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Abstract. It is shown that there exist arcs and simple closed curves in C3

with nontrivial polynomial hulls that contain no analytic discs. It is also shown
that in any bounded, connected Runge domain of holomorphy in CN (N ≥ 2)
there exist polynomially convex arcs and simple closed curves of almost full
measure. These results, which strengthen earlier results of the author, are
obtained as consequences of a general result about polynomial hulls of arcs
and simple closed curves through compact, totally disconnected sets.

1. Introduction

The main purpose of this paper is to prove that (i) there exist arcs and simple
closed curves in C3 with nontrivial polynomial hulls that contain no analytic discs,
and (ii) there exist polynomially convex arcs and simple closed curves in CN (N ≥ 2)
that are large in the sense of 2N -dimensional Lebesgue measure. The precise results,
which we state below after a few preliminary remarks on our terminology and
notation, give more detailed information.

By an arc we mean a space homeomorphic to the closed unit interval and by
a simple closed curve, a space homeomorphic to the unit circle. Thus the arcs
and simple closed curves are the compact, connected, one-dimensional manifolds.
Throughout the paper, m will denote 2N -dimensional Lebesgue measure on CN .
For a compact set X in CN , we denote by P (X) the uniform closure on X of the
polynomials in the complex coordinate functions z1, . . . , zN . The polynomial hull

X̂ of X is defined by

X̂ = {z ∈ C
N : |p(z)| ≤ max

x∈X
|p(x)| for all polynomials p}.

The set X is said to be polynomially convex if X̂ = X. The polynomial hull of X

is said to be nontrivial if instead the set X̂ \X is nonempty. By an analytic disc

in CN , we mean an injective holomorphic map σ : {z ∈ C : |z| < 1} → CN . By the
statement that a subset S of CN contains no analytic discs, we mean that there is
no analytic disc in CN whose image is contained in S.

Following Garth Dales and Joel Feinstein [6], we shall say that a Banach algebra
A has dense invertibles if the invertible elements of A are dense in A. As noted
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in [6], for X a compact set in CN , the condition that P (X) has dense invertibles is

strictly stronger than the condition that X̂ contains no analytic discs.

Theorem 1.1. There exists an arc J in C3 such that the polynomial hull Ĵ of J
is strictly larger than J and P (J) has dense invertibles. The same statement holds

with “arc” replaced by “simple closed curve”.

Theorem 1.2. Let Ω be a bounded, connected Runge domain of holomorphy in C
N ,

let x0 be a point of Ω, and let ε > 0. Then there exists a polynomially convex arc J
in CN such that x0 ∈ J ⊂ Ω and m(Ω \ J) < ε. Furthermore, J can be chosen so

that P (J) = C(J) and the set of polynomials zero-free on J is dense in P (Ω). The

same statements hold with “arc” replaced by “simple closed curve” provided N ≥ 2.

It will be shown that these two results follow readily from the existence of certain
Cantor sets together with the following general result, to be proven below, about
polynomial hulls of arcs and curves through compact, totally disconnected sets.
(Note that every uncountable, compact, totally disconnected, metrizable space is
the union of a Cantor set and a (possibly empty) at most countable set. This follows
from the Cantor-Bendixson theorem [12, Theorem 2A.1] and the usual characteriza-
tion of Cantor sets as the compact, totally disconnected, metrizable spaces without
isolated points.)

Theorem 1.3. Let E be a compact, totally disconnected set in CN . Then E is

contained in an arc J in CN such that Ĵ = J ∪ Ê. Furthermore, J can be chosen so

that the closure of each component of J \E is a C∞-smooth arc. If Ω is a connected

Runge domain of holomorphy in C
N that contains E, then J can be chosen to lie in

Ω. The same statements hold with “arc” replaced by “simple closed curve” provided

N ≥ 2.

We remark that when N = 1 the hypothesis that Ω is Runge will not be used in
the proof.

As an almost immediate consequence of Theorem 1.3 we will obtain the following.

Corollary 1.4. Each compact polynomially convex totally disconnected set E in

CN is contained in a polynomially convex arc J in CN that satisfies P (J) = C(J).
The same statements hold with “arc” replaced by “simple closed curve” provided

N ≥ 2.

A few historical remarks to put Theorems 1.1 and 1.2 in context are in order.
Polynomial hulls of arcs and curves have been studied extensively. John Wermer
[17] showed that there exist arcs in C

3 with nontrivial polynomial hull, and by
modifying Wermer’s construction, Walter Rudin [13] extended the result to arcs in
C2. In contrast, though, Wermer [18] also showed that every real-analytic arc in CN

is polynomially convex and that the hull of every real-analytic simple closed curve
in C

N is a one-dimensional complex-analytic variety. The regularity hypothesis
was weakened by many mathematicians, and it is now known, by work of Herbert
Alexander [1], that real-analyticity can be replaced by rectifiability. Theorem 1.2
above shows that some highly nonrectifiable arcs and simple closed curves are also
polynomially convex. Theorem 1.2 also strengthens [9, Lemma 3.3], which gives
a rationally convex connected set with properties similar to those of the arc in
Theorem 1.2.

The existence of analytic structure in polynomial hulls has also been studied

extensively. It was once conjectured that whenever the polynomial hull X̂ of a
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compact set X in CN is strictly larger than X, the complementary set X̂ \X must
contain an analytic disc. This conjecture was disproved by Gabriel Stolzenberg
[14], who gave a counterexample in C

2. Numerous additional counterexamples
have been presented in the literature since then. The first example of a compact
set X in C2 with nontrivial polynomial hull such that the uniform algebra P (X)
has a dense set of invertible elements was given by Dales and Feinstein [6]. Recent
work of the author, H̊akan Samuelsson Kalm, and Erlend Fornæss Wold [10] and
of the author and Lee Stout [11] shows that every smooth manifold of dimension
strictly greater than one smoothly embeds in some CN as a subspace X such that

X̂ \ X is nonempty but contains no analytic discs. (The most recent result in
this direction is due to Leandro Arosio and Wold [5, Corollary 1.3].) In response
to a talk on this work given by the author, Hari Bercovici raised the question of
whether a (nonsmooth) one-dimensional manifold can have a nontrivial polynomial
hull containing no analytic discs. In fact a similar question, but specifically for
manifolds in C2, was raised by Wermer [16] more than 60 years ago. The author
[8, Theorems 1.7] answered Bercovici’s question affirmatively by giving an example
in C4. Theorem 1.1 strengthens that result by decreasing the dimension of the
ambient space. The question of whether there exists an example in C2 remains
open. The proof of Theorem 1.1 given here shows, however, that if there is a
Cantor set in C

2 with nontrivial polynomial hull that contains no discs, then there
is also an arc in C2 with this property.

2. The proofs

The results stated in the introduction will be proved in the following order:
Theorem 1.3, Corollary 1.4, Theorem 1.2, Theorem 1.1.

We will use the following standard terminology and notation. Given a number
α > 0 and a set A in CN , by the α-neighborhood of A we mean the set of points
in C

N whose distance from A is strictly less than α. The supremum-norm of a
function f will be denoted by ‖f‖∞, and for each k = 1, 2, . . . , the Ck-norm of f
will be denoted by ‖f‖Ck . The real part of a complex number (or function) z will
be denoted by 	z.

The proof of Theorem 1.3 relies on two results which we quote here for the
reader’s convenience: a result of Whyburn [19] on the existence of an arc through a
totally disconnected set and a result of Arosio and Wold [5] concerning perturbing
a totally real embedding of a compact manifold so as to control the polynomial hull
of its image.

In Whyburn’s terminology, a continuous curve is a connected, locally connected,
locally compact, separable metric space, and a local separating point of a continuous
curve M is a point that is a cut point of some connected open subset of M .

Theorem 2.1 ([19, Theorem, p. 57]). If K is any closed, compact, and totally

disconnected subset of a continuous curve M having no local separating point and p
and q are any two points of K, then there exists in M an arc pq which contains K.

Corollary 2.2. Let E be a compact, totally disconnected set contained in a con-

nected open subset Ω of RN , N ≥ 2. Then there exists an arc in Ω that contains

E and whose end points lie in E, and there also exists a simple closed curve in Ω
that contains E.
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Proof. The existence of the desired arc is obviously just a special case of Whyburn’s
theorem. To construct the simple closed curve, choose distinct points p and q in
Ω \ E, and set K = E ∪ {p, q}. By Whyburn’s theorem there exists in Ω an arc
pq which contains K. Denote this arc by J . By modifying J near the end points
p and q, we may assume that there are open Euclidean balls Bp and Bq centered
at p and q, respectively, and whose closures lie in Ω such that the intersection of
J with each of Bp and Bq is a straight line segment. Choose points p′ and q′ in
Bp \ J and Bq \ J , respectively. The set Ω \ J is path connected, so there is a path
from p′ to q′ in Ω \ J . By discarding initial and final segments of this path, we can

obtain an arc J̃ in Ω \ (J ∪Bp ∪Bq) whose end points p̃ and q̃ lie on the boundary
of Bp and Bq, respectively. Let Lp̃ and Lq̃ be the straight line segments pp̃ and

qq̃, respectively. Then J ∪ Lq̃ ∪ J̃ ∪ Lp̃ is a simple closed curve in Ω that contains
E. �

Theorem 2.3 ([5, Theorem 1.4]). Let M be a compact C∞-manifold (possibly
with boundary) of dimension d < N , and let f : M → C

N be a totally real C∞-

embedding. Let K ⊂ CN be a compact polynomially convex set. Then, for any

k ≥ 1 and for any ε > 0, there exists a totally real C∞-embedding fε : M → CN

such that the following hold:

(1) ‖fε − f‖Ck < ε,
(2) fε = f on f−1(K),
(3) fε(M) ∪K is polynomially convex.

Note that every smooth embedding of a one-dimensional manifold is automati-
cally totally real.

We now turn to the proofs of the results stated in the introduction.

Proof of Theorem 1.3. The case N = 1 is special and easy; it follows from Corol-
lary 2.2 and the fact that in the plane every compact, totally disconnected set and
every arc is polynomially convex. (Note that the hypothesis that Ω is Runge is
unneeded when N = 1.)

From now on we assume that N ≥ 2. We treat only the construction of the arc,
the construction of the simple closed curve being similar. Let Ω be a connected
Runge domain of holomorphy in C

N that contains E. By Corollary 2.2 there is an
arc in Ω that contains the set E and whose end points lie in E. Given the existence
of such an arc, one can show that there is such an arc J0 with the additional
property that the closure of each component of J0 \ E is a C∞-smooth arc. In
other words, there is a topological embedding σ0 : [0, 1] → C

N with σ0([0, 1]) ⊂ Ω
and σ0({0, 1}) ⊂ E such that letting J0 = σ0([0, 1]), letting K = σ−1

0 (E), and
letting (a1, b1), (a2, b2), . . . be the components of [0, 1]\K, we have that J0 contains
E = σ0(K) and each restriction map σ0|[aj ,bj ] → CN is a C∞-embedding.

The proof will be complete once we establish that there is a topological embed-
ding σ : [0, 1] → C

N such that σ([0, 1]) ⊂ Ω, such that σ agrees with σ0 on K,
such that each restriction map σ|[aj ,bj ] → CN is a C∞-embedding, and such that

in addition, setting J = σ([0, 1]), we have that Ĵ = J ∪ Ê. We will obtain the
map σ as a uniform limit of a sequence of continuous maps σn : [0, 1] → CN . The
construction of the sequence (σn) will be by induction. We will simultaneously
also construct a sequence of compact polynomially convex sets X0, X1, . . . and a
decreasing sequence of strictly positive numbers α0, α1, . . . .
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Because Ω is a Runge domain of holomorphy, Ω contains the polynomial hull of

J0 ∪ Ê, and hence, there is a compact polynomially convex neighborhood of J0 ∪ Ê
contained in Ω, which we will take as X0. Choose α0 > 0 such that X0 contains

the α0-neighborhood of J0 ∪ Ê.
Before presenting the conditions we will require the sequences (σn), (Xn), and

(αn) to satisfy, we make some preparations. First choose, for each n = 1, 2, . . . ,

a compact polynomially convex neighborhood Ln of Ê contained in the (1/n)-

neighborhood of Ê. Since, for each j = 1, 2, . . . , the map σ0|[aj ,bj ] is a C∞ embed-
ding, the stability of smooth embeddings gives that there exists δj > 0 such that ev-
ery C∞-map α : [aj , bj ] → CN satisfying

∥∥α−σ0|[aj ,bj ]

∥∥
C1 < δj is a C

∞-embedding.

For s ∈ (aj , bj), let d(s) denote the distance from σ0(s) to σ0([0, 1] \ (aj , bj)). Then
d is a continuous function on

⋃
∞

j=1(aj , bj) = [0, 1] \ K and is everywhere strictly
positive.

The sequence of continuous maps (σn), the sequence of compact polynomially
convex sets (Xn), and the decreasing sequence of strictly positive numbers (αn) will
be chosen so that the following conditions hold for all n = 1, 2, . . . , all j = 1, 2, . . . ,
and all s ∈ [0, 1] \K.

(i) σn|K = σ0|K ,
(ii) each map σn|[aj ,bj ] is of class C

∞,
(iii) ‖σn − σn−1‖∞ < αn−1/2

n,
(iv)

∣∣σn(s)− σn−1(s)
∣∣ < d(s)/2n+1,

(v)
∥∥σn|[aj ,bj ] − σn−1|[aj ,bj ]

∥∥
Cn < δj/2

n,

(vi) Xn is contained in the (1/n)-neighborhood of σn([0, 1]) ∪ Ê,

(vii) Xn contains the αn-neighborhood of σn([0, 1]) ∪ Ê.

Before constructing the sequences (σn), (Xn), and (αn), we show that their ex-
istence will yield the theorem. Condition (iii) implies that the sequence (σn) con-
verges uniformly to a continuous map σ : [0, 1] → CN . By condition (i), σ|K = σ0|K ,
and hence σ(K) = E. Condition (v) implies that for each j = 1, 2, . . . , the sequence
(σn|[aj ,bj ]) converges in Ck-norm for every k = 1, 2, . . . . Consequently, σ|[aj ,bj ] is of

class C∞. In addition, condition (v) implies that
∥∥σ|[aj ,bj ] − σ0|[aj ,bj ]

∥∥
C1 < δj , and

hence σ|[aj ,bj ] is a C∞-embedding.
We next verify that σ is injective and hence is a topological embedding. Since

σ|K = σ0|K is injective and as just noted each map σ|[aj ,bj ] is injective, it is enough
to verify that σ(s) 
= σ(t) for s ∈ (aj , bj) and t ∈ [0, 1] \ (aj , bj). Condition (iv)
implies that |σ(s) − σ0(s)| < d(s)/2. If t ∈ K, then σ(t) = σ0(t) and |σ0(s) −
σ0(t)| ≥ d(s), so σ(s) 
= σ(t). If t ∈ (ak, bk) for some k 
= j, then |σ0(s)− σ0(t)| ≥
max{d(s), d(t)} and |σ(t)− σ0(t)| < d(t)/2, so

∣∣σ(s)− σ(t)
∣∣ ≥

∣∣σ0(s)− σ0(t)
∣∣−

∣∣σ(s)− σ0(s)
∣∣−

∣∣σ(t)− σ0(t)
∣∣

> max{d(s), d(t)} − d(s)/2− d(t)/2

≥ 0.

Thus again σ(s) 
= σ(t). Consequently, σ is injective.
Recall that we set J = σ([0, 1]). Conditions (iii) and (vii) together imply that

Xn contains σm([0, 1]) ∪ Ê for all m ≥ n ≥ 0. The reader can verify that this

and condition (vi) together imply that J ∪ Ê =
⋂

∞

n=0 Xn. Since the intersection of
a collection of polynomially convex sets is polynomially convex, we conclude that
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J ∪ Ê is polynomially convex. The desired equality Ĵ = J ∪ Ê follows. Of course

the desired inclusion J ⊂ Ω also follows from the equality J ∪ Ê =
⋂

∞

n=0 Xn since
X0 ⊂ Ω. This concludes the verification that the existence of the sequences (σn),
(Xn), and (αn) will yield the theorem.

Finally, we construct the sequences (σn), (Xn), and (αn). We already have
σ0, X0, and α0. We proceed now by induction. Suppose for some k ≥ 0 we
have chosen σ0, . . . , σk, X0, . . . , Xk, and α0, . . . , αk so that conditions (i)–(vii) are
satisfied for all n = 1, . . . , k (and all j = 1, 2, . . . and all s ∈ [0, 1] \ K). The set
σ−1
k

(
C

N \ Int(Lk+1)
)
is a compact subset of [0, 1] \K and hence is contained in the

union (a1, b1) ∪ · · · ∪ (as, bs) for some finite s. Let dk denote the minimum of the
function d on σ−1

k

(
CN \Int(Lk+1)

)
. Note that dk > 0. LetM = [a1, b1]∪· · ·∪[as, bs].

Applying Theorem 2.3 to the compact manifold M , the C∞-embedding σk|M , and
the compact polynomially convex set Lk+1 gives that there exists a C∞-embedding
g : M → C

N such that

(1) ‖g − σk|M‖Ck+1 < min{αk/2
k+1, dk/2

k+2, δ1/2
k+1, . . . , δs/2

k+1},
(2) g = σk on M ∩ σ−1

k (Lk+1),
(3) g(M) ∪ Lk+1 is polynomially convex.

Define σk+1 : [0, 1] → CN to coincide with σk on σ−1
k (Lk+1) and to coincide

with g on M . Then σk+1 is continuous and of course σk+1|K = σk|K = σ0|K and
each restriction σk+1|[aj ,bj ] is of class C∞. By condition (1), ‖σk+1 − σk‖∞ <

αk/2
k+1 and |σk+1(s) − σk(s)| < d(s)/2k+2 for each s ∈ [0, 1] \ K. Also by

condition (1),
∥∥σk+1|[aj ,bj ] − σk|[aj ,bj ]

∥∥
Ck+1 < δj/2

k+1 for each j. Furthermore,

since σk+1([0, 1]) ∪ Ê is contained in g(M) ∪ Lk+1, condition (3) gives that the

polynomial hull of σk+1([0, 1]) ∪ Ê is contained in the 1/(k + 1)-neighborhood of

σk+1([0, 1]) ∪ Ê. Consequently, there exists a compact polynomially convex neigh-

borhood of σk+1([0, 1])∪ Ê, which we will take as Xk+1, contained in the 1/(k+1)-

neighborhood of σk+1([0, 1]) ∪ Ê. The set Xk+1 contains the α-neighborhood of

σk+1([0, 1]) ∪ Ê for some α > 0. Set αk+1 = min{α, αk}. Now conditions (i)–(vii)
hold for all n = 1, . . . , k + 1. This completes the induction and the proof. �

Proof of Corollary 1.4. Let J be an arc or simple closed curve obtained from E as in
Theorem 1.3. That P (J) = C(J) follows from [15, Theorem 1.6.8] (or alternatively,
[3, Lemma 3.1]). �

The proof of Theorem 1.2 will use the following lemma. The special case of the
lemma in which Y is the closed unit ball and x0 is the origin is proved in [9] as
[9, Lemma 3.2]. The proof of the general case is essentially the same, but at the
suggestion of a referee, we include it here for completeness.

Lemma 2.4. Let Y be a compact polynomially convex set in C
N , let x0 be a point

of Y , and let ε > 0. Let {pj} be a countable collection of polynomials on CN such

that pj(x0) 
= 0 for each j. Then there exists a compact polynomially convex totally

disconnected set E with x0 ∈ E ⊂ Y ⊂ CN such that

(i) each pj is zero-free on E,

(ii) m(Y \ E) < ε.

Proof. By multiplying each pj by a suitable complex number if necessary, we may
assume that 	pj(x0) 
= 0 for each j. Furthermore, by enlarging the collection {pj},
we may assume that {pj} is dense in P (Y ).
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For each j, the set p−1
j ({z ∈ C : 	z = 0}) is a real-analytic variety in CN and

hence has 2N -dimensional measure zero. Consequently, we can choose 0 < εj <
min{|	pj(x0)|, 1} such that

m
(
p−1
j

(
{z ∈ C : |	z| < εj}

)
∩Y

)
< ε/2j .

Then

m
( ∞⋃

j=1

p−1
j

(
{z ∈ C : |	z| < εj}

)
∩Y

)
<

∞∑

j=1

ε/2j = ε.

Thus setting E = Y \
⋃

∞

j=1 p
−1
j

(
{z ∈ C : |	z| < εj}

)
we have that m(Y \ E) < ε.

Obviously x0 ∈ E ⊂ Y , each pj is zero-free on E, and E is compact.

For each j, choose a closed disc Dj containing pj(Y ). Then

E =
∞⋂

j=1

(
p−1
j

(
{z ∈ Dj : |	z| ≥ εj}

)
∩ Y

)
.

Each set {z ∈ Dj : |	z| ≥ εj} is polynomially convex since it has connected com-

plement in the plane. Hence each set p−1
j

(
{z ∈ Dj : |	z| ≥ εj}

)
∩Y is polynomially

convex (by the elementary [7, Lemma 3.1]). Consequently, E is polynomially con-
vex.

Let x and y be arbitrary distinct points of E. Because {pj} is dense in P (Y ),
there is some pj such that 	pj(x) > 1 and 	pj(y) < −1. Because |	pj | ≥ εj every-
where on E, it follows that x and y lie in different components of E. Consequently,
E is totally disconnected. �

Proof of Theorem 1.2. We treat only the construction of the arc, the construction
of the simple closed curve being essentially the same. Because Ω is a Runge domain
of holomorphy, Ω can be exhausted by compact polynomially convex sets. Conse-
quently, there is a compact polynomially convex set Y such that x0 ∈ Y ⊂ Ω and
m(Ω\Y ) < ε/2. Using Theorem 1.3 and Lemma 2.4, we will obtain the desired arc
by an argument similar to the proof of [9, Lemma 3.3]. Choose a countable collec-
tion {pj} of polynomials that is dense in P (Ω) and such that pj(x0) 
= 0 for each j.
By Lemma 2.4, there exists a compact polynomially convex totally disconnected set
E such that x0 ∈ E ⊂ Y , each pj is zero-free on E, and m(Y \E) < ε/2. Let J be
an arc in Ω obtained from E as in Theorem 1.3. Then of course J is polynomially
convex and m(Ω \ J) < ε. As noted in the proof of Corollary 1.4, P (J) = C(J).
Let σ : [0, 1] → J be a homeomorphism. Assume without loss of generality that
σ(0) and σ(1) are in the set E, and let (a1, b1), (a2, b2), . . . be the disjoint open
intervals whose union is [0, 1]\σ−1(E). Because each pj is zero-free on E, there ex-
ists εj > 0 such that pj(E) is disjoint from {z ∈ C : |z| < εj}. Each set pj([ak, bk])
has empty interior in the plane, so it follows that the set pj(J)∩ {z ∈ C : |z| < εj}
is a countable union of nowhere dense sets and thus has empty interior. Thus there
exist arbitrarily small complex numbers α such that pj + α has no zeros on J .

Consequently, the set of polynomials zero-free on J is dense in P (Ω). �

Proof of Theorem 1.1. By [8, Theorem 7.1] there exists a Cantor set E in C3 such

that Ê \E is nonempty and P (E) has dense invertibles. Let J be an arc or simple

closed curve obtained from E as in Theorem 1.3. Then Ĵ \ Ê has two-dimensional
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Hausdorff measure zero. Consequently, by [15, Corollary 1.6.8] for instance, P (Ĵ) =

{f ∈ C(Ĵ) : f |
Ê

∈ P (Ê)}. Therefore, the density of invertible elements in P (E)

implies that P (J) has dense invertibles by [8, Lemma 8.1]. Furthermore, Ĵ \ J =

Ê\J and the set Ê\J must be nonempty as the two-dimensional Hausdorff measure

of Ê \ E cannot be zero, by [15, Corollary 1.6.8] for instance (and in fact must be
infinite by [2, Theorem 21.9]). �
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