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ABSTRACT

With continually-increased computer power, molecular mechanics force field-based approaches,
such as the endpoint methods of MM-PBSA and MM-GBSA have been routinely applied in both
drug lead identification and optimization. However, MM-PB/GBSA method is not accurate as the
pathway-based alchemical free energy methods, such as thermodynamic integration (TI) or free
energy perturbation (FEP). Although the pathway-based methods are more rigorous in theory,
they suffer from slow convergence and computational cost. Moreover, choosing adequate
perturbation routes is also crucial for the pathway-based methods. Recently, we proposed a new
method, coined ELIE (extended linear interaction energy) method, to overcome some
disadvantage of MM-PB/GBSA method to improve the accuracy of binding free energy
calculation. In this work, we have systematically assessed this approach using in total 229
protein—ligand complexes for eight protein targets. Our results showed that ELIE performed
much better than molecular docking and MM-PBSA method in term of root-mean-square error
(RMSE), correlation coefficient (R), predictive index (PI), and Kendall’s t. The mean values of

PI, R and t are 0.62, 0.58 and 0.44 for ELIE calculations. We also explored the impact of the
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length of simulation, ranging from 1 ns to 100 ns, on the performance of binding free energy
calculation. In general, extending simulation length up to 25 ns could significantly improve the
performance of ELIE, while longer MD simulation does not always perform better than short MD
simulation. Considering both the computational efficiency and achieved accuracy, ELIE is
adequate in filling the gap between the efficient docking methods and computationally
demanding alchemical free energy methods. Therefore, ELIE provides a practical solution for

routine ranking of compounds in lead optimization.
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1. INTRODUCTION
According to a recent survey, on average the cost of an authorized new drug is estimated to be
$2.6 billion, and the developing process takes at least 10 years.! In order to alleviate the costly
and lengthy process of developing new drugs, many expensive and tedious experiments
especially in drug lead discovery and lead optimization processes have being replaced by
computational methods.”® Quantitative estimation of the ligand-protein interactions is the
foundation of computer-aided drug design (CADD).” During the past three decades, various
computational methods have been developed to predict protein—ligand binding affinities and
achieved different levels of successes. For instance, the docking and scoring methods were
developed based on simple molecular mechanics or empirical energy terms or knowledge-based
statistical potentials,!® which could discriminate potentially bioactive ligands from reservoirs of
huge amount of candidate compounds and predict most likely ligand binding modes in a defined
binding pocket.!!: > However, its binding free energies are not of high accuracy, despite with high
computational efficiency and low cost.'*'* On the contrary, alchemical free energy (AFE)
methods are theoretically rigorous and of high accuracy.'” Such as thermodynamic integration
(TI), and free energy perturbation (FEP) could generate effective guidance for drug lead
optimization.'® However, the slow convergence of the free energy differences result in huge
computational cost and limit its practical applications.!’

In recent years, physics-based endpoint methods, such as MM-PBSA (molecular mechanics
Poisson—Boltzmann surface area) and MM-GBSA (molecular mechanics generalized Born
surface area) have been widely used on CADD since those methods achieve a good balance

between computational efficiency and accuracy.'®?!

They have been widely used to detect
hotspot residues, evaluate docking poses, and further shrink the pool of promising compounds
identified using docking methods. However, endpoint approximation methods may not be

accurate enough for the drug lead optimization, as the range of binding affinities of compounds

with small substitution differences usually spans only 3—4 kcal/mol or less.?? Another well-
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known endpoint approximation method, which also has performance and computational
efficiency between docking and FEP/TI methods, is linear interaction energy (LIE).?
Traditionally, LIE only considers the interaction energies from Coulomb interaction and van der
Waals interactions, and apply optimized scaling factors on these two energy terms. And then
other variants of LIE with additional terms were developed. For example, Jorgensen et al.
proposed to add a third term based on either solvent accessible surface area (SASA) or the cavity
energy in a continuum solvent surface generalized Born (SGB) model.** In a previous study we
proposed a hybrid method, coined extended linear interaction energy (ELIE), which combines
MM-PBSA and LIE.>* This ELIE method was successfully applied to predict binding free
energies for Cathepsin S drug target in the third D3R Grand Challenge of blind prediction of
protein-ligand binding affinities.?

In this work, we conducted a systematic assessment on ELIE method using eight drug targets,
namely, Beta-Secretase 1 (BACE1), cyclin-dependent kinase 2 (CDK?2), myeloid cell leukemia
sequence 1 (MCL1), Thrombin, Tyrosine kinase 2 (TYK2), C-Jun N-terminal kinase 1 (JNK1),
P38, and Protein Tyrosine Phosphatase 1B (PTP1B). Each protein system involved a series of
congeneric ligands that are structurally similar and only have minor substitution differences. Such
scenarios are typical at the stage of drug lead optimization. These eight drug targets were firstly
chosen by Wang et al. to demonstrate the capability of the state-of-the-art FEP+ module in the
popular commercial Schrodinger Suite software,'® which is now the de facto standard in
pharmaceutical industry. Very recently our lab published a study on the four more difficult
systems (BACEl, CDK2, MCLI1, PTP1B) among these eight protein systems with GPU-TI
module in the academic AMBER program.” In this study we compared the performance of
protein-ligand binding affinity calculation using various methods, including Glide Docking?®
FEP/TL'® 2 regular MM-PBSA and ELIE. We also explored the impact of length of simulation
time on the accuracy of both MM-PBSA and ELIE calculations. With those efforts, we hope to

establish a common practical protocol of applying ELIE to guide drug lead optimization, which
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can achieve a comparable performance to that of pathway-based free energy methods, but with

reduced computer resource and time.

2. MATERIALS AND METHODS

2.1. Data Set Preparation

Eight different protein systems studied in this work, including BACE1 (41 ligands),”” CDK2 (22
ligands),®® MCLI1 (44 ligands),”” Thrombin (23 ligands),”® TYK2 (16 ligands),’! JNK1 (21
ligands),* P38 (35 ligands),”* and PTP1B (27 ligands),** have also been studied by pathway-
based free energy methods, such as FEP and TI ' 22, The chemical structures of ligands for the

eight systems were taken from corresponding experimental studies,’3*

and experimental binding
data affinity was calculated using the experimental K;or ICs.'® The ranges of K; or ICsoare only
two to three orders of magnitude for each protein system. The narrow ranges of binding free
energies pose a challenge on ranking those ligands by predicting their binding free energies.
However, narrow K; range is common in drug lead optimization for most drug discovery projects.
2.2. Molecular Docking

The ligands were docked into corresponding protein receptors using Glide Docking?
implemented in Maestro.*®> The Glide grid file of each receptor was generated with the default
values of the van der Waals radius scaling factor and the partial charge. The center of the binding
grids was located at the geometric center of the bound ligand, and no constraint or rotatable group
was defined. The receptor-based docking was conducted using default settings of Glide plus a
reward of intramolecular hydrogen bond formation. The best docking pose for each ligand was
selected according to the docking scores.

2.3 Molecular Simulation System Setup

For all the 229 ligands, the atomic partial charges were derived to reproduce the electrostatic

potential calculated at the HF/6-31G* level using the RESP (restrained ESP) program.’® The

geometries were optimized at the same level using the Gaussian 16 package.’” Other force field
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parameters of ligands came from GAFF 1.8.3® The residue topology and force field parameter file
were generated using the Antechamber module®” implemented in AMBERI18 software package.*’
The protein receptors were described using the ff14SB force field.*! The protonation states of the
histidine residues are presented in Table S1, which were manually checked and assigned. Since at
least one ligand in each of the eight protein systems has crystal structure available and the ligands
of each protein system share common scaffold,”’* for each protein-ligand complex, a top
docking pose which is also close to the binding mode of a native ligand of the same protein
system was adopted as the initial configuration for subsequent MD setup and simulation. For each
protein-ligand complex, it was solvated in a rectangular TIP3P* water box, with the edges of the
water box were at least 12 A away from any protein and ligand atoms. Each protein-ligand
complex systems was neutralized with counter ions Na+ or Cl- and extra 0.1 M NaCl ions were
added.

2.4. MD simulations

Initially, each MD system was minimized using the steepest-descent (SD) and conjugate gradient
(CG) algorithms to remove possible clashes. We adopted a stepwise minimization protocol to
gradually relax the system: a 1000-step SD minimization followed by a 1000-step CG
minimization were performed with the heavy atoms been restrained using a force constant of 2.0
kcal/mol/A?, then the system was relaxed by a 1000-step SD followed by a 1500-step CG full
minimizations. The system was then heated from 0 K to 298 K with 2.0 kcal/mol/A? restraints on
all heavy atoms in the complex in 50,000 steps. Next, the MD system was further relaxed by
50,000-step restrained MD simulation with the restraint force constant of 2.0 kcal/mol/A2.

In the subsequent equilibration phase, the MD system underwent a 1 ns constant pressure
MD simulation to produce an NPT ensemble at 298 K. In the sampling phase, a 99-ns MD
simulation was performed and snapshots were recorded at a frequency of 100 ps to ensure that
sequential snapshots were independent, resulting 990 snapshots for post-analysis. The following

are the key settings applied to all the MD simulations: the temperature and pressure were
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controlled by Langevin dynamics temperature scheme® and isotropic position-scaling

* respectively; a cut-off of 12 A was employed to generated non-bonded list for

algorithm,*
calculating the electrostatic and van der Waals interactions; Particle Mesh Ewald (PME) was used
for the accurate description of the long-range electrostatic interaction; and the integration of
movement is conducted every 2 fs. All the minimization and MD simulations were performed by
using the Pmemd program in AMBERI18 software package.*
2.5. MM-PBSA-WSAS and ELIE Method
The principle of the MM-PBSA-WSAS method has been well described in many references.'®
The MM-PBSA binding free energy for a ligand binding to a receptor to form a complex is
expressed as:

A Guind = AEmm + AGsor- TAS (1)
where AEmwm is the change of molecular mechanics (MM) energy due to complexation in gas-
phase, AGsor is the change of solvation free energy, and —TAS is the change of conformational
entropy upon ligand binding. Emm, is composed of several energy terms including internal
energies Ein (bond, angle, and dihedral energies), electrostatic energy Ec. and van der Waals
interaction energy Evpw. AGse can be further decomposed into two parts, the polar contribution
(electrostatic solvation energy) which is described by the Poisson-Boltzmann continuum
solvation model, and the nonpolar contribution which is described by solvent accessible surface
area (SASA). In this work, the value of the exterior dielectric constant was set to 80, and the
solute dielectric constant was set to 1. As such, the MM-PBSA binding free energy has five
energy terms as shown below when the “Single Trajectory” sampling protocol*® is applied:

AGbind = AEVDW + AEelec + AGSO]VJsl + A(}solvinp - TAS (2)

Please note that in Eq. 2, the contribution from internal energies Eix is cancelled out in the
“Single Trajectory” protocol.*® In this work, the polar contribution of the solvation free energy is

calculated by solving the finite-difference Possion-Boltzmann equation using Delphi 95
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software.*” The nonpolar component is calculated using a linear relationship to SASA, i.e.
AGioy np = ¥ ASASA + b, where 7y, the surface tension, is set to 0.00542 (kcal/mol/A?) and b to
0.92 kcal/mol.*® The conformational entropy term is calculated using the WSAS program, which
has achieved a comparable accuracy as normal mode analysis, but with substantially reduced

computational cost.*’

The original LIE approach only scales the electrostatic and van der Waals interaction
energies to fit the experimental values*. While in the ELIE model described by Eq. (3), five
terms, namely, AEvpw, AEcic, AGsolv pl, AGsoly np and -TAS participate restricted fitting.*

AGpina = ¢0 + ¢l x AEypw + ¢2 X(AEetec + AGsolv np ) + €3 X AGsoly np — ¢4 x TAS (3)
Where cl, c2, c3, c4 are scaling coefficients, which need to be adjusted by fitting calculated
binding free energies to experimental values. We call this procedure a restricted fitting as the
weights must have a physical meaning, i.e., all the weights of the energy terms must be positive.
Once optimum values are obtained for these scaling coefficients, an ELIE model is created and it
can be used to predict the binding free energies of other compounds for the same receptor.
Considering different drug targets have different chemical environment at the binding sites, we

developed ELIE models for individual drug targets.



3. RESULTS

3.1 Performance of Docking for the ranking prediction

Glide Docking ¢ was employed to predict the binding poses, and the best predicted binding pose
was used for further analysis. The predicted binding free energies (docking scores) of each ligand
with relative receptors are shown in Figure 1. The performance of the docking method was
evaluated using root-mean-square error (RMSE), Pearson’s correlation coefficient (R) between
the predicted and the experimental binding free energies, Kendall’s tau (t), and the predictive
index (PI).>*! PI is widely used in virtual screening (VS) to evaluate a scoring function or
method’s ranking power. The RMSE, PI, R, and 1 between the experimental binding free energies
and the predicted values are summarized in Table 1. It is shown that the performance of Glide
docking varies significantly depending on target proteins: there is strong correlation between
docking scores and measured activities for TYK2 (PI= 0.85, R=0.75, T = 0.65) and PTP1B (PI =
0.72, R =0.68, T = 0.52); no correlation for JNK1 (PI =-0.13, R =-0.07, 1 = -0.08), CDK2 (PI =
0.25, R =-0.22, 1 =-0.14), BACE1 (PI = 0.03, R = 0.04, t = 0); and mild correlation for MCL1
(PI=0.42, R =0.42, T = 0.28). Overall, the correlation between docking scores and experimental
binding free energies is poor for most drug targets.

3.2 Performance of MM-PBSA-WSAS for the ranking prediction

We then calculated the binding free energies using MM-PBSA-WSAS model after protein-ligand
complexes underwent 100 ns MD simulations. The detailed binding free energies were listed in
Tables S2 to S9. For each complex, the binding free energy was averaged over 195 snapshots
from 1 ns to 100 ns. The calculated binding free energies of ligands against the experimental
values for the eight systems are shown in Figure 2. As shown in Table 1, the performance of the
canonical MM-PBSA-WSAS in ranking protein-ligand binding is similar to that of Glide docking:
the mean PI, R and 1 values of the eight systems, 0.31, 0.29 and 0.21, are close to the mean values

of Glide docking, 0.34 0.27, and 0.21, correspondingly. However, the RMSE of MM-PBSA-
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WSAS (2.59 kcal/mol) is higher than that of Glide docking (1.04 kcal/mol). As to the correlation
and ranking metrics (PI, R and t) for individual systems, MM-PBSA-WSAS performs much
better than that of docking for Thrombin and CDK2; and it achieved relatively satisfactory
performance for TYK2. However, MM-PBSA-WSAS did not perform well for the other systems.
It is obvious that the performance of MM-PBSA-WSAS is also receptor-dependent. A key
parameter that has a great impact on MM-PBSA-WSAS calculation is the intrinsic dielectric
constant in calculating the polar component of solvation free energy using a PB model. Recently,
Wang et al. suggested to apply a variable dielectric GB model for predicting protein-ligand
binding affinity.>? It is expected that the same strategy can be applied to a PB model.

3.3 Performance of ELIE for the ranking prediction

Although applying variable dielectrics can further improve the performance of MM-PBSA-
WSAS, it is technically more difficult to achieve. On the other hand, ELIE method can much
better improve the ranking power with simply restricted fitting. We fitted the ELIE weighting
coefficients in Eq. 3 using the experimental data. The parameters and detailed energies were
listed in Tables S2 to S9. The calculated binding free energies of ligands against the experimental
values are shown in Figure 3. The performance of ligand ranking for the eight systems is
summarized in Table 1. With ELIE method, the mean values of PI, R and 7t are 0.62, 0.58, and
0.44, respectively, while the mean value of R is 0.74 for FEP calculations,'® 0.63 for TI
calculations.” It is encouraging that six out of eight systems have PI values better than 0.6, and
the other two have acceptable PI values (~0.42 for BACE and MCL1). The mean RMSE values
for ELIE, 0.94 kcal/mol, was slightly less than the RMSE for Glide docking (1.04 kcal/mol), and
was much smaller than the RMSE for regular MM-PBSA-WSAS (2.59 kcal/mol). It is interesting
to observe that ELIE achieves a good prediction for JNK1 (PI = 0.61, R = 0.60, T = 0.54), in
which both docking (PI=-0.13, R =-0.07, t = -0.08) and MM-PBSA-WSAS (PI=0.04, R =0.04,
T =0.05) perform very badly.

In principle, ELIE method needs to fit the scaling coefficients from a training set and apply them
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to a test set. Due to the very limited size of ligands in the eight protein systems, aforementioned
performance of ELIE was based on fitting on full ligand sets. To further estimate of the true
performance of ELIE, we randomly selected 5 ligands to enter a test set and the rest enter the
training/calibration set for BACE1, MCLI1 and P38 systems which have relatively abundant
ligands. To eliminate bias, such splitting process was conducted 1000 times for each protein
system. The Pls of calibration and test sets for both MMPBSA and ELIE were calculated. The
results are shown in Figure 4. For each system, the PI values for the test sets were normally
distributed, with a similar median PI value and relatively larger variance compared to the PI
values of the training sets, probably due to the size of the test set is quite small. Similar result was
found for PI calculated using MMPBSA. As expected, for both calibration set and test set, the
ELIE performs better than MMPBSA for all the three protein systems.

As a conclusion, the ELIE method has dramatically improved the predictive index PI and
correlation efficient R compared to MM-PBSA-WSAS and even achieved reasonable accuracy
for predicting binding free energies comparable to alchemical free energy calculations.

3.4 Impact of the Length of MD Simulations

The impact of MD simulation protocol on MM-PB/GBSA calculation has been studied by Sun et
al.>® Here, we focused on investigating how the length of MD simulations affects the binding free
energy calculation with MM-PBSA-WSAS and ELIE. To this end, a comparative study was
conducted using 20 different lengths of MD simulations from 1ns to 100ns. The PI, R and t
between the experimental and predicted binding free energies derived from different simulation
time are presented in Figure 5. As to MM-PBSA-WSAS, for Thrombin, CDK2 and BACE,
extending the simulation time could significantly improve the ranking power predicted by MM-
PBSA-WSAS (green lines in Figure 5), up to 30 ns for BACE]1, 15 ns for Thrombin and 70 ns for
CDK2. For PTP1B, TYK2, P38 and MCL1, extending the simulation time could not improve the
ranking performance of MM-PBSA-WSAS (green lines in Figure 5), and the MM-PBSA-WSAS

predictions based on relatively short simulation snapshots are slightly better than those based on
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longer MD simulations snapshots. It is of note that the shortest MD simulation time considered is
1 ns. It is interesting to observe that the MM-PBSA-WSAS predictions based on 1-5 ns snapshots
are significantly better than those based on longer MD simulations snapshots for JNK1.

Similar to MM-PBSA-WSAS predictions, extending the simulation time does not always
improve the correlations between the ELIE predicted binding free energies and the experimental
values (blue lines in Figure 5). Additionally, we use the scaling coefficients of 1-100 ns to
recalculate the PI and R for ELIE predictions (red lines in Figure 5). It was comparable to the
performance using scaling coefficients calculated from different simulation length snapshots. The
corresponding curves for the averages over all eight systems is also plotted. As shown in Figure
S1, 25 ns MD simulation is enough for ELIE binding free energy calculations, and the results was
also summarized in Table 1. The mean values of PI, R and t for 25 ns ELIE calculations (0.59,
0.56, and 0.43, respectively) are close to those values for 100 ns ELIE calculations. The
observation that ELIE scaling parameters are independent of MD simulation length is an

excellent feature of the ELIE method.

4. DISCUSSION

Computational methods are attractive for drug lead identification and lead optimization. Both
Docking methods and MMPBSA could give good predictions for compounds with a wide range
of binding free energies. Especially, docking methods could screen potentially bioactive ligands
from reservoirs of a huge amount of candidate compounds and are adequate in predicting the
correct poses for many drug targets. On the other hand, for shrinking the pool of ligands with a
wider range of binding free energy, the MMPBSA is generally more accurate than docking
methods, but with the price of much more computing than docking methods. However, in lead
optimization phase, the range of experimental binding free energies of compound evolved from
the same drug lead is usually very narrow, posing a challenging for the two aforementioned

methods to accurately rank those compounds. As indicated in Table 1 and Figures 1-2, the
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performances of the two methods in ranking structurally similar compounds vary from system to
system. Overall, neither of them is accurate enough to guide lead optimization in practice.
Alchemical free energy methods, such as FEP and TI, could achieve an acceptable accuracy to
guide lead optimization, however, they are usually very computer-resource and time demanding.
Moreover, the system setting up and post-analysis of alchemical free energy calculations is a
daunting task for users naive to molecular modeling.

ELIE is an ideal method to guide drug lead optimization, as long as binding affinities of
sample ligands (training set) for the specific receptor target have been measured in this drug
development phase from which an ELIE model can be established. This scenario is common in
real drug discovery projects. Moreover, our work has indicated that ELIE can achieve
performance on ranking structurally similar compounds comparable to FEP and TI using eight
drug targets. Our previous work also indicated that ELIE method could significantly improve the
correlation between estimated and experimentally values of compounds with wider range binding
affinity.”® To further strengthen the applicability of ELIE in the application of lead optimization
stage, we explored how MD simulation length, a key parameter of sampling protocol, affect the
ranking power of ELIE, and came out practice guidance on binding free energy calculations with
ELIE, i.e. one may conduct ELIE analysis using MD snapshots sampled from 1 to 25 ns for a
typical drug target, and make adjustment on sampling protocol whenever necessary. As for TI
calculations of one ligand, it costs approximately 195.8, 173.3, 148.5, and 184.5 hours GPU time
for BACE1, CDK2, MCLI1 and PTP1B, respectively.”? As for 100-ns MD simulation of one
ligand, it costs approximately 53.3, 53.1, 26.1 and 50.3 hours GPU time for BACE1, CDK2,
MCL1 and PTPI1B, respectively. As for 100-ns MM-PBSA-WSAS calculations, it costs
approximately 6.6, 6.6, 3.2 and 6.5 hours CPU time for BACE1, CDK2, MCLI1 and PTP1B,
respectively. Obviously, 25-ns MMPBSA calculation is highly efficient comprared to TI
calculations. However, we should not expect too much for the transferbility and generality of the

scaling parameters of LIE and ELIE methods. As the Zhou and Jorgensen suggested that we have
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to sacrifice generality to obtain the high accuracy.?* Thus, the parameters should be developed for
the specific receptor, which is especially appropriate for drug lead optimization whose ligands
have similar binding modes. It is interesting to note that the the ELIE parameters of BACE1 was
very close to the ELIE parameters Thrombin, despite with different binding modes. Thus, our
future work will concentrate on the transferability of ELIE.

5. Conclusions

In this work, we conducted a systematic evaluation on how ELIE, which is a hybrid method of
MM-PBSA and LIE, performed on ranking series of structurally similar ligands evolved from the
same drug leads for eight target proteins. We also make comparison of ELIE to other popular
methods, including Glide docking, regular MM-PBSA-WSAS, and FEP/TI. Overall, ELIE
achieved a comparable accuracy as that of TI and FEP, and outperformed Glide docking and
regular MM-PBSA-WSAS. Moreover, we found that 25 ns MD simulation is enough for optimal
performance of ELIE binding free energy calculations for most systems. Considering ELIE
achieves a good tradeoff between computational efficiency and accuracy, we expect this method
will have a great application in drug lead optimization, especially after the binding affinities of

many compounds for the target receptor have been measured.
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Table 1.

Overall Performance of Docking, MM-PBSA-WSAS and ELIE on Eight Protein Systems

System BACE!1 CDK2 JNK1 MCL1 P38 PTP1B Thrombin TYK2 average
no. of ligands 41 22 21 44 35 27 23 16 29
The null hypothesis RMSE* 0.78 1.13 0.84 1.06 0.99 1.27 1.39 1.26 1.09
Docking RMSE 0.86 1.42 1.02 0.97 0.94 0.95 1.33 0.84 1.04
Docking Pl-value 0.03 0.25 -0.13 0.42 0.30 0.72 0.27 0.85 0.34
Docking R-value 0.04 -0.22 -0.07 0.42 0.24 0.68 0.30 0.75 0.27
Docking t-value 0.00 -0.14 -0.08 0.28 0.22 0.52 0.23 0.65 0.21
MMPBSA-WSAS(1-25ns) RMSE 1.37 2.13 1.87 3.63 3.16 3.88 1.98 1.74 247
MMPBSA-WSAS(1-25ns) Pl-value 0.23 0.35 -0.10 0.24 0.12 -0.23 0.68 0.29 0.20
MMPBSA-WSAS(1-25ns) R-value 0.11 0.28 -0.02 0.17 0.05 -0.10 0.50 0.15 0.14
MMPBSA-WSAS(1-25ns) t-value 3.63 3.63 3.63 3.63 3.63 3.63 3.63 3.63 3.63
ELIE(1-25ns) RMSE 0.88 0.80 1.30 0.98 1.30 0.88 1.06 1.12 1.04
ELIE(1-25ns) Pl-value 0.39 0.73 0.55 0.40 0.62 0.75 0.75 0.51 0.59
ELIE(1-25ns) R-value 0.35 0.71 0.55 0.41 0.58 0.73 0.67 0.51 0.56
ELIE(1-25ns) t-value 0.20 0.57 0.47 0.27 0.47 0.53 0.55 0.35 0.43
MMPBSA-WSAS(1-100ns) RMSE 1.40 1.59 1.85 3.70 2.30 6.22 2.13 1.52 2.59
vMai\j:BSA_WSAS(l_IOOHS) PI- 0.29 0.56 0.04 0.28 0.23 -0.09 0.68 0.51 0.31
MMPBSA-WSAS(1-100ns) R-value 0.29 0.52 0.04 0.33 0.22 -0.25 0.62 0.54 0.29
MMPBSA-WSAS(1-100ns) t-value 0.16 0.39 0.05 0.20 0.14 -0.06 0.50 0.33 0.21
ELIE(1-100ns) RMSE 0.84 0.75 0.76 0.99 0.92 1.13 1.15 1.00 0.94
ELIE(1-100ns) PI-value 0.42 0.80 0.61 0.42 0.68 0.64 0.70 0.64 0.62
ELIE(1-100ns) R-value 0.39 0.75 0.60 0.41 0.67 0.57 0.63 0.62 0.58
ELIE(1-100ns) t-value 0.25 0.57 0.54 0.29 0.51 0.40 0.53 0.43 0.44
FEP RMSE® 1.03 1.11 1.00 1.41 1.03 1.22 0.93 0.93 1.08
FEP R-value® 0.78 0.48 0.85 0.77 0.65 0.80 0.71 0.89 0.74
TI RMSE*® 0.92 1.01 K 0.98 ok 0.92 K o 0.96
TI R-value® 0.48 0.64 K 0.65 ok 0.75 K o 0.63

Note: (a) The null hypothesis RMSEs were calculated by setting all predicted affinities to the

average of experimental affinities for each protein system; (b) FEP RMSEs and FEP R-values are

taken from Ref 16; (c) TI RMSEs and TI R-values are taken from Ref 22.
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FIGURE 1 Absolute binding free energies predicted by docking method versus

experimental values for the ligands of the eight systems.
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FIGURE 2 Absolute binding free energies predicted by MM-PBSA-WSAS versus

experimental values for the ligands of the eight systems.
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FIGURE 3 Relative binding free energies predicted by ELIE versus experimental values for

the ligands of the eight systems.
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