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Abstract. The increasing impact of algorithmic decisions on people’s lives compels us to
scrutinize their fairness and, in particular, the disparate impacts that ostensibly color-blind
algorithms can have on different groups. Examples include credit decisioning, hiring,
advertising, criminal justice, personalized medicine, and targeted policy making, where in
some cases legislative or regulatory frameworks for fairness exist and define specific
protected classes. In this paper we study a fundamental challenge to assessing disparate
impacts in practice: protected class membership is often not observed in the data. This is
particularly a problem in lending and healthcare. We consider the use of an auxiliary data
set, such as the U.S. census, to construct models that predict the protected class from proxy
variables, such as surname and geolocation. We show that even with such data, a variety of
common disparity measures are generally unidentifiable, providing a new perspective on
the documented biases of popular proxy-based methods. We provide exact character-
izations of the tightest possible set of all possible true disparities that are consistent with the
data (and possibly additional assumptions). We further provide optimization-based al-
gorithms for computing and visualizing these sets and statistical tools to assess sampling
uncertainty. Together, these enable reliable and robust assessments of disparities—an
important tool when disparity assessment can have far-reaching policy implications.
We demonstrate this in two case studies with real data: mortgage lending and per-
sonalized medicine dosing.

History: Accepted by Hamid Nazerzadeh, Guest Editor for the Special Issue on Data-Driven
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1. Introduction
The spread of prescriptive analytics and algorithmic
decision making has given rise to urgent ethical and
legal imperatives to avoid discrimination and guar-
antee fairness with respect to protected classes. In
advertising, prescriptive algorithms target for max-
imal impact and revenue (Iyer et al. 2005, Goldfarb
and Tucker 2011), but recent studies found gender-
based discrimination in who receives ads for STEM
(science, technology, engineering, and mathematics)
careers (Lambrecht and Tucker 2019) and other wor-
rying disparities (Sweeney 2013, Datta et al. 2015). In
hiring, algorithms help employers efficiently screen
applicants (Miller 2015), but in some cases this canhave
unintended biases—for example, against women and
minorities (Dastin 2018). In criminal justice, algo-
rithmic recidivism scores allow judges to assess risk
(Monahan and Skeem 2016), whereas recent studies
have revealed systematic race-based disparities in

error rates (Angwin et al. 2016, Chouldechova 2017).
In healthcare, algorithms that allocate resources such
as care management have been shown to exhibit racial
biases (Obermeyer and Mullainathan 2019), and per-
sonalized medicine algorithms can offer disparate
benefits to different groups (Goodman et al. 2018,
Rajkomar et al. 2018). In lending, prescriptive algo-
rithms optimize credit decisions using predicted de-
fault risks, and their induced disparities are regulated
by law (Comptroller of the Currency 2010), leading to
legal cases against discriminatory lending (Consumer
Financial Protection Bureau 2013).
For regulated decisions, there are two major legal

theories of discrimination:
• Disparate treatment (Zimmer 1996): Informally,

intentionally treating an individual differently on the
basis of membership in a protected class.
• Disparate impact (Rutherglen 1987): Informally,

adversely affecting members of one protected class

1
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more than another, even if by an ostensibly neu-
tral policy.

Thus, even prescriptive algorithms that do not take
race, gender, or other sensitive attributes as an input
may often satisfy equal treatment butmay still induce
disparate impact (Kleinberg et al. 2017). Indeed,many
of the above-mentioned disparities take the form of
unintended disparate impact of ostensibly class-blind pre-
scriptive algorithms. Although our contextual discus-
sion focuses on U.S. discrimination law and regula-
tion, our methodology is a general one for assessing
disparities with respect to protected class and may
apply in many legal and regulatory contexts.1

In consequential decision-making contexts such as
hiring or lending, assessing disparities is paramount
for monitoring the potential harms of decision sys-
tems. Assessing disparities induced by a prescriptive
algorithm involves evaluating the differences in the
distributions of decision outcomes received by dif-
ferent groups, either marginally or conditional on
some additional ground truth.Wedefine precisely the
disparity metrics of interest in Section 2.1 and discuss
related work in Section 3. Although what size of
disparity counts as unacceptable depends on the
appropriate legal, ethical, and regulatory context, in
any case, they must first be measured.

In this paper, we study a fundamental challenge to
assessing the disparity induced by prescriptive al-
gorithms in practice: Protected class membership is often
not observed in the data.

There may be many reasons for this missingness in
practice, both legal, operational, and behavioral. In
the U.S. financial service industry, lenders are not
permitted to collect race and ethnicity information on
applicants for nonmortgage products2 such as credit
cards, auto loans, and student loans. This consider-
ably hinders auditing fairness for nonmortgage loans,
both by internal compliance officers and by regulators
(Zhang 2016). Similarly, health plans and healthcare
delivery entities lack race and ethnicity data on most
of their enrollees and patients, as a consequence of
high data-collection costs and people’s reluctance to
reveal their race information for fear of potential
discrimination (Weissman andHasnain-Wynia 2011).
This data collection challenge makes monitoring of
racial and ethnic differences in care impractical and
impedes the progress of healthcare equity reforms
(Gaffney and McCormick 2017).

To address this challenge, some methods heuris-
tically use observed proxies to predict and impute
unobserved protected class labels. The most (in)fa-
mous example is the Bayesian Improved Surname
Geocoding (BISG) method. BISG estimates condi-
tional racemembership probabilities given a surname
and geolocation (e.g., census tract, zip code, or county)
using data from the U.S. decennial census, and then it

imputes the race labels based on the estimated proba-
bilities. Since its invention (Elliott et al. 2008, 2009), the
BISGmethod has beenwidely used in assessing racial
disparities in healthcare (e.g., Fremont et al. 2005,
Ulmer et al. 2009, Weissman and Hasnain-Wynia
2011, and Brown et al. 2016), as well in the U.S. fi-
nancial industry, where the Consumer Financial Pro-
tection Bureau (CFPB) used BISG to support analysis
leading to a $98million settlement against Ally Bank for
harming minority borrowers for auto loans (Consumer
Financial Protection Bureau 2013, 2014).
The validity of using proxies for the unobserved

protected class for disparity assessment remains con-
troversial, andrelevant research is still limited.Although
advanced proxy methods such as BISG outperform
previous proxymethods, further research shows that
it leads to biased disparity assessment (Baines and
Courchane 2014, Zhang 2016). In particular, Chen
et al. (2019) analyzed the underlying mechanism
for the statistical bias of BISG’s assessments as a result
of the joint dependence among lending outcome,
geolocation, and race.
However, a systematic understanding of the pre-

cise limitations of using proxy methods in disparity
assessment in general, and possible remedies to the
potential statistical biases, is still lacking.3 Filling in
this gap is an important and urgent need, especially
given the wide use of proxy methods and the sig-
nificant managerial and policy impacts of disparity
assessment in the settings where they are used, which
motivates our current work.

1.1. Contributions
In this paper, we demonstrate that it is generally
impossible to identify disparities when only proxy
information is available for protected class, and we
instead study how to precisely and reliably charac-
terize the range of all possible disparities that are
consistent with all available data, known as the partial
identification set. This perspective provides a princi-
pled approach to analyze the fundamental limita-
tions of all previous proxy methods regardless of the
actual point estimators they use. Specifically, we
describe the set of point values for disparities that
are consistent with the distribution of the observed
data, which characterizes the fundamental identifi-
cation uncertainty in disparity assessments that
exists even in the absence of finite-sample uncer-
tainty. To implement our work in practice, we, of
course, need to estimate these sets from finite sam-
ples, which we show how to do. We further provide
inferential methods to account for the finite-sample
uncertainty in these estimates (which vanishes as we
collect more data), in addition to the (nonvanishing)
identification uncertainty.
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We highlight our primary contributions in the
following subsections.

1.1.1. Problem Formulation. To facilitate a principled
analysis of (partial) identifiability, we formulate dis-
parity assessment with proxies as a data combination
problem with two data sets:

—A primary data set with the decision outcomes,
(potentially) true outcomes, and proxy variables, but
where the protected class labels are missing; and

—An auxiliary data set with proxy variables and
protected class labels, but without outcomes.

1.1.2. Identification Conditions. We prove tight nec-
essary and sufficient conditions for the identifiability
of disparity measures in this setting. In the absence of
these (unrealistically strong) conditions, disparities
are necessarily unidentifiable from the two data sets.
That is, the partial identification set of all disparity
measure values consistent with the data-generating
processes of the two data sets is not a singleton.

1.1.3. Characterizing and Computing the Partial Identi-
fication Set. We exactly characterize the partial iden-
tification sets of a variety of disparity measures under
data combination—that is, the smallest set containing
all possible values that disparity measures may si-
multaneously take while still agreeing with the data.
Our characterization is sharp in that it is equal to this
set rather than merely containing it. We provide
closed-form formulations of partial identification sets
for binary comparisons. And we provide optimiza-
tion algorithms to compute partial identification sets
when we incorporate additional mild smoothness
assumptions that reduce ambiguity or when we con-
sider simultaneous comparisons across more than two
protected classes. In the latter case, we compute the
support function of the partial identification set.

1.1.4. Estimation and Inference. We study the addi-
tional sampling uncertainty of our proposals when
given finite observations from each data set. Specif-
ically, we prove consistency guarantees when one
plugs in estimates of probability and conditional
probability models. To enable inference (i.e., con-
structing confidence intervals on top of the estimated
partial identification intervals), we propose a debiased
estimation approach that is invariant to the estimation
of the conditional probability models.

1.1.5. Robust Auditing. Together, these tools facilitate
robust and reliable fairness auditing. Because the sets
we describe are sharp in that they are the tightest
possible characterization of disparity given the data,
their size generally captures the amount of ambiguity
that remains in evaluating disparity when the protected

class is unobserved and only proxies are available.
When the observed data are very informative about the
disparity measures, the set tends to be small and may
still lead to meaningful conclusions regarding the sign
and magnitudes of disparity, despite unidentifiability.
By contrast, when the observed data are insufficient,
the set tends to be large and gives a valuable warning
about the risk of drawing conclusions from the fun-
damentally limited observed data.

1.1.6. Empirical Analysis. We apply our approach in
two real case studies: evaluating the racial dispar-
ities (1) in mortgage lending decisions and (2) in
personalized warfarin dosing. We demonstrate how
adding extra assumptions may decrease the size of
partial identification sets of disparity measures and
illustrate how stronger proxies—either for race or for
outcomes—can lead to smaller partial identification
sets and more informative conclusions on disparities.

1.2. Practical Implications
Collecting sensitive attributes such as protected class
membership remains a serious challenge in practice
that may be ultimately insurmountable. For example,
Holstein et al. (2019) surveyed industry practitioners
in machine learning and found that many practi-
tioners do not have access to protected attributes.
Bogen et al. (2020) identified challenges for sensitive
attribute collection in both traditionally regulated
sectors such as credit and employment, voluntary
efforts in healthcare, as well as efforts to audit and/or
promote equity by technology companies including
Airbnb, Facebook, and LinkedIn. Because, as we
show, disparities are unidentifiable when we only
have proxies for such attributes, any single point
estimate of disparities, such as those given by many
current methods, is fundamentally spurious, and any
conclusion drawn from it is vulnerable to criticism
andmaymislead decisionmaking. This is a grave and
real concern in the above-mentioned applications
where disparate impact assessments can have far-
reaching policy implications.
By contrast, by conducting inference on the range of

possible disparities based on the data available, our
proposed methods can support credible, principled
conclusions about disparities. This can be relevant, for
example, if a decisionmaker is concernedwith auditing
disparities and is choosing between different algo-
rithms based on performance disparities with respect
to unobserved protected attributes, or even choosing
between investments in different auxiliary proxy data
to better estimate disparities. Our approach is relevant
for partial identification of disparities and informing
these decisions. If thepartial identification sets are small,
they provide a statistical test certifying the presence of
disparities independent of untestable assumptions and
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can inform credible comparisons between algorithms.
If, instead, the partial identification sets are large, this
highlights both the limitations of using the available
data to draw credible conclusions about disparities
and the value of more informative proxy variables
or assumptions.

2. Problem Setup
We mainly consider four types of relevant variables:

• The decision outcome, Ŷ∈ {0, 1}, is the prescription
by either human decisionmakers ormachine learning
algorithms. For example, Ŷ� 1 represents the ap-
proval of a loan application, which is often based on
some prediction of default risk. We call Ŷ� 1 the
positive decision, even if is not favorable in terms of
utility (e.g., high medicine dosage in Section 8.2).

• The true outcome, Y ∈ {0, 1}, is a target variable
that justifies an optimal decision. Ŷ is often based on
imperfect predictions of Y. In the lending example
(Section 8.1), we denote Y � 1 for loan applicants who
would not default on loan payment if the loan ap-
plication were approved. Note that Y is not known to
decision makers at the time of decision making.

• The protected attribute, A ∈ A, is a categorical
variable (e.g., race or gender). Our convention is to let
A � a be a group understood to be generally advan-
taged and A � b disadvantaged.

• The proxy variables, Z ∈ Z, are a set of additional
observed covariates. In proxymethods, these are used
to predict A. In the BISG example (Section 8.1), Z
stands for surname and geolocation. The proxy var-
iables can be categorical, continuous, or mixed.

In this paper, we mainly focus on binary outcomes
(true outcome and decision outcome), but our results can
be straightforwardly extended to multileveled outcomes.

We formulate the problem of using proxy methods
from a data combination perspective. Specifically, we
assume we have two data sets: the main data set with
observations of ( Ŷ,Y,Z) and the auxiliary data set with
observations of (A,Z). Figure 1 is an illustration of
these two data sets in the example of the BISG proxy
method (Section 8.1).

Assumption 1. The primary and auxiliary data sets both
consist of independent and identically distribution (i.i.d.)
draws, each from the respective marginalization of a common
joint distribution.

Therefore, the information from observing these
two separate data sets can be characterized by P( Ŷ,Y,Z)
and P(A,Z), respectively, each being amarginalization
of a common larger joint distribution P(A, Ŷ,Y,Z).4
However, we cannot simply join these two data sets
directly for many possible reasons. For example, no
unique identifier for individuals (e.g., social security
number) exists in both data sets. Thus we cannot learn
the combined joint distributionP(A, Ŷ,Y,Z) from these
two separate, unconnected data sets.

2.1. Disparity Measures
In this paper, we focus on assessing the disparity in
the decision Ŷwith respect to the protected attributeA,
aswell as possiblywith respect to true outcome labelsY.
We illustrate our method with widely used disparity
measures that are a measure of class-conditional
classification error, and if we were given observa-
tions of true class labels, they could be computed
from a 2 × 2 × |A|within-class confusion matrix of the
decision and true outcome.
Specifically, we consider the following disparities.
• Demographic disparity (DD): δDD(a,b)�P(Ŷ�1 |A�

a)− P(Ŷ�1 |A�b).
• True-positive rate disparity (TPRD): δTPRD(a, b) �

P( Ŷ� 1 | A � a,Y � 1) − P( Ŷ� 1 | A � b,Y � 1).
• True-negative rate disparity (TNRD): δTNRD (a, b) �

P( Ŷ� 0 | A � a, Y � 0) − P( Ŷ� 0 | A � b,Y � 0).
• Positive predictive value disparity (PPVD): δPPVD (a,

b) � P(Y � 1 | A � a, Ŷ� 1) − P(Y � 1 | A � b, Ŷ� 1).
• Negative predictive value disparity (NPVD): δNPVD (a,

b) � P(Y � 0 | A � a, Ŷ� 0)− P(Y � 0 | A � b, Ŷ� 0).
To illustrate, we interpret these disparity measures

using the running example of making lending deci-
sions. DD measures the disparity in within-class av-
erage loan approval rate.5 TPRD (respectively, TNRD)
measures the disparity in the proportions of people
who correctly get approved (respectively, rejected) in
loan applications between two classes, given their true
nondefault or default outcome. Compared with DD,
TPRD and TNRD only measure the disparity that is un-
mediated by existing base disparities in true outcome Y
and is considered more relevant for classification
settingswhen concernedwith disparities in allocation
of apositiveoutcome inviewofqualifying characteristics
such as creditworthiness (Hardt et al. 2016). Such dis-
parities can be interpreted as “disparate opportunity”

Figure 1. Illustration of the Two Observed Data Sets for Assessing Lending Disparity with Unobserved Race Labels
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to equally qualified individuals from different groups.
PPVD (respectively, NPVD) measures the disparity in
the proportions of approved applicants who pay back
their loan (respectively, rejected applicants who default)
between two classes. Such disparities can be interpreted
as “disparate benefit of the doubt” in an individual
having the positive label.

We will present our results in terms of DD, TPRD,
and TNRD. Indeed, by swapping the roles of Y and Ŷ
in TPRD and TNRD, all our results can straightfor-
wardly be extended to PPVD and NPVD, respec-
tively. Similarly, disparities based on a false-negative
rate and false-positive rate simply differ with TPRD
andTNRDby aminus sign (i.e., are given by swapping a
and b). Because the true positive rate (TPR) and true
negative rate (TNR) characterize the receiver oper-
ating characteristic curve, our results can also be
extended to assessing bipartite ranking scores (Kallus
and Zhou 2019b).

To streamline the presentation, we typically use α,
z, ŷ, and y as generic values of the random variablesA,
Z, Ŷ, and Y, respectively. We also use a and b as ad-
ditional generic values for A, where a is generally
understood to be amajority or advantaged class label.
We further define the outcome probabilities for protec-
ted class α as μ(α) :�P( Ŷ� 1 | A � α) and μŷy(α) :�
P( Ŷ� ŷ | A � α,Y � y), so that δDD(a, b) � μ(a) − μ(b),
δTPRD(a, b) � μ11(a) − μ11(b), and δTNRD(a, b) � μ00(a) −
μ00(b). Throughout this paper, we use E to denote
expectation with respect to the target distribution P.

3. Related Literature
3.1. Proxy Methods
The validity of proxy methods for disparity assess-
ment depends not only on the statistical estimation of,
for example, P(A � α | Z � z), but also the specific
procedure with which this is combined with other
information. Although BISG has been shown to out-
performpreviousproxies (surname-onlyandgeolocation-
only analysis), these evaluations (Consumer Financial
Protection Bureau 2014, Imai and Khanna 2016,
Dembosky et al. 2019) focus on classification accuracy,
which is never perfect, and do not consider impact
on downstream disparity assessment, mostly because
this is usually unknowable. By contrast, Baines and
Courchane (2014) and Zhang (2016) assessed dis-
parity on a mortgage data set, and they found that
using imputed race tends to overestimate the true
disparity. Chen et al. (2019) provided a full analysis
of this bias and developed sufficient conditions to
determine its direction and found that disparity es-
timation methods using imputed race are very sensi-
tive to arbitrary tuning parameters such as imputa-
tion threshold. As we show in Section 4, disparity is

generally unidentifiable from proxies when protected
class is unobserved; consequently, all previous point
estimators are generally biased unless very strong
assumptions are satisfied.

3.2. Algorithmic Fairness
In this paper, we consider auditing two measures of
fairness that have received considerable attention in
the fair machine learning community: demographic
(dis) parity and classification (dis) parity, which we
outlined in Section 2.1. Many other “fairness metrics”
have been proposed to facilitate risk assessment for
algorithmic decision making in different contexts
(Narayanan 2018, Verma and Rubin 2018); for a more
comprehensive discussion, we refer to Barocas et al.
(2018). We emphasize that we focus on auditing, not
adjusting, disparity measures. Whether observed dis-
parities warrant adjustments depends on the legal,
ethical, and regulatory context.6 Several works have
considered limitations to measuring these fairness
metrics in practice (Kallus and Zhou 2018b, 2019a;
Chen et al. 2019).

3.3. Partial Identification and Data Combination
There is an extensive literature on partial identifica-
tion of unidentifiable parameters (e.g., Manski 2003
and Beresteanu et al. 2011). There are many reasons
parameters may be unidentifiable, including con-
founding (e.g., Kallus and Zhou 2018a and Kallus
et al. 2019), missingness (e.g., Manski 2005), and
multiple equilibria (e.g., Ciliberto and Tamer 2009).
One prominent example is data combination, also
termed the “ecological inference problem,” where
joint distributions must be reconstructed from ob-
servation of marginal distributions (Freedman 1999,
Schuessler 1999, Wakefield 2004, Jiang et al. 2018).
One key tool for studying this problem is the Fréchet–
Hoeffding inequalities, which give sharp bounds on
joint cumulative distributions and superadditive ex-
pectations given marginals (Cambanis et al. 1976,
Ridder and Moffitt 2007, Fan et al. 2014). Such tools
are also used in risk analysis in finance to assess risk
without knowledge of copulas (Rüschendorf 2013). In
contrast to much of the above-mentioned work, we
focus on assessing nonlinear functionals of partially
identified distributions—namely, true positive and
negative rates, as well as on leveraging conditional
information to integrate marginal information across
proxy-value levelswith possible smoothness constraints.

4. Unidentifiability of Disparity Measures
Under Data Combination

In this section we study the fundamental limits of the
two separate data sets to identify (i.e., pinpoint)
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the disparity measures of interest. We first intro-
duce the concept of identification (Lewbel 2018). We
call a quantity of interest (either finite-dimensional or
infinite-dimensional) identifiable if it can be uniquely
determined by (i.e., is a function of) the probability
distribution function of the data. Conversely, it is
unidentifiable ifmultiple different values of this quantity
all simultaneously agree with the distribution of ob-
served data. This is motivated by the fact that, in the
i.i.d. setting, the distribution of the data (equivalently,
the distribution of any single data point) is themostwe
can hope to learn from any number of observations,
even infinitely many.

The disparity measures of interest in Section 2 are
all functions of the full joint distribution P(A, Ŷ,Y,Z)
and are clearly identifiable ifwe observed the full data
(A, Ŷ,Y,Z). We will show in Section 4.1 that disparity
measures are generally unidentifiable from two sep-
arate data sets, because the corresponding marginal
distributions P( Ŷ,Y,Z) and P(A,Z) are insufficient to
uniquely determine the full joint distribution and, in
particular, the disparity measures.

Analyzing the identifiability of disparity measures
is crucial because unidentifiability implies that learn-
ing disparities based on the observed data alone is
fundamentally ambiguous: it is impossible, even with
an infinite amount of observed data, to pin down the
exact values of the disparity measures. Consequently,
any point estimate is in some sense spurious: biased
and potentially sensitive to ad hoc modeling speci-
fications (D’Amour 2019). In this case, generally one
must be very cautious about drawing any substan-
tive conclusions based on point estimates of dis-
parity measures.

Because identifiability and partial identification
sets are properties of distributions (i.e., are population
quantities), we focus for the time being on the con-
sequences of fully knowing the marginals P( Ŷ,Y,Z)
and P(A,Z), which can be learned from the two data
sets given sufficient data. This captures the identifi-
cation uncertainty involved in disparity assessments
using data combination. We revisit the assumption of
full knowledge of marginals in Section 7, where we
discuss how the partial identification sets can be es-
timated from the data and how to construct confidence
intervals on these. This captures the sampling uncer-
tainty involved in only having finite data sets.

4.1. Unidentifiability of Disparities
Because the disparity measures are functions of the
full joint distribution P(A, Ŷ,Y,Z), to prove the uni-
dentifiability of the disparity measures, we show that
there generally exist multiple valid full joint distri-
butions that give rise to different disparities but at the

same time agree with the marginal joint distribu-
tions P( Ŷ,Y,Z) and P(A,Z), which characterize the
primary data set and the auxiliary data set, respec-
tively. To formalize the validity of full joint distri-
butions, we introduce the coupling of two marginal
distributions (Villani 2008). Because outcomes and
protected classes are discrete, we focus on couplings
of discrete distributions.7

Definition 1 (Coupling Sets). Given two discrete prob-
ability spaces (S, σ) and (T , τ) (i.e., σ(s) ≥ 0, τ(t) ≥ 0,∑

s∈S σ(s) � 1,
∑

t∈T τ(t) � 1), a distributionπ over S × T
is a coupling of (σ, τ) if the marginal distributions of π
coincide with σ, τ. The set of all possible couplings is
denoted by

Π σ, τ( ) � π ∈ RS×T :
∑
t∈T

π s, t( ) � σ s( ),
{
∑
s∈S

π s, t( ) � τ t( ), 0 ≤ π s, t( ) ≤ 1,

∀s ∈ S, t ∈ T

}
.

(1)

Definition 1 gives the set of all possible valid joint
distributions that agreewith givenmarginals. It states
that any joint distribution is valid as long as it satisfies
the law of total probability with respect to the fixed
marginals. The classical Frećhet–Hoeffding inequal-
ity provides bounds on the possible values of these
joint distributions with knowledge of the fixed mar-
ginals (Cambanis et al. 1976, Ridder and Moffitt 2007,
Fan et al. 2014): this characterization informs our
discussion of the size of partial identification sets in
Section 4.2 and our derivation of closed-form partial
identification sets in Section 5.

Proposition 1 (Fréchet–Hoeffding). The coupling set is
equivalently given by

Π σ, τ( ) � π ∈ RS×T :
{ ∑

t∈T
π s, t( ) � σ s( ),∑

s∈S
π s, t( ) � τ t( ),

max σ s( ) + τ t( ) − 1,0{ } ≤ π s, t( ) ≤min σ s( ),{
τ t( )}, ∀s ∈ S, t ∈ T

}
.

(2)
We let PD denote the set of all valid full joint dis-

tributions of ( Ŷ,Y,A,Z) that agree with the marginal
distributions P( Ŷ,Y,Z) and P(A,Z), as characterized
by this definition of couplings:

PD � P′ : P′ Z( ) � P Z( ),{
P′ Ŷ,Y,A | Z( )∈ Π P Ŷ,Y | Z( )

,P A | Z( )( )} (3)
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The set PD generally contains multiple elements,
because the joint dependence structure can be arbi-
trary so long as the marginals are compatible (char-
acterized by either Definition 1 or Equation (2)). We
illustrate this forΠ(P A | Z( )

,P( Ŷ | Z)) in Figure 2.With
binary protected class and outcomes, marginal in-
formation provides only three independent constraints
on four unknowns, so that the joint distribution cannot
beuniquelydetermined. This also extends toΠ(P(A | Z),
P( Ŷ,Y | Z)).

We next show that in addition to the full joint
distribution, the disparities, which are differences of
nonlinear functionals of the full joint distribution, in
particular cannot be uniquely identified.

Proposition 2. Let A � {a, b}, and let marginal distribu-
tions P( Ŷ,Y,Z) and P(A,Z) be given.

i. If there exists a set of z’s with positive probability such
that 0<P( Ŷ� ŷ |Z� z)< 1 and 0<P(A�α |Z� z)< 1 for
ŷ ∈ {0, 1} and α ∈ A, then δDD(a, b) is unidentifiable
without further conditions. That is, there exist two dif-
ferent joint distributions of (A, Ŷ,Y,Z) that agree with
these marginals but give rise to different values of δDD(a, b).

ii. If there exists a set of z’s with positive probability
such that 0 < P( Ŷ� ŷ,Y � y | Z � z) < 1 and 0 < P(A �
α | Z � z) < 1 for ŷ, y ∈ {0, 1} and α ∈ A, then both
δTPRD(a, b) and δTNRD(a, b) are unidentifiable without fur-
ther conditions.

Proposition 2 shows that as long as the proxies Z
cannot perfectly predict the protected class A or
outcomes Ŷ,Y, then DD, TPRD, and TNRD are un-
identifiable from the observed data information alone.
This holds for any given pair of marginal distribu-
tions. We can also prove the same conclusion for
PPVD and NPVD by exchanging Ŷ and Y. To prove
Proposition 2 we show that we can always construct
different feasible couplings of the given marginals
(i.e., different feasible elements in PD) that lead to
different values of the disparities. Because disparities
are differences of nonlinear functionals of the cou-
pling, we need to construct the couplings very care-
fully to achieve unambiguously different disparity
values. See Online Appendix B.1 for the proof.

4.2. Partial Identification Set of Disparities
In the last section we showed that DD, TPRD, and
TNRD (and symmetrically, also PPVD and NPVD)
are generally not identifiable from the two separate
data sets. Next, we will characterize exactly how
identifiable or unidentifiable they are by character-
izing the partial identification set of all disparity
values that agree with the observed data and possibly
additional assumptions that reflect prior knowledge.
Each disparitymeasure in Section 2.1 can be viewed

as a function of the true distribution of ( Ŷ,Y,A,Z), so
we generically denote it as δ(a, b;P). The partial iden-
tification set of this disparity measure of interest given
observed data information (encoded by PD, defined
in Equation (3)) and extra assumptions (encoded by
PA)8 is defined as follows:

Δ PD ∩ PA( ) � δ a, b;P′( ) : P′ ∈ PD ∩ PA{ }. (4)
We will add subscripts such as DD or TPRD to in-
dicate the set for a particular disparity measure. The
partial identification set in Equation (4) is the smallest
set containing all possible values of the disparity mea-
sures that agree with both the observed data and pos-
sibly extra assumptions. Each disparity value in this set
is given by one valid full joint distribution that is com-
patible with the observed data and extra assumptions,
and any disparity value outside this set is ruled out by
either the observed data or the assumptions. A natural
question is, when are these smallest possible sets also
actually small? We next discuss different scenarios
where the sets can be small or large.

4.2.1. Informative Proxies. If the proxies are very pre-
dictive, then the observed data alone may be infor-
mative enough to sufficiently pin down the disparity
measures. At the extreme, if proxies are perfectly pre-
dictiveof either theoutcomesor theprotectedclass, then the
partial identification sets collapse into singletons; that is, the
disparity measures are uniquely identified from the ob-
serveddata.We formalize this in the followingproposition.

Proposition 3. Given marginal distributions P( Ŷ,Y,Z)
and P(A,Z), if the assumptions of Proposition 2(ii) are not

Figure 2. Unidentifiability of Joint Distributions Given Marginal Distributions

Notes. The gray region denotes unknown joint probabilities. Row and column sums are known. Even with binary protected class and outcome,
this leaves one degree of freedom in the unknowns, unless one of the marginals is degenerate.
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satisfied—that is, for almost all z, either P( Ŷ� ŷ,Y � y |
Z � z) ∈ {0, 1} for ŷ, y ∈ {0, 1} or P(A � α | Z � z) ∈ {0, 1}
for α ∈ A—thenPD is a singleton, and henceΔ(PD) for any
disparity measure in Section 2 is also a singleton.

Proof. According to the Fréchet–Hoeffding inequal-
ity in Proposition 1, any valid full joint distribution
agreeing with the observed data (i.e., an element
P′ ∈ PD) has to satisfy that

P′ A � α, Ŷ� ŷ,Y � y | Z( )
≤ min P Ŷ� ŷ,Y � y | Z( )

,P A � α | Z( ){ }
,

(5)

P′ A � α, Ŷ� ŷ,Y � y | Z( )
≥ max P Ŷ� ŷ,Y � y | Z( ){

+P A � α | Z( ) − 1, 0
}
.

(6)
Under the stated assumptions, the right-hand sides of
Equations (5) and (6) are equal. Thus, the full joint
distribution is uniquely determined by themarginals,
and PD is a singleton.

This shows that the conditions of Proposition 2 are
the tight necessary and sufficient conditions for iden-
tifiability from marginals alone. If proxies are not
perfect but are very predictive, either of protected
class or of outcomes, or both, then the endpoints of
Fréchet–Hoeffding inequality (i.e., right-hand sides
of Equations (5) and (6)) are not exactly equal but are
still close. Consequently, the partial identification sets
will be small. This is the case we observe in Section 8.2
when using very informative genetic proxies for race.

4.2.2. Strong Assumptions on the Joint Distributions.
For the case of DD, Chen et al. (2019) discussed a
conditional independence assumption that admits an
unbiased proxy-based estimator. Actually, this as-
sumption is sufficient for the identifiability of dis-
parities more generally.

Proposition 4. If we assume that Y, Ŷ 	 A | Z, which is
to say

PA � P′ : P′ Ŷ� ŷ,Y � y,A � α | Z � z
( ){

� P′ Ŷ� ŷ,Y � y | Z � z
( )

P′ A � α | Z � z( ),
∀α, ŷ, y, z

}
,

then PD ∩ PA is a singleton, and hence Δ(PD ∩ PA) for
any disparity measure is also a singleton.

Proof. Any P′ ∈ PD ∩ PA satisfies for z∈Z, ŷ,y∈ {0,1},
α ∈A, P′( Ŷ� ŷ,Y � y,A � α | Z � z) � P( Ŷ� ŷ,Y � y |
Z � z)P(A � α | Z � z). Because this is uniquely deter-
mined by the marginals, PD ∩ PA contains only a
single element.

Although the conditional independence assump-
tion is indeed very informative, itmay be too unrealistic

in practice. Indeed, the proxies Z that can be observed
on both data sets are usually low dimensional (e.g.,
surname and geolocation), so they are unlikely to
capture all dependence between the outcomes and the
protected class. Therefore, although imposing strong
assumptions such as this may help identification, it
can also result inmisleading conclusions, considering
that these assumptions are often wrong in reality.

4.2.3. Uninformative or Weakly Informative Proxies and
No or Weak Assumptions. If the observed data sets
alone are not highly informative, and we are not
willing to impose overly stringent assumptions on the
unknown joint distribution, we generally end upwith
partial identification sets with nontrivial size. For
example, in Section 8.1, wefind that using geolocation
and income as proxies results in quite large partial
identification sets in a lending example. Imposing
additional mild smoothness assumptions (Section 6.1)
narrowed down the set based on income proxies only
slightly. In this case, the size of partial identification
sets exactly captures the ambiguity in learning dis-
parity measures based on the observed data and
imposed assumptions. Large sets are not meaning-
less: they serve as an important warning about
drawing any conclusions from highly flawed data.
And even large sets may be informative of the pres-
ence of disparities when they are well separated
from zero.

5. Closed-Form Partial Identification Sets
of Disparities for Binary Protected
Class Attribute

In this section, we show that the partial identification
set in Equation (4) has closed-form solutions when
we consider a binary protected class (i.e., A � {a, b})
without imposing any additional assumption (i.e.,PA

does not impose any constraint, and PD ∩ PA � PD).
We first reformulate the partial identification set in

Equation (4) for different disparity measures in terms
of weighted representations that conveniently sepa-
rate the identifiable and unidentifiable parts of the
disparities. For any functions wα(ŷ, z) and w̃α(ŷ, y, z),
we define, respectively,

μ α;w( ) :�
E wα Ŷ,Z

( )
Ŷ

[ ]
P A � α( ) , (7)

µŷy(α; w̃)≔E[w̃α ( Ŷ,Y,Z)I(Y � y)I( Ŷ � ŷ)]
×E

[
w̃α ( Ŷ,Y,Z)I(Y � y)I( Ŷ � ŷ)

+ w̃α ( Ŷ,Y,Z)I(Y � y)I( Ŷ≠ ŷ)]−1,
(8)
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Furthermore, we define w∗
α(ŷ, z), w̃∗

α(ŷ, y, z) as the con-
ditional probabilities of protected class given out-
comes and proxies:

w∗
α(ŷ, z) :�P A � α | Ŷ� ŷ,Z � z

( )
,

w̃∗
α(ŷ, y, z) :�P A � α | Ŷ� ŷ,Y � y,Z � z

( )
,

such that DD, TPRD, and TNRD satisfy δDD(a, b) �
μ(a;w∗) − μ(b;w∗), δTPRD(a, b) � μ11(a; w̃∗) − μ11(b; w̃∗),
and δTNRD(a, b) � μ00(a; w̃∗) − μ00(b; w̃∗), respectively.
Note that for anyfixed functionsw, w̃, bothμ(α;w) and
μŷy(α; w̃) are identifiable from just the marginal dis-
tribution P( Ŷ,Y,Z) because every term is just an ex-
pectation over this distribution. On the other hand,
w∗, w̃∗, which depend on the unidentifiable full joint
distribution P(A, Ŷ,Y,Z), are themselves unidentifi-
able and therefore render the disparities, which de-
pend on them, unidentifiable.

Although the true w∗, w̃∗ are unidentifiable, we can
construct the set of all possible values of these un-
known conditional probabilities that agree with the ob-
served data. For any set P of joint distributions, define

W P( ) � w : wα(ŷ, z) � P′ A � α | Ŷ� ŷ,Z � z
( )

,
{

∀ŷ, y, z, P′ ∈ P
}
,

(9)

W̃ P( ) � w̃ : w̃α(ŷ,y, z) � P′ A � α | Ŷ� ŷ,Y � y,Z � z
( )

,
{

∀ŷ,y, z, P′ ∈ P
}
.

(10)
Then, we can characterize the partial identification
sets of disparities simply by these sets of conditional
probabilities.

Proposition 5. For any set P of joint distributions on
(A,Ŷ,Y,Z),we haveΔDD(P)�{μ(a;w)−μ(b;w) :w∈W(P)},
ΔTPRD(P) � μ11(a; w̃) − μ11(b; w̃) : w̃ ∈ W̃(P){ }

, and
ΔTNRD(P) � μ00(a; w̃) − μ00(b; w̃) : w̃ ∈ W̃(P){ }

.

In particular, Proposition 5 holds for PD. In the
following proposition, we give explicit formulae for
W(PD), W̃(PD) in terms of the law of total probability
(LTP) constraints as in Definition 1.

Proposition6. GivenmarginalsP(A | Z), P( Ŷ,Y,Z),we have

W PD( )

� w :

∑
ŷ∈ 0,1{ }wα(ŷ,z)P(Ŷ� ŷ|Z� z) �P(A�α|Z� z),∑
α∈Awα(ŷ,z) � 1, 0≤wα(ŷ,z) ≤ 1, for any α,z, ŷ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭
W̃ PD( )

� w̃ :

∑
ŷ,y∈{0,1}w̃α(ŷ,y,z) P(Ŷ� ŷ,Y� y|Z� z)

� P(A� α |Z� z),∑
α∈Aw̃α(ŷ,y,z) � 1, 0 ≤ w̃α(ŷ,y,z) ≤ 1,

for any α,z,ŷ,y.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

From Propositions 5 and 6, we show in Propositions 7
and 8 that the partial identification sets of DD and
TPRD/TNRD for a binary protected class, without
imposing extra assumptions, actually have closed-
form solutions.

Proposition 7 (Closed-Form Set for DD). Let

wL
α ŷ,z
( ) �max 0, 1+P(A � α |Z � z) − 1

P(Ŷ � ŷ |Z � z)

{ }
,

wU
α ŷ, z
( ) � min 1,

P(A � α |Z � z)
P(Ŷ � ŷ |Z � z)

{ }
.

Then,

ΔDD PD( ) � μ a;wL( ) − μ b;wU( )
, μ a;wU( ) − μ b;wL( )[ ]

.

(11)

Proof. Notice that [P(Ŷ� ŷ |Z� z)wL
α(ŷ,z), P(Ŷ� ŷ |Z� z)

wU
α (ŷ,z)] are exactly the endpoints of the Fréchet–

Hoeffding inequalities in Equation (2) for the cou-
pling set Π(P( Ŷ | Z � z), P(A | Z � z)). According to
Propositions 1 and 6, the set W(PD) has the fol-
lowing equivalent formulation:

W PD( )

� w :

∑
ŷ∈ 0,1{ }wα(ŷ,z)P(Ŷ� ŷ|Z� z) �P(A�α|Z� z),∑
α∈Awα(ŷ,z) � 1,wL

α ŷ,z
( )≤wα(ŷ,z) ≤wU

α ŷ,z
( )

,

for any α,z, ŷ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)
Notice that W(PD) is compact and connected in L∞
and that the function μ(α,w) is continuous in w for
α � a, b. Thus, by Propositions 5 and 6, the partial
identification set is an interval:

ΔDD PD( ) � min
w∈W PD( )

μ a,w( ) − μ b,w( ),
[

max
w∈W PD( )

μ a,w( ) − μ b,w( )
]

We derive the lower bound as an example, and the
upper bound can be derived analogously. According
to Equation (7),

μ a,w( ) − μ b,w( ) � E wa Ŷ,Z
( )

Ŷ
[ ]
P A � a( ) − E wb Ŷ,Z

( )
Ŷ

[ ]
P A � b( ) .

(13)
Because μ(a,w)−μ(b,w) is increasing in wa and decreas-
ing in wb, minw∈W(PD)(μ(a,w) − μ(b,w)) ≥ minw∈W(PD)
μ(a,w) −maxw∈W(PD) μ(b,w) � μ(a;wL)− μ(b;wU).
Moreover, it is easy to verify that w† � (wL

a ,w
U
b )

satisfies the law of total probability constraints and is
feasible in PD.
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The partial identification set given in Proposition 7
concretely illustrates the general unidentifiability of
demographic disparity under data combination: any
element within the interval in Proposition 11 is a valid
disparity value that agrees with the observed data
information. In the unrealistically ideal case, if the
proxy variables Z are perfectly predictive of either Ŷ
or A, then we can verify that wL � wU , and the two
interval endpoints in Proposition 11 are equal.

We next show that the partial identification sets
corresponding to TPRDandTNRDdisparity for a binary-
valued protected class also have closed-form solutions.

Proposition 8 (Closed-Form Sets of TPRD and TNRD). Let

µ′
ŷy(α; w̃, w̃′)≔E[w̃α ( Ŷ,Y,Z)I(Y � y)I ( Ŷ � ŷ)]

×
(
E
[
w̃α ( Ŷ,Y,Z)I(Y � y)I ( Ŷ � ŷ)]

+E
[
w̃′
α ( Ŷ,Y,Z)I (Y � y)I( Ŷ≠ ŷ)])−1,

w̃L
α ( ŷ, y, z) � max

{
0, 1 + P(A � α|Z � z) − 1

P( Ŷ � ŷ, Y � y|Z � z)

}
,

w̃U
α ( ŷ, y, z) � max

{
1,

P(A � α|Z � z)
P( Ŷ � ŷ, Y � y|Z � z)

}
.

Then,

ΔTPRD PD( ) � μ′
11 a; w̃L, w̃U( ) − μ′

11 b; w̃U , w̃L( )
,

[
μ′
11 a; w̃U , w̃L( ) − μ′

11 b; w̃L, w̃U( )]
,

(14)

ΔTNRD PD( ) � μ′
00 a; w̃L, w̃U( ) − μ′

00 b; w̃U , w̃L( )
,

[
μ′
00 a; w̃U , w̃L( ) − μ′

00 b; w̃L, w̃U( )]
.

(15)

Proposition 8 can be proved by following similar
procedures in the proof of Proposition 7. We again
leverage a reformulation of W̃(PD) in terms of Fréchet–
Hoeffding inequalities with w̃L and w̃U as extremal
weights. Then μ′̂

yy(α; w̃, w̃′) is continuous in (w̃, w̃′) and
is increasing in w̃ but decreasing in w̃′,9 which would
imply that the interval endpoints in Equations (14)
and (15) indeed bracket the partial identification sets.
It remains to verify that the extremal weights are
simultaneously feasible in W̃(PD) so that the interval
endpoints are attained. See Online Appendix B.4 for
details. Again, when the proxy variablesZ can predict
either ( Ŷ,Y) or A perfectly, we can easily verify that
w̃L � w̃U , so the intervals in Equations (14) and (15)
also collapse into singletons, but this is unrealistic.

6. Extensions for General Partial
Identification Sets

In this section, we discuss general partial identifica-
tion sets, allowing additional structural assumptions,
such as smoothness restrictions, and accommodating
multiple-level protected class.

6.1. Additional Smoothness Assumptions
We first introduce smoothness restrictions to illus-
trate possible additional structural knowledge that
can be used to restrict the partial identification sets.
One might expect that, for two similar values z, z′, the
two true joint distributions P(A,Y |Z� z),P(A,Y |Z� z′)
are also similar (some limited amount of similarity is
already implied by the law of total probability when
the given marginals are themselves smooth). There
is no way to verify this from the separate data sets
only, but such an assumption may be defensible
based on domain knowledge and can help narrow
down the possible values disparities may take. We
therefore further consider partial identification sets
of disparities when we impose the following addi-
tional assumptions:

P A � α | Y � y,Z � z
( ) − P A � α | Y � y,Z � z′

( )
≤ d z, z′( ) ∀α,y, z, z′, (16)

P A � α | Ŷ� ŷ,Y � y,Z � z
( ) − P A � α | Ŷ� ŷ,

(
Y � y,Z � z′) ≤ d z, z′( ) ∀α, ŷ, y, z, z′, (17)

where d(z,z′) is a given metric. In particular, we en-
code the implicit Lipschitz constant by scaling the
metric d itself. We can then let PLip be the set of all
joints that satisfy Equations (16) and (17).
Equations (16) and (17) imply that the weight

constraints W(PD ∩ PLip) and W̃(PD ∩ PLip) corre-
sponding to the Lipschitz assumption take the fol-
lowing respective forms:

W PD ∩ PLip
( ) � W PD( ) ∩WLip, where WLip

:� w : wα ŷ, z
( ) − wα ŷ, z′

( ) ≤ d z, z′( ) ∀z, z′, ŷ{ }
;

W̃ PD ∩ PLip
( ) � W̃ PD( ) ∩ W̃Lip, where W̃Lip

:� w̃ : w̃α ŷ, y, z
( ) − w̃α ŷ, y, z′

( ) ≤ d z, z′( ) ∀z, z′, ŷ, y}.{
Leveraging Proposition 5, we can translate this to the
partial identification sets for DD, TPRD, and TNRD
when we assume Equations (16) and (17). In partic-
ular, Proposition 6 and the preceding provide an
explicit form for these sets. To actually compute their
endpoints we now need to solve an optimization prob-
lem. For generality, we consider this optimization
problem in the context of a multiple-level protected
class attribute, which we study next.

6.2. Multiple-Level Protected Class Attribute
We now consider the most general case and study the
partial identification set of all simultaneously achievable
disparities for multiple groups, potentially imposing
additional assumptions such as smoothness. Without
loss of generality, we will evaluate disparities for
multiple levels by designating some element a ofA to
be the reference class. Specifically, letting A0 :�A \ {a}
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and δ(a, b;P) be any of the disparities defined in
Section 2.1, we consider the multivariate partial iden-
tification of all pairwise disparities:

Δ PD ∩ PA( ) � δ a, b;P′( )( )b∈A0
: P′ ∈ PD ∩ PA

{ } ⊂ R|A|−1.
(18)

Note that for any b, b′, δ(b,b′;P′) � δ(a,b′;P′) −δ(a,b;P′),
so that the above-mentioned set characterizes all si-
multaneously achievable pairwise disparities, regardless
of the choice of reference class a. We can also extend the
general approach to linear combinations of multiple
disparity measures at the same time.

Next, we note that with W(P), W̃(P) as defined in
Equations (9) and (10), we have the following gen-
eralization of Proposition 5.

Proposition 9. For any set P of joint distributions on
(A, Ŷ,Y,Z), we have ΔDD(P) � {(μ(a;w) − μ(b;w))b∈A0

:

w ∈ W(P)}, ΔTPRD(P) � {(μ11(a;w̃)−μ11(b;w̃))b∈A0
: w̃ ∈

W̃(P)}, and ΔTNRD(P) � {(μ00(a; w̃) − μ00(b; w̃))b∈A0
:

w̃ ∈ W̃(P)}.
Because these sets are multivariate, they have more

than just two “endpoints.” In particular, we charac-
terize these sets by computing their support functions.
Given a set Θ ⊆ Rd, its support function is given by
hΘ(ρ) � supθ∈Θ ρ�θ. First, the support function pro-
vides the maximal and minimal contrasts achieved over a
set: for example, setting ρb � 1, ρb′ � −1, and ρα � 0 for
α �� b, b′ gives the maximal disparity between groups b′
and b. Moreover, the support function also character-
izes the set itself via its (closed) convex hull (Rockafellar
2015). Specifically,10

Conv (Θ) :�Closure

( ∑m
j�1

λjθj :m ∈N, θj ∈Θ,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

λj ≥ 0,
∑m
j�1

λj � 1

})
� θ : ρ�θ≤ hΘ ρ

( )
, ∀ρ s.t. ‖ρ‖ � 1

{ }
.

(19)

In the following, we characterize the support func-
tions. In Section 7.2, we discuss their computation and
estimation from data and how to use this to visualize
the partial identification set.

6.2.1. Demographic Disparity. We first consider the
simpler case of demographic disparity.

Proposition 10. Let PA be given. Then
hΔDD PD∩PA( ) ρ

( )
� max

w∈W PD( )∩W PA( )
∑
b∈A0

ρb
E[wa Ŷ,Z

( )
Ŷ]

P A � a( ) − E[wb Ŷ,Z
( )

Ŷ]
P A � b( )

( )
.

Proposition 10 follows immediately from Proposi-
tion 9 and Equation (13). When either PA imposes
no restrictions or PA � PLip, the preceding gives an

infinite linear program because both the law of total
probability constraint W(PD) and the Lipschitz con-
straint WLip are linear in w.

6.2.2. Classification Disparity. We next consider the
case of classification disparities. For a concise and clear
exposition, we focus on the case of TPRD. Note that
ΔTPRD(PD ∩ PA) is generally a nonconvex set. The
case of TNRD can be symmetrically handled. Using
Equation (8), the support function for multiple-leveled
protected class attribute can be written as follows:

hΔTPRD PD∩PA( ) ρ
( )

� sup
w̃∈W̃ PD∩PA( )

∑
b∈A0

ρb
E w̃a Ŷ,Y,Z

( )
YŶ

[ ]
E w̃a Ŷ,Y,Z

( )
Y

[ ] −E w̃b Ŷ,Y,Z
( )

YŶ
[ ]
E w̃b Ŷ,Y,Z

( )
Y

[ ]( )
.

(20)
This optimization is the sum of linear-fractional func-
tions, and optimizing it is generally intractable. We next
provide a reformulation as an optimization problem that
is a linear program once we fix some parameters, so that
theproblem is reduced to a searchover theseparameters.

Proposition 11. Let PA be given. Then

hΔTPRD PD∩PA( ) ρ
( ) �maxt∈RA:t≥1φ ρ; t

( )
,

φ ρ; t
( ) �max

ũ

∑
b∈A0

ρb

(
E[ũa Ŷ,Y,Z

( )
YŶ]

−E[ũb Ŷ,Y,Z
( )

YŶ ]
)

s.t. E[ũα Ŷ,Y,Z
( )

Y] � 1, ∀α ∈A,∑
α∈A

ũα ŷ,y,z
( )
tα

� 1,∀ŷ ∈ {0,1},y ∈ {0,1},z ∈Z,∑
ŷ,y∈{0,1}

ũα ŷ,y, z
( )

P(Ŷ � ŷ,Y � y|Z � z) � P(A � α|Z � z) tα
∀α ∈A, z ∈Z,

ũα ŷ,y,z
( ) ≥ 0, ∀α ∈A, ŷ ∈ {0,1},y ∈ {0,1}, z ∈Z,

ũα/tα( )α∈A∈ W̃ PA( ). (21)
To obtain this reformulation, we apply a Charnes–
Cooper transformation (Charnes and Cooper 1962) to
linearize each linear-fractional term in Equation (20).
Specifically, for each α ∈ A, we optimize over the
transformedvariables, tα � 1/E[w̃a( Ŷ,Y,Z)Y], ũα(ŷ,y,z) �
tαw̃α(ŷ,y,z). See Online Appendix B.5 for the detailed
proof. Although Equation (21) is generally a non-
convex optimization problem, the inner problem φ(ρ, t)
is a linear programwhenever W̃(PA) is the product of
polyhedra over α ∈ A, such as W̃(PA) � W̃Lip , or
when PA is unrestricted (in which case we may omit
the last constraint in φ(ρ, t)).

7. Implementation, Estimation,
and Inference

In this section, we discuss how to implement our
approach in practice in order to go from actual data to
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assessments of disparities. Specifically, in previous
sections, we characterized the partial identification
sets for disparity measures in terms of the two pop-
ulation distributions P(A,Z), P( Ŷ,Y,Z): these sets
are deterministic population objects that reflect the
intrinsic ambiguity of disparities given only mar-
ginal information. In practice, we are given data rather
than marginal distributions. The question we ad-
dress in this section is how to estimate the partial
identification sets from data. We further discuss the
consistency of our estimates and inferential proce-
dures for constructing confidence intervals that char-
acterize the additional uncertainty as a result of finite-
sample variability.

In this section, instead of assuming access to the
population-level marginal distributions, we assume
we are given finite-sample data sets. Let npri and naux
denote the sample size of the primary and auxiliary
data sets, respectively. Our combined data set is

Ŷi,Yi,Zi
( )npri

i�1 , Ai,Zi( )ni�npri+1
{ }

, with total sample

size n � npri + naux,

where the first npri units form the primary data set,
and the latter naux units form the auxiliary data set.We
suppose the data satisfy Assumption 1 and that ob-
servations in these two data sets are independent. We
assume that as n grows to infinity, the proportion of
the primary data set rn � npri/n converges to a limiting
proportion r (i.e., rn → r). Because the primary data
are typically more expensive to acquire than the
auxiliary data, we focus on the setting where the
primary data set is asymptotically of comparable or
smaller size (i.e., 0 ≤ r < 1).11

According to Sections 5 and 6, the partial identifi-
cation sets of disparity measures involve the conditional
probabilities of the protected class A and the outcomes
Ŷ,Y given proxies Z. We denote these conditional
probabilities by the following shorthand notations:

ηaux α, z( ) :�P A � α | Z � z( ),
ηpri ŷ, z

( )
:�P Ŷ� ŷ | Z � z

( )
,

η̃pri ŷ, y, z
( )

:�P Ŷ� ŷ,Y � y | Z � z
( )

.

Along with P(Z), these specify the marginals P(A,Z),
P( Ŷ,Y,Z). In practice, these conditional probabilities
are usually unknown and need to be estimated from
the primary and auxiliary data sets, respectively.
Because ηaux, ηpri, η̃pri are discrete regression functions
with featuresZ (or probabilistic classificationmodels),
they can each be learned using supervised learning on
each of the data sets. For example, in Section 8, we use
logistic and multinomial logistic regression. Other
options include random forests or neural networks.

Because we are primarily interested in estimating the
partial identification sets rather than these condi-
tional probabilities, we refer to these conditional
probabilities as nuisance parameters and estimators for
them as nuisance estimators.

7.1. Debiased Estimation and Inference for the Case
of Binary Protected Class

In Propositions 7 and 8, we prove that the partial
identification sets of DD, TPRD, and TNRD for binary
protected class are intervals with closed-form end-
points. Therefore, estimating these two endpoints is
enough to characterize the whole partial identifica-
tion set. In this section we study how to estimate and
conduct inference on these. In particular, any esti-
mate, even if consistent, still has sampling uncer-
tainty, and so to construct an estimated partial identi-
fication set that has guarantees on containing the true
disparity measures, we may wish to add sampling-
uncertainty confidence intervals on top of the esti-
mated endpoints. We here propose a novel debiased
estimator with a sampling variance that is easily es-
timable and can be used to construct confidence in-
tervals. We start with motivating our approach by
explaining why a simple plug-in approach would be
insufficient, then we present a reformulation of the
endpoints that is useful for our estimation approach,
then we present our estimator, and finally we present
our confidence interval. For simplicity, we only present
the estimation and inference results for the partial
identification set of DD. The results for TPRD and
TNRD are analogous but require more involved no-
tation so we defer them to Online Appendix A.2.

7.1.1. Motivation. Proposition 7 characterize the end-
points of ΔDD(PD) in terms of expectations involv-
ing the nuisance functions ηaux , ηpri in Equation (11).
Therefore, one simple approach to estimating these
endpointswould be to estimate these nuisance functions
and then replacenuisanceswithestimatednuisances and
all expectationswith empirical averages inEquation (11).
Then, under standard assumptions of consistency of our
nuisance estimates and that the set of possible estimates
is a Glivenko–Cantelli class (e.g., η̂aux ∈ F aux almost
surely and F aux is P-Glivenko–Cantelli), the simple
plug-in estimator would be consistent; that is, it
converges to the trueendpointsgiven inProposition 7. If
we further assume that the set of possible estimates
is a Donsker class (e.g,F aux is P-Donsker) and certain
regularity conditions (e.g., condition (ii) in Theorem 1),
then the estimate would also be asymptotically nor-
mal, which we might hope to use to construct confi-
dence intervals.
However, there are two crucial concerns with this

plug-in approach. The first is that the requirements on
the class of possible nuisance estimates can be very
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restrictive and exclude the use of flexible nonpara-
metric methods to fit nuisances, such as random
forests or kernel estimators. Second, even if we use
highly regular nuisance estimators that satisfy the
Donsker condition (e.g., logistic regression), estimating
theasymptotic variance (e.g., using thedeltamethod) can
be very intractable as the gradient of the estimand in the
nuisance parameters is nonsmooth, let alone that we
need to estimate the variance of the estimated nuisance
parameters themselves. Instead, we propose a debiased
approach that is slightlymore complicated to explain but
actually leads to amuch simpler inferential algorithm, as
the asymptotic distribution of our debiased estimator is
independent of how we estimate the nuisances. Addi-
tional detail on the failure of the simple plug-in estimator
is given in Online Appendix A.1.

7.1.2. Reformulation of the Estimand. According to
Proposition 7, estimating the partial identification sets
of demographic disparity only requires estimating
the bounds μ(a;wL) − μ(b;wU) and μ(a;wU) − μ(b;wL).
In the following lemma, we consider a reformulation
of μ(α;wL) and μ(α;wU) that will be useful for con-
structing estimators for them.

Lemma 1. For μ(α, ·) given in Equation (7), and wL and
wU given in Proposition 7,

μ α,wL
( ) � 1

pα
E λL

α Z; η
( )[ ]

+ E ξLα A,Z; η
( )[ ]{

+E γL
α Ŷ,Z; η
( )[ ]}

,

(22)

μ α,wU
( ) � 1

pα
E λU

α Z; η
( )[ ]

+ E ξUα A,Z; η
( )[ ]{

+E γU
α Ŷ,Z; η
( )[ ]}

,

(23)

where pα :�P(A � α), η � (ηpri, ηaux), and
λL
α z; η
( ) � ILα z( ) ηpri 1, z( ) + ηaux α, z( ) − 1

( )
,

ξLα A, z; η
( )

:� ILα z( ) I A � α( ) − ηaux α, z( )( )
,

γL
α Ŷ, z; η
( )

:� ILα z( ) Ŷ− ηpri 1, z( )( )
, with

ILα z( ) :� I ηpri 1, z( ) + ηaux α, z( ) − 1 ≥ 0
( )

,

λU
α z; η
( ) � IUα z( ) ηpri 1, z( ) − ηaux α, z( )( ) + ηaux α, z( ),

ξUα A, z; η
( )

:� 1 − IUα z( )( )
I A � α( ) − ηaux α, z( )( )

,

γU
α Ŷ, z; η
( )

:� IUα z( ) Ŷ− ηpri 1, z( )( )
, with

IUα z( ) :� I ηpri 1, z( ) − ηaux α, z( ) ≤ 0
( )

.

The variables ILα, I
U
α indicate which branch of the

max/min we take in the definitions of wL,wU in
Proposition 7, where themax/min, in turn, arise from
the endpoints of the Fréchet–Hoeffding bounds. The
variables ξLα, γ

L
α, ξ

U
α , γ

U
α are residuals of the regressions

defining the nuisance functions. It is straightforward
to verify that E[ξLα(A,Z;η)+γL

α(Ŷ,Z;η)]�E[ξUα (A,Z;η)+
γU
α (Ŷ,Z;η)]�0 by iterated expectations. So, in a sense,

these are not necessary for characterizing μ(α,wL) and
μ(α,wU) and indeed do not appear in Proposition 7.
However, incorporating these augmentation terms
can debias errors in the main λL

α, λ
U
α terms. Specifi-

cally, when we use estimated values of the nuisance
parameters η instead of their unknown true values,
these augmentation terms cancel out first-order bias
terms so that estimation errors of η only have negli-
gible effect. In Online AppendixA.1, we illustrate that
estimators without these augmentation terms gen-
erally have intractable asymptotic distributions.

Algorithm 1 (Estimation of ΔDD(PD) for a binary-
valued protected class attribute)
1: Input: number of folds K, nuisance estima-

tion procedures
2: Randomly partition the two data sets into K

disjoint even folds:
Ipri � {1, . . . , npri} � I1,pri ∪ · · · ∪ IK,pri ,
||I k,pri | − npri/K| ≤ 1,
Iaux � {npri + 1, . . . , n} � I1,aux ∪ · · · ∪ IK,aux ,
||I k,aux | − naux/K| ≤ 1.

3: Set I k � I k,pri ∪ I k,aux , and let Êk, Êk,pri, and Êk,aux
be the sample averages over the kth fold in the
combined, primary, and auxiliary data sets,
respectively. For example,
ÊkλL

α(Z; η) � 1
|Ik |

∑
i∈Ik λ

L
α(Zi; η).

4: Set p̂α � 1
K
∑K

k�1 Êk,aux[I(A � α)].
5: for k � 1, . . . ,K do:

6: Train η̂−kpri on {( Ŷi,Zi) : i ∈ Ipri \ I k,pri }.
7: Train η̂−kaux on {(Ai,Zi) : i ∈ Iaux \ I k,aux }.
8: Set η̂−k � (η̂−kpri, η̂−kaux).
9: for α ∈ A do: compute

μ̂ α,wL
( ) � 1

p̂αK

∑K
k�1

Êk λ
L
α Z; η̂−k
( )[ ]{

+ Êk,aux ξLα A,Z; η̂−k
( )[ ]

+ Êk,pri γ
L
α Ŷ,Z; η̂−k
( )[ ]}

,

(24)
μ̂ α,wU
( ) � 1

p̂αK

∑K
k�1

Êk λ
U
α Z; η̂−k
( )[ ]{

+ Êk,aux ξUα A,Z; η̂−k
( )[ ]

+ Êk,pri γ
U
α Ŷ,Z; η̂−k
( )[ ]}

.

(25)
10: Return the estimated partial identification set

Δ̂DD PD( ) � μ̂ a,wL( ) − μ̂ b,wU( )
, μ̂ a,wU( ) − μ̂ b,wL( )[ ]

.

(26)

7.1.3. The Estimator. Our estimator for the partial
identification set is given in Algorithm 1.
Our estimates for μ̂(α,wL) and μ̂(α,wU) are based on

Equations (22) and (23) and a cross-fitting strategy:
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the nuisance estimator η̂−k is only applied to data in the
kth fold (i.e., data not used to train η̂−k). This prevents
the nuisance estimators from overfitting to the data
where they are evaluated (Chernozhukov et al. 2018).

7.1.4. Inference. We next prove that the estimated
endpoints in Equation (26) are asymptotically normal
with closed-form asymptotic variance. This allows us
to construct confidence intervals. It also shows that
we are largely invariant to how one fits η and that no
conditions except for a slow convergence rate are
needed, which is appealing when one uses machine
learning methods for this task.

Theorem 1. Suppose that the nuisance estimators converge
at the following rate:

η̂−kpri 1,Z( ) − ηpri 1,Z( )
⃒⃒⃒ ⃒⃒⃒

� Op κnpri , Ŷ

( )
,

η̂−kaux α,Z( ) − ηaux α,Z( )⃒⃒ ⃒⃒ � Op κnaux,A
( )

,

α � a, b, k � 1, . . . ,K.

Assume the following conditions: for α � a, b,
i. pα > 0;

ii. there exist positive constants m1,m2, c1, c2 such that
for α ∈ A and any p ≥ 0,

P 0 ≤ ηpri 1,Z( ) + ηaux α,Z( ) − 1
⃒⃒ ⃒⃒ ≤ p

( ) ≤ c1pm1 ,

P 0 ≤ ηpri 1,Z( ) − ηaux α,Z( )⃒⃒ ⃒⃒ ≤ p
( ) ≤ c2pm2 ;

iii. max{κnaux,A, κnpri , Ŷ } � o(npri−1/(2+2m1)), and
max{κnaux,A, κnpri, Ŷ} � o(npri−1/(2+2m2));

iv. |r− rn|κnpri ,Ŷ� o(npri−1/2), and |r−rn|κnaux,A� o(npri−1/2).
Then, as n → ∞, the lower bound and upper bound

estimators for demographic disparity with binary
protected class are asymptotically normal:

̅̅̅̅̅
npri

√
μ̂ a,wL( )− μ̂ b,wU( )( )− μ a,wL( )− μ b,wU( )( ){ }

→d N 0,VL( ), (27)̅̅̅̅̅
npri

√
μ̂ a,wU( )− μ̂ b,wL( )( )− μ a,wU( )− μ b,wL( )( ){ }

→d N 0,VU( ), (28)
where VL � rE λL

a Z; η
( )

/pa − λU
b Z; η
( )

/pb
[
− μ a,wL( ) − μ b,wU( )( )]2

+ E γL
a Ŷ,Z; η
( )

/pa − γU
b Ŷ,Z; η
( )

/pb
[ ]2

+ r
1 − r

E ξLa A,Z; η
( )

/pa − ξUb A,Z; η
( )

/pb
[ ]2

,

VU � rE λU
a Z; η
( )

/pa − λL
b Z; η
( )

/pb
[
− μ a,wU( ) − μ b,wL( )( )]2

+ E γU
a Ŷ,Z; η
( )

/pa − γL
b Ŷ,Z; η
( )

/pb
[ ]2

+ r
1 − r

E ξUa A,Z; η
( )

/pa − ξLb A,Z; η
( )

/pb
[ ]2

.

Condition (i) is needed for the problem to be well
defined: both classes need to be present to compare
them. Condition (ii) is a margin condition (Audibert
and Tsybakov 2007) that characterizes the probability
mass near the nondifferentiable boundary. In par-
ticular, for p � 0, it implies that ηpri(1,Z) + ηaux(α,Z) −
1 �� 0 and ηpri(1,Z) − ηaux(α,Z) �� 0 almost surely,
which is trivially satisfied if Z includes continuous
variables. This ensures that even though wL and wU

depend on nonsmooth max and min operators, re-
spectively, μ(α,wL) and μ(α,wU) are still smooth func-
tionals of the conditional probabilities η. Otherwise,
statistical inference for nonsmooth functionals is a no-
toriously difficult nonregular problem, and it is well
known that no estimator with well-behaved asymptotic
distribution exits in this case (e.g., Hirano and Porter
2012 and Laber et al. 2014). Similar regularity con-
ditions also appear in other partial identification liter-
ature to circumvent nonsmoothness (e.g., Kennedy et al.
2018 and Bonvini and Kennedy 2019). Condition (iii)
requires that our nuisance estimators are consistent
but only requires a slow, nonparametric rate (i.e., slower
than npri−1/2). For example, if m1,m2 ≥ 1, then condition
(iii) is satisfied if κnaux,A � op(npri−1/4) and κnaux, Ŷ � op
(npri−1/4). This slow rate together with no other as-
sumptions on our nuisance estimators means that the
theorem holds even when we use flexible machine
learning models to estimate nuisances (e.g., random
forest, gradient boosting tree, neural networks with
many neurons relative to npri). Finally, condition (iv)
requires that the observed ratio of primary to auxil-
iary data, rn, is sufficiently similar to the asymptotic
ratio. It is trivially satisfied if rn � r or rn − r � O(npri−1/2),
such as would be the case if npri ∼ Binomial (n, r).
In the proof (in Online Appendix B.6), we show that

the asymptotic distributions in Equations (27) and (28)
are actually the same as distributions of the infeasible
oracle estimators where we use the true values of nui-
sances, η. In other words, using the estimated value η̂
instead of the unknown true value η does not inflate
the variance of our estimates. This is possible mainly
because of the augmented formulation we derive in
Lemma 1 (see Online Appendix A.1).
The closed-form asymptotic variances in Theorem 1

suggest the following variance estimators:

V̂L � rn
K

∑K
k�1

Êk λ
L
a Z; η̂−k
( )

/p̂a−λU
b Z; η̂−k
( )

/p̂b
[
− μ̂ a,wL( )− μ̂ b,wU( )( )]2

+ 1
K

∑K
k�1

Êk,pri γ
L
a Ŷ,Z; η̂−k
( )

/p̂a− γU
b Ŷ,Z; η̂−k
( )

/p̂b
[ ]2

+ rn
1−rn

1
K

∑K
k�1

Êk,aux ξLa A,Z; η̂−k
( )

/p̂a
[ −ξUb A,Z; η̂−k

( )
/p̂b

]2
,

(29)

Kallus, Mao, and Zhou: Fairness Using Data Combination
14 Management Science, Articles in Advance, pp. 1–23, © 2021 INFORMS



and V̂U is similarly defined by swapping L and U
everywhere above.

We further prove in the following theorem that
these variance estimators are consistent, and they can
be used to construct confidence intervals for the
partial identification sets.

Theorem 2. Under the assumptions of Theorem 1, V̂L, V̂U
are consistent: as npri → ∞,

V̂L →p VL, V̂U →p VU.

Therefore, we can construct the following (1 − β) ×
100% confidence interval:

CI � μ̂ a,wL( ) − μ̂ b,wU( ) − Φ−1 1 − β/2
( )

V̂L
1/2

/npri1/2,
[
μ̂ a,wU( ) − μ̂ b,wL( ) +Φ−1 1 − β/2

( )
V̂U

1/2
/npri1/2

]
whereΦ−1 is the quantile function of standard normal
distribution. This confidence interval asymptotically
covers the partial identification set of DD with prob-
ability at least 1 − β:

lim inf
npri→∞ P ΔDD PD( ) ⊆ CI( ) ≥ 1 − β.

In Section 8 (Figures 4 and 8), we illustrate how to use
these confidence intervals to test whether a given
disparity value (or a range) is compatible with the
observed data information and thus belongs to the
corresponding partial identification set.

Note that the above-mentioned confidence interval
is conservative in that its asymptotic coverage may
exceed 1 − β. In Online Appendix A.4, we present a
calibrated confidence interval with asymptotic coverage
exactly 1 − β, albeit having a more complicated form.

7.2. General Partial Identification Sets
We next discuss finite-sample estimation of general
partial identification sets given in Section 6. That is,
we discuss how we obtain a representation of the
partially identified sets Δ(PD ∩ PA) when we either
consider a multiple-level protected class attribute or
impose smoothness restrictions in PA, or both. We
propose an estimator for the support function using a
linear program and prove it is statistically consis-
tent.12 We then describe how to use these support
function estimates to visualize Conv(Δ(PD ∩ PA)). For
this section, we employ a simpler plug-in estimator
based on nuisance estimators constructed on the whole
primary and auxiliary data sets, respectively.

7.2.1. Demographic Disparity. We first introduce the
support function estimator for the case of demo-
graphic disparity, hΔDD(PD∩PA)(ρ). The estimator applies
for the case of multiple-leveled protected attributes with
any linearly representable additional constraintsW(PA),
such as none or WLip. Given nuisance estimators
η̂aux, η̂pri and letting Êp denote computing sample
averages over the primary data set, we define our
estimator as the following linear program:

ĥΔDD PD∩PA( ) ρ
( )

� max
w

∑
b∈A0

ρb
Êp wa Ŷ,Z

( )
Ŷ

[ ]
Êp η̂aux a,Z( )[ ] − Êp wb Ŷ,Z

( )
Ŷ

[ ]
Êp η̂aux b,Z( )[ ]( )

s.t. 0 ≤ wα(ŷ, z) ≤ 1, ∀α ∈ A, ŷ ∈ 0, 1{ },
y ∈ 0, 1{ }, z ∈ Zi{ }ni�1∑

ŷ∈ 0,1{ }
wα(ŷ, z)η̂pri(ŷ, z) � η̂aux(α, z),∑

α∈A
wα(ŷ, z) � 1, w ∈ W PA( ).

We next show that the estimator is consistent.

Theorem 3. Assume that
i. supŷ∈{0,1},z∈Z |η̂pri(ŷ, z) − ηpri(ŷ, z)| � op(1) and

supα∈A,z∈Z |η̂aux(α, z) − ηaux(α, z)| � op(1), and
ii. Z has finite support (i.e., |Z| is finite).

Then, for any ρ,
ĥΔDD PD∩PA( ) ρ

( ) − hΔDD PD∩PA( ) ρ
( )−→p 0.

Proving Theorem 3 uses a stability analysis attrib-
utable to Robinson (1975) to bound the deviation of a
linear program under stochastic perturbations to coeffi-
cients of the constraintmatrix that arise from the estimation
errors of the nuisance functions η̂aux(α, z), η̂pri(ŷ, z). In
Proposition EC.1 of the online appendix, we discuss
how to additionally obtain the asymptotic distribu-
tion of ĥΔDD(PD∩PA), under the assumption of unique
primal and dual solutions.

7.2.2. Classification Disparity. We next handle the gen-
eral case for TPRD (TNRD is handled symmetrically).
Estimating the support function of ΔTPRD introduces
additional challenges because the optimization problem
thatdefines it is generallynonconvex (seeProposition 11).
We instead leverage the fact that it is the maximum of
linear programs if W̃(PA) is linearly representable.
The estimator for the support function, which

computes the sample-level subproblem φ̂(ρ; t) for a
collection of values of t, T ⊆ R|A|, and the nuisance
estimators ˆ̃ηpri(ŷ, y, z), η̂aux(α, z) is

ĥΔTPRD PD∩PA( ) ρ;T
( ) � max

t∈T
φ̂ ρ; t
( )

, (30)

Kallus, Mao, and Zhou: Fairness Using Data Combination
Management Science, Articles in Advance, pp. 1–23, © 2021 INFORMS 15



φ̂ ρ;t
( )�max

ũ

∑
b∈A0

ρb Êp ũa Ŷ,Y,Z
( )

YŶ
[ ](

−Êp ũb Ŷ,Y,Z
( )

YŶ
[ ])

s.t.∀α, ŷ,y,z∈ Zi{ }ni�1,Êp ũα Ŷ,Y,Z
( )

Y
[ ]�1,

ũα/tα( )α∈A∈W̃ PA( ),∑
ŷ,y∈{0,1}

ũα ŷ,y,z
( )

ˆ̃ηpri(ŷ,y,z)� tαη̂aux(α,z),

∑
α∈A

ũα ŷ,y,z
( )
tα

�1,

(31)
ũα ŷ, y, z

( ) ≥ 0. (32)
In the following theorem, we show that the proposed
support function estimator is pointwise consistent ifZ
has only finitely many values and the nuisance esti-
mators are uniformly consistent.

Theorem 4. Assume that
i. supŷ∈{0,1},y∈{0,1}z∈Z | ˆ̃ηpri(ŷ, y, z) − η̃ pri(ŷ, y, z)|→p 0

and supα∈A,z∈Z |η̂aux(α, z) − ηaux(α, z)|→p 0;
ii. there exists a positive constant ν such that P(A�α,

Y� 1) ≥ ν, ∀α∈A;

iii. T is the componentwise inverse of a set T −1, where
T −1 is an εnpri -covering of T −1

0 :� {τ ∈ R|A|:∑α∈A τα �
Êp[Y]; ν ≤ τα ≤ 1, α ∈ A} (i.e., minτ′∈T −1 ‖τ − τ′‖1 ≤
εnpri for any τ ∈ T −1

0 );

iv. Z has finite support (i.e., |Z| is finite); and
v. εnpri → 0 as npri → ∞.

Then, for any ρ,

ĥΔTPRD PD∩PA( ) ρ;T
( ) − hΔTPRD PD∩PA( ) ρ

( )→p 0.
The proof of Theorem 4 is similar to that of Theorem 3
but also shows that the optimization problem is stable
under approximation errors from the discretization, T .
Condition (ii) ensures that we may restrict attention
to a compact range for t. Condition (v) ensures con-
sistency as we consider a sequence of finer t-grids.

Algorithm 2 (Estimation of Conv (Δ) from support func-
tion estimates)
1: Input: Support function estimator ĥΔ(ρ), contrast

sample size Nρ

2: Sample contrast vectors, ρ1, . . . , ρNρ , uniformly
from the (|A| − 1)-dimensional unit sphere.

3: for j � 1, . . . ,Nρ do:
4: Solve ĥΔ(ρj), record the maximizer δ̂j ∈ Δ such

that ĥΔ(ρj) � δ̂�j ρj.
5: Return

Δ̂inner � Conv ({δ̂1, . . . , δ̂Nρ}),
Δ̂outer � {δ ∈ RA0 :δ�ρj ⩽ ĥΔ(ρj) ∀j � 1, . . . ,Nρ}.

7.2.3. Estimating and Visualizing the Partial Identifica-
tion Set. The above-mentioned procedures estimate
the support function of the partial identification set. It
remains to actually estimate the partial identification
set itself.Givenasupport functionestimator,Algorithm 2
provides a procedure to obtain inner and outer ap-
proximations to the set (up to vanishing estimation
errors in the support function) by sampling the contrast
directions, ρ. Because the convex hull of a set is given
by the hyperplanes defined by the support function in all
directions (seeEquation (19)), the outer approximation
is given by considering a finite subset of directions.
Moreover, because the points realizing the support
function in these directions are all in the set, the inner
approximation is given by considering only the convex
hull of this finite subset. As the number of contrasts
sampled increases, the inner and outer approximations
become closer. Either set can be visualized using stan-
dard tools for plotting convex hulls and polyhedra. We
recommend using the outer approximation because (up
to vanishing estimation errors in the support function) it
is guaranteed to contain the truepartial identification set,
and this is the set we use in Section 8.

8. Case Studies
In the subsequent sections we consider applying our
results and methods in two different case studies:
mortgage credit decisioning and personalized war-
farin dosing. The replication code is available at
https://github.com/CausalML/FairnessWithUnobserved
ProtectedClass.

8.1. Mortgage Credit Decisioning
We consider assessing demographic disparity—the
simplest measure (see Sections 2.1 and 3 for others)
that is relevant for the context of mortgage credit
decisioning (Zhang 2016, Chen et al. 2019): here, it
measures the discrepancy in marginal approval rates
between different racial groups. For groups, we consider
White, Black, and Asian and Pacific Islander (API).

8.1.1. Data Set, Proxy Variables, and Nuisance
Estimation. We demonstrate the partial identification
set of demographic disparity using the public HMDA
(Home Mortgage Disclosure Act) data set for U.S.
mortgage market. This data set contains self-reported
race labels, and it has been used in the literature to
evaluateproxymethods for race (Baines andCourchane
2014, Zhang 2016, Chen et al. 2019).13 However, this
data set is anonymized and does not include surname
information, so we could not evaluate the popular
BISG method exactly; it also does not contain default
outcomes, so we only study demographic disparity in
loan application approval.

Kallus, Mao, and Zhou: Fairness Using Data Combination
16 Management Science, Articles in Advance, pp. 1–23, © 2021 INFORMS

https://github.com/CausalML/FairnessWithUnobservedProtectedClass
https://github.com/CausalML/FairnessWithUnobservedProtectedClass


Weuse a random 0.1% subsample containing 14,903
loan application records for White, Black, and API
applicants with annual income nomore than $100,000
during 2011–2012 as the primary data set and the full
sample of all records in this population as the aux-
iliary data set. This mimics the fact that in BISG, the
primary data set typically only contains information
of a subset of units in the auxiliary data (decennial
census data). We set Ŷ� 1 if a loan application was
approved or originated and Ŷ� 0 if it was denied.

We consider three different set of proxy variables
for race: only geolocation (county), only annual income,
and both geolocation and annual income. The dis-
tribution of race/ethnicity by these proxies can
both be estimated from public records. U.S. Census
Summary File I (U.S. Census Bureau 2010) contains
race distributions for different geolocation levels, and
the Annual Population Survey (U.S. Census Bureau
2018) contains race distributions for different in-
come brackets.

We estimate the conditional probabilities of race
and decision outcome directly on the auxiliary data
set. When only geolocation is used as the proxy
variable, we use the within-county race proportions
and average loan acceptance rate to estimate the
conditional probabilities of race and loan acceptance,
respectively. When only income is used as the proxy
variable, we fit a logistic regression to estimate the
conditional probability of loan acceptance and a multi-
nomial logistic regression to estimate the conditional

probabilitiesof races.Whenboth incomeandgeolocation
are used, we fit the logistic and multinomial logistic
regressions with respect to income within each county.
Recall that the size of the partial identification set

depends on the informativeness of the proxies about
both protected class and outcomes (Section 4.2). In
Figure 3, we show the histograms of the conditional
probabilities for each race and, separately, for the
positive outcome. We also report the (negative) en-
tropy, which summarizes how predictive the proxies
are. For example, the entropy for race probabilities is
E[∑α∈A P(A � α | Z) logP(A � α | Z)]/|A|. Smaller en-
tropy means that the race probabilities are more
concentrated toward 0 or 1, which indicates more
predictive proxies. We find that, in terms of outcome,
all proxies are equally uninformative (the entropy
without using any proxy is about 0.5). In terms of
protected class, we find geolocationmore informative
than income and that combining them adds very little.

8.1.2. Binary Comparisons. Figure 4 demonstrates
estimates of closed-form bounds of demographic
disparities of one race versus the others14 without any
extra assumptions (Proposition 7), as well as the as-
sociated confidence intervals. By recognizing that in
case studies such as the BISG proxy, the auxiliary data
set typically describes the whole population (e.g., the
whole U.S. population in decennial census data), we
use an alternative estimator and confidence interval
in Online Appendix A.5 that assumes that the true

Figure 3. (Color online) Histograms of Conditional Probabilities of Outcomes (Upper Row) and Race (Lower Row) for
Different Choices of Proxies in the HMDA Data Set, Along with the Resulting Entropy
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conditional race probabilities (but not the conditional
outcome probabilities) are exactly known from the
auxiliary data set. This figure also shows the true
demographic disparity computed based on the self-
reported race using the full data directly. We can
observe that overall all estimated partial identifica-
tion intervals are fairly wide, and all of them correctly
contain the ground-truth demographic disparity. More-
over, the finite-sample uncertainty of these estimates is
quite small, and the confidence intervals show that at a
5% significance level, we cannot reject zero as a valid
disparity value according to the observed data in-
formation. This also highlights that identification
uncertainty, which does not vanish as we collect more
data, generally dominates the sampling uncertainty,
which does vanish.

8.1.3. Multiple-LevelProtectedClassandExtraSmoothness
Assumption. Figure 5 shows the estimated partial
identification sets of the demographic disparities of
White versus each other group. The sets are computed

by the support function approach described in Sec-
tion 7.2. For the income-only proxy, we show the
partial identification sets both without the smoothness
constraint and with the smoothness constraint, where
the Lipschitz constant is set as the minimal one such
that the constraint setW(PD) ∩W(PA) is still feasible.15
Smoothness constraints are implemented by enforc-
ing the constraint of Equation (16) on the weight
function, whereas the pairwise distance d(z, z′) can be
computed efficiently for all observed values of the
proxy variables. The figure shows that using income
as the only proxy, without additional smoothness
constraints, seems quite weak in terms of identifying
the demographic disparity. Income-only proxy without
smoothness results in the largest partial identification set,
and using income on top of geolocation barely shrinks
the partial identification set relative to the set from using
only the geolocation proxy. Adding the smoothness
constraint indeed shrinks the partial identification set
of income-only proxy, and given that we are willing to
assume smoothness, it shows that the White group

Figure 4. (Color online) Partial Identification Bounds of Demographic Disparity (Proposition 7) for Different Proxy Variables
in the HMDA Data Set

Notes. Solid bars represent the estimates of the bounds, and dashed bars indicate 95% confidence intervals. The true value based on self-reported
race is shown as an asterisk.

Figure 5. (Color online) The Outer Approximation of Partial Identification Set for Demographic Disparity in Loan Approval
Rates in the HMDA Data Set as Determined by Different Proxies

Notes. Positive values correspond to disparity in favor of White. The true demographic disparity is shown as a star.
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either has a higher approval rate than the Black group
or has about roughly the same. However, the mag-
nitude of a positive White-versus-Black disparity, and
the direction of White-versus-API disparity, still re-
mains very ambiguous.

Overall, the large size of all partial identification
sets reflects the tremendous ambiguity in assessing
lending disparities based on proxy variables such as
geolocation and income. Thus it is nearly impossible to
draw reliable conclusions about demographic disparity
only according to the observed data. This conclusion is
roughly in linewithpreviousanalysesofBISG(Chen et al.
2019) but provides a precise meaning to these limits.

8.2. Personalized Warfarin Dosing
8.2.1. Background. Warfarin is the most commonly
used oral anticoagulant agent worldwide (International
Warfarin Pharmacogenetics Consortium 2009). Find-
ing the appropriate warfarin dosage is very challenging
and important, because it can vary drastically among
patients, and an incorrect dose can possibly lead to se-
rious adverse outcomes. This challenge attracts consid-
erable interest in designing personalized warfarin dos-
age algorithms, including linear regression (International
Warfarin Pharmacogenetics Consortium 2009), LASSO
(Bastani and Bayati 2020), and decision trees (Kallus
2017). However, it was shown that the personalized
dosing algorithms may show disparate performance
for different ethnic groups (see, e.g., appendix 9 in In-
ternationalWarfarinPharmacogeneticsConsortium(2009)).

8.2.2. DataSet, ProxyVariables, andNuisanceEstimation.
We use the PharmGKB data set16 of 5,700 patients
treated with warfarin. The data for each patient in-
clude demographics (sex, ethnicity, age, weight, height,
and smoking status), reason for treatment (e.g., atrial
fibrillation), current medications, comorbidities (e.g.,
diabetes), and genetic factors (presence of geno-
type variants of CYP2C9 and VKORC1). All of these
variables are categorical, and we treat missing value
of each variable as a separate value. Moreover, this
data set contains the true patient-specific optimal
warfarin doses determined by physicians’ adjustment
over a fewweeks. We focus on the subsample of 4,891
White,Black, andAsianpatientswhoseoptimalwarfarin
doses are notmissing.Wedichotomize the optimaldoses
into high dosage (more than 35 mg/week, denoted as
Y � 1) and low dosage (less than 35mg/week, denoted
as Y � 0). To develop a personalized dosage algorithm,
we follow International Warfarin Pharmacogenetics
Consortium (2009) and fit a linear regression to predict
the optimal dosage based on all other variables, and we
recommend high dosage if the predicted optimal dosage
is more than 35 mg/week (Ŷ� 1) and recommend low
dosage (Ŷ� 0) otherwise.
We randomly split the data set into two halves,

with one half as the primary data set and the other
as the auxiliary data set, so that the independence
of two data sets assumed in Section 7 is satisfied.
Our goal is to evaluate the partial identification sets
for true-positive rate disparities of this personalized

Figure 6. (Color online) Histograms of Conditional Probabilities of Outcomes (Upper Row) and Race (Lower Row) for
Different Choices of Proxies in the Warfarin Data Set, Along with the Resulting Entropy
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dosage algorithm. Positive disparities indicate that
the personalized algorithm has a higher chance to
correctly recommend a high dosage to one group than
to another group.

We consider three sets of discrete proxy variables:
only genetic factors, only current medications, and
both genetic factors and currentmedications. Among the
proxyvariables, thegenetic factors areparticularly strong
candidatesbecause theyare found tobehighlypredictive
for the optimalwarfarindosage (InternationalWarfarin
Pharmacogenetics Consortium 2009). At the same
time, genotype variants of CYP2C9 and VKORC1 are
known to also be highly correlated with race. For
example, International Warfarin Pharmacogenetics
Consortium (2009) even recommended imputing miss-
ing values of the genotypes based on race labels.

The conditional probabilities of race, optimal dosage
indicator Y, and recommended dosage indicator Ŷ,
given these proxy variables, can be easily estimated
by corresponding sample averages within each level
of the proxy variables. In Figure 6 we display the

histograms of the estimated conditional probabili-
ties for both race and outcomes, for each proxy. For
outcomes, we show probabilities of all four combi-
nations of true outcome and decision outcome. For
race, we separate the probabilities by label. We note
that current medications and genetic factors together
form a highly informative proxy, both for race and
for outcomes.

8.2.3. Binary Comparisons. Figure 8 shows the esti-
mates of closed-form bounds of TPRD for one race
versus the other without any extra assumptions.
The bound estimators for TPRD and associated confi-
dence intervals are similar to those for DD in Section 7.1
(see Online Appendix A.2 for details). We first ob-
serve that using genetic factor proxies, whether in
combinationwith currentmedication or not, provides
clear evidence that the TPR disparity between Asian
and other races is negative in disfavor of Asians.
Although the directions of the Black-versus-Others
TPRD and White-versus-TPRD are unclear when

Figure 7. (Color online) The Outer Approximation of Partial Identification Set for TPRD inWarfarin Dosing as Determined by
Different Proxies

Note. The true disparity is shown as a star.

Figure 8. (Color online) Partial Identification Bounds of Demographic Disparity (Proposition 8) for Different Proxy Variables
in the Warfarin Dosing

Notes. Solid bars represent the estimates of the bounds, and dashed bars indicate 95% confidence intervals. The true value based on self-reported
race is shown as an asterisk.
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using either genetic factor proxies or current medi-
cation proxies alone, combining these two set of proxies
considerablynarrows theboundsof these twodisparities,
and the Black-versus-Others TPRD is positive at a 95%
confidence level.

8.2.4. Multiple-Level Protected Class. Figure 7 shows
the estimated partial identification sets of TPRD for
the White group versus another group. The sets are
computed by the support function approach de-
scribed in Section 7.2. We observe that using genetic
factor proxies provides clear evidence that the TPRD
between White and Asian is positive in favor of
White. Further adding medication proxies provides a
very clear sense of the significantmagnitudeof theTPRD
between White and Asian, not just its direction. How-
ever, in all cases, both the direction andmagnitude of the
disparity between White and Black is unclear.

Overall, our observations are consistent with the
different quality of the proxies: although the genetic
proxy is stronger than themedicine proxy, combining
the proxies adds additional information that tightens
the partially identified set. Studying the partially
identified plots allows a practitioner to assess the
value of additional information and, in some cases,
the direction of disparities.

9. Conclusion
Assessing the fairness of algorithmic decisions is a
fundamentally difficult task: it is now well under-
stood that evenwhen algorithms do not take sensitive
information as an input they can still be biased in
various worrisomeways, but what counts as “unfair”
can be very context dependent. But any such adju-
dication and scrutiny must start from understanding
how different groups are disparately impacted by
such decisions. For example, disparate impact has
been codified in U.S. law and regulation as eviden-
tiary basis for closer review and even sanction. We
here studied a further complication: membership in
protected groups is usually not even recorded in the
data, requiring the use of auxiliary data where such
labels are present. This limitation hinders both fair
lending and healthcare reforms, and it is important to
address it.

We formulated this problem from the perspective
of data combination and studied the fundamental
limits of identification. This provided a new per-
spective on the commonplace usage of proxy models
and a way to assess what can and cannot be learned
from the data. The tools we developed allow one to
compute exactly the tightest possible bounds ondisparity
that could possibly be learned from the data. We believe
this is an invaluable tool given that disparate impact
assessments can have far-reaching policy implications.

Beyond the specific tools we presented here, we
also hope our work will inspire other researchers to
consider fundamental statistical ambiguities in the
measurement of fairness, beyond just the ambiguities
between the different definitions. Given the sensi-
tivity of such matters, truly understanding the limits
of what cannot actually be measured—and what, on
the other hand, can be said with certainty—is critical
for any reliable assessment of the fairness of any
decision-making algorithm.

Acknowledgments
The authors thank the editorial team including three anon-
ymous reviewers for the constructive comments on an ear-
lier draft.

Endnotes
1 In the United States, the Fair Housing Act and Equal Credit Op-
portunity Act codify as protected attributes: age, race/ethnicity,
disability, exercised rights under the Consumer Credit Protection
Act of 1968, familial status (household composition), gender identity,
marital status (single or married), national origin, race, recipient of
public assistance, religion, and/or sex.
2The U.S. Home Mortgage Disclosure Act, or HMDA, authorizes
lenders to collect such information for mortgage applicants and
coapplicants.
3For clarity, we emphasize to the reader the difference between an
algorithm’s “bias” with respect to protected groups (e.g., as quan-
tified by disparate impact) and the statistical bias of assessments of
such disparities. In this paper, “bias” only ever refers to the latter
statistical bias and “disparities” to systematic differences in algo-
rithmic outputs.
4Assumption 1 can be relaxed by assuming instead that the distri-
bution Pa of the auxiliary observations (A,Z) satisfies Pa(A � α | Z) �
P(A � α | Z), with an arbitrary distribution Pa(Z) of proxy variables.
This relaxation does not change any of our results in Sections 4–6, but
it does change our estimators in Section 7, where we would need to
account for this distributional shift in Z across the data sets. We omit
this straightforward extension for brevity.
5 Strictly speaking, demographic disparity is not based on classifi-
cation “error,” but it can be also computed from the within-class
confusion matrices.
6For example, as fairness criteria, both demographic and classifica-
tion parities have been criticized for their inframarginality; that is, they
average over individual risk far from the decision boundary (Corbett-
Davies and Goel 2018). However, inframarginality may be un-
avoidable when outcomes are binary. There may be no true indi-
vidual “risk,” only the stratified frequencies of binary outcomes
(default or recidivation) over strata defined by predictive features,
which are, in turn, chosen by the decision maker.
7Proxies can still be continuous, which we will leverage when we
impose extra smoothness assumptions in Section 6.1.
8 If no extra assumption is imposed, then PA is the set of all joint
distributions, so that PD ∩PA � PD.
9Note that μ′̂

yy differs with μŷy in Equation (8) only in the two separate
arguments w̃ and w̃′ to explicitly characterize themonotonicity in two
different directions, a property crucial for deriving the closed-
form sets.
10Note that ΔDD(P) is equal to its closed convex hull ifW(P) is closed
convex, because μ(α,w) is affine in w. Both W(PD) and W(PD) ∩
WLip are closed convex. On the other hand, ΔTPRD(P),ΔTNRD(P) are
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generally not convex in the nonbinary setting, and taking their convex
hull provides the smallest convex outer approximation to them.
11 If, instead, the auxiliary data set is of smaller size, thenwe can focus
on estimators that converge at rate of O( ̅̅̅̅̅̅

naux
√ ). For example, in

Equations (28) and (29) of Theorem 1, we can use a scaling factor of̅̅̅̅̅̅
naux

√
instead of ̅̅̅̅̅npri

√ to get a similar asymptotic normality result.
These two different scaling factors are asymptotically equivalent
when naux � npri but may differ when r � 0 or r � 1. For brevity, we
only allow the first. The latter can be handled symmetrically.
12Unlike the case in Section 7.1, statistical inference (confidence in-
tervals) for general multivariate sets characterized by estimated
support functions is an active research area (Molinari 2019) and
generally computationally burdensome, so we leave it for further re-
search and focus on the consistency of our support function estimates.
13The data set can be downloaded from https://www.consumerfinance
.gov/data-research/hmda/explore. This data set includes mortgage
loan application records in the United States, which include self-
reported race/ethnicity, loan origination outcome, geolocation (state,
county, and census tract), annual income, and loan amount, among
other variables.
14 For example, the White-versus-Rest disparity is the demographic
disparity of a as White and b as either API or Black.
15Restricting the conditional joint distribution to be any smoother
can, in fact, be refuted from the data via infeasibility.
16The data set can be downloaded from https://www.pharmgkb
.org/downloads.
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