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ABSTRACT
We study the interplay of fairness, welfare, and equity consider-

ations in personalized pricing based on customer features. Sell-

ers are increasingly able to conduct price personalization based on

predictive modeling of demand conditional on covariates: setting

customized interest rates, targeted discounts of consumer goods,

and personalized subsidies of scarce resources with positive exter-

nalities like vaccines and bed nets. These different application areas

may lead to different concerns around fairness, welfare, and equity

on different objectives: price burdens on consumers, price envy,

firm revenue, access to a good, equal access, and distributional con-

sequences when the good in question further impacts downstream

outcomes of interest. We conduct a comprehensive literature review

in order to disentangle these different normative considerations

and propose a taxonomy of different objectives with mathematical

definitions. We focus on observational metrics that do not assume

access to an underlying valuation distribution which is either un-

observed due to binary feedback or ill-defined due to overriding

behavioral concerns regarding interpreting revealed preferences. In

the setting of personalized pricing for the provision of goods with

positive benefits, we discuss how price optimization may provide

unambiguous benefit by achieving a “triple bottom line”: personal-

ized pricing enables expanding access, which in turn may lead to

gains in welfare due to heterogeneous utility, and improve revenue
or budget utilization. We empirically demonstrate the potential ben-

efits of personalized pricing in two settings: pricing subsidies for

an elective vaccine, and the effects of personalized interest rates on

downstream outcomes in microcredit.
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1 INTRODUCTION
Personalized pricing, once restricted to the idealized construction

of economic theory, is now squarely within the realm of possibility

for firms newly equipped with a deluge of fine-grained information

about individuals and prediction modeling of demand or willing-

ness to pay based on this information. Given both the ubiquity of

prices and their relevance in important domains such as hiring,
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lending, and credit subject to antidiscrimination regulation, price

personalization remains an area of increasing scrutiny and caution,

as well as tentative optimism due to competitive considerations

[31, 34].

The potential of expanded reliance on predictive models in do-

mains affecting individuals is cause for concern. After all, the ex-

tensive study of fairness considerations in predictive models high-

lights how the joint structure of protected attributes and other

information can lead algorithmic decisions, even based only on

non-attribute information, to nonetheless lead to disparate impacts

on individuals [8]. The setting of personalized pricing is particu-

larly interesting because it fundamentally involves considerations

of both resource allocation in response to price; as well as predic-

tive models for such a price response. Auditing challenges arise

precisely because valuations are in general not known or observed;

rather only binary-feedback demand response is observed.

Studying the case of personalized pricing is conceptually chal-

lenging because prices are a shared tool in drastically different

domains: we consider lending/insurance, consumer goods, and pub-

lic provision. A crucial distinction is between value-based pricing

that offers different prices to customers based on their estimated

willingness to pay, and risk-based pricing which offers different

prices to customers based on their estimated costs, as in lending

and insurance [34]. While discrimination law is strongest in in-

surance and lending, in lending, discrimination concerns often

arise from individual agents providing offers from an actuarially-

fair securitized rate sheet [9]. In particular, distributional concerns

regarding price optimization reflect overall concern for differen-

tially adept/prepared/educated negotiating customers in insurance

and lending, but slight optimism in value-based pricing since low-

income individuals may be more price-sensitive [9]. Hence, the

majority of our analysis will focus on value-based pricing, which

lends itself more readily to price optimization.

In the case of value-based pricing, incidents where price targeting

leads to disparities are often subject to media coverage and public

outcry. We recollect just a few of these incidents: Staples changed

prices based on available brick-and-mortar locations of competitors

leading to higher prices for rural areas [57] and Asians faced higher

prices as a result of the Princeton Review’s zip-code based price-

targeting [45, 56]. While these covariate-based pricing schemes

were based on non-group contextual information, nonetheless they

induced disparities in prices along group lines. Although there

are not clear anti-discrimination principles that govern the setting

of value-based pricing, understanding the tradeoffs introduced by

considering constraints or fairness penalties on a myopic price

optimization problem can shed light on tradeoffs between various

intuitive notions to inform algorithm design.

In this paper, we study the interplay of fairness and welfare

considerations as they arise in the setting of personalized pricing.

Our first task is conceptual: we square these real-world problem
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settings alongside previously expressed concerns regarding price

optimization. For example, acknowledging the empirical reality of

economic inequality informs the expected distributional impacts of

covariate-conditional pricing schemes along racial and economic

segments. We then turn to analytical modeling to identify the mul-

tiple objectives which pricing decisions affect with fairness and/or

welfare implications. Prices impose a burden on customers (per-

haps only on those who purchase), result in allocations of the good

itself, may be optimized based on noisy predictors, and the good

itself may have downstream impacts of interest. In Section 4, we

taxonomize these considerations into price parity (marginal and

conditional), model error fairness, preferences for access, allocative

efficiency, and actuarial fairness; we offer these operationalizations

(all of which may in themselves not be novel) alongside contex-

tual discussion. We propose operationalizations of these normative

considerations which avoid classical assumptions of known valua-

tions, focusing on identifiability based on available information. In

Section 5 we provide further characterization of implications for

fairness and welfare considerations for considering modifications

to price optimization in order to improve on some of these notions,

in particular price parity and market share. Where possible, we pro-

vide analytical insights on tradeoffs. In Section 6 we build empirical

case studies on datasets related to the “public-interest goods” set-

ting based on a study of willingness-to-pay for an elective vaccine

and interest rates for microcredit loans.

2 RELATED WORK
The study of algorithmic pricing and revenue management is very

extensive and spans economics, operations research [30], and com-

puter science. Price discrimination has also been studied for ethical

and normative considerations, especially in relation to privacy

[50, 51]. We now highlight methodological and empirical work of

particular relevance to algorithmic considerations. In Appendix A

we discuss domain-level considerations and more broad related

work in greater detail.

We first briefly overview the classical economic taxonomy of

price discrimination [59]. First-degree price discrimination offers

individual prices to customers exactly at their willingness to pay,

which is assumed to be known. Second-degree price discrimina-

tion depends on the quantity purchased but does not differ across

consumers, such as bulk discounts. Third-degree price discrimi-

nation charges different prices to different groups of consumers,

such as offering senior or student discounts. We focus on analyz-

ing covariate-conditional prices, which are a form of third-degree

pricing but draw nearer to first-degree pricing (up to the noise of

random valuations).

The economic literature studies welfare (consumer and producer

surpluses) implications of idealized first-degree personalized pric-

ing, assuming valuation distributions are known. This classical

notion of welfare is hence pegged to the valuation distribution

(e.g., consumer welfare is valuation minus price). [58] studies third-

degree price discrimination; using first-order conditions of valua-

tion distributions, they show that consumer welfare increases with

additional price discrimination as long as total output increases. [2]

provide analogous conditions for similar analysis. [10] shows that a

seller can choose various segmentations that can achieve any com-

bination of increase/decrease in consumer surplus; [20] study the

theoretical computational efficiency of finding such segmentations.

This classical theory suggests that ideal personalized pricing may

improve welfare relative to uniform monopoly pricing, but that

different segmentations lead to possibly indeterminate outcomes

for consumer welfare. The empirical literature indicates this inde-

terminacy in important settings. [29] empirically study implications

of machine learning predictors of default probability on disparities

not only for predictive performance, but on using these predic-

tions to set interest rates for loans via risk-based pricing. While

richer machine learning predictors expand access to credit; they

also result in greater price dispersion for the minority borrower

on the margin. Hence, greater access comes at the cost of a greater

price burden. [24] study personalized pricing in a Bayesian setting

with posterior uncertainty quantification in a business-to-business

marketing setting; they find that finer-grained personalized pricing

overall increases consumer welfare; though this is not monotonic

in segmentation granularity.

Pricing in the context of mechanism design follows another ap-

proach and assumes elicitation of ontologically valid valuations

from strategic participants due to narrowly bracketed contexts such

as auctions, kidney exchanges, and matching markets. [27] show

that for a two-sided market, market-clearing competitive equilib-

rium pricing is not necessarily optimal if a market designer has

distributional preferences. Noting that classical theory on quasi-

linear utility “implicitly embeds the assumption that each agent

values money equally,” they study implications of dispersion in mar-

ginal values for money of market participants for optimal market

mechanisms.

[18] study fairness considerations when each protected group

is assigned one price and the valuation distribution is known. In

contrast, we focus on the prediction settingwith rich covariates, and

propose metrics that are completely independent of the valuation

distribution. Our analytical insights focus on covariate-personalized

prices and implications of joint structure of covariate distributions

and group variability on fairness considerations.

Finally, we mention work that studies tensions in fair machine

learning, specifically the role of algorithms in allocating decisions or

conferring utility, to highlight questions of interest that have analo-

gies in the pricing setting. [33, 35, 42, 48] broadly study tensions

between fairness and welfare when machine learning enacts allo-

cations, e.g., via classification. An interest of this work is to study

analogous considerations for price optimization, under correspond-

ing notions of fairness and welfare. Longer-term considerations

of fairness constraints have also been studied [19, 21], typically

with the formalism of dynamical systems. In machine learning,

regulatory considerations barring “disparate treatment,” e.g., using

the protected attribute information in the predictor or in algorith-

mic interventions, may be in fundamental tension with achieving

proposed fairness notions. [46] studies tensions that arise from

interventions that do not use attribute information. Again, these

broad concerns may additionally be of interest in the setting of

price optimization.
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3 PROBLEM SETUP
We let 𝑋 denote customer covariates (features) and 𝐴 the protected

attribute. To simplify discussion we focus on binary comparisons

between two protected groups, 𝐴 = 𝑎 and 𝐴 = 𝑏. A personalized

pricing policy is a function mapping covariates and possibly pro-

tected attribute information to a real-valued price, 𝑝 (𝑋,𝐴) ∈ R+ (or,

𝑝 (𝑋 ) for attribute-blind pricing rules). Each sale instance is associ-

ated with a hypothetical and unknown demand curve representing

the demand for each possible price, 𝐷 (𝑝) ∈ R+. Often, when each

sale instance is with an individual customer,𝐷 (𝑝) ∈ {0, 1} is binary
where 𝐷 (𝑝) = 1 denotes the individual would purchase or take-up

at price 𝑝 . In section 4.4, we further restrict 𝐷 (𝑝) = I [𝑉 ≤ 𝑝] to
be given by a customer valuation. Otherwise, we do not make this

restriction, allowing arbitrary, possibly non-rational behavior.

We are primarily interested in studying the question of covariate-
based pricing. One approach is to estimate personalized demand at

a price, given covariates, via a parametric or semi/non-parametric

model, which we will denote as 𝐷 (𝑝 | 𝑥, 𝑎) = E[𝐷 (𝑝) | 𝑋 = 𝑥].
A personalized pricing function satisfies:

𝑝∗ (𝑥, 𝑎) ∈ argmax
𝑝 (𝑥,𝑎)

E[𝐷 (𝑝 (𝑋,𝐴))𝑝 (𝑋,𝐴)]

Often, policy or domain-level restrictions may prohibit prices that

directly use the attribute 𝐴:

𝑝∗ (𝑥) ∈ argmax
𝑝 (𝑥)

E[𝐷 (𝑝 (𝑋 ))𝑝 (𝑋 )]

We define 𝑃 = 𝑝 (𝑋,𝐴) as the per-individual personalized price;

it may sometimes also refer to 𝑃 = 𝑝 (𝑋 ). We additionally intro-

duce notation for the revenue, 𝑅(𝑃) = 𝑃𝐷 (𝑃), and its covariate-

conditional counterpart.

We will also consider cases where the good has an effect on

some outcome in itself, such as repeat purchasing behavior, health

benefits, downstream welfare, so that 𝐷 (𝑝) is also itself a treatment.
We denote the corresponding potential outcomes as 𝑌 (𝐷 (𝑝)). These
represent the causal outcomes of take-up/non-take-up, e.g., the

effect on contracting malaria of purchasing/not purchasing a bed

net.

4 DEFINITIONS AND METRICS
We now introduce definitions of different aspects of fairness or

welfare in personalized pricing, addressing normative considera-

tions motivated by different contexts, and offer formalisms and

operationalizations of these. We consider a generic personalized

price function 𝑃 which may reflect either first or third degree price

discrimination. In Section 5 we discuss these operationalizations in

more depth and analyze potential trade-offs.

Observational metrics. We introduce the following notions of

allocative fairness based on what we may observe: prices 𝑝 , de-
mand outcome 𝐷 (𝑝) (e.g., purchase/no purchase), and potential

downstream outcomes due to the good 𝑌 (𝐷 (𝑝)). In Appendix A

we provide further discussion on why, if we are concerned about

fairness in the first place, we might be skeptical about defining

fairness relative to valuations or other unrevealed latent prefer-

ences/valuations.

4.1 Price parity
Context. A customer always benefits from a lower price. The

difference between distributions of prices faced by different groups

measures potential unfairness in price burdens. An extreme exam-

ple is the so-called “pink tax”: [22], commissioned by the Mayor’s

office in New York City, studies gender-based pricing differentials

and finds an average of 7% higher prices paid by women; for ex-

ample, women’s pink razors are more expensive, for the exact

same product
1
. This highlights the capacity of price optimization

to extract consumer value from behavioral failures of economic

regarding valuations. In particular, using “pinkness” to segment

products corresponds to extracting valuation from social construc-

tions of gender, all other functionality being the same for a product

with no signaling value. While the “pink razor” is an extreme exam-

ple, considerations regarding price parity are a common intuitive

objection to personalized pricing.

Operationalization. We introduce a definition based on distribu-

tional equivalence of prices for each group.

Definition 1 (Price parity). 𝑃 ⊥⊥ 𝐴

Wemay also consider parity in moments of the price distribution,

which also enables a simple way to give a scalar metric to disparity.

Definition 2 (Marginal price parity).

E[𝑃 | 𝐴 = 𝑎] = E[𝑃 | 𝐴 = 𝑏]
Correspondingly, the marginal price disparity is

E[𝑃 | 𝐴 = 𝑎] − E[𝑃 | 𝐴 = 𝑏] .

The notion of “disparate treatment” in fair machine learning

suggests that the following notion of covariate-conditional price

parity is intuitively appealing.

Definition 3 (𝑥-conditional price parity). 𝑝 (𝑥, 𝑎) = 𝑝 (𝑥, 𝑏)

Notice, however, that satisfying definition 3 generally does not

ensure satisfying definitions 1 and 2 due to differing distributions

of covariates between groups. Indeed, in general contexts, it is well-

understood that equal treatment need not lead to equal impact; this

remains true in personalized pricing.

Finally, it is often helpful to consider price parity conditional on

take-up, or more generally on demand. Conditioning on take-up

reflects that price only affects consumer utility if the customer

purchases.

Definition 4 (Take-up-conditional parity).

𝑃 ⊥⊥ 𝐴 | 𝐷 (𝑃)

More generally, we may wish to condition on the effect of pricing.
Consider the case where there is a nominal price 𝑝0 and 𝑃 ≤ 𝑝0 rep-

resents a personalized potential discount. The event 𝐷 (𝑃) > 𝐷 (𝑝0)
is the event that demand increases as an effect of the discount. In
the binary demand case: that an individual purchases if and only if

given the discount (rather than purchasing irrespective of discount

or not purchasing irrespective), which we term a responder to the

discount. Conditioning on responsiveness accounts for the possibil-

ity that different groups have different valuations or willingness to

1
Notably, while legislation has been proposed to try to address the pink tax, this has

not been established as gender-based discrimination. See [37] for more discussion.
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pay, and to the extent that one deems it acceptable to personalize

to leverage such differences (and often it is not) parity conditional

on response requires we do not price-discriminate more than is

justified by response to discount.

4.2 Model error fairness
Context. Given that fairness in machine learning studies how

predictive models may exhibit differential model performance (pre-

dictive accuracy, error distributions) by group, a natural question is

how such disparities in predictive model performance might affect

the suboptimality of different prices; and whether different groups

might experience different price suboptimality burdens due to error

patterns of the predictive model.

Operationalization. The rest of this paper studies pricing based
on a true conditional demand model, 𝐷 (𝑝 | 𝑥, 𝑎). In practice how-

ever, only an estimate 𝐷 (𝑝 | 𝑥, 𝑎) is available from observed data.

For example, for the pricing problem:

𝑝∗ (𝑥) ∈ argminE[𝐷 (𝑝 (𝑋 ))𝑝 (𝑋 ))]
Price suboptimality fairness is concerned with the decision subop-

timality of a price based on a risk model vs. the price derived from

the actuarially fair “true risk”, 𝑝∗ (𝑥) − 𝑝∗ (𝑥). For example, 𝑝∗ (𝑥)
may differ from 𝑝∗ (𝑥) when we learn the prediction 𝐷 (𝑝 | 𝑥, 𝑎)
from finite samples and differential accuracy thereof could lead

to fairness concerns. In Section 5 we will focus on the revenue

objective.

4.3 Access and equal access
Context. We are often concerned about access to the good being

sold, especially when the good has benefits that are deemed cru-

cial such as vaccines (see also our empirical study in section 6.1),

loans, or broadband internet. In terms of welfare, it is important to

consider the total access that personalized schemes lead to, namely

the total demand. In terms of fairness, we may be concerned with

allocative parity in the form of parity in market shares or take-up

probabilities by group. Personalized pricing schemes may in fact

enhance both of these measures by allowing revenue extraction

from high-valuation groups to enable offering lower price offers to

low-valuation individuals, hence “pricing people into the market.”

High-valuation groups are usually those with financial means that

allows them to have a higher willingness to pay, and low-valuation

groups are usually those with less financial means.

Operationalization. Total access is simply the marginal demand.

When demand is binary, this is the fraction of individuals who

take-up the good.

Definition 5 (Total access).

E[𝐷 (𝑃)] .
The idea of access parity suggests requiring equal allocation of

access / market share / take-up.

Definition 6 (Access parity).

E[𝐷 (𝑃) | 𝐴 = 𝑎] = E[𝐷 (𝑃) | 𝐴 = 𝑏] .
Correspondingly, access disparity is E[𝐷 (𝑃) | 𝐴 = 𝑎] − E[𝐷 (𝑃) |
𝐴 = 𝑏].

4.4 Allocative efficiency and fairness
Context. In settings where interpreting revealed preferences as

rational choices due to latent valuations, efficiency considerations

are concerned with how prices sort individuals by their valuations

and ensure that a good may be targeted towards those who value

it the most. For example, the literature on pricing health interven-

tions in development is particularly interested in the difference

between free and low-price provisions based on whether prices bet-

ter target households who are more likely to use a product [16]. An

important further concern is whether errors in sorting individuals

disproportionately affect one group more than another so that, on

average, certain groups are more often incorrectly given priority

over others.

Operationalization. We focus on providing observational metrics

which assess sorting/targeting without assuming access to the full

valuation distribution. For this section, we focus on the binary

feedback setting where 𝐷 (𝑝) ∈ {0, 1}.

Assumption 1 (Monotonicity). For any 𝑝, 𝑝 ′ :

𝑝 > 𝑝 ′ =⇒ 𝐷 (𝑝) ≥ 𝐷 (𝑝 ′)

Assuming monotonicity of binary demand with respect to price

as in Asn. 1 is equivalent to assuming a random latent threshold

model, i.e., 𝐷 (𝑝) = I[𝑉 ≤ 𝑝]. This perspective recognizes that

observations of the binary event 𝐷 (𝑝), under Asn. 1, are censored
observations of the underlying valuation.

The question is whether a given pricing scheme (for which we

have observed the binary outcomes) appropriately ranks valua-

tions of individuals. A marginal measure of such efficiency may be

concordance:

Definition 7 (Concordance). Given two individuals drawn inde-

pendently at random, concordance is

P(𝑉1 > 𝑉2 | 𝑃1 > 𝑃2) .

While concordance captures how efficiently prices sort individ-

uals by valuation, such efficiency may have disparate effects. To

capture this disparity, we propose the class-crossed concordance
disparity metric.

Definition 8 (Class-crossed concordance disparity). Given two

individuals drawn independently at random from groups𝐴 = 𝑎 and

𝐴 = 𝑏, respectively, class-crossed concordance disparity is

P(𝑉𝑏 > 𝑉𝑎 | 𝑃𝑎 < 𝑃𝑏 ) − P(𝑉𝑎 > 𝑉𝑏 | 𝑃𝑏 < 𝑃𝑎)

Class-crossed concordance has the following probabilistic inter-

pretation. The term P(𝑉𝑏 > 𝑉𝑎 | 𝑃𝑎 < 𝑃𝑏 ) can be interpreted as: of

those whose valuations can be ordered under Asn. 1, what is the

probability that valuations drawn from one group are stochastically
greater than valuations from another group? Class-crossed concor-

dance measures a groupwise disparity in the difference in these

probabilities.

4.5 Targeting long-run dynamics
Context. A key domain-level consideration that justifies preferring
take-up is that take-up of the good is itself a treatment with a

downstream outcome, such as future purchases/customer loyalty

in e-commerce, net present value of continued borrowing [40],
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Insurance Lending

Consumer

goods

Public-interest

goods

Moral hazard/Adverse selection ✓ ✓ ✗ ✗

Revenue-driven price optimization ✗ ✗ ✓ ✓

Risk-driven price optimization ✓ ✓ ✗ ✗

Prefer marginal price parity ✗ ✗ ✓ ✗

Prefer conditional price parity ✓ ✓ ✗ ✗

Prefer access ✓ ✓ ✓ ✓

Actuarial fairness ✓ ✓ ✗ ✗

Allocative efficiency/sorting ✗ ✗ ✓ ✓

Targeting long-run dynamics ✓ ✓ ✓ ✓

Table 1: Different problem settings and what fairness/welfare notions are relevant when.

or usage and downstream health outcomes of a preventive health

intervention in development economics [16, 26, 38]. Therefore, price

impacts an allocation which itself may have heterogeneous effects

on longer-term outcomes for the customer and/or decision-maker:

we identify this as targeting long-run dynamics. This, for example,

justifies an overall preference for expanding market shares.

The possibility of a “triple bottom line”. Price personalization

may be beneficial due to its increasing take-up of a good which is

beneficial for individuals and the decision-maker, targeted price

subsidies enable budget-balanced public provision (in contrast to

a complete subsidy), and the access expansion might particularly

those whowould benefit themost. Of course, whether these benefits

compound (or whether certain contributors are irrelevant) need to

be assessed in the data of any particular setting, as in [18, 25].

Operationalization.We recognize the firm’s objective function

as population welfare downstream of a price allocation:

E[𝑌 (𝐷 (𝑃))] .

4.6 Summary of problem settings and relevant
notions

Abstractly, we might summarize some of the above considerations

by considering a 𝜆−scalarizedmulti-objective optimization problem,

which represents the expansion of considerations beyond myopic

revenue maximization:

max
𝑃 ( ·)

E[𝑃𝐷 (𝑃)] + 𝜆1 (
∑
𝑎∈A E[𝐷 (𝑃) | 𝐴 = 𝑎]) + 𝜆2E[𝑌 (𝑃)]

s.t. E[𝑃 | 𝐴 = 𝑎] − E[𝑃 | 𝐴 = 𝑏] ≤ Γ

E[𝐷 (𝑃) (𝑃 − 𝑐)] ≥ 0 (1)

Sections 4.1 and 4.3 and ?? (price parity, access, long-run welfare)

might conceivably be included in a conceptual “multi-objective”

version of the firm’s problem, while Sections 4.2 and 4.4 (price

suboptimality, class-crossed concordance ) are idealized measures.

In table 1 we apply our conceptual taxonomy of problem do-

mains to these different fairness/welfare notions in pricing. The

first category of criteria summarizes how different problem settings

differ in the presence of moral hazard/adverse selection that jus-

tifies risk-based pricing), and the capacity for price optimization.

The second category identifies which notions of fairness or equity

are more or less relevant in different settings.

We caution that the above optimization problem is a concep-

tual device to illustrate how these notions might justify revenue

sub-optimal allocations. Table 1 suggests that in any particular ap-

plication setting, these notions may not be simultaneously relevant.

5 ANALYSIS OF DEFINITIONS AND METRICS
In this section, we expand further on each definition. Where possi-

ble, e.g. by making additional assumptions, we provide analytical

insight on implications of these fairness notions for price optimiza-

tion or corresponding specializations of eq. (1).

5.1 Price-parity
We study the price optimization problem with additional price par-

ity constraints, focusing on highlighting tradeoffs with implications

for algorithm design. To simplify the analysis, we make the follow-

ing assumptions. We assume a partially linear demand model with

a link function of the non-price, covariate-driven demand 𝐷 (𝑥, 𝑎)
and a linear component for price elasticity.

Assumption 2 (Partially linear demand model).

𝐷 (𝑝 | 𝑥, 𝑎) = 𝛽𝑎𝑝 + 𝐷 (𝑥, 𝑎) .

Assumption 3 (Downward sloping linear demand with respect to

price.). 𝛽𝑎 < 0,∀𝑎 ∈ A

For example, the linear model corresponds to 𝐷 (𝑥, 𝑎) = 𝛼 + 𝛾⊤𝑥 .
Linear demand is a common assumption for contextual pricing

[6, 11, 52]. We also assume that price elasticities are negative.

Without loss of generality, assume group 𝑎 has higher average

price at the unconstrained solution). The marginal parity
2
con-

strained revenue maximization problem, is a specialization of eq. (1).

Let 𝑝∗ (𝑥, 𝑎; Γ) denote the corresponding Γ−parametrized solution.

𝑝∗ (𝑥, 𝑎; Γ) ∈ argmax
𝑝 ( ·)

E[𝑝 (𝑋,𝐴)𝐷 (𝑝 (𝑋,𝐴))]

s.t. E[𝑝 (𝑋,𝐴) | 𝐴 = 𝑎] − E[𝑝 (𝑋,𝐴) | 𝐴 = 𝑏] ≤ Γ (2)

The attribute-blind personalized price is 𝑝∗ (𝑥 ; Γ), which restricts

the above optimization to prices which only personalize on 𝑥 . We

derive the parity-constrained optimal price.

2
We discuss constraining first moments of the price distributions (marginal parity)

to provide analytical insights. Constraining higher order moments via e.g. a set con-

strained by Kolmogorov-Smirnov statistic [49], or a moment-based hierarchy as in [4],

is computationally possible.
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Theorem 1. Let

𝜉 (𝐴) = (P[𝐴 = 𝑎]−1I[𝐴 = 𝑎] − P[𝐴 = 𝑏]−1I[𝐴 = 𝑏]).
The optimal attribute-based personalized price under marginal parity
solving eq. (2) is:

𝑝∗ (𝑥, 𝑎; Γ) = −𝐷 (𝑥, 𝑎) + 𝜉 (𝑎)𝜆∗𝑥𝑎
2𝛽𝑎

,

where 𝜆∗𝑥𝑎 =
E[𝐷 (𝑋,𝐴)𝜉 (𝐴) + 2𝛽𝐴Γ]

E[𝜉 (𝐴)2]
.

The optimal attribute-blind personalized price is

𝑝∗ (𝑥 ; Γ) = −𝐷 (𝑥) + 𝜆∗𝑥E[𝜉 (𝐴) | 𝑋 = 𝑥]
2E[𝛽𝐴 | 𝑋 = 𝑥] ,

where 𝜆∗𝑥 =
E[𝐷 (𝑋 )𝜉 (𝐴) + 2𝛽𝐴Γ]
E[E[𝜉 (𝐴) | 𝑋 ]2]

.

□

The proof is included in Appendix B; the key idea is to study the

Lagrangian dual of the knapsack-constrained quadratic program

and solve by swapping the order of minimum and maximum.

In the following analysis, we focus on an equality constraint in

eq. (2). Interpreting the solution, 𝑝∗ (𝑥, 𝑎) differs from the uncon-

strained personalized price by a penalty whose size depends on

the discrepancy of the price-independent covariate-based demand

within groups.

We highlight some tradeoffs induced by marginal price parity

against other fairness considerations. We first consider a very spe-

cial setting where the demand function is invariant across groups; it

is only the group-conditional covariate distribution which induces

price disparity.

Proposition 1 (Attribute-based vs. attribute-blind pricing under

marginal parity ). Suppose Asns. 2,3, and further that:

(1) 𝐷 (𝑥, 𝑎) = 𝐷 (𝑥, 𝑏) = 𝐷 (𝑥),
(2) 𝐷 (𝑥) is linear in 𝑥 ,

(3) and 𝛽𝑎 = 𝛽𝑏 .

Then we have

𝑝∗ (𝑥, 𝑎; 0) − 𝑝∗ (𝑥 ; 0) < 0 ⇐⇒
𝜆∗𝑥𝑎
𝜆∗𝑥

< P(𝐴 = 𝑎 | 𝑋 = 𝑥) − P[𝐴 = 𝑎]
P[𝐴 = 𝑏] P(𝐴 = 𝑏 | 𝑋 = 𝑥),

and 𝑝∗ (𝑥, 𝑏; 0) − 𝑝∗ (𝑥 ; 0) < 0.

In this very special case, we find that group 𝑏 would uniformly

prefer attribute-based marginal parity pricing. The relationship

is not necessarily uniform for group 𝑎. A sufficient condition, for

example, is if for some 𝑥, P(𝐴 = 𝑎 | 𝑋 = 𝑥) >> P(𝐴 = 𝑏 | 𝑋 = 𝑥)
and P[𝐴 = 𝑎] = P[𝐴 = 𝑏]: then 𝑝∗ (𝑥, 𝑎; 0) − 𝑝∗ (𝑥 ; 0) < 0. Hence,
for 𝑥−outliers within group 𝑎 satisfying this condition, attribute-

based pricing is Pareto optimal relative to attribute-blind pricing

for both groups. Since however price disparity in this special case

is exactly driven by variability in P(𝐴 = 𝑎 | 𝑋 = 𝑥), we might also

expect that 𝑝∗ (𝑥, 𝑎; 0) − 𝑝∗ (𝑥 ; 0) > 0 for some other 𝑥 .

Building on the results of Theorem 1 and Proposition 1, we also

provide bounds on the revenue loss due to attribute-blind pricing,

now in the setting where the non-price-based demand may differ

across groups.

Corollary 1 (Revenue loss of 𝑝∗ (𝑥)). Suppose Asn. 3, 𝛽𝑎 = 𝛽𝑏
and 𝐷 (𝑥, 𝑎) ≠ 𝐷 (𝑥, 𝑏). Then,

E[𝑅(𝑝∗ (𝑋,𝐴)) − 𝑅(𝑝∗ (𝑋 ))] ≥ 1

4𝛽
E[𝐷2 (𝑋 ) − 𝐷

2 (𝑋,𝐴)] ≥ 0.

We now use these characterizations from Theorem 1, Proposi-

tion 1, and Corollary 1 to study tradeoffs between price parity and

other desiderata, in particular x-conditional parity, and summarize

some implications for algorithm design.

(1) A firmmay generically prefer attribute-blind pricing to attribute-

based pricing schemes due to regulatory considerations or

x-conditional price parity (definition 3).

(2) If achieving marginal parity is of interest in view of price

disparities, attribute-blind marginal parity achieves lower

firm revenue than attribute-based marginal parity. We pro-

vide a quantitative bound on the gap in a simple case in

Corollary 1.

(3) Under the special case of Proposition 1, for some 𝑥 , attribute-

based marginal parity is strictly preferable to attribute-blind

marginal parity for both groups.

These considerations might outweigh an intuitive preference for

attribute-blind pricing in the case of marginal parity.

5.2 Price suboptimality fairness
We provide a decomposition that gives structural conditions on

when the sign of the prediction error is informative of the sign

of the mispricing or decision error. In particular, this highlights

a distinction between analyzing fairness in data-driven optimal

prices vs. fair prediction in machine learning.

Proposition 2 (Price suboptimality error decomposition). Assume

that ∇𝐷 (𝑝∗ (𝑥) | 𝑥) ≠ ∇𝐷 (𝑝∗ (𝑥) | 𝑥). Up to first order terms,

𝑝∗ (𝑥) − 𝑝∗ (𝑥) = 𝐷 (𝑝∗ (𝑥) | 𝑥) − 𝐷 (𝑝∗ (𝑥) | 𝑥)
∇𝐷 (𝑝∗ (𝑥) | 𝑥) − ∇𝐷 (𝑝∗ (𝑥) | 𝑥)

+ 𝑝∗
(
1 + ∇𝐷 (𝑝∗ (𝑥) | 𝑥) − ∇𝐷 (𝑝∗ (𝑥) | 𝑥)

∇𝐷 (𝑝∗ (𝑥) | 𝑥) − ∇𝐷 (𝑝∗ (𝑥) | 𝑥)

)
The decomposition is not computable from observed data (since

some quantities depend on the unknown 𝑝∗ (𝑥)). One implication

is that the sign of (𝑝∗ (𝑥) − 𝑝∗ (𝑥)) ultimately depends on the sign

of a few quantities:

1 𝐷 (𝑝∗ (𝑥) | 𝑥) − 𝐷 (𝑝∗ (𝑥) | 𝑥) estimation error

2 ∇𝐷 (𝑝∗ (𝑥) | 𝑥) − ∇𝐷 (𝑝∗ (𝑥) | 𝑥) gradient est. error

3 ∇𝐷 (𝑝∗ (𝑥) | 𝑥) − ∇𝐷 (𝑝∗ (𝑥) | 𝑥) price elast. subopt.

There are some cases where we may be able to conclude the sign

of decision error 𝑝∗ (𝑥) −𝑝∗ (𝑥): we can conclude 𝑝∗ (𝑥) −𝑝∗ (𝑥) > 0
if 1, 2, 3 are all positive.

However, in general, the main implication of the above propo-

sition is that the direction of decision disparity is not immediate

from prediction error of 𝐷 (𝑝 (𝑥) | 𝑥) alone: it also depends on esti-

mation error of the gradient, and the difference in gradients due

to suboptimality. It is more difficult to conclude implications of

pricing decisions (and more broadly, optimization decisions) based

on uncertain nuisance predictions.
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Applying the above result to 𝑝∗ (𝑥, 𝑎) − 𝑝∗ (𝑥) allows us to make

a similar conclusion for the discrepancy of pricing with respect to

attribute-based 𝐷 (𝑝 (𝑥) | 𝑥, 𝑎) vs. the attribute-blind 𝐷 (𝑝 (𝑥) | 𝑥)
setting.

𝑝∗ (𝑥, 𝑎) − 𝑝∗ (𝑥) = 𝐷 (𝑝∗ (𝑥) | 𝑥, 𝑎) − 𝐷 (𝑝∗ (𝑥) | 𝑥)
∇𝐷 (𝑝∗ (𝑥, 𝑎) | 𝑥, 𝑎) − ∇𝐷 (𝑝∗ (𝑥) | 𝑥, 𝑎)

+ 𝑝∗
(
1 + ∇𝐷 (𝑝∗ (𝑥) | 𝑥, 𝑎) − ∇𝐷 (𝑝∗ (𝑥) | 𝑥)

∇𝐷 (𝑝∗ (𝑥, 𝑎) | 𝑥, 𝑎) − ∇𝐷 (𝑝∗ (𝑥) | 𝑥, 𝑎)

)
5.3 Market share
We study a multi-objective version of eq. (1) with additional weights

on group-conditional market share objectives. We consider demand

that arises from an underlying valuation distribution. (This is true

without loss of generality under Asn. 1 of monotonicity.) The most

general assumption that admits a concave price optimization pro-

gram is log-concavity of valuation distributions.

Assumption 4 (Log-concave valuation distribution). Suppose that

𝑉 = 𝑔(𝑥, 𝑎) + 𝜖,

where 𝜖 has a log-concave probability density function.

We assume log-concavity so that the cdf and cumulative cdf of 𝜖

(effectively 𝐷 (𝑝 | 𝑥, 𝑎)) are also log-concave. Log-concavity is quite
general; log-concave pdfs include the normal, exponential, logistic,

extreme value, Laplace, gamma, Weibull, etc.

Then the population-level market share personalized-price spe-

cialization of eq. (1) is a concave program under Asn. 4, since

maximization is equivalent under the monotonic increasing log

transformation:

𝑝∗ (𝑥, 𝑎; 𝜆) ∈ argmax
𝑝 ( ·)

E[(𝑝 (𝑋,𝐴) + 𝜆)𝐷 (𝑝 (𝑋,𝐴))] (3)

We may consider the attribute-blind restriction of the above:

𝑝∗ (𝑥 ; 𝜆) ∈ argmax
𝑝 ( ·)

E[(𝑝 (𝑋 ) + 𝜆)𝐷 (𝑝 (𝑋 ))] (4)

The above problems consider a population-levelmarket share penalty;

we also consider group-conditional market share penalties. These

may arise from the penalty formulation of the market-share con-

strained problem, where some 𝜆 is the optimal dual Lagrange mul-

tiplier for the constraints E[𝐷 (𝑝) | 𝐴 = 𝑎] ≥ Γ.

max{E[𝑝 (𝑋,𝐴)𝐷 (𝑝 (𝑋,𝐴))] : E[𝐷 (𝑝 (𝑋,𝐴)) | 𝐴 = 𝑎] ≥ Γ𝑎} (5)

Correspondingly, the attribute-based group-conditional market

share price 𝑝∗ (𝑥, 𝑎; 𝜆𝑎) solves, pointwise over 𝑥, 𝑎:

𝑝∗ (𝑥, 𝑎; 𝜆𝑎) ∈ argmax
𝑝 ( ·)

(𝑝 + 𝜆𝑎/𝜌𝑎)𝐷 (𝑝 | 𝑥, 𝑎), ∀𝑥, 𝑎 (6)

We study the sensitivity of the unconstrained-optimal attribute-

blind and attribute-based personalized price to local increases in
the penalty parameter, 𝜆, relative from the unconstrained optimal

price, i.e. ∇𝜆𝑝
∗ (𝑥, 𝑎; 0) . This describes how much the price changes

in response to implementing distributional preferences for market

share. Quantifying these sensitivities sheds light on the dependence

on 𝑅′′, the second derivative of the (conditional) revenue function.

Lemma 1 (Optimality conditions for different penalties ).

Suppose Asn. 4.

(1) Population-level market share, attribute-based sensitivity is

∇𝜆𝑝
∗ (𝑥, 𝑎; 0) = 𝑅′′(𝑝∗ (𝑥, 𝑎; 0) | 𝑥, 𝑎)−1𝑝∗ (𝑥, 𝑎; 0)−2 .

(2) Population-level market share, attribute-blind sensitivity is

∇𝜆𝑝
∗ (𝑥 ; 0) = 𝑅′′(𝑝∗ (𝑥 ; 0) | 𝑥)−1𝑝∗ (𝑥 ; 0)−2 .

(3) Group-level market share, attribute-based sensitivity is

∇𝜆𝑝
∗ (𝑥, 𝑎; 0) = 1

𝜌𝑎
𝑅′′(𝑝∗ (𝑥, 𝑎; 0) | 𝑥, 𝑎)−1𝑝∗ (𝑥, 𝑎; 0)−2 .

Observe that these sensitivities are negative, under Asn. 4. The

proof, included in the appendix, identifies the (pointwise) optimality

conditions of the constrained optimizations, eq. (4), eq. (6), and

applies the implicit function theorem.

We highlight some implications of Lemma 1 for algorithm design.

(1) For larger |𝑅′′ | (greater curvature), the less price decrease is
required to increase market share, and conversely for smaller

|𝑅′′ |, the larger price decrease is required.
(2) Quantifying these sensitivities in terms of 𝑅′′

highlights the

revenue implications of these price fairness changes. Con-

sidering a second-order expansion of the revenue, smaller

|𝑅′′ | suggests that the larger price decrease may not have

extreme revenue decrease.
(3) Curvature also quantifies the rate of convergence of the opti-

mal price, e.g. if optimizing over a parametrized pricing pol-

icy via M-estimation [44]. Hence, finite-sample variability of

the optimal price (whichmay be assessed empirically by boot-

strapping) may suggest low curvature. This suggests a robust

approach which ensures out-of-sample market share may

incur small revenue tradeoff in the low-curvature regime.

5.4 Allocative efficiency: concordance
Assumption 1, of almost sure monotonicity, suggests that the combi-

nation of continuous treatment and binary outcome can be viewed

as a censored observation of the valuation. Again, we do not assume

access to the underlying realizations of valuation distribution, but

study what may be concluded about valuations given that we only

observe the censored realizations 𝐷 (𝑃) = I [𝑉 > 𝑃] .
Consider ranking the prices and valuations of two generic price-

valuation-demand triples, (𝑝1, 𝑣1, 𝐷 (𝑝1)), (𝑝2, 𝑣2, 𝐷 (𝑝2)). The only
joint outcome of demands and prices that admits concluding an

ordering on the underlying valuations 𝑣1, 𝑣2 is that

{𝑝1 < 𝑝2, 𝐷 (𝑝1) = 0, 𝐷 (𝑝2) = 1} ⇐⇒ {𝑣1 < 𝑝1 < 𝑝2 < 𝑣2}
Using this observation (which is highly dependent on almost sure

monotonicity), we can identify a lower bound on concordance from

observational data.

Theorem 2. Assume Asn. 1 and 𝐷 (𝑝) ∈ {0, 1}.
P(𝐷𝑏 (𝑃𝑏 ) > 𝐷𝑎 (𝑃𝑎) | 𝑃𝑎 < 𝑃𝑏 ) ≤ P(𝑉𝑎 > 𝑉𝑏 | 𝑃𝑎 < 𝑃𝑏 )

Note that P(𝐷𝑏 (𝑃𝑏 ) > 𝐷𝑎 (𝑃𝑎) | 𝑃𝑎 < 𝑃𝑏 ) is related to the con-

cordance index of sensitivity analysis, in particular the perspective

studied by [54] who suggest a ranking-based approach to survival

analysis.

In survival analysis, right-censoring occurs when there is a finite

horizon end to data collection for the survival time of patients,

so that the observed survival times are the minimum of the cen-

soring time and the actual survival time. The concordance score
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is a generalization of Wilcoxon-Mann-Whitney statistics and the

AUC that applies to continuous output variables, and accounts for

censoring of the data. It is the fraction of all pairs of subjects whose

predicted survival times are correctly ordered among all subjects

that can be ordered. [54] observe that two subjects’ survival times

can be ordered not only if both of them are uncensored; but also

if the uncensored time of one is smaller than the censored time of

another.

Relative to the concordance index of right-censored survival

analysis, the setting of allocative efficiency is more difficult: we are

required to further restrict attention to pairs 𝑝1 < 𝑝2, and we can

at best order 𝑣1 < 𝑝1 < 𝑝2 < 𝑣2.

5.5 Targeting for long-run dynamics: optimal
encouragement designs

An important justification for cross-subsidy (preferring take-up)

is in recognizing that take-up of the good, 𝐷 (𝑝) may itself be a

treatment for downstream outcomes. Such outcomes of interest

might include long-term customer value, social learning, repeated

purchase behavior, “compliance”, attrition, etc. We highlight that

one might view 𝑝 as either a continuous treatment or instrument.

For example, this is a major focus of [40] which considers the

amortized net present value of customers over a long time-horizon

after they take-up a microcredit loan. Their analysis suggests that

while price discrimination to expand take-up may result in losses in

short-term profits, this can be outweighed by clients “aging into” a

loan portfolio and becoming more profitable. This is also of concern

for health interventions in development: take-up of the good is not

the final outcome of interest, but rather health outcomes are.

In particular, the possibility of such a “triple bottom line” high-

lights a situation where non-ideal theory that propagates the effects

of known inequality to the expected failures of classical economic

theory may highlights possible opportunities for personalized pric-

ing to achieve practical benefit. For example, a plausible narrative

recognizes that poorer households “undervalue” preventive health-

care not because of some fundamental “underlying preference” for

poor health, but due to behavioral considerations and cognitive

burdens which prevent endogenizing the full health benefits of

a product [7], or for far more practical reasons since they may

simply have lower incomes. As a result, they may be more price

sensitive. And, they may receive outsized additional health benefits

from using the preventive health intervention if they are indeed

liquidity constrained due to lack of other ancillary health interven-

tions. Personalized price offers allow making lower price offers,

increasing take-up, and if indeed these households “priced in on

the margin” receive greater heterogeneous benefits, larger welfare

improvements.

There are two perspectives. In Figure 1b, price is a continuous

instrument for treatment, and hence, outcome
3
. That is, recognizing

that one cannot directly assign the actual treatment of interest –

one can neither force loans upon individuals nor ethically randomly

reject individuals who apply for loans, exogenous price variation

may be the only tool from observational data for assessing the

3
Estimating a covariate-conditional local instrumental variable curve, or optimal policy

when the price instrument is the control variable, remains an open problem. See [43] for

doubly robust estimation of the continuous instrument or [55] for policy optimization

with heterogeneous effects and discrete instruments.

𝑋

𝑃

𝐷

𝑌

(a) Price as treatment

𝑋

𝑃

𝐷

𝑌

(b) Price as instrument

causal impacts of loans on welfare. Crucially, price satisfies the

main assumptions for instrumental variables; relevance, that it pre-
dicts treatment (loan take-up), and more importantly the exclusion
restriction: that 𝑌 (𝐷 (𝑝)) = 𝑌 (𝐷),∀𝑝, the only effect of the price on

outcome is via its impact on treatment [36]. This may be plausible

when the outcome of interest is a quantity such as health impacts

of a bednet on malaria incidence [13], impacts of sanitation on

health outcomes, [38], or social learning for sustained use of the

intervention via subsidized first use [26]. In the lending setting, this

may be plausible if it is believed interest rates do not affect default

event, or the amount borrowed.

Another perspective views price as continuous treatment, e.g.

Figure 1a. There are some posited behavioral economics effects

which may lead to a failure of the exclusion restriction such that

price affects outcome, such as anchoring to reference prices (which

attenuates future take-up) or sunk-cost fallacies (when high prices

encourage usage/non-wastage); this is explored in [26]. Alterna-

tively, interest rates might affect default probability if individuals

are liquidity-constrained. Evidence is mixed in lending: [29] as-

sumes this, [3] finds no effect, and [41] finds some effect of rates

on default. Alternatively, interest rates might have an effect on

the extensive demand margin (amount borrowed). In this setting,

we might instead consider price as a continuous treatment with a

composite outcome of take-up and observed outcome, conditional

on take-up (such as amount borrowed or default outcome).

From the perspective of optimization, we generally view price as

a treatment and optimize for corresponding downstream outcomes,

e.g. conduct an “intention to treat” analysis.

6 CASE STUDIES
6.1 Willingness to pay for elective vaccine
We build a case study from [53], a willingness-to-pay study for vac-

cination against tick-borne encephalitis in Sweden. The vaccine for

tick-borne encephalitis (TBE) is elective and the study is interested

in assessing determinants of willingness to pay to inform health

policy. Demand is associated with price and income; as well as

individual contextual factors such as age, geographic risk factors,

trust, perceptions and knowledge about tick-borne disease. The

health policy recommendation uses the learned demand model to

estimate the vaccination rate under a free, completely subsidized

vaccine. This setting corresponds to the setting of public provision,

where a decision-maker has a preference for higher take-up due to

dynamic externalities of vaccines (which are nonetheless difficult to

precisely estimate or target). The study was a contingent valuation

study which asked individuals about take-up at a random price of

100, 250, 500, 750, or 1000 SEK. The study finds that “The current
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market price of the TBE vaccine deters a substantial share of at-risk

people with low incomes from getting vaccinated.”

In Figures 2a and 2b, we compare distributional considerations of

segmented vs personalized pricing. Let 𝐴 = 𝑏 indicate low-income.

We follow [53] and learn a logistic regression model of binary

demand by simply appending the price covariate with the other

covariates, so that 𝐷 (𝑥, 𝑝) = 𝜎 (𝛾⊤𝑥 + 𝛽𝑝). A natural approach

in the setting where a free subsidy is not feasible due to budget

constraints, is third-degree price discrimination: segment based on

income and offer a price to low-income and high-income groups

separately. We consider such a group-segmented approach in Fig-

ure 2a. The blue curve (“agg”) represents the revenue curve for a

uniform price. The red (“maj”) and green (“min”) curves are revenue

curves from the majority (high-income) and minority (low-income)

groups, respectively. We indicate the resulting optimal prices for

each of these curves with vertical dashed lines. Notably, the 𝐴 = 𝑎

revenue curve has greater second-degree curvature than the 𝐴 = 𝑏

revenue curve. Because of the flat revenue curve, the market share

of the minority group can be substantially increased without much

extra cost.

We next consider a covariate-driven personalization approach.

In Figure 2b, we plot histograms of the group-conditional distri-

butions of these optimal prices, 𝑝∗ (𝑋 ) | 𝐴 = 𝑎 and 𝑝∗ (𝑋 ) | 𝐴 = 𝑏.

The optimal group-based prices are indicated by the vertical lines

for reference. We solve

𝑝∗ (𝑥) ∈ argmax
𝑝 ( ·)

E[𝐷 (𝑝 (𝑋 ))𝑝] .

Notably, the optimal prices for the low-income group are overall

lower than those for the high-income group. Expected take-up in

this segment increases to 27.5% from 24.2% under the uniform

monopoly price or 26.7% under 𝑝∗ (𝑏), the optimal group-based

price of Figure 2a. Compared to the uniform monopoly price which

obtains expected optimal revenue of 313.6 · 103, the group-based
segment scheme 𝑝∗ (𝐴) obtains expected revenue of 282.2 ·103, and
the personalized pricing scheme 𝑝∗ (𝑋 ) obtains expected revenue

of 318.8 · 103. In this setting, covariate-based personalized pricing

is strictly beneficial in terms of (mild) revenue benefits that are
also able to achieve greater market share for the minority group.

While the group-based segmentation results in a lower price for the

minority group, it is overall not incentive-compatible for a decision-

maker to use this segmentation because it attains less revenue than

even uniform monopoly pricing.

6.2 Credit Elasticities
[41] randomize prices for a microfinance lender for repeat bor-

rowers. An extensive literature on microfinance sought to assess

whether microcredit was able to provide longer term benefits in

improving outcomes for household. The rise of the sector led to

partially subsidized lenders as well as interest from the private sec-

tor. The question of the study was to leverage price randomization

in the microcredit setting and assess the effects of lower, or higher,

interest rates on revenue for the lender. Overalal, the findings sug-

gest lower rates could decrease profits by a small amount. But the

paper considers that at the domain level, since microfinance initia-

tives may have targeting preferences, e.g. for financial inclusion

for women or lower-income individuals, such potential mild profit

losses could be offset by expanded inclusion of these target groups

due to heterogeneity in take-up.

This setting could present an opportunity for personalized pric-

ing to differentially lower interest rates and expand revenue to

targeted groups. Adopting an “intention to treat” analysis, we use

the method of [39] to consider off-policy evaluation and optimiza-

tion of a continuous linear personalized pricing policy from the

randomized controlled trial data. The policy parametrization is

linear in the covariates, which include income, demographics, loca-

tion, and loan history information. The method of [39] considers

a kernel-based estimator of the counterfactual value of a pricing

policy. We use the Epanechnikov kernel and a bandwidth of 0.3; the
optimization is non-convex. Because of the fundamental problem

of causal inference, we lack the ability to directly assess outcomes.

Nonetheless, we provide some comparison of the estimated rev-

enue and market shares under the personalized policy. We consider

a 50/25/25 training/nuisance estimation/validation split, training a

random forest on the nuisance estimation split, and learning an op-

timal policy on the training data with a doubly robust estimator. We

use the random forest to estimate the revenue of the personalized

policy in comparison to constant interest rates on the validation

set.
4
Finally, to indicate the sampling variation in our comparison

induced by training the benchmark model, we repeat draws of

the nuisance/validation sets, and report the sampling variation in

revenue estimates via confidence bands of one standard error.

We include the results in Figure 2c and Figure 2d. Figure 2c plots

the random-forest imputed revenue of the personalized allocation

(indicated in black dashed, plotting one standard error), compar-

ing against the imputed revenue via the random forest model of

constant interest rates (on the x-axis), in blue. The personalized

allocation rule increases estimated revenue (as expected). We assess

some of the distributional characteristics of the resulting allocation.

In Figure 2d, we compare the access properties of the personal-

ized decision rules for subgroups of interest, namely female and

non-female borrowers and low-income and non-low-income bor-

rowers. The estimates of access in Figure 2d are based on a logistic

regression of demand, learned on the nuisance estimation dataset.

In horizontal dashed lines, we plot the access estimates for these

subgroups under the personalized allocation rule. Note the achiev-

able subgroup access levels correspond to intersections of vertical

lines with the demand curves. In comparison, the personalized

pricing allocation rule is able to increase access for female and

low-income borrowers, relative to the optimal constant interest

rate (around 7.2). The unconstrained optimal personalized price

however achieves lower takeup for non-low income borrowers (i.e.

it increased interest rates for them). Stronger distributional guaran-

tees may be possible by further constraining the price optimization

problem. Overall, the goal is to highlight that personalized pricing

can improve firm revenue, as well as increase access and improving

targeting abilities.

4
This is in general a biased “direct method”, and we take care to avoid extrapolation

from interest rates. However, for the sake of comparing against constant treatment

assignment, using the direct method reduces variance.
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Figure 2: Willingness to pay for elective vaccine (Figures 2a and 2b) and Microcredit (Figures 2c and 2d).
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Overview of the appendix.
• Appendix A provides a literature review of how considerations regarding price personalization have arisen in different problem

settings.

• Appendix B provides proofs of the analysis in Section 5.

• Appendix C provides further details on the empirics.

A LITERATURE REVIEW
A.1 Different problem settings (summary)

Lending. Discrimination in lending is an important problem subject to regulation by the CFPB. Not only do banks decide whether or not

to offer loans or extend credit (previously considered as classification problems), they also decide on the terms, i.e. interest rates, of the loan

or credit, using risk-based pricing. These rates have significant welfare implications for individuals if discrimination leads to differences in

rate terms. Standard discretionary pricing practices, where individual loan agents have some discretion to set rates above/below securitized

rates based on local operating costs and competitive factors, may lead to disparate impacts due to, e.g. differential consumer bargaining

leverage or discrimination.

There is extensive literature studying household finance, including credit constraints of subprime borrowers with heterogeneity. For

example, firms may find via price optimization that they are able to raise prices on subprime borrowers without affecting demand for

credit-constrained consumers.

Price optimization in the lending setting is primarily based on discretionary markups/discounts, e.g. negotiated on an individual basis

with consumers. There are subsets of loans that are securitized by the government, which are presumed to be actuarially fair prices. Price

dispersion beyond this can be explained a combination of individual discretionary pricing (negotiation) or market concentration (price

optimization). A common strategy in papers that study potential discriminatory pricing in lending (e.g. [9]) is to regress deviations from the

Fannie Mae-securitized rate schedule on controls (e.g. for location-varying costs of lending); the coefficient on race in such a regression

corresponds to unexplained disparate impact in pricing.

Insurance. Insurance is the one of the originating domains of risk-assessment. However; it has the least available data. Our analysis

correspondingly does not focus on or shed light on important questions in this area.

Consumer products. There are growing concerns regarding the use of price optimization for consumer goods. Many concerns in consumer

product pricing are complicated due to the difficulty of disambiguating consumer valuation based on “legitimate” aspects such as individual

preferences (which may be culturally conditioned; hence associated with categories) vs. aspects that may seem “illegitimate” or repugnant to

extract rent from consumers on the basis of. A different source of concern arises when universal provision of a good is expected.

However, studies show that consumers react strongly negatively to perceptions of price unfairness (perception is an important mediator,

because different formats for the same posted price tend to have different fairness perceptions). This consumer backlash may be so strong it

is posited as a reason that retailers do not wish to conduct extremely fine first-degree price discrimination. Therefore, we might be interested

in general notions of price equity.

Goods with public externalities. In this setting which arises in development, public, or health economics, a centralized decision-maker (DM)

has some utility or preference for individuals receiving the good in addition to individuals’ idiosyncratic distributions of willingness to pay.

Price optimization is beneficial because it can subsidize participation in the market and take-up of the good by pricing at willingness-to-pay

for individuals with high valuations to subsidize lower price offers to lower willingness-to-pay [16, 25, 38]. Cross-subsidy is particularly

beneficial when understanding willingness-to-pay is in part related to ability to pay, which is commonly discussed in development economics

with regards to credit-constrained consumers.

A.2 Implications of price optimization in lending
Lending and implications of regulation. In this setting, such as risk-based pricing in insurance and discretionary pricing in mortgage

lending, discretionary pricing is highly regulated and the leeway for discretionary pricing or “price optimization” (rent extraction from

consumers) is severely limited. Limited discretion is given to lending agents, for example to match competing offers or possibly (under

interpretations of fair lending law) to cover operating costs (for example in certain geographic regions), e.g. “justified business necessity”.

[9] study mortgage lending for loans bought by Fannie Mae, which are subject to price schedules based on creditworthiness, and find that

while financial tech companies that engage in algorithmic pricing reduce discrimination on LatinX and African-American borrowers by 40%,

nonetheless bias still persists (as measured by residual coefficients on race in a regression of interest rates on controls).

Nonetheless, concerns about actuarial risk may still arise when actuarial risk is estimated from covariates. [9] summarizes their interpre-

tation of discrimination law and its implications for the legitimacy of personalized pricing:

(a) Scoring or pricing loans explicitly on credit-risk macro-fundamental variables is legitimate; (b) Scoring or pricing on a proxy

variable that only correlates with race or ethnicity through hidden fundamental variables is legitimate; (c) Scoring or pricing

on a proxy variable that has significant residual correlation with race or ethnicity after orthogonalizing with respect to hidden

fundamental credit-risk variables is illegitimate.
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Distributional concerns of interest in insurance/lending and risk-based pricing. In a recent case “Association belge des Consommateurs

Test-Achats ASBL and Others v. Conseil des ministres" ([1]), the EU banned the use of sex for pricing in insurance policies. [5] points

out some aspects in which the redistributive transfers which result may be preferred to transfers implemented through the typical public

economics perspective of tax-and-transfer because the magnitude is pegged to the difference in marginal risk by group; and the transfer

does not distort labor incentives as do changes in tax schedules.

[9] points out that regulators may have distributional concerns about price discretion in lending that differ from other settings (such

as revenue management and pricing). In revenue management and pricing, and more generally settings with high fixed costs and lower

marginal costs, price inelastic customers such as business-class travelers may subsidize access to a service via fare or price discrimination. In

contrast, price-sensitive consumers in insurance and lending may be more fiscally savvy and/or “shop around” more for better terms; there

is some concern that underprivileged borrowers may also be less equipped to leverage competition as such. This points to the importance of

using non-ideal theory and domain-specific considerations in motivating considerations of fairness.

Underlying normative considerations barring risk classification based on protected attribute. [5] points out that normative grounds for

arguments against risk classification based on protected attribute include luck egalitarian arguments (not holding individuals responsible for

factors out of their control, which is difficult with risk to operationalize), as well as the ontological invalidity of social classifications for

absolute risk except insofar as social categories designate the effects of inequities in history. Additionally, the consequences of inequity

in accuracy of risk classification, arguments regarding causality (which however are more effectively levied along the lines of differential

accuracy due to the presence of unobserved confounders) and privacy.

Concerns about price optimization: rent extraction from behavioral bias. A key concern in household finance is in explaining empirical

puzzles that contradict predictions from conventional economic theory. To this end, behavioral household finance considers implications of

behavioral economics for explaining some of these puzzles.

However, the expansion of the consumer credit market in the 1970s and 1980s led to concerns regarding rising debt, and many puzzles

in household finance where empirical phenomena contradicted the assumptions of classical economic theory. [14] studies the “myth of

the rational borrower” in the context of the discussion about bankruptcy law. The central controversy was about whether or not the law

provides incentives to declare bankruptcy, or if increases in the number of bankruptcies are instead driven by circumstances typically

out of a borrower’s control such as income shocks. They argue that a key counter-argument is “the myth of the rational borrower”; that

behavioral biases from economic theory lead suboptimally rational borrowers to overborrow relative to their actual marginal returns to

credit. Whether or not consumers are behaviorally biased, or suboptimal in ways predicted by behavioral economics, is a research topic: [60]

counter-argues that empirical evidence is not so strong that deviations from predictions of economic theory are explained by behavioral

economics. Behavioral household finance remains an active area of study; although a meta-analysis on the evidence for the effectiveness of

financial education interventions suggests that they are overall ineffective [28]. We refer to [12] for a fuller discussion.

We argue that the main takeaways to guide our analysis are therefore:

• Conventional pricing theory and welfare analysis that assumes revealed purchasing behavior reflects valuation may be inappropriate

under strong evidence of behaviorally suboptimal consumers, and in particular concerns about credit- and liquidity-constrained

customers, especially poorer households.

• Price optimization based on behavioral considerations may be profit-maximizing, but value-based pricing in this setting may be suspect

(or may introduce distributional concerns opposite the slight favor in revenue management for price optimization). Competitive

considerations may support the utility of price optimization, but we will abstract away from most competitive considerations and

focus on implications for an idealized actuarially-fair pricing problem.

A.3 Perceptions of unfairness from consumers due to different prices (equal treatment)
It is unclear whether there is sufficient regulation to merit equal treatment as a normative rule for pricing, or to understand this squarely

within the sphere of discrimination law. Some consumer research such as [32] studies consumer perceptions of fairness. Since in fact

consumer reaction may differ to personalized pricing based on salience – e.g. showing prices vs. showing discounts – the inconsistency of

these reactions themselves suggests that intuitive perceptions of fairness in pricing do not reflect rational economic behavior; but rather that

behavioral considerations interact with the predictions of standard expected utility frameworks.

There are many high-profile instances where differential pricing appears exploitative but we would argue that what is doing the normative

work is more broadly related to concerns regarding perpetuating historical injustices or overt extraction of customer rent for reasons beyond

their agency and correlated with historical inequity. In that light, the normative force is really in the "leakage" of structural considerations

and the correlation between price optimization and these specific aspects. Conversely, it is difficult to reason abstractly about these settings

without further grounded context.

We posit some examples. Consider the razor tax. The razor tax is objectionable because it extracts customer welfare on the grounds of

gender roles for functionally the same product. At some level, our objection is far more difficult to levy on the level of homophily or taste
associated with “pinkness”, than it would be to levy on the objection that societal expectations regarding grooming have led to endogenizing

higher willingness to pay. Another example is higher prices for shipping/delivery to certain zip codes (or not providing service at all: Here,

there is some expectation of equitable service provision, or not reifying historical disadvantages due to location; even though antitrust
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provisions would allow charging different prices based on differential costs of doing business. Another important point contrasts price

optimization based on first party vs. third-party data. Here, there is a violation of privacy norms. Consumers may object to certain kinds of

data being used for price optimization vs. other kinds of data.

Disentangling aspects of valuations driven by the social constructions of race and gender, e.g. via mediation analysis or other counterfactual

notions, is likely a very difficult task to operationalize.

A.4 Personalized pricing and public provision
In this specialized setting, price optimization allows significant benefit for cross-subsidizing allocation of a good. Cross-subsidization is

particularly beneficial when a central decision-maker has a utility preference for more individuals obtaining the good vs. not; for example in

situations with positive externalities.

These pricing schemes are of particular relevance for provision of health interventions in development, where targeting can ensure

take-up of households of distributional interest [38]. A natural question is, why not provide the good for free? The answer is due to a

combination of scarce resources and efficacy that requires take-up/compliance. In these scarce-resource settings in health and development,

if free provision to all were possible and feasible, that would be optimal. However, when resource constraints are binding, and the effects of

health interventions are also realized only by “compliance” of the consumer in using it (preventive healthcare, bednets, contraceptives), the

DM prefers subsidies to increase access to those who would use the intervention if offered. So there are additional targeting concerns that

prefer allocation to individuals who would take-up and use the health intervention; that is, the DM is interested in balancing over-provision

and over-exclusion [17]. To this end, price discrimination is considered a tool to screen-in individuals who would use the good, rather than

simply allocating for free.

This setting is common in development and public economics. [38] conceive a pricing mechanism to price individuals into a market

for mechanical desludging in Kenya; a health intervention that has positive externalities but which may be out of reach for the poorest

households. Estimating a demand and reservation price model, they learn personalized prices, estimate the personalized price solution via a

multinomial logistic model, and run a RCT to evaluate out-of-sample the effects of personalized pricing on take-up as well as overall health

outcomes.

A.5 Research questioning the ontological stability of valuations
Ontological stability of valuations. While a typical economic rejoinder to these concerns highlights that first-degree price discrimination

achieves a Pareto-efficient allocation of goods to individuals at their valuation and universal access, we would note the actual distributional

implications of personalized pricing depend on how consumer behavior does or does not reflect an implicitly assumed ontologically stable

and valid idiosyncratic “valuation”.

While there is strong mechanism design theory for soliciting individual valuations in, for example, auctions, we argue that many of the

domains where consumer-facing personalized pricing has faced pushback are different from the restricted domains where auctions are

deployed in practice. We propose a taxonomy of types of failures of the “ideal theory” of willingness to pay which raise concerns for fairness.

These settings are not merely pathological or point failures of economic theory, but rather exactly how structural inequities manifest in

price optimization settings. A first concern is behavioral biases (and price optimization which extracts rent from them). For example, credit

card contracts with promotional offers but high terms afterwards. This motivates the use of mandatory disclosure notices in that setting. A

second concern is that of differential endowments which surface via different incomes or credit constraints, budget constraints, and liquidity

constraints. This is a concern when individuals’ reflected purchase behavior is not a realization of their ideal valuation or willingness to

pay, of the item, but rather of their ability to pay. [47] discusses a similar argument against Kaldor-Hicks efficiency arguments for welfare

analysis in empirical legal studies. In settings with credit constraints, individuals are credit or liquidity-constrained, and therefore borrow at

high (perhaps even irrationally high) interest rates because of lack of other options. [3]

309



Fairness, Welfare, and Equity in Personalized Pricing FAccT ’21, March 3–10, 2021, Virtual Event, Canada

B PROOFS
B.1 Proofs for price parity

Proof of theorem 1 . Optimizing over attribute-based personalized prices 𝑝∗ (𝑥):
We consider the Lagrangian dual of eq. (2). We then applying Sion’s minimax theorem to swap the order of min and max operations,

which is valid under compactness [15]:

min
𝑝 (𝑥,𝑎)

max
𝜆
E [−𝑝𝐷 (𝑝) + 𝜆(𝑝𝜉 (𝐴) − Γ)] = max

𝜆
min
𝑝 (𝑥)
E [−𝑝𝐷 (𝑝) + 𝜆(𝑝𝜉 (𝐴) − Γ)] (7)

For a linear demand model, observing that when 𝑝∗ (𝑥, 𝑎) is unrestricted, we let 𝑝∗ (𝑥, 𝑎; 𝜆) be the optimal solution parameterized by 𝜆:

𝑝∗ (𝑥, 𝑎; 𝜆) ∈ argmaxE[−𝑝𝐷 (𝑝) + 𝜆(𝑝𝜉 (𝐴) − Γ) | 𝑋 = 𝑥,𝐴 = 𝑎] . (8)

The optimal price with the 𝜆 penalty is computable in closed form:

𝑝∗ (𝑥, 𝑎; 𝜆) = −𝐷 (𝑥, 𝑎) + 𝜆𝜉 (𝑎)
2𝛽

.

Plugging in this solution:

max
𝜆

𝐿(𝜆, 𝑝∗ (𝑋,𝐴; 𝜆)) = max
𝜆
E

[
−𝑝∗ (𝑋,𝐴; 𝜆)𝐷 (𝑝∗ (𝑋,𝐴; 𝜆)) + 𝜆(𝑝∗ (𝑋,𝐴; 𝜆)𝜉 − Γ)

]
We maximize the above over 𝜆. Taking derivatives with respect to 𝜆, we obtain the first order necessary condition for optimality, letting

𝑝∗ (𝜆) = 𝑝∗ (𝑋,𝐴; 𝜆), 𝐷 = 𝐷 (𝑋,𝐴) for brevity is:

0 = E

[
−𝑝∗ (𝜆) 𝑑

𝑑𝜆
𝐷 (𝑝∗ (𝜆)) + −( 𝑑

𝑑𝜆
𝑝∗ (𝜆))𝐷 (𝑝∗ (𝜆)) + (𝑝∗ (𝜆)𝜉 − Γ) + 𝜆

𝜉2

2𝛽

]
= E

[
−

(
−𝐷 + 𝜆𝜉

2𝛽

)
𝜉

2
− 𝜉

2𝛽
(𝐷 + 1

2
(−𝐷 + 𝜆𝜉)) + (𝑝∗ (𝜆)𝜉 − Γ) + 𝜆

𝜉2

2𝛽

]
= E

[
𝐷𝜉

4𝛽
− 𝐷𝜉

4𝛽
− 𝜆

𝜉2

2𝛽
+ (𝑝∗ (𝜆)𝜉 − Γ) + 𝜆

𝜉2

2𝛽

]
(9)

= E

[(
−𝐷 + 𝜆𝜉

2𝛽
𝜉 − Γ

)]
(10)

From eq. (11) we conclude

𝜆∗ =
E[𝐷 (𝑋,𝐴)𝜉 (𝐴) + 2𝛽Γ]

E[𝜉2 (𝐴)]
.

Note that further taking the derivative of eq. 11 with respect to 𝜆 verifies 𝐿(𝜆, 𝑝∗ (𝜆)) is concave in 𝜆,
𝑑2𝐿 (𝜆,𝑝∗ (𝜆))

𝑑𝜆2 = E[ 𝜉
2

2𝛽
] < 0 under Asn. 3.

Therefore the first-order necessary condition is also sufficient.

Optimizing over attribute-blind personalized prices 𝑝∗ (𝑥):
The counterpart of eq. (8) is, scaling by a constant 𝑓 (𝑥), the covariate density of 𝑥 , to simplify

Δ𝑓 (𝑥 | 𝑎) ··= P(𝑋 = 𝑥 | 𝐴 = 𝑎) − P(𝑋 = 𝑥 | 𝐴 = 𝑏) = E[𝜉 (𝐴) | 𝑋 = 𝑥] 𝑓 (𝑥) = (𝜌−1𝑎 P(𝐴 = 𝑎 | 𝑋 = 𝑥) − 𝜌−1
𝑏
P(𝐴 = 𝑏 | 𝑋 = 𝑥))𝑔(𝑥)

𝑝∗ (𝑥 ; 𝜆) ∈ argmin−𝑝𝐷 (𝑝 | 𝑥) + 𝜆(𝑝E[𝜉 (𝐴) | 𝑋 = 𝑥] − Γ)
𝑝∗ (𝑥 ; 𝜆) ∈ argmin−𝑝𝐷 (𝑝 | 𝑥) 𝑓 (𝑥) + 𝜆(𝑝E[𝜉 (𝐴) | 𝑋 = 𝑥] − Γ) 𝑓 (𝑥)

⇐⇒ 𝑝∗ (𝑥 ; 𝜆) ∈ argmin−𝑝𝐷 (𝑝 | 𝑥) 𝑓 (𝑥) + 𝜆𝑝Δ𝑓 (𝑥 | 𝑎)

Note 𝐷 (𝑝 | 𝑥) = 𝐷 − 𝛼 + E[𝛽𝐴 | 𝑋 = 𝑥] + E[𝑔(𝑥,𝐴) | 𝑥].
The optimal 𝜆− parametrized price is

𝑝∗ (𝑥 ; 𝜆) = −𝐷 (𝑥) + 𝜆E[𝜉 (𝐴) | 𝑋 = 𝑥]
2E[𝛽𝐴 | 𝑋 = 𝑥] =

−𝐷 (𝑥) + 𝜆
Δ𝑓 (𝑥 |𝑎)
𝑓 (𝑥)

2E[𝛽𝐴 | 𝑋 = 𝑥] .

We correspondingly solve (analogous to the previous):

max
𝜆

𝐿(𝜆, 𝑝∗ (𝑋 ; 𝜆)) = max
𝜆
E

[
−𝑝∗ (𝑋 ; 𝜆)𝐷 (𝑝∗ (𝑋 ; 𝜆)) + 𝜆(𝑝∗ (𝑋 ; 𝜆)𝜉 − Γ)

]
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with the corresponding first-order conditions

0 = E

[
−𝑝∗ (𝜆) 𝑑

𝑑𝜆
𝐷 (𝑝∗ (𝜆)) + −( 𝑑

𝑑𝜆
𝑝∗ (𝜆))𝐷 (𝑝∗ (𝜆)) + (𝑝∗ (𝜆)𝜉 − Γ) + 𝜆

𝜉2

2E[𝛽𝐴 | 𝑋 = 𝑥]

]
= E

[(
−𝐷 + 𝜆E[𝜉 (𝐴) | 𝑋 = 𝑥]

2E[𝛽𝐴 | 𝑋 = 𝑥] E[𝜉 (𝐴) | 𝑋 = 𝑥] − Γ

)]
(11)

Analogously we conclude

𝜆∗ =
E[𝐷 (𝑋 )E[𝜉 (𝐴) | 𝑋 ] + 2E[𝛽𝐴 | 𝑋 ]Γ]

E[E[𝜉 (𝐴) | 𝑋 ]2]
.

□

Proof of Proposition 1. We would like to derive conditions that might inform of the sign of 𝑝∗ (𝑥) − 𝑝∗ (𝑥, 𝑎).
There are a few extreme cases which might be informative (of one regime or another).

(1) 𝛽𝑎 = 𝛽𝑏 , 𝐷 (𝑥, 𝑎) = 𝐷 (𝑥, 𝑏)
Disparities are solely due to covariate distributions across groups.

(2) 𝛽𝑎 > 𝛽𝑏 , 𝐷 (𝑥, 𝑎) = 𝐷 (𝑥, 𝑏) = 𝐷 (𝑥)
Disparities are solely due to group-level differences in price elasticity or differences in covariate distribution across groups.

We only included conclusions for case 1 in the main text. In this appendix we also provide a sufficient condition for case 2 (though this is less

interpretable; hence less useful).

Under case 1,

𝑝∗ (𝑥, 𝑎) − 𝑝∗ (𝑥) = −𝐷 (𝑥) + 𝜆∗ (𝑥, 𝑎)𝜉 (𝑎)
𝛽

− −𝐷 (𝑥) + 𝜆∗ (𝑎)E[𝜉 (𝐴) | 𝑋 = 𝑥]
𝛽

=
𝜉 (𝑎)𝜆∗ (𝑥, 𝑎) − E[𝜉 (𝐴) | 𝑋 = 𝑥]𝜆∗ (𝑥))

𝛽

=
𝜉 (𝑎)𝜆∗ (𝑥, 𝑎) − 𝜉 (𝑎)𝜆∗ (𝑥) + 𝜉 (𝑎)𝜆∗ (𝑥) − E[𝜉 (𝐴) | 𝑋 = 𝑥]𝜆∗ (𝑥))

𝛽

=
1

𝛽

(
𝜉 (𝑎) (𝜆∗ (𝑥, 𝑎) − 𝜆∗ (𝑥)) + 𝜆∗ (𝑥) (𝜉 (𝑎) − E[𝜉 (𝐴) | 𝑋 = 𝑥])

)
(12)

We conclude the signs of the following terms:

(1) (𝜆∗ (𝑥, 𝑎) − 𝜆∗ (𝑥)) ≤ 0,
by assumption of linearity of demand, Jensen’s inequality, since 𝑓 (𝑥) = 𝑥2 is a convex function, and by iterated expectation:

E[E[𝜉 (𝐴) | 𝑋 ]2] ≤ E[E[𝜉 (𝐴)2 | 𝑋 ]] = E[𝜉 (𝐴)2] (13)

Note that 𝜆∗ (𝑥, 𝑎) ≤ 𝜆∗ (𝑥) ⇐⇒ E[E[𝜉 (𝐴) | 𝑋 ]2] ≤ E[𝜉 (𝐴)2].
(2) 𝜆∗ (𝑥) < 0, under assumption for theorem 1 that group 𝑎 faces the higher unrestricted personalized prices.

(3) (𝜉 (𝑎) − E[𝜉 (𝐴) | 𝑋 = 𝑥]) > 0 and (𝜉 (𝑏) − E[𝜉 (𝐴) | 𝑋 = 𝑥]) < 0.
This may be verified by observing

1
𝜌𝑎

>
P(𝐴=𝑎 |𝑋=𝑥)

𝜌𝑎
− P(𝐴=𝑏 |𝑋=𝑥)

𝜌𝑏
⇐⇒ 1 − P(𝐴 = 𝑎 | 𝑋 = 𝑥) > −P(𝐴 = 𝑏 | 𝑋 = 𝑥) 𝜌𝑎𝜌𝑏 ⇐⇒ 𝜌𝑏 > −𝜌𝑎,

and concluding based on nonnegativity of 𝜌𝑎, 𝜌𝑏 .

Therefore, identifying signs of terms in eq. (12):

𝑝∗ (𝑥, 𝑎) − 𝑝∗ (𝑥) = 1

𝛽︸︷︷︸
<0

©­­­«𝜉 (𝑎) (𝜆
∗ (𝑥, 𝑎) − 𝜆∗ (𝑥))︸                       ︷︷                       ︸

≤0

+ 𝜆∗ (𝑥)︸︷︷︸
≤0

(𝜉 (𝑎) − E[𝜉 (𝐴) | 𝑋 = 𝑥])︸                           ︷︷                           ︸
≥0

ª®®®¬
𝑝∗ (𝑥, 𝑏) − 𝑝∗ (𝑥) = 1

𝛽︸︷︷︸
<0

©­­­« 𝜉 (𝑏)︸︷︷︸
<0

(𝜆∗ (𝑥, 𝑎) − 𝜆∗ (𝑥))︸                 ︷︷                 ︸
≤0

+ 𝜆∗ (𝑥)︸︷︷︸
≤0

(𝜉 (𝑏) − E[𝜉 (𝐴) | 𝑋 = 𝑥])︸                           ︷︷                           ︸
≤0

ª®®®¬ (14)
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The claim for 𝑝∗ (𝑥, 𝑎) − 𝑝∗ (𝑥) < 0 follows by simplifying and factoring out 𝜌𝑎 and 𝜆∗ (𝑥)/𝛽𝑎 > 0:

𝑝∗ (𝑥, 𝑎) − 𝑝∗ (𝑥) < 0 ⇐⇒ 1

𝛽

(
𝜌−1𝑎 (𝜆∗ (𝑥, 𝑎) − 𝜆∗ (𝑥)) + 𝜆∗ (𝑥) (𝜌−1𝑎 (1 − (P(𝐴 = 𝑎 | 𝑋 = 𝑥) − 𝜌𝑎/𝜌𝑏P(𝐴 = 𝑏 | 𝑋 = 𝑥))

)
< 0

⇐⇒
(
E[E[𝜉 (𝐴) |𝑋=𝑥 ]2 ]
E[𝜉 (𝐴)2 ] − 1

)
+ ((1 − (P(𝐴 = 𝑎 | 𝑋 = 𝑥) − 𝜌𝑎/𝜌𝑏P(𝐴 = 𝑏 | 𝑋 = 𝑥)) < 0

⇐⇒ E[E[𝜉 (𝐴) |𝑋=𝑥 ]2 ]
E[𝜉 (𝐴)2 ] < (P(𝐴 = 𝑎 | 𝑋 = 𝑥) − 𝜌𝑎/𝜌𝑏P(𝐴 = 𝑏 | 𝑋 = 𝑥))

The claim follows for 𝑝∗ (𝑥, 𝑏) − 𝑝∗ (𝑥) directly from eq. (14).

To interpret this condition, denote Δ𝑓 (𝑥 ;𝑎, 𝑏) as the covariate-driven group divergence:

Δ𝑓 (𝑥 ;𝑎, 𝑏) ··= P(𝐴 = 𝑎 | 𝑋 = 𝑥) − 𝜌𝑎

𝜌𝑏
P(𝐴 = 𝑏 | 𝑋 = 𝑥) = E[𝜉 (𝐴) | 𝑋 = 𝑥]

𝜌−1𝑎
.

Observe that

Δ𝑓 (𝑥 ;𝑎, 𝑏) < 0 ⇐⇒ P(𝐴 = 𝑎 | 𝑋 = 𝑥)
P(𝐴 = 𝑏 | 𝑋 = 𝑥) <

𝜌𝑎

𝜌𝑏
⇐⇒ P(𝑋 = 𝑥 | 𝐴 = 𝑎)

P(𝑋 = 𝑥 | 𝐴 = 𝑏
< 1,

i.e. the sign of Δ𝑓 (𝑥 ;𝑎, 𝑏) depends on the covariate likelihood under the two classes (and the magnitude depends on the magnitude of this

covariate-based divergence relative to the covariate-uninformed ratio, 𝜌𝑎/𝜌𝑏 ).

Under case 2:
Let Δ𝛽𝑎 (𝑥) = 𝛽𝑎

E[𝛽𝐴 |𝑋=𝑥 ] and recall that
𝜆∗𝑥𝑎
𝜆∗𝑥

=
E[E[𝜉 (𝐴) |𝑋=𝑥 ]2 ]
E[𝜉 (𝐴)2 ] ≤ 0. Adding and subtracting

−𝐷 (𝑥)+𝜉 (𝑎)𝜆∗ (𝑥)
𝛽𝑎

,

𝑝∗ (𝑥, 𝑎) − 𝑝∗ (𝑥) > 0

⇐⇒
(
−𝐷 (𝑥) + 𝜆∗𝑥𝑎𝜉 (𝑎)

𝛽𝑎
− −𝐷 (𝑥) + 𝜉 (𝑎)𝜆∗𝑥

𝛽𝑎

)
+

(
−𝐷 (𝑥) + 𝜉 (𝑎)𝜆∗𝑥

𝛽𝑎
− −𝐷 (𝑥) + E[𝜉 (𝐴) | 𝑋 = 𝑥]𝜆∗𝑥

E[𝛽𝐴 | 𝑋 = 𝑥]

)
> 0

⇐⇒ 𝜉 (𝑎)
𝛽𝑎

(𝜆∗ (𝑥, 𝑎) − 𝜆∗ (𝑥)) + −𝐷 (𝑥)
(
1

𝛽𝑎
− 1

E[𝛽𝐴 | 𝑋 = 𝑥]

)
+

(
𝜉 (𝑎)𝜆∗𝑥𝑎

𝛽𝑎
− E[𝜉 (𝐴) | 𝑋 = 𝑥]𝜆∗𝑥
E[𝛽𝐴 | 𝑋 = 𝑥]

)
> 0

⇐⇒ 𝜉 (𝑎)
(
E[E[𝜉 (𝐴) | 𝑋 = 𝑥]2]

E[𝜉 (𝐴)2]
− 1

)
︸                               ︷︷                               ︸

<0 by 𝑒𝑞. (13)

+ − 𝐷 (𝑥)
𝜆∗𝑥

(1 − Δ𝛽𝑎 (𝑥)) +
(
𝜉 (𝑎) E[E[𝜉 (𝐴) | 𝑋 = 𝑥]2]

E[𝜉 (𝐴)2]
− E[𝜉 (𝐴) | 𝑋 = 𝑥]Δ𝛽𝑎 (𝑥)

)
> 0

where in the last line, we factor out 𝜆
∗ (𝑥)/𝛽𝑎 > 0. Correspondingly for 𝐴 = 𝑎, 𝑏 respectively:

𝑝∗ (𝑥, 𝑎) − 𝑝∗ (𝑥) > 0 ⇐⇒ 𝜌−1𝑎

(
𝜆∗𝑥𝑎
𝜆∗𝑥

− 1

)
︸            ︷︷            ︸

<0

+ − 𝐷 (𝑥)
𝜆∗𝑥

(1 − Δ𝛽𝑎 (𝑥)) + 𝜌−1𝑎

(
𝜆∗𝑥𝑎
𝜆∗𝑥

− Δ𝑓 (𝑥 ;𝑎, 𝑏) · Δ𝛽𝑎 (𝑥)
)
> 0

𝑝∗ (𝑥, 𝑏) − 𝑝∗ (𝑥) > 0 ⇐⇒ −𝜌−1
𝑏

(
𝜆∗𝑥𝑎
𝜆∗𝑥

− 1

)
︸               ︷︷               ︸

>0

+ − 𝐷 (𝑥)
𝜆∗𝑥

(1 − Δ𝛽𝑏 (𝑥)) + 𝜌−1
𝑏

(
−1 · 𝜆

∗
𝑥𝑎

𝜆∗𝑥
− 𝜌𝑏E[𝜉 (𝐴) | 𝑋 = 𝑥]Δ𝛽𝑏 (𝑥)

)
> 0

Unlike the previous case, this case does not admit determinate conclusions on signs.

We may simplify the condition to obtain that if −Δ𝑓 (𝑥 ;𝑎, 𝑏)𝜆∗𝑥 + 𝐷 (𝑥)𝜌𝑎 > 0,

𝑝∗ (𝑥, 𝑎) − 𝑝∗ (𝑥) > 0 ⇐⇒ Δ𝛽𝑎 (𝑥) < 𝜆∗𝑥−2𝜆∗𝑥𝑎+𝐷 (𝑥)𝜌𝑎
−Δ𝑓 (𝑥 ;𝑎,𝑏)𝜆∗𝑥+𝐷 (𝑥)𝜌𝑎

,

with the inequality on Δ𝛽𝑎 (𝑥) holding in the opposite direction if instead −Δ𝑓 (𝑥 ;𝑎, 𝑏)𝜆∗𝑥 + 𝐷 (𝑥)𝜌𝑎 < 0. □

B.2 Model error fairness
Proof of proposition 2 . We omit dependence on fixed 𝑥 and denote 𝐷 (𝑝) = 𝐷 (𝑝 | 𝑥). Gradient ∇ is with respect to 𝑝 . We assume price

elasticity of demand is nonpositive, ∇𝑝𝜂 < 0. We specialize to a revenue setting by observing that ∇ℎ = 𝜂 (𝑝) + ∇𝜂 · 𝑝 , so that 𝑝∗, 𝑝∗ satisfy
the first order optimality conditions:

𝑝∗ = − 𝐷 (𝑝∗)
∇𝐷 (𝑝∗)

, 𝑝∗ = − 𝜂 (𝑝∗)
∇𝜂 (𝑝∗) .

Taylor expanding 𝐷 (𝑝∗) around 𝑝∗:

𝑝∗ − 𝑝∗ = − 𝐷 (𝑝∗)
∇𝐷 (𝑝∗)

+ 𝐷 (𝑝∗)
∇𝐷 (𝑝∗) =

𝐷 (𝑝∗) + ∇𝐷 (𝑝∗) (𝑝∗ − 𝑝∗)
∇𝐷 (𝑝∗)

+ 𝐷 (𝑝∗)
∇𝐷 (𝑝∗)
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so that

(𝑝∗ − 𝑝∗)
(
1 − ∇𝐷 (𝑝∗)

∇𝐷 (𝑝∗)

)
= − 𝐷 (𝑝∗)

∇𝐷 (𝑝∗)
+ 𝐷 (𝑝∗)
∇𝐷 (𝑝∗)

∇𝐷 (𝑝∗)
∇𝐷 (𝑝∗) + 𝑜 ((𝑝

∗ − 𝑝∗)2)

= − 𝐷 (𝑝∗)
∇𝐷 (𝑝∗)

+ 𝐷 (𝑝∗)
∇𝐷 (𝑝∗)

(
1 + ∇𝐷 (𝑝∗) − ∇𝐷 (𝑝∗)

∇𝐷 (𝑝∗)

)
+ 𝑜 ((𝑝∗ − 𝑝∗)2)

=
𝐷 (𝑝∗) − 𝐷 (𝑝∗)

∇𝐷 (𝑝∗)
+ 𝐷 (𝑝∗)
∇𝐷 (𝑝∗)

(
∇𝐷 (𝑝∗) − ∇𝐷 (𝑝∗)

∇𝐷 (𝑝∗)

)
+ 𝑜 ((𝑝∗ − 𝑝∗)2)

Therefore,

(𝑝∗ − 𝑝∗) =
(

∇𝐷 (𝑝∗)
∇𝐷 (𝑝∗) − ∇𝐷 (𝑝∗)

) (
𝐷 (𝑝∗) − 𝐷 (𝑝∗)

∇𝐷 (𝑝∗)
+ 𝐷 (𝑝∗)
∇𝐷 (𝑝∗)

(
∇𝐷 (𝑝∗) − ∇𝐷 (𝑝∗)

∇𝐷 (𝑝∗)

))
+ 𝑜 ((𝑝∗ − 𝑝∗)2)

= (∇𝐷 (𝑝∗) − ∇𝐷 (𝑝∗))−1
(
𝐷 (𝑝∗) − 𝐷 (𝑝∗) + 𝐷 (𝑝∗)

∇𝐷 (𝑝∗)

(
∇𝐷 (𝑝∗) − ∇𝐷 (𝑝∗)

))
+ 𝑜 ((𝑝∗ − 𝑝∗)2)

1
= (∇𝐷 (𝑝∗) − ∇𝐷 (𝑝∗))−1

(
𝐷 (𝑝∗) − 𝐷 (𝑝∗) + 𝐷 (𝑝∗)

∇𝐷 (𝑝∗)

(
∇𝐷 (𝑝∗) − ∇𝐷 (𝑝∗) + ∇𝐷 (𝑝∗) − ∇𝐷 (𝑝∗)

))
..

=

(
𝐷 (𝑝∗) − 𝐷 (𝑝∗)

∇𝐷 (𝑝∗) − ∇𝐷 (𝑝∗)
+ 𝑝∗

(
1 + ∇𝐷 (𝑝∗) − ∇𝐷 (𝑝∗)

∇𝐷 (𝑝∗) − ∇𝐷 (𝑝∗)

))
+ 𝑜 ((𝑝∗ − 𝑝∗)2)

where in 1 we expand

(
∇𝐷 (𝑝∗) − ∇𝐷 (𝑝∗)

)
; then simplify. □

B.3 Market share
The main tool for analyzing local sensitivities of the optimal prices is an implicit function theorem to differentiate the optimal solution with

respect to the parameter. We state it for completeness.

Theorem 3 (Dini Classical Implicit Function Theorem (Thm. 1B.1 of [23]). Consider a function 𝑓 : R𝑑 ×R𝑛 ↦→ R𝑛 with values 𝑓 (𝜆, 𝑝)
with 𝜆 the parameter and 𝑝 the variable to solve for. The equation 𝑓 (𝜆, 𝑝) is associated with the solution mapping

𝑆 : 𝜆 ↦→ {𝑝 ∈ R𝑛 | 𝑓 (𝜆, 𝑝) = 0}, for 𝜆 ∈ R𝑑

Let 𝑓 be continuously differentiable in a neighborhood of (𝜆, 𝑝) such that 𝑓 (𝜆, 𝑝) = 0, and let the partial Jacobian of 𝑓 with respect to 𝑝 at
(𝜆, 𝑝), namely ∇𝑥 𝑓 (𝜆, 𝑝).

Then the solution mapping S has a single valued localization s around 𝜆 for 𝑝 which is continuously differentiable in a neighborhood 𝑄 of 𝑝
with Jacobian satisfying

∇𝑠 (𝜆) = −∇𝑝 𝑓 (𝜆, 𝑠 (𝜆))−1∇𝜆 𝑓 (𝜆, 𝑠 (𝜆)) for every 𝜆 ∈ 𝑄

Using the implicit function theorem, we can characterize the sensitivities of solutions under attribute-blind vs. attribute-based, and group

market share vs. population market share penalties. We restate an expanded versio of Lemma 1.

Lemma 1[Optimality conditions for different penalties ]

The sensitivities of price with respect to 𝜆,
𝜕𝑝∗ (𝑥)
𝜕𝜆

.

(1) 𝑝∗ (𝑥) with population market share penalty satisfies
1

𝑝∗ (𝑥)+𝜆 + 𝐷′ (𝑝∗ (𝑥) |𝑥)
𝐷 (𝑝∗ (𝑥) |𝑥) = 0, ∀𝑥 so that

∇𝜆𝑝
∗ (𝑥 ; 0) = 𝑅′′(𝑝∗ (𝑥) | 𝑥))−1

𝑝∗ (𝑥)2
.

(2) 𝑝∗ (𝑥, 𝑎) with population market share satisfies
1

𝑝∗ (𝑥,𝑎)+𝜆 + 𝐷′ (𝑝∗ (𝑥,𝑎) |𝑥,𝑎)
𝐷 (𝑝∗ (𝑥,𝑎) |𝑥,𝑎) = 0, ∀𝑥, 𝑎 so that

∇𝜆𝑝
∗ (𝑥, 𝑎; 0) = 𝑅′′(𝑝∗ (𝑥, 𝑎) | 𝑥, 𝑎))−1

𝑝∗ (𝑥, 𝑎)2
.

(3) 𝑝∗ (𝑥, 𝑎) with group-level market share
1

𝑝∗ (𝑥,𝑎)+𝜆𝑎/𝜌𝑎 + 𝐷′ (𝑝∗ (𝑥,𝑎) |𝑥,𝑎)
𝐷 (𝑝∗ (𝑥,𝑎) |𝑥,𝑎) = 0 so that

∇𝜆𝑝
∗ (𝑥, 𝑎; 0) = 1

𝜌𝑎

𝑅′′(𝑝∗ (𝑥, 𝑎) | 𝑥, 𝑎))−1

𝑝∗ (𝑥, 𝑎)2
.
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Proof of Lemma 1. (1) 𝑝∗ (𝑥, 𝑎) with population market share

𝑝∗ (𝑥, 𝑎) ∈ argmaxE[𝑝𝐷 (𝑝)] + 𝜆E[𝐷 (𝑝)]
⇐⇒ 𝑝∗ (𝑥, 𝑎) ∈ argmax log((𝑝 + 𝜆)𝐷 (𝑝 | 𝑥, 𝑎))

Therefore 𝑝∗ (𝑥, 𝑎) satisfies the following:
1

𝑝∗ (𝑥, 𝑎) + 𝜆
+ 𝐷 ′(𝑝∗ (𝑥, 𝑎) | 𝑥, 𝑎)

𝐷 (𝑝∗ (𝑥, 𝑎) | 𝑥, 𝑎) = 0, ∀𝑥, 𝑎

The expression for ∇𝜆𝑝
∗ (𝑥) (0) follows by applying the Implicit function theorem on the optimality condition.

(2) 𝑝∗ (𝑥) with population market share

𝑝∗ (𝑥) ∈ argmaxE[𝑝𝐷 (𝑝)] + 𝜆E[𝐷 (𝑝)]
⇐⇒ 𝑝∗ (𝑥) ∈ argmaxE[E[(𝑝 + 𝜆)𝐷 (𝑝) | 𝑋 ]],∀𝑥
⇐⇒ 𝑝∗ (𝑥) ∈ argmax(𝑝 + 𝜆)𝐷 (𝑝 | 𝑥),∀𝑥
⇐⇒ 𝑝∗ (𝑥) ∈ argmax log((𝑝 + 𝜆)𝐷 (𝑝 | 𝑥)),∀𝑥

Therefore 𝑝∗ (𝑥) satisfies the following:
1

𝑝∗ (𝑥) + 𝜆
+ 𝐷 ′(𝑝∗ (𝑥) | 𝑥)

𝐷 (𝑝∗ (𝑥) | 𝑥) = 0, ∀𝑥

(3) 𝑝∗ (𝑥, 𝑎) with group-level market share

⇐⇒ 𝑝∗ (𝑥, 𝑎) ∈ argmaxE[(𝑝 + 𝜆𝑎/𝜌𝑎)𝐷 (𝑝) | 𝑋 = 𝑥,𝐴 = 𝑎]
⇐⇒ 𝑝∗ (𝑥, 𝑎) ∈ argmax(𝑝 + 𝜆𝑎/𝜌𝑎)𝐷 (𝑝 | 𝑥, 𝑎)
⇐⇒ 𝑝∗ (𝑥, 𝑎) ∈ argmax log((𝑝 + 𝜆𝑎/𝜌𝑎)𝐷 (𝑝 | 𝑥, 𝑎))

Therefore 𝑝∗ (𝑥, 𝑎; 𝜆) is such that

1

𝑝 + 𝜆𝑎/𝜌𝑎
+ 𝐷 ′(𝑝 | 𝑥, 𝑎)

𝐷 (𝑝 | 𝑥, 𝑎) = 0

□

B.4 Allocative efficiency: Concordance
Proof of Theorem 2. Let I{𝐴 = 𝑎} denote index sets for data points within group 𝑎, etc.

P(𝐷 (𝑝𝑖 ) < 𝐷 (𝑝 𝑗 ) | 𝑃𝑎 < 𝑃𝑏 ) =
1

|{(𝑖, 𝑗) : 𝑝𝑖 < 𝑝 𝑗 }|
1

𝑛2

∑
𝑖∈I{𝐴=𝑎}

∑
𝑗 ∈I{𝐴=𝑏 }

I[𝐷 (𝑝𝑖 ) = 0, 𝐷 (𝑝 𝑗 ) = 1, 𝑝𝑖 < 𝑝 𝑗 ]

=
1

|{(𝑖, 𝑗) : 𝑝𝑖 < 𝑝 𝑗 }|
1

𝑛2

∑
𝑖∈I{𝐴=𝑎}

∑
𝑗 ∈I{𝐴=𝑏 }

I[𝑣𝑖 < 𝑝𝑖 < 𝑝 𝑗 < 𝑣 𝑗 ]

≤ 1

|{(𝑖, 𝑗) : 𝑝𝑖 < 𝑝 𝑗 }|
1

𝑛2

∑
𝑖∈I{𝐴=𝑎}

∑
𝑗 ∈I{𝐴=𝑏 }

I[{𝑣𝑖 < 𝑣 𝑗 } ∩ {𝑝𝑖 < 𝑝 𝑗 }]

= P(𝑉𝑎 > 𝑉𝑏 | 𝑃𝑎 < 𝑃𝑏 )
where the first equality holds because under Asn. 1 (a.s. monotonicity), the following events are a.s. equivalent:

{𝑝𝑖 < 𝑝 𝑗 , 𝐷 (𝑝𝑖 ) = 0, 𝐷 (𝑝 𝑗 ) = 1} ⇐⇒ 𝑣 𝑗 > 𝑣𝑖 .

The second inequality holds because {𝑣𝑖 < 𝑝𝑖 < 𝑝 𝑗 < 𝑣 𝑗 } ⊂ {{𝑣𝑖 < 𝑣 𝑗 } ∩ {𝑝𝑖 < 𝑝 𝑗 }}.
□

C DATASET DETAILS
Details about the study [53]. We omit concerns about non-response. The survey was distributed online in 2013. 𝑁 = 1116. There are

28 data columns with information including categorical age values, gender, geographic factors and risk factors, and information about

knowledge and trust about vaccines.
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