2015/04/
att-fined-25-million- after-call-centeremployees- stole\\-customers-data/.
“Radioshack sells customer data after settling with
states.” http://www.bloomberg.com/news/articles/2015-05-20/
radioshackreceives-approval-to-sell-nameto-standard- general.
“Chronology of data breaches.” http://www.privacyrights.org/
data-breach.

“2015 data Breach Investigations Report.” http://www.verizonenterprise.
com/DBIR/2015/.

R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on Computers, 1986.

H. Wang, C. Qian, Y. Yu, H. Yang, and S. S. Lam, “Practical network-
wide packet behavior identification by ap classifier,” IEEE/ACM Trans-
actions on Networking, 2017.

G. N. Purdy, Linux iptables Pocket Reference: Firewalls, NAT & Ac-
counting, 2004.

H. Pereira, A. Ribeiro, and P. Carvalho, “L7 classification and policing
in the pfsense platform,” Atas da CRC, 2009.

“Haproxy-the reliable, high-performance tcp/http load balancer,” http:
//haproxy.

D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein,
“Maglev: A fast and reliable software network load balancer.” in Proc.
of USENIX NSDI, 2016.

J. Frahim and O. Santos, Cisco ASA: All-in-One Firewall, IPS, Anti-X,
and VPN Adaptive Security Appliance. Pearson Education, 2009.
“Header Space Library and Netplumber,” http://bitbucket.org/peymank/
hassel-public/.

P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: measurement, analysis, and implications,” in ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4. ACM,
2011, pp. 350-361.

S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: a framework for NFV applications,” in Proc. of
ACM SOSP, 2015.

P. Malacaria and J. Heusser, “Information theory and security: Quanti-
tative information flow,” in Formal Methods for Quantitative Aspects of
Programming Languages. Springer, 2010, pp. 87-134.

“Amazon Virtual Private Cloud.” https://aws.amazon.com/vpc/Mncl=h_
Is.

“Dpdk. data plane development kit.” https://www.dpdk.org/.

E. Kohler, “The Click Modular Router,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 2000.

R. Pagh and F. F. Rodler, “Cuckoo hashing,” in Proc. of ESA, 2001.
B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proc. of ACM CoNEXT,
2014.

“Pktgen.” http://pktgen.readthedocs.io/en/latest/.

Huazhe Wang (M’15) received the Ph.D. degree
from the Department of Computer Science and En-
gineering, University of California, Santa Cruz in
2019. He received the B.Sc. degree from Beijing
Jiaotong Univeristy in 2011 and the M.Sc. degree
from Beijing Univeristy of Posts and Telecommu-
nications in 2014. His research interests includes
automated network validation and network security.

Xin Li (M’15) received the B.Eng. degree in
telecommunication engineering from the University
of Electronic Science and Technology of China,
the M.S. degree in electrical engineering from the
University of California Riverside, and the Ph.D.
degree from the Department of Computer Science
and Engineering, University of California Santa Cruz
in 2018. His research interests include network secu-
rity, software-defined networking, network functions
virtualization, and the Internet of Things.

member.

.

bile Computing. He is a

Yang Wang received the bachelor’s and master’s
degrees in computer science and technology from
Tsinghua University, in 2005 and 2008, respectively,
and the doctorate degree in computer science from
the University of Texas at Ausitn, in 2014. He
is now an assistant professor in the Department
of Computer Science and Engineering, Ohio State
University. His current research interests include
distributed systems, fault tolerance, and scalability.

Yu Zhao is a Ph.D. student at the University of
Kentucky. He received his bachelor degree in Jilin
University of information technology in 2009. He
received his master degree in Changchun University
of Science and Technology in 2012. In 2012, he
joined the Research Center of Internet of Things,
Third Research Institute of Ministry of Public Se-
curity located in Shanghai, China. His research in-
terests include software testing, computer network,
wireless sensor networks, cognitive radio networks,
and signal processing. He is an IEEE and ACM

Ye Yu (M’13) received the B.Sc. degree from
Beihang University and the doctorate degree in
computer science from University of Kentucky, in
2013 and 2018, respectively. His research interests
including data center networks and software defined
networking.

Hongkun Yang (M’12) received the Ph.D. degree
in the Department of Computer Science, University
of Texas at Austin in 2015, where he is a recipient
of the MCD Fellowship. He received the B.S.E.
degree with Distinction and the M.S.E. degree from
Tsinghua University in 2007 and 2010, respectively.
His research interests include computer networks,
protocol verification, network security, and formal
methods. He has published research papers in a
number of conferences and journals including IEEE
ICNP, IEEE INFOCOM, IEEE Transactions on Mo-
student member of IEEE.

Chen Qian (M’08) is an Assistant Professor at the
Department of Computer Engineering, University of
California Santa Cruz. He received the B.Sc. degree
from Nanjing University in 2006, the M.Phil. degree
from the Hong Kong University of Science and
Technology in 2008, and the Ph.D. degree from
the University of Texas at Austin in 2013, all in
Computer Science. His research interests include
computer networking, network security, and Internet
of Things. He has published more than 50 research
papers in highly competitive conferences and jour-

nals. He is a member of IEEE and ACM.

