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Abstract. This paper intends to provide new, simple, and self-contained proofs of the equiv-
alence of various different descriptions of the uniformly hyperbolic SL(2,R) sequences. While

in the scenario of the Schrödinger cocyles, they may in turn be applied to give new and sim-

ple proofs of theorems regarding their relation with the spectral analysis of one-dimensional
discrete Schrödinger operators. Concretely, this paper gives four different descriptions of

uniformly hyperbolic sequences together with the detailed proofs of their equivalence. It

provides concise and self-contained proof of the Johnson’s Theorem [Jo], both for sequence
and dynamically defined potentials. In particular, we give two different proofs of the direc-

tion “uniform hyperbolicity away from the spectrum”, of which one is the standard argu-

ment in the spirit of Russell Johnson’s original proof and the other involves Combes-Thomas
type of estimate [CT]. Finally, the relation between the Avalanche Principle, discovered

by Goldstein-Schlag [GS], and the uniformly hyperbolic sequence is explored which yields a

simple proof and a better version of the Avalanche Principle. Many ingredients of the proofs
in this paper are new, in particular the use of asymptotic stable and unstable directions, are

of independent interest and have been applied to many other related problems.

1. Introduction

The one dimensional discrete ergodic Schrödinger equation models the motion of a quantum
particle in a disordered medium, such as alloys and quasicrystals. The medium is described by
a bounded sequence of real numbers v : Z → R, called the potential. The quantum particle is
described by its wavefunction ψ ∈ `2(Z), which is also called the state, and evolves according
to the famous Schrödinger equation

(1) i
∂ψ

∂t
= Hvψ.

Here Hv : `2(Z)→ `2(Z) is the so-called Schrödinger operator, or Hamiltonian, and is given by

(2) (Hvψ)n = ψn+1 + ψn−1 + v(n)ψn, ψ = (ψn)n∈Z ∈ `2(Z).

We assume ‖v‖∞ < M for some M > 0. Throughout this paper, M serves as an upper bound
in various different settings. The study of the solutions of equation (1) is closely related to the
spectral analysis of the operator (2). Note the spectrum, σ(Hv), of the operator Hv is:

σ(Hv) = {E ∈ C : Hv − E is not invertible}.
It is a standard result that σ(Hv) is a compact set contained in [−M − 2,M + 2] since Hv is a
bounded and self-adjoint operator with operator norm ‖Hv‖ ≤ 2 +M . Let ρ(Hv) = R \ σ(Hv)
denotes the resolvent set of Hv on the real line.

A key part of the spectral analysis of the operators (2) is to understand the asymptotic
behaviors of solutions of the spectral equation

(3) Hvψ = Eψ,
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where E ∈ C is the energy parameter. A direct computation shows that ψ ∈ CZ solves equa-
tion (3) if and only if

(4) A(E−v)(j)

(
ψj
ψj−1

)
=

(
ψj+1

ψj

)
, j ∈ Z,

where A(E−v) : Z→ SL(2,R) is called the Schrödinger cocycle map and is defined as

(5) A(E−v)(j) =

(
E − v(j) −1

1 0

)
.

The cocycle iteration is defined as

(6) A(E−v)
n (j) =


A(E−v)(j + n− 1) · · ·A(E−v)(j), n ≥ 1,

I2, n = 0,

A(E−v)(j + n)−1 · · ·A(E−v)(j − 1)−1, n ≤ −1,

where I2 is the identity matrix. By (4), A
(E−v)
n (j) are the n-step transfer matrices of the

equation (3) since

(7) A(E−v)
n (j)

(
ψj
ψj−1

)
=

(
ψj+n
ψj+n−1

)
for all j, n ∈ Z.

Through this relation, the spectral analysis of the operator (2) may then be turned into the
study of the dynamics of the cocycle iterations (6).

This interplay of different areas, mathematical physics, spectral theory, and dynamical sys-
tems, has been a field of very active study since the late 1970’s. Moreover, it has made striking
progress in the past 20 years since seminal works of e.g. Jitomirskaya [J], Bourgain-Goldstein
[BG], Goldstein-Schlag [GS], and Avila [A2, A3]. For more information, we refer the readers to
the book [B1] by Bourgain and recent surveys by Damanik [D] and Jitomirskaya-Marx [JM].

The goal of this paper is to focus on a key notion, uniform hyperbolicity, in dynamical systems
and its relations to the spectral analysis of the operators (2). Uniform hyperbolicity may be
taken as a starting point to understand the dynamics behind the one-dimensional discrete
Schrödinger operators.

The structure of the remaining part of this paper is as follows. In Section 1.1, we discuss uni-
formly hyperbolic SL(2,R)-sequences, uniformly hyperbolic SL(2,R) cocycles defined on base
dynamics, and the relation between them. Then we state our main theorems concerning equiv-
alent conditions of uniform hyperbolicity. In Section 1.2, we introduce the Johnson’s theorem
for sequence potentials. Then we will introduce the relation between sequence potentials and
dynamically defined potentials and state the more well-known version of the Johnson’s theo-
rem for dynamically defined potentials. In Section 1.3, we give our version of the Avalanche
Principle, discuss its relation with uniformly hyperbolic sequence, and provide some historic
remarks regarding its generalizations.

In Section 2, we prove the results stated in Section 1.1. It contains another description of
uniform hyperbolicity. In Section 3, we prove the results stated in Section 1.2. Finally, in
Section 4, we prove the theorem stated in Section 1.3.

1.1. Uniformly Hyperbolic SL(2,R)-Sequences. Consider a map A : Z → SL(2,R) with
‖A(j)‖ ≤ M for all j ∈ Z. We again define An(j) be as in (6). Let B · θ denotes the induced
transformation of B ∈ SL(2,R) acting on projective space RP1 = R/(πZ) 3 θ, i.e. a line
passing through the origin is identified with the angle between itself and the positive half part
of a horizontal line. By ~v ∈ θ, we mean a vector ~v in the line with direction θ. In particular,

we let ~θ denotes an unit vector in the line of direction θ. Throughout this paper, C, c will
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be universal constants, where C is large and c is small, and ‖ · ‖∞ always denotes the usual
supremum norm in various scenarios. We first give the following definition.

Definition 1. We say that A is uniformly hyperbolic (UH) if there are two maps

u, s : Z→ RP1

such that

(1) u, s are A–invariant in the sense that for all j ∈ Z, it holds that

A(j) · u(j) = u(j + 1) and A(j) · s(j) = s(j + 1).

(2) there exists C > 0, λ > 1 such that ‖A−n(j)~v‖, ‖An(j)~w‖ ≤ Cλ−n for all n ≥ 1, all
j ∈ Z, and all unit vectors ~v ∈ u(j), ~w ∈ s(j).

Here u is called the unstable direction and s the stable direction of A.

Remark 1. In many literatures, it is explicitly stated in the definition of uniform hyperbolicity
that u(j) 6= s(j) for all j ∈ Z, or equivalently R2 = s(j)⊕u(j) where one may think of θ ∈ RP1

to be an one-dimensional subspace of R2. We leave it implicit as u(j) 6= s(j) for all j ∈ Z is
an immediate consequence of the conditions in Definition 1. Indeed, if u(j) = s(j) for some j,
then by A-invariance s(j) = u(j) for all j ∈ Z. Then for an unit vector ~s(j) ∈ s(j), it holds
for all n ≥ 1 that

‖An(j)~s(j)‖ < Cλ−n.

And for an unit vector ~u(j + n) ∈ u(j + n), it holds for all n ≥ 1 that

‖A−n(j + n)~u(j + n)‖ < Cλ−n.

By A-invariance, it must hold that A−n(j + n)~u(j + n) ∈ u(j) = s(j). Hence

~u(j) :=
A−n(j + n)~u(j + n)

‖A−n(j + n)~u(j + n)‖
= ±~s(j).

So for all n ≥ 1, we obtain

‖An(j)~u(j)‖ =
‖~u(j + n)‖

‖A−n(j + n)~u(j + n)‖
> cλn,

which in turn implies for all n ≥ 1 that

cλn < Cλ−n.

This is clearly not possible. Note for the argument above to work, we do not need the condition
‖A‖∞ < M . On the other hand, under the condtion ‖A‖∞ < M , Lemma 2 says that Defini-
tion 1 actually implies that |u(j) − s(j)| > γ > 0 for all j ∈ Z, where the distance is in RP1.
Similarly, this remark applies to Definition 2.

From now on, A ∈ UH means A is uniformly hyperbolic. We have the following equivalent
condition for UH sequence, which is called the condition of uniformly exponential growth.

Theorem 1. A ∈ UH if and only if there exists c > 0, λ > 1 such that A satisfies the following
uniform exponential growth condition

(8) ‖An(j)‖ ≥ cλn for all n ∈ Z+ and all j ∈ Z.

Theorem 1 first appeared as the version for cocycles defined on certain base dynamical
systems, see e.g. Yoccoz [Y, Proposition 2] or Viana [V, Proposition 2.1]. We also formulate
the dynamical version as Corollary 1, the proof of which follows from exactly the same argument
of the proof of Theorem 1.
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Consider a set Ω, a bijection map T : Ω→ Ω, and a map A : Ω→ SL(2,R) with ‖A‖∞ < M .
Then we may define a dynamical system

(9) (T,A) : Ω× R2 → Ω× R2 (T,A)(ω,~v) = (T (ω), A(ω)~v).

Let (Tn, An) = (T,A)n denotes the iteration of the map. Then similar to (6), we have

(10) An(ω) =


A(Tn−1ω) · · ·A(ω), n ≥ 1,

I2, n = 0,

[A−n(Tnω)]−1 n ≤ −1,

Here A is called a cocycle map. For simplicity, (T,A) may also denote the induced projective
dynamics of (T,A) on Ω× RP1.

Definition 2. (T,A) is said to be uniformly hyperbolic if there exist two maps u, s : Ω→ RP1

such that:

(1) u, s are (T,A)–invariant which means that for all ω ∈ Ω,

A(ω) · u(ω) = u[T (ω)] and A(ω) · s(ω) = s[T (ω)];

(2) there exists C > 0, λ > 1 such that ‖A−n(ω)~v‖, ‖An(ω)~w‖ ≤ Cλ−n for all n ≥ 1, all
ω ∈ Ω, and all unit vectors ~v ∈ u(ω), ~w ∈ s(ω)

Here u is called the unstable direction and s the stable direction of (T,A).

Note in Definition 2, no topological structure or σ-algebra structure is assumed for Ω. Then
we have the following corollary of the proof of Theorem 1, see e.g. Remark 5.

Corollary 1. Let (Ω, T, A) be as in Definition 2. Assume in addition Ω is a compact topological
space, T a homeomorphism and A continuous. Then (T,A) ∈ UH if and only if there exists
c > 0, λ > 1 such that (T,A) satisfies the following uniform exponential growth condition:

‖An(ω)‖ ≥ cλn for all n ∈ Z+ and all ω ∈ Ω.

Moreover, the corresponding unstable and stable directions are continuous on Ω.

Remark 2. There is another notion of hyperbolicity that is closely related to, but different from,
UH which is called non-uniform hyperbolicity (NUH). To define it, we have to introduce a
T − invariant probability measure µ on Ω, i.e. a probability µ such that µ(T−1(S)) = µ(S) for
any µ-measurable set S ⊂ Ω. Then we introduce the dynamical object, the Lyapunov exponent,
which is defined as

L(T,A) = lim
n→∞

1

n

∫
Ω

log ‖An(ω)‖dµ = inf
n≥1

1

n

∫
Ω

log ‖An(ω)‖dµ ≥ 0.

The limit exists and is equal to the infimum since {
∫

Ω
log ‖An(ω)‖dµ}n≥1 is subadditive. It

is clear that if (T,A) ∈ UH, then L(T,A) > log λ > 0. On the other hand, if L(T,A) > 0
and (T,A) /∈ UH, then we say that (T,A) is non-uniformly hyperbolic and is denoted as
(T,A) ∈ NUA. There is well-developed theory in dynamical systems called the Oseledec’s
Multiplicity Ergodic Theorem which gurantees the existence of a pair of measurable stable and
unstable direction s and u : Ω → RP1 for any such system with positive Lyapunov exponent.
See e.g. [BaP, V]. One may also deduce the existence of such directions by following the
proof of Lemma 1. The main difference between UH and NUH is that for NUH, the stable
and unstable directions are only defined µ almost everywhere, are merely measurable, and their
difference must tend to 0 along some orbits.
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One may go from a sequence to a dynamical system by the following process. First we need
the notion of hull of a sequence in a space of full shift. Let AZ be the space of full shift generated
by a set of alphbets A. Suppose A is a compact topological space and AZ be equipped with
the product topology. Hence AZ is compact topologic space as well. Moreover, if A is a metric
space, then so is AZ. Let T : Ω→ Ω be the operator of left shift, i.e.

(Tω)n = ωn+1 for ω = (ωn) ∈ AZ.

Definition 3. For each ω ∈ AZ, the hull of ω is defined as {Tn(ω)}n∈Z, i.e. the closure of
the T -orbit of ω under the product topology. Let Hull(ω) denotes the hull of ω, which itself is
clearly a compact topological space that is invariant under T .

Now we take A = BM [SL(2,R)] where BM denotes the ball in SL(2,R) with norm less than
or equal to M . Thus the map A : Z → BM [SL(2,R)] is an element in AZ. So we may let

Ω = {Tn(A)}n∈Z = Hull(A). Clearly, T : Ω → Ω is a homeomorphism. Let F : Ω → SL(2,R)
be the evaluation map at the 0-position, i.e. F (ω) = ω(0). We may then consider the cocycle
(T, F ) : Ω × R2 → Ω × R2 as in (9). Let (Tn, Fn) = (T, F )n with Fn(ω) = F (ωn−1) · · ·F (ω0)
be the cocycle iteration as in (10). Then the following proposition is straightforward:

Proposition 1. Let A and (Ω, T, F ) be as above. Then

‖An(j)‖ ≥ cλn for all n ∈ Z+ and all j ∈ Z

if and only if

‖Fn(ω)‖ ≥ cλn for all n ∈ Z+ and all ω ∈ Ω.

In particular, by Therorem 1, the sequence A is uniformly hyperbolic if and only if (T, F ) is
uniformly hyperbolic.

Proof. We only need to consider the only if part since the if part is obvious via the relation
Fn(T kA) = An(k). Fix any ω ∈ Ω and any n ∈ Z. Since {T k(A), k ∈ Z} is dense in Ω, for each
ε > 0, we can find a j that T j(A) is so close to ω that the following holds:

‖Fn(ω)‖ > (1− ε)cλn.

Since the above inequality holds for all ω ∈ Ω, all n ∈ Z and all ω > 0, we then get

‖Fn(ω)‖ ≥ cλn for all n ∈ Z+ and all ω ∈ Ω,

concluding the proof. �

It turns out that for the proof of Theorem 1, one naturally needs to move from a sequence
to its Hull. Next we have another equivalent description of uniform hyperbolicity which is used
for the proofs in Section 3. Let Ω be compact metric space1, T : Ω → Ω a homeomorphism,
and A : Ω→ SL(2,R) is continuous.

Theorem 2. Let Ω, T, A be as above mentioned. In particular, Ω is a compact metric space.
Then (T,A) /∈ UH if and only if there is a ω ∈ Ω and an unit vector ~v ∈ R2 such that

(11) ‖An(ω)~v‖ ≤ 1, for all n ∈ Z.

Theorem 2 clearly implies the following equivalent description of uniform hyperbolic se-
quence.

1Unlike Corollary 1, here we need Ω to be a compact metric space as we will need sequential compactness
in its proof.
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Corollary 2. The sequence A : Z → SL(2,R) is not uniformly hyperbolic if and only there is
an unit vector ~v ∈ R2 so that the following holds true. For each ε > 0 and each n ∈ Z, there is
a jn ∈ Z so that

‖An(jn)~v‖ < 1 + ε.

Proof. Let Ω = Hull(A). Let (T, F ) be the dynamics on Ω×R2 as before Proposition 1. Then
by Proposition 1, A /∈ UH if and only if (T, F ) /∈ UH. By Theorem 2, A /∈ UH if and only if
there is a ω ∈ Ω, an unit vector ~v ∈ R2 such that

‖Fn(ω)~v‖ ≤ 1, for all n ∈ Z.
Since {A(j)}j∈Z is dense in Ω and Fn(T kA) = An(k), by a standard continuity argument, we
then obtain the desired conclusion. �

One can basically find Theorem 2 in [SS], see for example [Jo, Theorem 1.7]. The author
learned the proof of Theorem 2 presented in Section 2 from a course given by Artur Avila. It
is perhaps relatively simple. See Remark 3 for some historic remarks regarding Theorem 2.

Another equivalent condition for uniform hyperbolicty is the existence of an invariant cone
field, see e.g. [A1, Section 2.1] for some detailed description. Though we do not involve the
equivalence between it and UH directly anywhere, in Section 2.1, we do make use of a version
of the invariant cone field. See Lemma 3 for more information.

1.2. Resolvent Set and Uniform Hyperbolicity. One of the important relations between
dynamics of the Schrödinger cocycle and spectral theory of the Schrödinger cocyle is the fol-
lowing Johnson’s Theorem.

Theorem 3. σ(Hv) = {E ∈ R : A(E−v) /∈ UH}.

Remark 3. Johnson’s Theorem was first presented in Russell Johnson’s paper [Jo]. It was
originally stated in the setting of dynamically defined Schrödinger operators (See e.g. the Theo-
rem 4 below). Johnson’s work used and was partially inspired by series of works of Sacker-Sell,
see e.g. [SS]. In particular, Sacker-Sell discovered the so-called Sacker-Sell orbit which is
essentially the (An(ω)~v)n∈Z as in (11). Note also that in Sacker-Sell and Johnson’s papers
the notion of uniform hyperbolicity are appeared as the notion of exponential dicotomy. We
also wish to point out that separately in the community of dynamical systems, diffeomorphisms
on manifolds which do not admit Sacker-Sell type of orbits on the tagent bundle are called
quasi-Anosov, which have been heavily studied as well. For diffeomorphisms on manifold, the
equivalent notion of uniformly hyperbolic system is called the Anosov diffeomphism. See e.g.
the paper by Franks-Robinson [FR] for some further information.

It turns out that like the uniform hyperbolic sequences, even though one starts with the
operator (2), one naturally ends up studying a family of operators. More precisely, in this case,
we let A = [−M,M ] with the usual topoloty. Hence, AZ is compact under product topology.

Let Ω = Hull(A) = {Tn(v)}n∈Z which is a compact topological space that is invariant under
the left shift operator T . We may then define a funtion f : Ω → R as f(ω) = ω0 and consider
the family of the operators

(12) (Hωψ)n = ψn+1 + ψn−1 + f(Tnω)ψn, ω ∈ Ω.

In particular, Hv is embedded into the dynamically defined family of operators {Hω}ω∈Ω. Note
that T is topological transitive since {Tnv, n ∈ Z} is dense in Ω. For spectral analysis of
the family of operators {Hω}ω∈Ω, (Ω, T ) usually comes equipped with a T -ergodic probability
measure µ. Here ergodic measure means that µ is a T -invariant measure with the additional
property:

µ
[
(A \ T−1A)

⋃
(T−1A \A)

]
= 0⇒ µ(A) = 0 or 1.
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Then the family of operators {Hω}ω∈Ω is called ergodic Schrödinger operators with ergodic
base dynamics (Ω, T, µ). To study many of the spectral properties of the operator (2), such as
Anderson Localization phenomenon, one has to consider the family operators (12) for µ-a.e. ω
with some suitable choice of µ. See Remark 4 for more information.

In fact, one may just start with ergodic system (Ω, T, µ) where Ω is a compact metric space,
T : Ω→ Ω a homeomorphism and µ is a probability on Ω that is T -ergodic. Let f : Ω→ R be
a continuous function. Then we can define Hω just as in (12). Similarly, the transfer matrices
may be generated as follows. First, we define a family maps A(E−f) : Ω→ SL(2,R) as

(13) A(E−f)(ω) =

(
E − f(ω) −1

1 0

)
, E ∈ R.

which is called the Schrödinger cocycle map. Then similar to (9), we have a family of dynamical
systems as

(14) (T,A(E−f)) : Ω× R2 → Ω× R2, (T,A(E−f))(ω,~v) = (Tω,A(E−f)(ω)~v)

which is called the Schrödinger cocycle. Let (T,A(E−f))n = (Tn, A
(E−f)
n ). Similar to (7),

A
(E−f)
n (ω) is the n-step transfer matrix of the equation Hωψ = Eψ. Then we have the following

theorem which is the standard version of the Johnson’s Theorem [Jo]:

Theorem 4. Let (Ω, T, f) be as above mentioned. Assume in addition that (Ω, T ) is topological

transitive. Let ω0 be that Orb(ω0) = Ω and let Σ = σ(Hω0
). Then it holds for all ω ∈ Ω that

σ(Hω) ⊂ Σ. Moreover, it holds that

Σ = {E : (T,A(E−f)) is not uniformly hyperbolic}.

Remark 4. Let L(E) = L(T,A(E−f)) be the Lyapunov exponent for each E ∈ R. By The-
orem 4 and Remark 2, for those E ∈ Σ, either L(E) = 0 or (T,A(E−f)) ∈ NUH. For the
spectral analysis of ergodic Schrödinger operators, a key part is to study the Lyapuonv expo-
nent L(E). For instance, Kotani Theory [Ko] basically identifies for µ−a.e. ω the absolutely
spectrum Hω with the set of energies where L(E) = 0. Moreover, the approach developed by
Bourgain-Goldstein [BG] basically shows that uniform positivity and some version of uniform
large deviation estimates of the Lyapunov exponent L(E) (both uniformities are in E) are strong
indications of Anderson Localization for Hω for many ω’s. Also, a key part of the global theory
established by Avila [A2] for one-frequency quasiperiodic operators are some deep analysis of
the Lypunov exponent. In particular, Avila managed to characterize UH and NUH via the
Lyapunov exponent in a surprising way for analytic one-frequency SL(2,C) cocyles.

We wish to point out that Theorem 3 and 4 are closely related due to the relation between v
and Hull(v). However, Theorem 3 is the first version for sequence potentials. It thus may come
more naturally. In fact, in Section 3, we could deduce Theorem 4 from Theorem 3 without
much effort. Moreover, in Section 3, we shall give two different proofs for the direction “uniform
hyperbolicity away from the spectrum”. The first one uses the results in Section 1.1. The other
one is provided to the author by W. Schlag which only uses Combes-Thomas type of estimates
and is actually much simpler.

Since the work of Johnson, there are many further developments. For instance, [M] showed
a similar correspondence between the singular Jacobi operators and cocycles with dominated
splitting, which is a generalized notion of UH where matrices are allowed to be singular. Later,
[FiOZ] did a similar version between the generalized extended CMV matrices and cocyles with
dominated splitting. Those are crucial in establishing many spectral properties of the extended
Harper’s model as in [AJM] and the unitary critical almost Mathieu operators as in [FiOZ].
See also [GoKl] for a recent version written in terms of the rotation number of the cocycle.
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1.3. Avalanche Principle and Uniform Hyperbolicity. The following proposition was
first discovered by Goldstein-Schlag [GS] and is called the Avalanche Principle.

Proposition 2. Let A(1), . . . , A(n) be a finite sequence in SL(2,R) satisfying:

min
1≤j≤n

‖A(j)‖ ≥ λ > n,(15)

max
1≤j<n

|log ‖A(j + 1)‖+ log ‖A(j)‖ − log ‖A(j + 1)A(j)‖| < 1

2
log λ.(16)

Then

(17)

∣∣∣∣∣∣log ‖An(1)‖+

n−1∑
j=2

log ‖A(j)‖ −
n−1∑
j=1

log ‖A(j + 1)A(j)‖

∣∣∣∣∣∣ ≤ Cnλ.
See [GS, Proposition 2.2] for the original proof. Basically, the Avalanche Principle permits
us good control on the norm of a product of SL(2,R) matrices provided we have suitable
estimates on consecutive pairwise products. Together with large deviation type of estimates for
the associated Lyapuonv exponent, it is proved to be a powerful tool in establishing quantative
continuity of the Lyapunov exponent and the integrated density of states.

A close comparision of the conditions (36)-(37) of Corollary 3 and the conditions (15)-
(16), one may find they are basically conditions (36)-(37) for k = 1. Thus the finite sequence
A(1), . . . , A(n) is actually a finite piece of an infinitly hyperbolic sequence. A bit more precisely,
if ‖A(j+ 1)A(j)‖ is not too small compared with ‖A(j+ 1)‖ · ‖A(j)‖, then the most contracted
direction s(j+ 1) of A(j+ 1) is not too close to the most contracted direction u(j) of (A(j))−1.

Once one realizes this relation, then one can actually remove the restriction λ > n in condi-
tion (15) and obtain a dynamical proof. Roughly speaking, in case one has UH, as the norm
of the cocycle satisfies the condition of uniform exponential growth (8), the difference between
n-step asymptotic stable (resp. unstable) and (n + k)-step asymptotic stable (resp. unstable)
directions (see (22) for their definition) won’t accumulate as k gets large, see (26). One may
compare the proof of Lemma 1 and Section 4 for more information of this discussion. So we
restate it as:

Theorem 5. Let A(j), j ∈ Z be an infinite sequence in SL(2,R). Suppose there is a λ > C,
largeness independent of n below, so that for each j, it holds that:

‖A(j)‖ ≥ λ,(18)

|log ‖A(j + 1)‖+ log ‖A(j)‖ − log ‖A(j + 1)A(j)‖| ≤ 1

2
log λ.(19)

Then the sequence A(j), j ∈ Z is uniformly hyperbolic and it holds for each j ∈ Z and each
n ∈ Z+ that

(20)

∣∣∣∣∣log ‖An(j)‖+

n−2∑
k=1

log ‖A(j + k)‖ −
n−2∑
k=0

log ‖A(j + k + 1)A(j + k)‖

∣∣∣∣∣ ≤ Cnλ.
There are numerous generalizations since the original work of Goldstein-Schlag, e.g. orders of

the matrices have been generalized from 2 to any d ≥ 2, real valued matrices to complex valued
ones, and the relaxation of the condition λ > n. In particular, in the setting of SL(2,R)-cocycles,
as it was expressed by Duarte-Klein [DuK], Bourgain-Jitomirskaya [BJ, Lemma 5] have greatly
relaxed the constraint λ > n, and later Bourgain [B2, Lemma 2.6] has completely removed
it, at the cost of slightly weakening the conclusion of the AP. Finally, Duarte-Klein’s work
[DuK] may be considered as a one stop reference for the development of Avalanche Principle,
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where they obtained the most general version. In particular, in their version, λ > n is removed
without any cost.

Our purposes of Theorem 5 are the following. First, no version above mentioned seemed
to realize the relation between infinitely uniformly hyperbolic sequence of matrices and the
Avalanche Principle. Second, though the version in [DuK] is more general than ours (note
however, they only dealt with finite sequences), the proof was quite involved and hence much
longer than the one in this paper.

The proof of Theorem 5 is the whole Section 4. Many of the tools have actually been
developed in [WZ2] for different purpose concerning positivity and large deviation estimates
of the Lyapunov exponent of some quasiperiodic operators. We include a full proof here as
the tools are a special case of those in [WZ2] and hence the proof are much simpler. From
the proof, it is not difficult to see that one may both improve the estimates and generalize the
results in various ways. However, we wish to stay within the simplest nontrivial scenario to
make the dynamics behind the Avalanche Principle clearest.

2. Equivalent Descriptions of Uniform hyperbolicity

In this section, we prove Theorems 1 and 2. It is clear that Definition 1 implies the uniform
exponential growth of A. So we only need to show that the converse is true.

2.1. Uniform Exponential Growth Implies Uniform Hyperbolicity. 2

For D ∈ SL(2,R), let s(D) ∈ RP1 denotes the most contracted direction of D. It is a
relatively straightforward fact that as a map from SL(2,R) to RP1, s(·) is C∞ away from
SO(2,R) (see e.g. [Z1, Lemma 10]). Let ~s(D) ∈ s(D) denotes an unit vector. Similarly, let
u(D) = s(D−1) and ~u(D) ∈ u(D) be an unit vector. Then a standard polar decomposition
procedure shows that

(21) D = Ru(D)

(
‖D‖ 0

0 ‖D‖−1

)
Rπ

2−s(D),

where Rθ denotes the rotation matrix with rotation angle θ:

Rθ =

(
cos θ, − sin θ
sin θ, cos θ

)
.

Let s⊥(D) denotes the orthogonal direction of s(D). Then by (21), it is clear that s⊥(D) is the
most expanding direction of D. Similarly, let ~s⊥(D) denote an unit vector in s⊥(D). Defining

(22) sn(j) = s[An(j)] and un(j) = s[A−n(j)]

which we call n-step stable and unstable directions or simply asymptotic stable and unstable
directions. As we will show in Lemmas 1 and 2 below, they tend to the actual stable and unstable
directions as n goes to infinity. This pair of functions play key role throughout this paper. In
the remaining part of this paper, let |x| denotes min{|x|, |x− π|} for x ∈ RP1 = R/(πZ).

Let A(j) : Z→ SL(2,R) be bounded, i.e. ‖A‖∞ < M , and satisfying the uniform exponential
growth condition (8), i.e. ‖An(j)‖ > cλn for all j ∈ Z and all n ≥ 1, where λ > 1 and c > 0 are
independent of n and j. We start with the existence of a pair of instinct invariant directions.

Lemma 1. There exist u and s : Z→ RP1 such that

(23) lim
n→∞

‖un − u‖∞ = lim
n→∞

‖sn − s‖∞ = 0.

Moreover, u(j) 6= s(j), for all j ∈ Z, and they are both A-invariant.

2The author would like to thank W. Schlag for pointing out to him that there are some similar discussions
in [V, Section 2.2] with the present section. Corollary 4 was added after the author read Viana’s book.
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Proof. By definition we have

(24) ‖An(j)~sn+1(j)‖ = ‖A(j + n)−1An+1(j)~sn+1(j)‖ ≤M‖An+1(j)‖−1 ≤ Cλ−n.

Let θ = |sn(j) − sn+1(j)|. Then we may write ~sn+1(j) = (cos θ)~sn(j) + (sin θ)~s⊥n (j). By the
definitions of ~s(D) and ~s⊥(D)and applying An(j) at both sides, we obtain

| sin θ| · ‖An(j)‖ = | sin θ| · ‖An(j)~s⊥n (j)‖(25)

= ‖An(j)~sn+1(j)− (cos θ)An(j)~sn(j)‖
≤ ‖An(j)~sn+1(j)‖+ | cos θ| · ‖An(j)~sn(j)‖
≤ Cλ−n + ‖An(j)‖−1.

Since ‖An(j)‖−1 ≤ Cλ−n, (25) then implies that

(26) |sn(j)− sn+1(j)| = θ ≤ C| sin θ| ≤ Cλ−n‖An(j)‖−1 ≤ Cλ−2n.

Thus {sn(j)}n∈Z is a Cauchy sequence for each j ∈ Z and convergence is independent of j ∈ Z.
Thus there exists some s : Z→ RP1

(27) ‖sn − s‖∞ ≤ Cλ−2n.

In particular, limn→∞ ‖sn − s‖∞ = 0. Similarly, we get all the estimates for un and u.
For the invariance property, we only need to note that

(28) ‖An(j + 1)A(j)~sn+1(j)‖ = ‖An+1(j)~sn+1(j)‖ = ‖An+1(j)‖−1 ≤ Cλ−(n+1).

Clearly, (28) is similar to (24). Thus, replacing An(j) by An(j + 1), sn+1(j) by A(j)~sn+1(j),
and sn(j) by sn(j + 1), the same argument obtaining (26) yields

|A(j) · sn+1(j)− sn(j + 1)| ≤ Cλ−2n,

for all n ≥ 1 and all j ∈ Z. So we have

A(j) · s(j) = A(j) · [ lim
n→∞

sn+1(j)] = lim
n→∞

A(j) · sn+1(j) = lim
n→∞

sn(j + 1) = s(j + 1).

Similarly, we get that u is also A-invariant.
To show u(j) 6= s(j), by invariance property, we only need to show that u(j0) 6= s(j0) for

some j0. First, we claim that there exists a pair (c, λ) satisfying the uniform exponential growth
condition (8) and the following condition:

(29) for all N ∈ Z+, there exist j0 ∈ Z and n0 ≥ N such that ‖An0
(j0)‖ ≤ cλ 3

2n0 .

First we clearly have that ‖An(j)‖ ≤Mn for all j ∈ Z and all n ≥ 1. Now we start with a pair
(c0, λ0) satisfying (8). If (29) also holds true for (c0, λ0), then we are done. Otherwise, (29) is
false for (c0, λ0). Then there exists a N1 ∈ Z+ such that for all j ∈ Z and all n ≥ N1, it holds

that ‖An(j)‖ ≥ c0λ
3
2n
0 .

We now set λ1 = λ
3
2
0 and c1 = min{c0, λ−N1

1 }. We claim that A satisfies (8) for the new pair
(c1, λ1). Indeed, for n < N1, we have

‖An(j)‖ ≥ 1 ≥ c1λN1
1 ≥ c1λn1

and for n ≥ N1, it holds that

‖An(j)‖ ≥ c0λ
3
2n
0 = c0λ

n
1 ≥ c1λn1 .

We repeat the process with the new pair (c1, λ1). Since λ0 > 1, the process must terminate

before step k where λ
(3/2)k

0 > M . Thus, we find the pair (c, λ) with the properties (8) and (29).



UNIFORM HYPERBOLICTY AND SPECTRAL THEORY 11

We now work with the pair (c, λ) as above. Let j0 and n0 ≥ N be from (29) for some N .
By (27), it holds that |sn0

(j0)− s(j0)| < Cλ−2n0 . Write

~s(j0) = cos(s(j0)− sn0(j0))~sn0(j0) + sin(s(j0)− sn0(j0))~s⊥n0
(j0).

Combining everything together, we then have

‖An0(j0)~s(j0)‖ = ‖An0(j0) cos(s(j0)− sn0(j0))~sn0(j0) +An0(j0) sin(s(j0)− sn0(j0))~s⊥n0
(j0)‖

≤ ‖An0
(j0)~sn0

(j0)‖+ ‖An0
(j0)~s⊥n0

(j0)‖ · |s(j0)− sn0
(j0)|

≤ ‖An0(j0)‖−1 + ‖An0(j0)‖Cλ−2n0

≤ Cλ−n0 + Cλ
3
2n0λ−2n0

≤ Cλ−n0/2.

Thus for large N , it holds that ‖An0
(j0)~s(j0)‖ < Cλ−n0/2 < 1. Similarly, we can get that

‖A−n0
(j0 + n0)~u(j0 + n0)‖ < 1.

Since An0
(j0) · u(j0) = u(j0 + n0) and An0

(j0)−1 = A−n0
(j0 + n0), we then have

‖An0
(j0)~u(j0)‖ > 1,

which implies that u(j0) 6= s(j0), concluding the proof.
�

Next we show that s and u are away from each other with distances bounded uniformly from
below.

Lemma 2. There exists a γ > 0 in RP1 such that

(30) inf
j∈Z
|s(j)− u(j)| ≥ γ.

Proof. Let (Ω, T, F ) be as in Proposition 1. In other words, Ω = Hull(A), T is the left shift
map, and F (ω) = ω0 ∈ SL(2,R) which is clearly continuous. Then by uniform growth condition
of A and Proposition 1, it holds that

(31) ‖Fn(ω)‖ ≥ cλn, for all ω ∈ Ω and all n ≥ 1.

For each ω, we define Bω(j) = F (T jω) for all j ∈ Z. Let sωn(j) and uωn(j) be the asymp-
totic stable and unstable directions of Bω. By (31), for each ω, we could treat the sequence
{Bω(j), j ∈ Z} as the sequence {A(j), j ∈ Z} in Lemma 1. If we define

sn(ω) = s(Fn(ω)) and un(ω) = s(F−n(ω)),

then sn(ω) = sωn(0) and un(ω) = uωn(0). Applying (26) to Bω with j = 0, we then obtain

|sn(ω)− sn+1(ω)| < Cλ−2n and |un(ω)− un+1(ω)| < Cλ−2n,

where from the proof of Lemma 1, C has nothing to do with ω. Hence, there exist some
u, s : Ω→ RP1, it holds that

(32) lim
n→∞

‖un − u‖∞ = lim
n→∞

‖sn − s‖∞ = 0.

Note that s(T jω) is the stable direction sω(j) of Bω. In particular, for each ω, it holds that

F (ω) · s(ω) = Bω(0) · sω(0) = sω(1) = s(Tω),

i.e. s is (T, F )-invariant. Similarly, u is (T, F )-invariant as well. Moreover, for each ω, sω(0) 6=
uω(0) which implies that s(ω) 6= u(ω) for each ω ∈ Ω.
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On the other hand, the most contracted direction is C∞ away from SO(2,R), un(ω) and sn(ω)
are continuous in ω for all large n by (31). Thus, (23) implies that u and s are continuous as
well. Thus by compactness of Ω and continuity of u, s, we have for some γ > 0

|u(ω)− s(ω)| ≥ γ, for all ω ∈ Ω.

Since A ∈ Ω and u(j) = u[T j(A)], we get |u(j)− s(j)| ≥ γ, for all j ∈ Z. �

Finally, we need the following lemma, which is essentially [Z1, Lemma 11] adapted to the
present setting. The proof is presented for completeness.

Lemma 3. Let Ω be a set and T : Ω→ Ω a bijection. Consider two maps b : Ω→ R \ {0} and
β : Ω→ RP1. Define D : Ω→ SL(2,R) as

D(ω) =

(
b(ω) 0

0 b(ω)−1

)
·Rπ

2−β(ω)

and consider the cocycle (T,D). Define ρ(δ) := δ + 3
δ for δ > 0. Assume there is a δ0 > 0 and

a λ0 > ρ(δ0) with the following properties: for all ω ∈ Ω, it holds that

| tanβ(ω)| > δ0 and |b(ω)| > λ0.

Then if we define F ⊂ RP1 to be F := {θ ∈ RP1 : | tan θ| < δ0/2}, it holds that

(1) F is (T,D)-invariant, i.e. D(ω) · F ⊂ F .

(2) There is an α > 1 such that ‖D(ω)~θ‖ > α for all unit vector ~θ with θ ∈ F .

Proof. Let θ ∈ F . It is straightforward to see that the two variable function g(t, r) = 1+tr
t−r ,

t > r > 0 is decreasing in t and increasing in r. Then a direction computation shows that

|tan[D(ω) · θ]| =
∣∣∣∣b−2(ω)

1 + tan[β(ω)] tan θ

tan[β(ω)]− tan θ

∣∣∣∣
≤ λ−2

0

1 + | tan[β(ω)]| · | tan θ|
| tan[β(ω)]| − | tan θ|

≤ 2 + δ2
0

λ2
0δ0

< δ0/2,

where the last inequality follows from the fact that λ2
0 > (δ0 +3/δ0)2 > 4(1+δ2

0)/δ2
0 . This takes

care of the property (1).
Note a similar estimate as above also shows that for all θ ∈ F ,∣∣∣tan

[
Rπ

2−β(ω) · θ
]∣∣∣ =

∣∣∣∣1 + tan[β(ω)] tan θ

tan[β(ω)]− tan θ

∣∣∣∣
≤ 1 + | tan[β(ω)]| · | tan θ|
| tan[β(ω)]| − | tan θ|

<
2 + δ2

0

δ0
.

Now take θ ∈ F , then we may write ~θ =
(

1
r

)
/
√

1 + r2 with |r| < δ0/2. Then the above estimate
shows that we may write

Rπ
2−β(ω)

~θ =
1√

1 + t2

(
1

t

)
,
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where |t| < 2+δ20
δ0

. Thus we obtain

‖D(ω)~θ‖2 =

∥∥∥∥(b(ω), 0
0, b(ω)−1

)
·Rπ

2−β(ω)
~θ

∥∥∥∥2

=
b2(ω) + b−2(ω)t2

1 + t2

≥ λ2
0

1 + ( 2
δ0

+ δ0)2

>
(δ0 + 3

δ0
)2

1 + ( 2
δ0

+ δ0)2

> 1,

concluding the proof. �

Lemma 3 basically says that under its conditions, (T,D) admits a constant invariant cone
field. Moreover, for each vector in this cone field, the norm expands uniformly under the
cocycle iteration. It clearly implies the uniform exponential growth condition. Note no addition
structure of Ω is assumed in Lemma 3.

Now we are ready to prove Theorem 1. Since we already have invariance by Lemma 1,
it suffices to show that vectors in the direction of u are uniformly exponentially contracted
backward under iteration of A while vectors in the direction of s are contracted forward. We
only prove it for the u-direction since the proof of the s-direction is completely analogous.

Proof of Theorem 1. We show that there is some λ0 > 1 such that for all n ∈ Z+ and all j ∈ Z,
it holds that

‖A−n(j)~u(j)‖ ≤ Cλ−n0 .

By A-invariance of u, we may equivalently show for all n ∈ Z+ and all j ∈ Z that

‖An(j)~u(j)‖ ≥ cλn0 .

By proofs of Lemma 1 and Lemma 2, there exists an N ∈ Z+ such that for all k ≥ N and for
all j ∈ Z, it holds that

|uk(j)− sk(j)| > γ

2
,

|u(j)− uk(j)| < Cλ−2k := εk, and

‖Ak(j)‖ ≥ cλk := Λk.

By definition, we have

Ak(j) = Ruk(j+k)

(
‖Ak(j)‖ 0

0 ‖Ak(j)‖−1

)
Rπ

2−sk(j).

For each k ≥ N , we may consider a new map B(k) : Z→ SL(2,R) such that

(33) B(k)(j) :=

(
‖Ak(jk)‖ 0

0 ‖Ak(jk)‖−1

)
Rπ

2 +uk(jk)−sk(jk).

Then it is clear that

(34) B(k)(j) = R−uk((j+1)k)Ak(jk)Ruk(jk).
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We may choose k large so that Λk > ρ(γ2 ) and | tan εk| < γ
4 . Fix such a k and apply Lemma 3

to (Z, T, B(k)) where T (j) = j + 1. For each j, let ~vj ∈ [u(jk)− uk(jk)] be an unit vector. We
then obtain that for some α > 1 it holds true for each j ∈ Z that

‖B(k)
n (j)~vj‖ ≥ αn, for all j ∈ Z and all n ∈ Z+.

Then we may pass the estimate to A via (33) as follows. For each pair (j, n), we may first
find some q so that (q−1)k < j ≤ qk. Then we may write n−(qk−j) = kr+p where 0 ≤ p < k.
Note r ≥ [nk ]− 2. Then by (34), we obtain for all j ∈ Z and all n ∈ Z+ that

‖An(j)~u(j)‖ = ‖Ap(kr + qk) ·Akr(qk) ·Aqk−j(j)~u(j)‖

≥ c‖B(k)
r (q) ·R−uk(qk) ·Aqk−j(j)~u(j)‖

≥ c‖B(k)
r (q)~vq‖

≥ cαr

≥ c[α 1
k ]n,(35)

where the first inequality we use the fact that ‖Ap(kr + qk)‖−1 > c for some c = c(M,k),
equation (34), and the fact that rotation matrices preserve the operator norm; for the second
the inequality, we use the fact that 0 < qk − j < k which implies R−uk(qk) · Aqk−j(j)~u(j) =
cR−uk(qk)~u(qk) for some c = c(M,k). Evidently, R−uk(qk)~u(qk) is an unit vector in the direction
of u(qk)− uk(qk) which is by definition is ~vq.

Clearly, (35) is the desired estimate with λ0 = α
1
k . Similarly, we may get the estimate for s.

Thus, as the notation suggested, we show that u is the unstable direction of A as in Definition 1
and s is the stable direction. This completes the proof of the Theorem 1. �

Remark 5. The proof of Corollary 1 is identical to the proof of Theorem 1. One only needs
to replace Z by Ω, A : Z → SL(2,R) by A : Ω → SL(2,R), and An(j) by An(ω). In fact, the
proof of Corollary 1 is even simpler: there is no need to introduce the Hull of a sequence.

From the proof Lemma 2, the proof of Theorem 1, Lemma 3, and Corollary 1, it is actually
not difficult to deduce the following Corollary 3 which give another equivalent condition of
uniform hyperbolicity. Let (Ω, T ) and A : Ω → SL(2,R) be as in Corollary 1 and consider
cocycle dynamics (T,A) as 9. For n ≥ 1, let sn(ω) = s[An(ω)] and un(ω) = s[A−n(ω)].

Corollary 3. (T,A) ∈ UH if and only if there are some k ∈ Z+ and some δ0 > 0 so that the
following hold ture for all ω ∈ Ω:

‖Ak(ω)‖ > ρ(δ0),(36)

|sk(ω)− uk(ω)| > δ0.(37)

Proof. The only if part is quite straightforward. UH implies the uniform exponential growth
of ‖An(ω)‖. Hence, by the proof of Lemma 2, we obtain |u(ω) − s(ω)| > γ for all ω ∈ Ω and
for some γ > 0, and the uniform convergence of sn(ω) (resp. un(ω)) to s(ω) (resp. u(ω)). This
clearly implies for all large k, (37) holds true with δ0 = γ

2 . By the uniform exponential growth
condition, we may pick some k large so that (36) holds true.

For the if part, similar to the proof of Theorem 1, conditions (36) and (37) imply the existence
of a constant invariant cone field F : Ω→ RP1 for the new cocycle (T k, B) where

B(ω) :=

(
‖Ak(ω)‖ 0

0 ‖Ak(ω)‖−1

)
Rπ

2 +uk(ω)−sk(ω).

It holds that ‖Bn(ω)‖ = ‖Ank(ω)‖ for all n ∈ Z+ since

B(ω) = R−uk(Tkω)Ak(ω)Ruk(ω).



UNIFORM HYPERBOLICTY AND SPECTRAL THEORY 15

Then apply Lemma 3 to (T k, B), we obtain for some α > 1 that ‖B(ω)~v‖ > α for all ω ∈ Ω and
for all unit vector ~v ∈ F . It clearly implies the uniform exponential growth of (T,B), hence
the uniform exponential growth of (T,A). By Corollary 1, one then gets (T,A) ∈ UH. �

The main advantage of this description is that while other definitions involve n-step cocycle
iterations for all n ∈ Z+, Corollary 3 only need information for cocycle iterations up to a certain
finite step k. Hence, it may become a useful tool to produce uniformly hyperbolic systems. In
fact, this is exactly one of the key ideas of [WZ1] to show Cantor Spectrum (i.e. the spectrum is
a Cantor set) for a class of quasiperiodic Schrödinger operators. One may have a more enhanced
version of Corollary 3, see e.g. [Z2, Lemma 5]. This idea of separation of asymptotic stable
and unstable directions are promising in the sense that it may further be used to get more
results concerning Cantor spectrum, which is another central topic in the spectral analysis of
quasiperiodic Schrödinger operators.

To show Corollary 3’s usefulness, we give the following almost immediate consequence of

Corollary 3. Let s
(·)
n , s(·) : Ω → RP1 denote the n-step asymptotic stable and the sta-

ble directions of (T, ·) ∈ UH. Similarly, we can define u
(·)
n and u(·). Recall that the

most contracted direction map is C∞ away from SO(2,R). Thus by compactness of Ω,

s
(·)
n , u

(·)
n : C0(Ω,SL(2,R)) → C0(Ω,RP1) are continuous as long as the n-step cocycle itera-

tions are uniformly away from SO(2,R), i.e. for some α > 1, ‖(·)n(ω)‖ > α for all ω ∈ Ω.

Corollary 4. Let (Ω, T, A) be as in Corollary 1. Suppose (T,A) ∈ UH. Then for any ε > 0,
there exists a δ > 0 so that if B : Ω → SL(2,R) satisfies ‖A − B‖∞ < δ, then (T,B) ∈ UH.
Moreover, it holds that

(38) ‖s(A) − s(B)‖∞ < ε and ‖u(A) − u(B)‖∞ < ε.

In other words, s(·), u(·) : C0 (Ω,SL(2,R)) ∩ UH → C0(Ω,RP1) are continuous.

Proof. By Corollary 3, (T,A) ∈ UH implies that (36)-(37) hold true for some k ∈ Z+ and
λ > 1. Then by the fact stated above Corollary 4, there is a δ > 0 such that if ‖B −A‖∞ < δ,
then (36)-(37) hold true for (T,B). Hence, (T,B) ∈ UH by Corollary 3.

For the proof of (38), by the proof of (23) in Lemma 1, sn (resp. un) converges to s (resp.
u) uniformly in ω ∈ Ω. So we may fix a N ∈ Z+ large so that

‖s(?) − s(?)
N ‖∞ < ε/3 and ‖u(?) − u(?)

N ‖∞ < ε/3,

where ? = A or B, and so that ‖AN (ω)‖ > α and ‖BN (ω)‖ > α for some α > 1 and for all
ω ∈ Ω. Choosing δ small, by the fact stated above the Corollary 4, it holds that

‖s(A)
N − s(B)

N ‖∞ < ε/3 and ‖u(A)
N − u(B)

N ‖∞ < ε/3.

Hence, (38) is a consequence of the triangle inequality. �

2.2. No Nontrivial Bounded Orbit Implies Uniform Hyperbolicty. The main part of
the proof of Theorem 2 is the only if part, i.e. we need to show if not UH, then (11) holds. To
this end, we need to argue by contradiction and show the contrary implies UH. Recall here Ω
is a compact metrice space.

Proof of Theorem 2. For the proof of if part, we note that UH implies that for all ~v ∈ R2 and
all ω ∈ Ω, it holds that

~v = c1~u(ω) + c2~s(ω), for some c1, c2 ∈ R.

Thus if ~v 6= 0, then we must have that ‖An(ω)v‖ grows exponentially fast either as n→∞ or
as n→ −∞.
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For the proof of only if part, the main thing is to show the following. Suppose there exist
ε > 0 and L ∈ Z+ with the following property: for all (ω,~v) ∈ Ω × S1, there is a |l| ≤ L such
that

‖Al(ω)~v‖ ≥ 1 + ε.

Then we claim (T,A) satisfies uniform exponential growth condition.
For (ω,~v) ∈ Ω× S1, let l(ω,~v) be defined as

(39) |l(ω,~v)| = min{|l| : |l| ≤ L and ‖Al(ω)~v‖ ≥ 1 + ε}
For each (ω,~v) ∈ Ω× S1, we then define the following sequence (lk, ~vk, ωk)k≥0 by induction:

l0 = 0, ~v0 = ~v, and ω0 = ω,

and for each k ≥ 1,

lk = l(ωk−1, ~vk−1), ~vk =
Alk(ωk−1)~vk−1

‖Alk(ωk−1)~vk−1‖
, and ωk = T lk(ωk−1).

Then it is straightforward to see that for each pair (p, k) with 0 ≤ p ≤ k − 1, it holds that

‖Alk+lk−1+·+lp+1
(ωp)~vp‖ = ‖Alk−1+·+lp+1

(ωp)~vp‖ · ‖Alk(ωk−1)~vk−1‖

=

k−1∏
j=p

‖Alj+1
(ωj)~vj‖

≥ (1 + ε)k−p

≥ 1 + ε.(40)

For p ∈ Z and q ∈ Z+, define

Iq(p) = [p− q + 1, p+ q − 1] ⊂ Z.

Let Lk =
∑k
j=0 lj . By the minimality of lk from (39), we have for each k ≥ 2,

(41) Lk /∈ Ik−1 :=

k−1⋃
p=1

I|lp| (Lp−1) .

Indeed, if Lk ∈ Ik−1, then Lk ∈ I|lp|(Lp−1) for some p ≥ 1, then |Lk −Lp−1| < |lp| and by (40)

‖ALk−Lp−1
(ωp−1)~vp−1‖ = ‖Alk+···+lp(ωp−1)~vp−1‖ ≥ 1 + ε,

which contradicts the minimality property of lp.
Clearly, Lk−Lk−1 = lk implies that Lk is on the boundary of I|lk|(Lk−1). Hence by (41), Lk

is on the boundary of Ik−1. This in turn implies that Ik is a connected interval in Z. Moreover,
by definition we have lj 6= 0 for all j > 0. Thus it must hold for all k ≥ 0 that

(42) |Ik+1| ≥ |Ik|+ 1,

which in particular implies that there exists a 0 ≤ K ≤ L such that |IK | ≥ L for all (ω,~v).
Hence |Ik| ≥ L for all k ≥ K.

Next, since |lk| ≤ L for all k ≥ 0, by (41) and the fact that Ik is connected in Z, we must
have that Lk is at the same side of Ik−1 for all k > K. In other words, as k is getting large,
the interval Ik expands along the same direction for all k ≥ K. Note 0 = l0 ∈ Ik for all k ≥ 1.
Thus for each (ω,~v), we obtain for some 1 ≤ K ≤ L,

either Lk+1 > Lk > 0 for all k ≥ K; or 0 > Lk > Lk+1 for all k ≥ K.
Then we claim that for each ω ∈ Ω, there must exist a ~v0 ∈ S1 so that

Lk+1(ω,~v0) > Lk(ω,~v0) > 0 for all k ≥ K.
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Indeed, suppose this is not ture. Then for some ω ∈ Ω and for all ~v ∈ S1, it holds that

0 > Lk > Lk+1 for all k ≥ K.

Note that |Lk −Lk−1| = |lk| ≤ L. Hence |LK | ≤ KL ≤ L2. Thus for all n ∈ Z− with |n| > L2,
there must exist some k ≥ K so that 0 > Lk > n ≥ Lk+1. It clearly holds that

0 < Lk − n < L and k ≥ |n|
L
.

Hence a similar argument as in (40) shows that:

‖An(ω)~v‖ ≥ c‖ALk(ω)~v‖(43)

= ‖Alk+lk−1+·+l1(ω)~v‖

=

k−1∏
j=0

‖Alj+1
(ωj)~vj‖

≥ c(1 + ε)k

≥ c(1 + ε)
|n|
L ,

where the estimates hold uniformly true for all ω ∈ Ω and for all ~v ∈ S1. Choosing n large and
picking an unit vector ~v ∈ s[An(ω)], we then obtain

1 > ‖An(ω)‖−1 = ‖An(ω)~v‖ ≥ c(1 + ε)
|n|
L > 1,

a contradiction. Consequently, for each ω, we may choose some ~v0 so that

Lk+1(ω,~v0) > Lk(ω,~v0) > 0 for all k ≥ K.

Then by a similar argument as the estimate (43), we obtain for all n > L2:

(44) ‖An(ω)‖ ≥ ‖An(ω)~v0‖ ≥ c(1 + ε)
n
L .

Note c is independent of ω. Changing c in (44) if necessary to incorporate all n with 1 ≤ n ≤ L2,
we then obtain uniform exponential growth property of (T,A). By Theorem 1, (T,A) ∈ UH.

Hence if we assume (T,A) /∈ UH, then for all ε > 0 and for all L > 0, there exists some
(ω,~v) ∈ Ω× S1 such that for all |l| ≤ L we have

‖Al(ω)~v‖ < 1 + ε.

Thus for each m ∈ Z+, we get a (ω(m), ~v(m)) ∈ Ω× S1 satisfies the above condition with ε = 1
m

and L = m. Note that Ω × S1 is a compact metric space since Ω is a compact metric space.
Thus, by passing to a subsequence, we may assume for some (ω,~v) ∈ Ω× S1 that

lim
m→∞

(ω(m), ~v(m)) = (ω,~v)

Thus we have for each n ∈ Z,

‖An(ω)~v‖ ≤ lim
m→∞

‖An(ω(m))~v(m)‖ ≤ lim
m→∞

(
1 +

1

m

)
= 1,

concluding the proof. �

3. Johnson’s Theorem for sequence potentials

In this Section, we prove Theorem 3. Then we may deduce Theorem 4. For ψ = (ψn)n∈Z ∈
`2(Z), let ‖ψ‖ denotes `2 norm of ψ, i.e. ‖ψ‖2 =

∑
n∈Z |ψn|2.
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3.1. Uniform Hyperbolicity Implies Invertibility of the Operator. Let us first show
σ(Hv) ⊂ {E : A(E−v) /∈ UH}. Equivalently, we show

{E : A(E−v) ∈ UH} ⊂ ρ(Hv).

Fix E such that A(E−v) ∈ UH. Then by Definition 1, A(E−v) has unstable direction u and
stable direction s. Let ψu, ψs ∈ RZ be solution to the eigenfunction equation Hvψ = Eψ and
be such that (

ψu0
ψu−1

)
∈ u(0),

(
ψs0
ψs−1

)
∈ s(0).

We normalize them so that

det

(
ψs0 ψu0
ψs−1 ψu−1

)
= 1.

Thus we have for all n ∈ Z,

(45) det

(
ψsn ψun
ψsn−1 ψun−1

)
= det

[
A(E−v)
n (0)

(
ψs0 ψu−1

ψs−1 ψu−1

)]
= 1.

Then we may construct the so-called Green’s function G : Z2 → R of Hv − E as:

(46) G(p, q) =

{
ψup · ψsq if p ≤ q,
ψuq · ψsp if q < p.

Note that G(p, q) is symmetric, i.e. G(p, q) = G(q, p). Below, we may often flip the (p, q) in G.

Lemma 4. There exist C > 0, λ > 1, independent of (p, q), such that

|G(p, q)| ≤ C

γ
λ−|p−q|, for all (p, q) ∈ Z2.

Here γ is from (30), i.e. the uniform lower bound between u and s in Lemma 2.

Proof. Let ~ψs(n) =
(
ψsn
ψsn−1

)
and ~ψu(n) =

(
ψun
ψun−1

)
. Note also

1 = det[~ψs(n), ~ψu(n)] = ‖~ψs(n)‖ · ‖~ψu(n)‖ · | sin(u(n)− s(n))|.

Thus for all n ∈ Z, it holds that

‖~ψs(n)‖ · ‖~ψu(n)‖ ≤ C

γ
.

Without loss of generality, we assume p ≤ q. Then

|G(p, q)| = |ψupψsq |

≤ ‖~ψu(p)‖ · ‖~ψs(p)‖ · ‖
~ψs(q)‖
‖~ψs(p)‖

≤ C

γ

‖A(E−v)
q−p (p)~ψs(p)‖
‖~ψs(p)‖

≤ C

γ
λ−(q−p),

where the last inequality follows from ~ψs(n) ∈ s(n) for all n ∈ Z. This concludes the proof. �



UNIFORM HYPERBOLICTY AND SPECTRAL THEORY 19

Define the operator S : `2(Z)→ `2(Z) so that

(Sψ)n =
∑
p∈Z

G(n, p)ψp, ψ ∈ `2(Z).

First, we show that (Hv−E) ◦S = Id, i.e. S is the inverse of Hv−E. For each p ∈ Z, consider
the squence (G(p, n))n∈Z. By the construction (46) of G, it holds true that

[(Hv − E)G(p, ·)](n) = G(p, n+ 1) +G(p, n− 1) + (v(n)− E)G(p, n)

=


ψup [ψsn+1 + ψsn−1 + (v(n)− E)ψsn], n ≥ p+ 1

ψsp[ψ
u
n+1 + ψun−1 + (v(n)− E)ψun], n ≤ p− 1.

ψsp+1ψ
u
p + ψsp[ψ

u
p−1 + (v(p)− E)ψup ], n = p,

=

{
0, n 6= p

ψsp+1ψ
u
p − ψspψup+1, n = p,

= δpn,

where δpn is the standard notation which is 0 if n 6= p and is 1 if n = p. Note in the last
equality, we use (45). Thus, for any φ = (φn) ∈ `2(Z), it holds that

[(Hv − E) ◦ S(φ)]n = (Sφ)n+1 + (Sφ)n−1 + [v(n)− E](Sφ)n

=
∑
p∈Z

[G(p, n+ 1) +G(p, n− 1) + (v(n)− E)G(p, n)]φp

=
∑
p∈Z

δpnφn

= φn,

as desired. Next we show that S is bounded. Let ‖G(n, ·)‖`1 be the `1 norm of the sequence
(G(n, p))p∈Z. By Lemma 4, ‖G(n, ·)‖`1 < C

γ for all n ∈ Z. Note the upper bound is independent
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of n. Then for all ψ ∈ `2(Z), it holds that

‖S(ψ)‖2 =
∑
n∈Z
|(Sψ)n|2 =

∑
n∈Z

∣∣∣∣∣∣
∑
p∈Z

G(n, p)ψp

∣∣∣∣∣∣
2

≤
∑
n∈Z

∑
p∈Z
|G(n, p)| 12 |G(n, p)| 12 |ψp|

2

≤
∑
n∈Z

∑
p∈Z
|G(n, p)|

∑
p∈Z
|G(n, p)||ψp|2


≤ C

γ

∑
n∈Z

∑
p∈Z
|G(n, p)||ψp|2

=
C

γ

∑
p∈Z

∑
n∈Z
|G(n, p)||ψp|2

=
C

γ

∑
p∈Z
|ψp|2

∑
n∈Z
|G(n, p)|

≤
(
C

γ

)2∑
p∈Z
|ψp|2

=

(
C

γ

)2

‖ψ‖2.

Note we use Cauchy-Schwarz’s inequality for the second inequality and Fubini’s Theorem for
the third equality. Hence, Hv −E is invertible with the bounded inverse S, which implies that
E ∈ ρ(Hv). Here G is the so called Green’s function for Hv − E.

Note that the estimate above shows that norm of the operator S is related to the constant
γ via γ < C

‖S‖ . Thus, as E gets close to the spectrum, ‖S‖ tends to ∞, the stable and unstable

directions will tend to each other (at least somewhere).

3.2. Uniform Hyperbolicty Away From The Spectrum. Now we show the other direc-
tion. We will provide two different proofs. In Section 3.2.1, we show i.e. {E : A(E−v) /∈ UH} ⊂
σ(Hv) via Theorem 2. In Section 3.2.2, equivalently we show ρ(Hv) ⊂ {E : A(E−v) ∈ UH} via
Combes-Thomas type of estimates.

3.2.1. Non Uniform Hyperbolicty Implies Spectrum. We first have the following simple lemma.
We omit the proof as it is an easy consequence of the Weyl’s Criterion (see, for example, [RSi]).

Lemma 5. E ∈ σ(Hv) if and only if for each ε > 0, there exists a finitely supported unit vector
ψ ∈ `2(Z) such that

‖(Hv − E)ψ‖ < ε.

Then we need to embed v to its Hull. Let Ω = Hull(v), which in this case is clearly a
compact metric space. Let (Ω, T, f) as defined Section 1.2 and consider the Schrödinger cocycle
(T,A(E−f)). Clearly, A(E−v) /∈ UH implies that (T,A(E−f)) /∈ UH since the former is a single
orbit of the latter. By Theorem 2, there is a (ω,~v) ∈ Ω× S1 such that

‖A(E−f)
n (ω)~v‖ ≤ 1, for all n ∈ Z.
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Define ψ ∈ RZ such that (
ψn
ψn−1

)
= A(E−f)

n (ω)~v, for all n ∈ Z.

Then it holds that ‖ψ‖∞ ≤ 1 and

Hωψ = Eψ.

We claim that E ∈ σ(Hω). Indeed, if ‖ψ‖ ≤ C, then E is an eigenvalue of Hω. Hence,

E ∈ σ(Hv). Otherwise, if we define ψ̂L as

ψ̂Ln =

{
ψn, if |n| ≤ L,
0, otherwise,

then ‖ψ̂L‖ → ∞ as L→∞ and

[(Hω − E)ψ̂L]n =

{
±ψn, if n = ±L,±(L+ 1)

0, otherwise.

Thus if we define ψL = ψ̂L

‖ψ̂L‖
, then it holds that

‖(Hω − E)ψL‖ ≤ C

‖ψ̂L‖
,

which can be arbitrary small as L→∞. By Lemma 5, E ∈ σ(Hω).
In both cases, by Lemma 5, for all ε > 0, there exists a finitely supported unit vector

ψ ∈ `2(Z) such that ‖(Hω − E)ψ‖ < ε. Then ω ∈ Hull(v) implies that there exists a {Nl}l∈Z
such that TNl(v) converges to ω in the product topology. Since ψ is finitely supported, we may
choose l large so that

‖(HTNl (v) − E)ψ‖ < ε.

Equivalently, we have

‖(Hv − E)[T−Nl(ψ)]‖ < ε,

where (Tψ)n = ψn+1 is an unitary operator on `2(Z). Hence T−Nl(ψ) is again finitely supported
with norm 1 which implies that E ∈ σ(Hv) by Lemma 5.

3.2.2. Uniform hyperbolicity via Combes-Thomas Estimate. We wish to point out that the proof
contained in this section is self-contained and is essentially independent of other parts of the
paper. In fact, Definition 1, Section 3.1, and Section 3.2.2 together could provide a 5 page
complete proof of Theorem 3. On the other hand, deep analysis of the uniformly hyperbolic
SL(2,R) sequences and cocycles may provide more insights regarding the dynamics behind the
ergodic type of Schrödinger operators.

Fix a E ∈ ρ(Hv). First,we perform a Combes-Thomas type of estimate concerning the
exponential decay of the Green’s Function.

Define Mβ to be the multiplication operator (Mβψ)(n) = eβnψn. Without loss of generality,
we may assume |β| ≤ 1. A direct computation shows that

M−β(Hv − E)Mβ = Hv − E + (eβ − 1)T + (e−β − 1)T−1 = Hv − E +B,

where again T is the left shift. The operator B is bounded on `2(Z) and

‖B‖ ≤ |(eβ − 1)|+ |(e−β − 1)| ≤ C|β|.

Clearly, ‖(Hv − E)−1B‖ ≤ 1
2 if β ≤ ‖(Hv − E)−1‖−1/(2C). Then

M−β(Hv − E)Mβ = Hv − E +B = (Hv − E)[I + (Hv − E)−1B]
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is invertible. Moreover

(M−β(Hv − E)Mβ)−1 = M−β(Hv − E)−1Mβ = [I + (Hv − E)−1B]−1(Hv − E)−1,

which implies

‖M−β(Hv − E)−1Mβ‖ ≤ 2‖(Hv − E)−1‖ := K.

Hence, it holds for all p, q ∈ Z that

|〈δp,M−β(Hv − E)−1Mβδq〉| = |〈M−βδp, (Hv − E)−1Mβδq〉|

= |(Hv − E)−1(p, q)|e−β(p−q)

≤ K

which gives exponential decay of the Green’s Function:

(47) |(Hv − E)−1(p, q)| ≤ Ke−β|p−q|.

Those estimates above are known as the Combes-Thomas type of estimates [CT].
Let gj(n) = (Hv − E)−1(n, j). Then (gj(n))n∈Z is the unique solution of the equation

(48) (Hv − E)gj = δj ,

where δj is the vector that δj(m) = 1 if m = j and 0 otherwise. By (47), it holds that

(49) |gj(n)| < Ke−β|n−j|, for all n, j ∈ Z.

For each j ∈ Z, we define ~v(j) and ~w(j) ∈ R2 so that

~v(j) =

(
gj−1(j)

gj−1(j − 1)

)
and ~w(j) =

(
gj(j)

gj(j − 1)

)
.

Note that ‖~v(j)‖ ≤ 2K and ‖~w(j)‖ ≤ 2K for all j ∈ Z. By (48), It holds for each j ∈ Z that

(50) A(E−v)(j − 1)

(
gj−1(j − 1)

gj−1(j − 2)

)
=

(
gj−1(j)− 1

gj−1(j − 1)

)
.

Recall, we assumed that ‖A‖ < M for all SL(2,R) matrices A in question. Thus, (50) implies
that for some constant C = C(M), it holds that either

C−1 ≤ ‖~v(j)‖ =

∥∥∥∥( gj−1(j)

gj−1(j − 1)

)∥∥∥∥ ≤ 2K,

or C−1 < |gj−1(j − 2)| which in turn implies that

C−1 ≤ ‖~v(j − 1)‖ =

∥∥∥∥(gj−2(j − 1)

gj−2(j − 2)

)∥∥∥∥ ≤ 2K.

Same argument yields similar estimates for ‖~w(j)‖ or ‖~w(j + 1)‖.
Now for each j ∈ Z, we define ~s(j) so that

~s(j) =

{
~v(j), if ‖~v(j)‖ > C−1

A(E−v)(j − 1)~v(j − 1), otherwise.

Similarly, we define ~u(j) so that

~u(j) =

{
~w(j), if ‖~w(j)‖ > C−1

A(E−v)(j)−1 ~w(j + 1), otherwise.

Thus for all j ∈ Z, we have

(51) ‖~s(j)‖ > C−1 and ‖~u(j)‖ > C−1.
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In particular, ~s(j) 6=
(

0
0

)
and ~u(j) 6=

(
0
0

)
. Thus for each j ∈ Z, we may define s(j) ∈ RP1 to be

the direction of ~s(j) and u(j) be the one of ~u(j). Then the desired result of this section is a
consequence of the following lemma.

Lemma 6. s, u : Z→ RP1 are the stable and unstable directions for A(E−v) as in Definition 1.
In particular, A(E−v) ∈ UH.

Proof. First we show invariance. We first consider the stable direction s(j). A direct compu-
tation shows that

A(E−v)(j)~s(j) =

(
gp(j + 1)

gp(j + 2)

)
,

where p = j − 1 if ~s(j) = ~v(j) and p = j − 2 otherwise. In both cases, the right-hand side of
the equality above must be linearly dependent with ~s(j + 1). Indeed, in all cases and by the
fact A(E−v)(j) ∈ SL(2,R), it must holds for all n > j that

det[A(E−v)(j)~s(j), ~s(j + 1)] = det
[
A

(E−v)
n−j−1(j + 1) ·

(
A(E−v)(j)~s(j), ~s(j + 1)

)]
= det

[
A

(E−v)
n−j−1(j + 1) ·

(
gp(j + 1), gq(j + 1)
gp(j + 2), gq(j + 2)

)]
= det

[
A

(E−v)
n−j−1(j + 1)

(
gp(j + 1)

gp(j + 2)

)
, A

(E−v)
n−j−1(j + 1)

(
gp(j + 1)

gp(j + 2)

)]
= det

(
gp(n), gq(n)

gp(n+ 1), gq(n+ 1)

)
,

where p = j − 1 or j − 2 and q = j − 1 or j. By (49), the last determinant clearly goes to
0 as n → ∞. This implies that the first determinannt is 0 as it is a constant independent
of n. This implies that A(E−v)(j)~s(j) and ~s(j + 1) are linearly dependent. In other words,
A(E−v) ·s(j) = s(j+1) which is nothing other than the invariance of s : Z→ RP1. Simiarly, by
letting n → −∞, we see that A(E−v)(j − 1)−1~u(j) and ~u(j − 1) are linearly dependent which
implies the invariance of the direction u : Z→ RP1.

Next, we show that exponential decay. Again, it suffices to consider the stable direction s(j)
as the argument for u(j) is completely analogous. Bascially in the end of the proof, instead of
letting n→∞, one just need to consider n→ −∞.

By (49) and (51), it holds uniformly for all j ∈ Z and all n ≥ 1 that∥∥∥∥A(E−v)
n (j)

~s(j)

‖~s(j)‖

∥∥∥∥ =
1

‖~s(j)‖

∥∥∥∥( gp(j + n)

gp(j + n− 1)

)∥∥∥∥ < 2KCe−βn,

where p = j−1 or j−2. This concludes the proof as M and K are independent of j and n. �

Note that the estimate also shows that the decaying rate is closely related to β which is of
the order ‖(Hv − E)−1‖−1 = dist(E, σ(Hv)). Note also, by Remark 1, it is automatically true
that s(j) 6= u(j) for all j ∈ Z.

3.3. Potentials defined dynamically. Now, we are ready to deduce Theorem 4. Let us start
with the following enhanced version of Lemma 5.

Lemma 7. For all v ∈ [−M,M ]Z, E ∈ σ(Hv) if and only if for each ε > 0, there exists a
L = L(M, ε) so that the following holds true. There exists an unit vector ψ ∈ `2(Z) supported
on an interval I ⊂ Z with |I| ≤ L so that ‖(Hv − E)ψ‖ < ε.
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Proof. By Lemma 5, we only need to show the only if part. In fact, we only need to show that
L = L(M, ε) is independent of (v,E) ∈ [−M,M ]Z × σ(Hv) ⊂ [−M,M ]Z × [−M − 2,M + 2].

Assume the above mentioned fact is false. Then there exists an ε > 0 with the following
property. For each l ∈ Z+, there exists a (vl, El), El ∈ σ(Hvl) such that if any unit vector
ψ ∈ `2(Z) satisfies ‖(Hvl −El)ψ‖ < ε, then ψ is not supported on any interval I ⊂ Z of length
less than or equal to l.

Let Ωl = Hull(vl) as usual. Since the orbit of vl is dense in Ωl, by a standard continuity
argument, one may see that for each ω ∈ Ωl, any unit vector ψ satisfying ‖(Hω − El)ψ‖ < ε
cannot be supported on any interval I ⊂ Z of length less than or equal to l.

On the other hand, El ∈ σ(Hvl) implies that A(El−vl) /∈ UH, hence (T,A(El−f)) /∈ UH. By
the same argument of Section 3.2, for each l ∈ Z+, there exists a ωl ∈ Ωl and ψl ∈ `∞(Z) with

‖ψl‖∞ ≤ 1 such that (Hωl−El)ψl = 0. From the construction of ψl, it holds that
∥∥∥( ψl0
ψl−1

)∥∥∥ = 1.

Hence, shifting both ωl and ψl if necessary and rescaling ψl, we may assume for all l ∈ Z+ it
holds that

ψl0 = 1 and ‖ψl‖∞ < C.

By compactness, we may assume

lim
l→∞

(ωl, ψl) = (ω, ψ) ∈ [−M,M ]Z × [−1, 1]Z and lim
l→∞

El = E ∈ [−M − 2,M + 2],

where the convergence of (ωl, ψl) to (ω, ψ) is under the product topology. Thus, we must have

(Hω − E)ψ = 0, ψ0 = 1, and ‖ψ‖∞ < C.

By Theorem 3, or rather the proof contained in Section 3.2.1, E ∈ σ(Hω). Moreover, we claim
the following.

For all sufficiently large l ∈ Z+, any unit vector φ satisfying ‖(Hω − E)φ‖ < ε cannot be
supported on any interval I ⊂ Z of length less than or equal to l.

This claim clearly contradicts with the fact E ∈ σ(Hω) and Lemma 5. So the proof will be
completed if we can show the claim holds true.

Indeed, if the claim is not ture, then there exists L so that ‖(Hω − E)φ‖ < ε for some φ
supported on an interval with length less than or equal to L. Since ωl tends to ω in product
topology and El tends to E, we must have ‖(Hωl−El)φ‖ < ε for all l sufficiently large. However,
for any l > L, the existence of such φ contradicts with the choice of ωl and El.

�

As far as we know, Lemma 7 was first stated and used as [ADZ, Lemma 12]. It is particularly
useful if one wants to prove some continuity property of the spectrum.

Now, we go back to the scenario of Theorem 4. In other words, we have a compact metric
space (Ω, d) with distance d, T : Ω → Ω a homeomorphism, and f : Ω → R a continuous
function. Abusing the notation lightly, T also denotes the left shift operator on the sequence
space. Note (Ω, T ) is said to be topological transitive if there is a dense T–orbit. (Ω, T ) is said
to be minimal if each T–orbit is dense.

For ω ∈ Ω, we consider the Schrödinger operator Hω defined in (12) and the associated
Schrödinger cocycle (T,A(E−f)) as in (14).

Theorem 6. Let (Ω, T, f) be as above. Then for each ε > 0, there exists a δ > 0 so that the
following holds true. If the orbit Orb(ω0) = {Tn(ω0), n ∈ Z} of some ω0 satisfies:

Orb(ω0) ∩Bδ(ω) 6= ∅
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for all ω ∈ Ω, where Bδ(ω) is the ball of radius δ around ω inside Ω. Then for all ω ∈ Ω,

σ(Hω) ⊂ Bε[σ(Hω0)],

where Bε(S) is the ball around the set S ⊂ R with the usual distance.

Proof. By compactness of Ω, there exists a M > 0 such that ‖f‖∞ < M . Hence, σ(Hω) ⊂
[−M − 2,M + 2] for all ω ∈ Ω. Now by Lemma 7, for the given ε, there exists a L = L(ε)
such that the following holds true. For each ω ∈ Ω, E ∈ σ(Hω) implies that ‖(Hω − E)ψ‖ < ε
for some unit ψ ∈ `2(Z) which is supported in an interval with length less than or equal to L.
Then there exists a N ∈ Z such that T−Nψ is supported on a interval around 0 and

‖(HTNω − E)(T−Nψ)‖ < ε.

Then by uniform continuity of f , there exists a δ > 0, independent of ω, so that the following
holds true: if d(ω′, TNω) < δ, then ‖(Hω′ −E)(T−Nψ)‖ < ε. In particular, there is some n ∈ Z
so that d(Tnω0, T

Nω) < δ which in turn implies that

‖(HTnω0
− E)(T−Nψ)‖ < ε.

Thus, we must have E ∈ Bε[σ(HTnω0
)]. Indeed, if E ∈ σ(HTnω0

), we are done. Otherwise, it
is straightforward to see that the above inequality implies that

‖(HTnω0 − E)−1‖ > 1/ε.

Let g : σ(HTnω0
) → R be the identity function on σ(HTnω0

). Then the continuous functional
calculus implies

‖(g − E)−1‖∞ > 1/ε,

which implies that E ∈ Bε[σ(HTnω0
)]. It is a standard fact that Hω0

and HTnω0
are unitary

equivalent. Hence σ(Hω0
) = σ(HTnω0

) and E ∈ Bε[σ(Hω0
)], concluding the proof. �

With all the preparations, the proof of Theorem 4 is now just a few lines.

Proof of Theorem 4. Recall Orb(ω0) = Ω and Σ = σ(Hω0
). Hence, Theorem 6 implies that

σ(Hω) ⊂ Bε(Σ) for all ε > 0 and all ω ∈ Ω, which in turn implies that σ(Hω) ⊂ Σ for all
ω ∈ Ω. Let

A : Z→ SL(2,R), AE(n) = A(E−f)(Tnω0).

Then, the fact Orb(ω0) = Ω and Theorem 1 together clearly imply that

AE ∈ UH ⇐⇒ (T,A(E−f)) ∈ UH.

Hence , Σ = {E : (T,AE) /∈ UH} = {E : (T,A(E−f)) /∈ UH}, where the first equality follows
from Theorem 3. �

The following corollary is an immediate consequence of Theorem 4.

Corollary 5. Let (Ω, T, f) be as in Theorem 4. Assume in addition that (Ω, T ) is minimal,
then σ(Hω) is independent of ω ∈ Ω. Let Σ denotes the common spectrum. Then we have

Σ = {E : (T,A(E−f)) /∈ UH}.

Remark 6. To deduce Theorem 4 and Corollary 5, we actually do not really use the full strength
of Theorem 6. Concretely, to obtain σ(Hω) ⊂ σ(Hω0) in the proof of Corollary 4, we do not
really need the fact that the δ in the statement of Theorem 6 is independent of ω. If we allow
δ to be dependent on ω ∈ Ω, then from the proof one may easily see that there is no need to
involve Lemma 7. In fact, Lemma 5 would suffice. However, we wish to provide Lemma 7 and
the stronger version of Theorem 6 as it may be of independent interest.
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4. Avlanche Principle and Uniformly Hyperbolic Sequence

In this section, we prove Theorem 5. Like the proof of Theorem 1, the asymptotic stable and
unstable directions play key roles. Basically, we are going to show that under conditions (18)
and (19), the 1-step stable and unstable directions as defined in (22) are separated to a certain
distance which leads to uniform hyperbolicity. Then based on this information, one can deduce
eventually (20). We first need the following preparations.

Lemma 8. Let D,B ∈ SL(2,R) satisfying

(52) ‖DB‖ > C2 max

{
‖D‖
‖B‖

,
‖B‖
‖D‖

}
.

Then it holds that

(53) c|s(D)− u(B)| < ‖DB‖
‖D‖‖B‖

< C|s(D)− u(B)|

and

(54)

∣∣∣∣ ‖DB‖‖D‖‖B‖
− | sin[s(D)− u(B)]|

∣∣∣∣ < C (min{‖D‖, ‖B‖})−2

Proof. Recall by (21), for any Q ∈ SL(2,R), it holds that

Q = Ru(Q)

(
‖Q‖ 0

0 ‖Q‖−1

)
Rπ

2−s(Q).

Hence, one has

DB = Ru(D)

(
‖D‖ 0

0 ‖D‖−1

)
Rπ

2−[s(D)−u(B)]

(
‖B‖ 0

0 ‖B‖−1

)
Rπ

2−s(B).

Let θ = s(D)− u(B). By the form of DB above, it is clearly that

R−u(D) ·DB ·Rs(B)−π2 −
(
‖D‖‖B‖ sin θ 0

0 0

)
=

(
0 −‖D‖‖B‖ cos θ

‖B‖
‖D‖ cos θ sin θ

‖D‖‖B‖

)
.

Since rotation matrices preserve the operator norm, triangle inequality then yields

(55) |(‖DB‖ − ‖D‖‖B‖ · | sin[s(D)− u(B)]|)| < C max

{
‖D‖
‖B‖

,
‖B‖
‖D‖

}
.

Given (52), one can easily see that

c‖D‖‖B‖ · |sin[s(D)− u(B)]| < ‖DB‖ < C‖D‖‖B‖ · |sin[s(D)− u(B)]| .

Thus, one obtains (53) by the fact that c|θ| < | sin θ| < C|θ| for all θ ∈ RP1.
Divide (55) by ‖D‖‖B‖ at both sides, we then obtain∣∣∣∣ ‖DB‖‖D‖‖B‖

− | sin[s(D)− u(B)]|
∣∣∣∣ < C max{‖D‖−2, ‖B‖−2},

which is nothing other than (54). �

Apply Lemma 8 to the sequence given in Theorem 5, we obtain

Corollary 6. Let A(j), j ∈ Z be as in Theorem 5, then it holds for all j ∈ Z that

(56) |s(j)− u(j)| > cλ−
1
2 .
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Proof. It is straightforward computation to see that (19) implies that

‖A(j + 1)A(j)‖
‖A(j + 1)‖‖A(j)‖

≥ λ− 1
2 .

In particular, since ‖A(j)‖ ≥ λ for each j ∈ Z, we then obtain for all j that

‖A(j + 1)A(j)‖ ≥ ‖A(j + 1)‖‖A(j)‖λ− 1
2 > max

{
‖A(j + 1)‖
‖A(j)‖

,
‖A(j)‖
‖A(j + 1)‖

}
.

Thus the condition of Lemma 8 is satisfied which in turn implies

|s(j)− u(j)| = |s(A(j))− u(A(j − 1))| > c
‖A(j)A(j − 1)‖
‖A(j)‖‖A(j − 1)‖

≥ cλ− 1
2 .

�

Note ‖A(j)‖ > λ > C for all j and (56) says that |s(j) − u(j)| > cλ−
1
2 for all j ∈ Z. Then

by choosing λ large, we can clearly have that λ > ρ(λ−
1
2 ), where ρ is from Lemma 3. In other

words, the conditions of Corollary 3 are satisfied for this sequence A. Following the proof of
Theorem 1, we may then obtain the uniform exponential growth of A, hence A ∈ UH. But to
get (20), we need quantitative estimates.

We first need the next two lemmas which are special cases of [WZ2, Lemmas 3, 4]. We
include the proof for completeness since it is much simpler in this special case.

Lemma 9. Let E = E2E1 ∈ SL(2,R) such that ‖E2‖, ‖E1‖ > λ > C and |s(E2) − u(E1)| >
cλ−

1
2 . Then it holds that

‖E‖ > c‖E1‖‖E2‖ · |s(E2)− u(E1)| > cλ
3
2 ,(57)

|s(E1)− s(E)| < C‖E1‖−2 · |s(E2)− u(E1)|−1,(58)

|u(E2)− u(E)| < C‖E2‖−2 · |s(E2)− u(E1)|−1.(59)

In particular, |s(E1)− s(E)| < Cλ−
3
2 and |u(E2)− u(E)| < Cλ−

3
2 .

Proof. Let θ = s(E2)− u(E1). So |θ| > cλ−
1
2 . Define D to be

D =

(
‖E2‖ 0

0 ‖E2‖−1

)
Rπ

2−θ

(
‖E1‖ 0

0 ‖E1‖−1

)
.

By the conditions given in the lemma and a direct computation, we may see that

(60) ‖E‖ = ‖D‖ > c‖E2‖‖E1‖| sin θ| > c‖E2‖‖E1‖λ−
1
2 > cλ

3
2 ,

which takes care of (57).
Let ~e =

(
0
1

)
. By the form of D, it is clearly that

‖D~e‖ ≤ ‖E2‖‖E1‖−1| cos θ|+ ‖E2‖−1‖E1‖−1| sin θ|.
Let γ = |π2 − s(D)|. Then it holds that

|s(E1)− s(E)| =
∣∣∣s(E1)− [s(DRπ

2−s(E1))]
∣∣∣

=
∣∣∣s(E1)−

[
s(D)−

(π
2
− s(E1)

)]∣∣∣
=
∣∣∣s(D)− π

2

∣∣∣
= γ.

For β ∈ RP1, let ~β be a unit vector in the direction of β. Then it clear that

~e = (cos γ)~s(D) + (sin γ)~s⊥(D),
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which implies that

‖D~e‖ = ‖(cos γ)D~s(D) + (sin γ)D~s⊥(D)‖.

If γ ≤ ‖E1‖−2, then |s(E1)−s(E)| = γ ≤ ‖E1‖−2 which implies (58) as |s(E2)−u(E1)|−1 > c.
So we only need to deal with the case where γ > ‖E1‖−2. Then by (60) and the fact that
‖E2‖ > λ, it holds that

|(sin γ)D~s⊥(D)| > ‖E1‖−2‖D‖

> c
‖E2‖
‖E1‖

λ−
1
2

> c
λ

3
2

‖E1‖‖E2‖

>
cλ

‖E1‖‖E2‖λ−
1
2

> cλ‖D‖−1

> C|(cos γ)D~s(D)|.

Note | sin θ| > c|θ| > cλ−
1
2 > 0. Combining the above estimates together, we then obtain

|γ| < C| sin γ|

=
C

‖E‖
|(sin γ)D~s⊥(D)|

<
C

‖E‖
‖D~e‖

<
C

‖E1‖‖E2‖| sin θ|
(‖E2‖‖E1‖−1| cos θ|+ ‖E2‖−1‖E1‖−1| sin θ|)

<
C

‖E1‖2| sin θ|
+

C

‖E1‖2‖E2‖2

<
C

‖E1‖2| sin θ|
< C‖E1‖−2|s(E2)− u(E1)|−1,

which is nothing other than (58) since γ = |s(E1)− s(E)|. Apply the same argument above to
E−1 and D−1, one then obtain (59), concluding the proof. �

The following lemma push the estimates in Lemma 9 to all n ≥ 2.

Lemma 10. Let A(j), j ∈ Z be as in Theorem 5. Then it holds for each j ∈ Z and each
2 ≤ n ∈ Z+ that

‖An(j)‖ ≥ cλ
n+1
2 ,(61)

|sn(j)− sn−1(j)| < Cλ−(n−1),(62)

|un(j)− un−1(j)| < Cλ−(n−1).(63)

Proof. We proceed by induction on n. Note for the case n = 2, (61) and (62) follow from (57)

and (58) by setting E1 = A(j) and E2 = A(j + 1) and the fact Cλ−
3
2 < Cλ−1. Similarly, (63)

follows from (59) if we set E1 = A(j − 2) and E2 = A(j − 1).
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Assuming that (61)-(62) hold true for all n = 2, . . . , k and all j ∈ Z. Then we want to move
to the case n = k + 1. First, it holds that

|uk(j + k)− u1(j + k)| ≤
k−1∑
l=1

|ul+1(j + k)− ul(j + k)|

≤ Cλ− 3
2 +

k−1∑
l=2

Cλ−l

≤ Cλ− 3
2 .(64)

Note u1(j + k) = u(j + k). Consequently, by Corollary 6 it holds that

|s(j + k)− uk(j + k)| = |s(j + k)− u(j + k) + u(j + k)− uk(j + k)|
≥ |s(j + k)− u(j + k)| − |u(j + k)− uk(j + k)|

≥ cλ− 1
2 − Cλ− 3

2

≥ cλ− 1
2 .(65)

Similarly, by the same argument of (64), it holds that |sk(j − k − 1)− s(j − k − 1)| ≤ Cλ−
3
2 .

Together with Corollary 6, we then obtain

|sk(j − k − 1)− u(j − k − 2)| = |sk(j − k − 1)− s(j − k − 1) + s(j − k − 1)− u(j − k − 2)|
≥ |s(j − k − 1)− u(j − k − 2)| − |sk(j − k − 1)− s(j − k − 1)|

≥ cλ− 1
2 − Cλ− 3

2

≥ cλ− 1
2 .(66)

Thus, we may apply Lemma 9 with E1 = Ak(j) and E2 = A(j + k) and get that

‖Ak+1(j)‖ = ‖A(k + j)Ak(j)‖

> c‖A(k + j)‖‖Ak(j)‖λ− 1
2

> cλ · λ
k+1
2 λ−

1
2

= cλ
k+2
2 ,

which takes care of (61) for n = k + 1. Next, combine (65) and (58) with E1 = Ak(j) and
E2 = A(k + j), we obtain

|sk+1(j)− sk(j)| = |s[A(k + j)Ak(j)]− s(Ak(j))|
< C‖Ak(j)‖−2| · |s(j + k)− uk(j + k)|−1

< Cλ−(k+1)λ
1
2

< Cλ−k,(67)

which clearly takes care of the (62) for n = k + 1. On the other hand, combine (65) and (59)
with E1 = A(k − j − 2) and E2 = Ak(j − k − 1), we obtain

|uk+1(j)− uk(j)| = |u[Ak(j − k − 1)A(j − k − 2)]− u(Ak(j − k − 1))|
< C‖Ak(j − k − 1)‖−2| · |sk(j − k − 1)− u(j − k − 2)|−1

< Cλ−(k+1)λ
1
2

< Cλ−k,(68)
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which takes of (63) for step n = k + 1, concluding the proof. �

Now, we are ready to prove Theorem 5.

Proof of Theorem 5. By the discussion following Corollary 6, we already know that {A(j), j ∈
Z} is uniformly hyperbolic. In fact, we have more precise estimate. By (61), it holds for all
j ∈ Z and all n ≥ 1 that

‖An(j)‖ > cλ
n+1
2 > c(

√
λ)n.

For the proof of (20), we first note it holds for all j ∈ Z and n ∈ Z+ that

(69) log ‖An(j)‖ = log ‖A(j + n− 1)‖+ log ‖An−1(j)‖+ log
‖A(j + n− 1)An−1(j)‖
‖A(j + n− 1)‖‖An−1(j)‖

.

We may apply (69) to log ‖An−1(j)‖ and rewrite (69) as

(70) log ‖An(j)‖ = log ‖An−2(j)‖+

n−1∑
k=n−2

log ‖A(j + k)‖+

n−1∑
k=n−2

log
‖A(j + k)Ak(j)‖
‖A(j + k)‖‖Ak(j)‖

.

Apply this process repeatedly to An(j), An−1(j), . . . , A2(j), we then obtain

(71) log ‖An(j)‖ =

n−1∑
k=0

log ‖A(j + k)‖+

n−1∑
k=1

log
‖A(j + k)Ak(j)‖
‖A(j + k)‖ · ‖Ak(j)‖

.

Now for each k ≥ 1, by the proof of Corollary 6, condition of Lemma 8 is satisfied for the pair
A(j + k) and A(j + k − 1). Similarly, (65) implies the condition is satisfied for A(j + k) and
Ak(j) as well. Thus, applying (54) to both pairs, we obtain∣∣∣∣ ‖A(j + k)Ak(j)‖

‖A(j + k)‖ · ‖Ak(j)‖
− | sin[s(j + k)− uk(j + k)]|

∣∣∣∣ < Cλ−2

and ∣∣∣∣ ‖A(j + k)A(j + k − 1)‖
‖A(j + k)‖ · ‖A(j + k − 1)‖

− | sin[s(j + k)− u(j + k)]|
∣∣∣∣ < Cλ−2.

On the other hand, it holds that

|(| sin[s(j + k)− uk(j + k)]| − | sin[s(j + k)− u(j + k)]|)|
< |sin[s(j + k)− uk(j + k)]− sin[s(j + k)− u(j + k)]|
< |[s(j + k)− uk(j + k)]− [s(j + k)− u(j + k)]|
= |uk(j + k)− u(j + k)|

≤ Cλ− 3
2 ,

where the last inequality follows from (64). Combine the three inequalities above, we then
obtain ∣∣∣∣ ‖A(j + k)Ak(j)‖

‖A(j + k)‖ · ‖Ak(j)‖
− ‖A(j + k)A(j + k − 1)‖
‖A(j + k)‖ · ‖A(j + k − 1)‖

∣∣∣∣ < Cλ−
3
2 .

Apply (53) and Corollary 6 to A(j + k) and A(j + k − 1), we obtain

‖A(j + k)A(j + k − 1)‖
‖A(j + k)‖‖A(j + k − 1)‖

> c|s(j + k)− u(j + k)| > cλ−
1
2 .

It is straightforward calculus type of estimate that

| log a− log b| < C

∣∣∣∣1b (a− b)
∣∣∣∣ when b > C|a− b|.
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Thus for each k ≥ 1, the inequality above implies that∣∣∣∣log
‖A(j + k)Ak(j)‖
‖A(j + k)‖ · ‖Ak(j)‖

− log
‖A(j + k)A(j + k − 1)‖
‖A(j + k)‖ · ‖A(j + k − 1)‖

∣∣∣∣
≤ C ‖A(j + k)‖‖A(j + k − 1)‖

‖A(j + k)A(j + k − 1)‖
·
∣∣∣∣ ‖A(j + k)Ak(j)‖
‖A(j + k)‖ · ‖Ak(j)‖

− ‖A(j + k)A(j + k − 1)‖
‖A(j + k)‖ · ‖A(j + k − 1)‖

∣∣∣∣
≤ Cλ 1

2λ−
3
2

= Cλ−1.

Combine (71) and the estimate above, we then obtain∣∣∣∣∣log ‖An(j)‖ −
n−1∑
k=0

log ‖A(j + k)‖ −
n−1∑
k=1

log
‖A(j + k)A(j + k − 1)‖
‖A(j + k)‖ · ‖A(j + k − 1)‖

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
k=1

log
‖A(j + k)Ak(j)‖
‖A(j + k)‖ · ‖Ak(j)‖

−
n−1∑
k=1

log
‖A(j + k)A(j + k − 1)‖
‖A(j + k)‖ · ‖A(j + k − 1)‖

∣∣∣∣∣
≤
n−1∑
k=1

∣∣∣∣log
‖A(j + k)Ak(j)‖
‖A(j + k)‖ · ‖Ak(j)‖

− log
‖A(j + k)A(j + k − 1)‖
‖A(j + k)‖ · ‖A(j + k − 1)‖

∣∣∣∣
≤ Cn− 1

λ

≤ Cn
λ
.

A direct computation shows that the first line in the estimate above is nothing other than∣∣∣∣∣log ‖An(j)‖+

n−2∑
k=1

log ‖A(j + k)‖ −
n−2∑
k=0

log ‖A(j + k + 1)A(j + k)‖

∣∣∣∣∣ ,
concluding the proof. �
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