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ABSTRACT 

With continually-increased computer power, molecular mechanics force field-based approaches, 

such as the endpoint methods of MM-PBSA and MM-GBSA have been routinely applied in both 

drug lead identification and optimization. However, MM-PB/GBSA method is not accurate as the 

pathway-based alchemical free energy methods, such as thermodynamic integration (TI) or free 

energy perturbation (FEP). Although the pathway-based methods are more rigorous in theory, 

they suffer from slow convergence and computational cost. Moreover, choosing adequate 

perturbation routes is also crucial for the pathway-based methods. Recently, we proposed a new 

method, coined ELIE (extended linear interaction energy) method, to overcome some 

disadvantage of MM-PB/GBSA method to improve the accuracy of binding free energy 

calculation. In this work, we have systematically assessed this approach using in total 229 

protein−ligand complexes for eight protein targets. Our results showed that ELIE performed 

much better than molecular docking and MM-PBSA method in term of root-mean-square error 

(RMSE), correlation coefficient (R), predictive index (PI), and Kendall’s τ. The mean values of 

PI, R and τ are 0.62, 0.58 and 0.44 for ELIE calculations. We also explored the impact of the 
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length of simulation, ranging from 1 ns to 100 ns, on the performance of binding free energy 

calculation. In general, extending simulation length up to 25 ns could significantly improve the 

performance of ELIE, while longer MD simulation does not always perform better than short MD 

simulation. Considering both the computational efficiency and achieved accuracy, ELIE is 

adequate in filling the gap between the efficient docking methods and computationally 

demanding alchemical free energy methods. Therefore, ELIE provides a practical solution for 

routine ranking of compounds in lead optimization. 

 

Keywords: Extended linear interaction energy; Lead optimization; Binding Free Energy; MM-

PBSA 
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1. INTRODUCTION  

According to a recent survey, on average the cost of an authorized new drug is estimated to be 

$2.6 billion, and the developing process takes at least 10 years.1 In order to alleviate the costly 

and lengthy process of developing new drugs, many expensive and tedious experiments 

especially in drug lead discovery and lead optimization processes have being replaced by 

computational methods.2-8 Quantitative estimation of the ligand–protein interactions is the 

foundation of computer-aided drug design (CADD).9 During the past three decades, various 

computational methods have been developed to predict protein−ligand binding affinities and 

achieved different levels of successes. For instance, the docking and scoring methods were 

developed based on simple molecular mechanics or empirical energy terms or knowledge-based 

statistical potentials,10 which could discriminate potentially bioactive ligands from reservoirs of 

huge amount of candidate compounds and predict most likely ligand binding modes in a defined 

binding pocket.11, 12 However, its binding free energies are not of high accuracy, despite with high 

computational efficiency and low cost.13,14 On the contrary, alchemical free energy (AFE) 

methods are theoretically rigorous and of high accuracy.15 Such as thermodynamic integration 

(TI),  and  free energy perturbation (FEP) could generate effective guidance for drug lead 

optimization.16 However, the slow convergence of the free energy differences result in huge 

computational cost and limit its practical applications.17 

 In recent years, physics-based endpoint methods, such as MM-PBSA (molecular mechanics 

Poisson−Boltzmann surface area) and MM-GBSA (molecular mechanics generalized Born 

surface area) have been widely used on CADD since those methods achieve a good balance 

between computational efficiency and accuracy.18-21 They have been widely used to detect 

hotspot residues, evaluate docking poses, and further shrink the pool of promising compounds 

identified using docking methods. However, endpoint approximation methods may not be 

accurate enough for the drug lead optimization, as the range of binding affinities of compounds 

with small substitution differences usually spans only 3−4 kcal/mol or less.22 Another well-
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known endpoint approximation method, which also has performance and computational 

efficiency between docking and FEP/TI methods, is linear interaction energy (LIE).23 

Traditionally, LIE only considers the interaction energies from Coulomb interaction and van der 

Waals interactions, and apply optimized scaling factors on these two energy terms. And then 

other variants of LIE with additional terms were developed. For example, Jorgensen et al. 

proposed to add a third term based on either solvent accessible surface area (SASA) or the cavity 

energy in a continuum solvent surface generalized Born (SGB) model.24 In a previous study we 

proposed a hybrid method, coined extended linear interaction energy (ELIE), which combines 

MM-PBSA and LIE.25 This ELIE method was successfully applied to predict binding free 

energies for Cathepsin S drug target in the third D3R Grand Challenge of blind prediction of 

protein-ligand binding affinities.25   

 In this work, we conducted a systematic assessment on ELIE method using eight drug targets, 

namely, Beta-Secretase 1 (BACE1), cyclin-dependent kinase 2 (CDK2), myeloid cell leukemia 

sequence 1 (MCL1), Thrombin, Tyrosine kinase 2 (TYK2), C-Jun N-terminal kinase 1 (JNK1), 

P38, and Protein Tyrosine Phosphatase 1B (PTP1B). Each protein system involved a series of 

congeneric ligands that are structurally similar and only have minor substitution differences. Such 

scenarios are typical at the stage of drug lead optimization. These eight drug targets were firstly 

chosen by Wang et al. to demonstrate the capability of the state-of-the-art FEP+ module in the 

popular commercial Schrodinger Suite software,16 which is now the de facto standard in 

pharmaceutical industry. Very recently our lab published a study on the four more difficult 

systems (BACE1, CDK2, MCL1, PTP1B) among these eight protein systems with GPU-TI 

module in the academic AMBER program.22 In this study we compared the performance of 

protein-ligand binding affinity calculation using various methods, including Glide Docking26 

FEP/TI,16, 22 regular MM-PBSA and ELIE. We also explored the impact of length of simulation 

time on the accuracy of both MM-PBSA and ELIE calculations. With those efforts, we hope to 

establish a common practical protocol of applying ELIE to guide drug lead optimization, which 
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can achieve a comparable performance to that of pathway-based free energy methods, but with 

reduced computer resource and time.   

 

2. MATERIALS AND METHODS 

2.1. Data Set Preparation  

Eight different protein systems studied in this work, including BACE1 (41 ligands),27 CDK2 (22 

ligands),28 MCL1 (44 ligands),29 Thrombin (23 ligands),30 TYK2 (16 ligands),31 JNK1 (21 

ligands),32 P38 (35 ligands),33 and PTP1B (27 ligands),34 have also been studied by pathway-

based free energy methods, such as FEP and TI 16, 22. The chemical structures of ligands for the 

eight systems were taken from corresponding experimental studies,27-34 and experimental binding 

data affinity was calculated using the experimental Ki or IC50.16 The ranges of Ki or IC50 are only 

two to three orders of magnitude for each protein system. The narrow ranges of binding free 

energies pose a challenge on ranking those ligands by predicting their binding free energies. 

However, narrow Ki range is common in drug lead optimization for most drug discovery projects.   

2.2. Molecular Docking 

The ligands were docked into corresponding protein receptors using Glide Docking26 

implemented in Maestro.35 The Glide grid file of each receptor was generated with the default 

values of the van der Waals radius scaling factor and the partial charge. The center of the binding 

grids was located at the geometric center of the bound ligand, and no constraint or rotatable group 

was defined. The receptor-based docking was conducted using default settings of Glide plus a 

reward of intramolecular hydrogen bond formation. The best docking pose for each ligand was 

selected according to the docking scores. 

2.3 Molecular Simulation System Setup 

For all the 229 ligands, the atomic partial charges were derived to reproduce the electrostatic 

potential calculated at the HF/6-31G* level using the RESP (restrained ESP) program.36 The 

geometries were optimized at the same level using the Gaussian 16 package.37 Other force field 
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parameters of ligands came from GAFF 1.8.38 The residue topology and force field parameter file 

were generated using the Antechamber module39 implemented in AMBER18 software package.40 

The protein receptors were described using the ff14SB force field.41 The protonation states of the 

histidine residues are presented in Table S1, which were manually checked and assigned. Since at 

least one ligand in each of the eight protein systems has crystal structure available and the ligands 

of each protein system share common scaffold,27-34 for each protein-ligand complex, a top 

docking pose which is also close to the binding mode of a native ligand of the same protein 

system was adopted as the initial configuration for subsequent MD setup and simulation. For each 

protein-ligand complex, it was solvated in a rectangular TIP3P42 water box, with the edges of the 

water box were at least 12 Å away from any protein and ligand atoms. Each protein-ligand 

complex systems was neutralized with counter ions Na+ or Cl- and extra 0.1 M NaCl ions were 

added. 

2.4. MD simulations 

Initially, each MD system was minimized using the steepest-descent (SD) and conjugate gradient 

(CG) algorithms to remove possible clashes. We adopted a stepwise minimization protocol to 

gradually relax the system: a 1000-step SD minimization followed by a 1000-step CG 

minimization were performed with the heavy atoms been restrained using a force constant of 2.0 

kcal/mol/Å2, then the system was relaxed by a 1000-step SD followed by a 1500-step CG full 

minimizations. The system was then heated from 0 K to 298 K with 2.0 kcal/mol/Å2 restraints on 

all heavy atoms in the complex in 50,000 steps. Next, the MD system was further relaxed by 

50,000-step restrained MD simulation with the restraint force constant of 2.0 kcal/mol/Å2.  

 In the subsequent equilibration phase, the MD system underwent a 1 ns constant pressure 

MD simulation to produce an NPT ensemble at 298 K.  In the sampling phase, a 99-ns MD 

simulation was performed and snapshots were recorded at a frequency of 100 ps to ensure that 

sequential snapshots were independent, resulting 990 snapshots for post-analysis. The following 

are the key settings applied to all the MD simulations: the temperature and pressure were 
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controlled by Langevin dynamics temperature scheme43 and isotropic position-scaling 

algorithm,44 respectively; a cut-off of 12 Å was employed to generated non-bonded list for 

calculating the electrostatic and van der Waals interactions; Particle Mesh Ewald (PME) was used 

for the accurate description of the long-range electrostatic interaction; and the integration of 

movement is conducted every 2 fs. All the minimization and MD simulations were performed by 

using the Pmemd program in AMBER18 software package.40 

2.5. MM-PBSA-WSAS and ELIE Method 

The principle of the MM-PBSA-WSAS method has been well described in many references.18, 45 

The MM-PBSA binding free energy for a ligand binding to a receptor to form a complex is 

expressed as: 

Δ Gbind = ΔEMM + ΔGSOL- TΔS                               (1) 

where ΔEMM is the change of molecular mechanics (MM) energy due to complexation in gas-

phase, ΔGsol is the change of solvation free energy, and −TΔS is the change of conformational 

entropy upon ligand binding. EMM, is composed of several energy terms including internal 

energies Eint (bond, angle, and dihedral energies), electrostatic energy Eele and van der Waals 

interaction energy EVDW. ΔGsol can be further decomposed into two parts, the polar contribution 

(electrostatic solvation energy) which is described by the Poisson-Boltzmann continuum 

solvation model, and the nonpolar contribution which is described by solvent accessible surface 

area (SASA). In this work, the value of the exterior dielectric constant was set to 80, and the 

solute dielectric constant was set to 1. As such, the MM-PBSA binding free energy has five 

energy terms as shown below when the “Single Trajectory” sampling protocol46 is applied:   

ΔGbind = ΔEVDW + ΔEelec + ΔGsolv_pl + ΔGsolv_np – TΔS               (2) 

Please note that in Eq. 2, the contribution from internal energies Eint is cancelled out in the 

“Single Trajectory” protocol.46 In this work, the polar contribution of the solvation free energy is 

calculated by solving the finite-difference Possion-Boltzmann equation using Delphi 95 
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software.47 The nonpolar component is calculated using a linear relationship to SASA, i.e. 

ΔGsolv_np =  ΔSASA + b, where , the surface tension, is set to 0.00542 (kcal/mol/Å2) and b to 

0.92 kcal/mol.48 The conformational entropy term is calculated using the WSAS program, which 

has achieved a comparable accuracy as normal mode analysis, but with substantially reduced 

computational cost.49 

 The original LIE approach only scales the electrostatic and van der Waals interaction 

energies to fit the experimental values23. While in the ELIE model described by Eq. (3), five 

terms, namely, ΔEVDW, ΔEelec, ΔGsolv_pl, ΔGsolv_np and -TΔS participate restricted fitting.25  

ΔGbind = c0 + c1  ΔEVDW +  c2  (ΔEelec + ΔGsolv_np ) + c3  ΔGsolv_np  – c4  TΔS  (3) 

Where c1, c2, c3, c4 are scaling coefficients, which need to be adjusted by fitting calculated 

binding free energies to experimental values. We call this procedure a restricted fitting as the 

weights must have a physical meaning, i.e., all the weights of the energy terms must be positive.  

Once optimum values are obtained for these scaling coefficients, an ELIE model is created and it 

can be used to predict the binding free energies of other compounds for the same receptor. 

Considering different drug targets have different chemical environment at the binding sites, we 

developed ELIE models for individual drug targets. 
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3. RESULTS 

3.1 Performance of Docking for the ranking prediction 

Glide Docking 26 was employed to predict the binding poses, and the best predicted binding pose 

was used for further analysis. The predicted binding free energies (docking scores) of each ligand 

with relative receptors are shown in Figure 1. The performance of the docking method was 

evaluated using root-mean-square error (RMSE), Pearson’s correlation coefficient (R) between 

the predicted and the experimental binding free energies, Kendall’s tau (τ), and the predictive 

index (PI).50,51 PI is widely used in virtual screening (VS) to evaluate a scoring function or 

method’s ranking power. The RMSE, PI, R, and τ between the experimental binding free energies 

and the predicted values are summarized in Table 1. It is shown that the performance of Glide 

docking varies significantly depending on target proteins: there is strong correlation between 

docking scores and measured activities for TYK2 (PI= 0.85, R= 0.75, τ = 0.65) and PTP1B (PI = 

0.72, R = 0.68, τ = 0.52); no correlation for JNK1 (PI = -0.13, R = -0.07, τ = -0.08), CDK2 (PI = 

0.25, R = -0.22, τ = -0.14), BACE1 (PI = 0.03, R = 0.04, τ = 0); and mild correlation for MCL1 

(PI = 0.42, R = 0.42, τ = 0.28). Overall, the correlation between docking scores and experimental 

binding free energies is poor for most drug targets.  

3.2 Performance of MM-PBSA-WSAS for the ranking prediction 

We then calculated the binding free energies using MM-PBSA-WSAS model after protein-ligand 

complexes underwent 100 ns MD simulations. The detailed binding free energies were listed in 

Tables S2 to S9. For each complex, the binding free energy was averaged over 195 snapshots 

from 1 ns to 100 ns. The calculated binding free energies of ligands against the experimental 

values for the eight systems are shown in Figure 2. As shown in Table 1, the performance of the 

canonical MM-PBSA-WSAS in ranking protein-ligand binding is similar to that of Glide docking: 

the mean PI, R and τ values of the eight systems, 0.31, 0.29 and 0.21, are close to the mean values 

of Glide docking, 0.34 0.27, and 0.21, correspondingly. However, the RMSE of MM-PBSA-
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WSAS (2.59 kcal/mol) is higher than that of Glide docking (1.04 kcal/mol). As to the correlation 

and ranking metrics (PI, R and τ) for individual systems, MM-PBSA-WSAS performs much 

better than that of docking for Thrombin and CDK2; and it achieved relatively satisfactory 

performance for TYK2. However, MM-PBSA-WSAS did not perform well for the other systems. 

It is obvious that the performance of MM-PBSA-WSAS is also receptor-dependent. A key 

parameter that has a great impact on MM-PBSA-WSAS calculation is the intrinsic dielectric 

constant in calculating the polar component of solvation free energy using a PB model. Recently, 

Wang et al. suggested to apply a variable dielectric GB model for predicting protein-ligand 

binding affinity.52 It is expected that the same strategy can be applied to a PB model. 

3.3 Performance of ELIE for the ranking prediction   

Although applying variable dielectrics can further improve the performance of MM-PBSA-

WSAS, it is technically more difficult to achieve. On the other hand, ELIE method can much 

better improve the ranking power with simply restricted fitting. We fitted the ELIE weighting 

coefficients in Eq. 3 using the experimental data. The parameters and detailed energies were 

listed in Tables S2 to S9. The calculated binding free energies of ligands against the experimental 

values are shown in Figure 3. The performance of ligand ranking for the eight systems is 

summarized in Table 1. With ELIE method, the mean values of PI, R and  τ are 0.62, 0.58, and 

0.44, respectively, while the mean value of R is 0.74 for FEP calculations,16 0.63 for TI 

calculations.25 It is encouraging that six out of eight systems have PI values better than 0.6, and 

the other two have acceptable PI values (~0.42 for BACE and MCL1). The mean RMSE values 

for ELIE, 0.94 kcal/mol, was slightly less than the RMSE for Glide docking (1.04 kcal/mol), and 

was much smaller than the RMSE for regular MM-PBSA-WSAS (2.59 kcal/mol). It is interesting 

to observe that ELIE achieves a good prediction for JNK1 (PI = 0.61, R = 0.60, τ = 0.54), in 

which both docking (PI = -0.13, R = -0.07, τ = -0.08) and MM-PBSA-WSAS (PI = 0.04, R = 0.04, 

τ = 0.05) perform very badly.  

In principle, ELIE method needs to fit the scaling coefficients from a training set and apply them 



11 

 

to a test set. Due to the very limited size of ligands in the eight protein systems, aforementioned 

performance of ELIE was based on fitting on full ligand sets. To further estimate of the true 

performance of ELIE, we randomly selected 5 ligands to enter a test set and the rest enter the 

training/calibration set for BACE1, MCL1 and P38 systems which have relatively abundant 

ligands. To eliminate bias, such splitting process was conducted 1000 times for each protein 

system. The PIs of calibration and test sets for both MMPBSA and ELIE were calculated. The 

results are shown in Figure 4. For each system, the PI values for the test sets were normally 

distributed, with a similar median PI value and relatively larger variance compared to the PI 

values of the training sets, probably due to the size of the test set is quite small. Similar result was 

found for PI calculated using MMPBSA. As expected, for both calibration set and test set, the 

ELIE performs better than MMPBSA for all the three protein systems. 

As a conclusion, the ELIE method has dramatically improved the predictive index PI and 

correlation efficient R compared to MM-PBSA-WSAS and even achieved reasonable accuracy 

for predicting binding free energies comparable to alchemical free energy calculations.  

3.4 Impact of the Length of MD Simulations 

The impact of MD simulation protocol on MM-PB/GBSA calculation has been studied by Sun et 

al.53 Here, we focused on investigating how the length of MD simulations affects the binding free 

energy calculation with MM-PBSA-WSAS and ELIE. To this end, a comparative study was 

conducted using 20 different lengths of MD simulations from 1ns to 100ns. The PI, R and τ 

between the experimental and predicted binding free energies derived from different simulation 

time are presented in Figure 5. As to MM-PBSA-WSAS, for Thrombin, CDK2 and BACE, 

extending the simulation time could significantly improve the ranking power predicted by MM-

PBSA-WSAS (green lines in Figure 5), up to 30 ns for BACE1, 15 ns for Thrombin and 70 ns for 

CDK2. For PTP1B, TYK2, P38 and MCL1, extending the simulation time could not improve the 

ranking performance of MM-PBSA-WSAS (green lines in Figure 5), and the MM-PBSA-WSAS 

predictions based on relatively short simulation snapshots are slightly better than those based on 
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longer MD simulations snapshots. It is of note that the shortest MD simulation time considered is 

1 ns. It is interesting to observe that the MM-PBSA-WSAS predictions based on 1-5 ns snapshots 

are significantly better than those based on longer MD simulations snapshots for JNK1.  

 Similar to MM-PBSA-WSAS predictions, extending the simulation time does not always 

improve the correlations between the ELIE predicted binding free energies and the experimental 

values (blue lines in Figure 5). Additionally, we use the scaling coefficients of 1-100 ns to 

recalculate the PI and R for ELIE predictions (red lines in Figure 5). It was comparable to the 

performance using scaling coefficients calculated from different simulation length snapshots. The 

corresponding curves for the averages over all eight systems is also plotted. As shown in Figure 

S1, 25 ns MD simulation is enough for ELIE binding free energy calculations, and the results was 

also summarized in Table 1. The mean values of  PI, R and  τ for 25 ns ELIE calculations (0.59, 

0.56, and 0.43, respectively) are close to those values for 100 ns ELIE calculations. The 

observation that ELIE scaling parameters are independent of MD simulation length is an 

excellent feature of the ELIE method.    

 

4. DISCUSSION 

Computational methods are attractive for drug lead identification and lead optimization. Both 

Docking methods and MMPBSA could give good predictions for compounds with a wide range 

of binding free energies. Especially, docking methods could screen potentially bioactive ligands 

from reservoirs of a huge amount of candidate compounds and are adequate in predicting the 

correct poses for many drug targets. On the other hand, for shrinking the pool of ligands with a 

wider range of binding free energy, the MMPBSA is generally more accurate than docking 

methods, but with the price of much more computing than docking methods. However, in lead 

optimization phase, the range of experimental binding free energies of compound evolved from 

the same drug lead is usually very narrow, posing a challenging for the two aforementioned 

methods to accurately rank those compounds. As indicated in Table 1 and Figures 1-2, the 
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performances of the two methods in ranking structurally similar compounds vary from system to 

system. Overall, neither of them is accurate enough to guide lead optimization in practice. 

Alchemical free energy methods, such as FEP and TI, could achieve an acceptable accuracy to 

guide lead optimization, however, they are usually very computer-resource and time demanding. 

Moreover, the system setting up and post-analysis of alchemical free energy calculations is a 

daunting task for users naïve to molecular modeling.  

 ELIE is an ideal method to guide drug lead optimization, as long as binding affinities of 

sample ligands (training set) for the specific receptor target have been measured in this drug 

development phase from which an ELIE model can be established. This scenario is common in 

real drug discovery projects. Moreover, our work has indicated that ELIE can achieve 

performance on ranking structurally similar compounds comparable to FEP and TI using eight 

drug targets. Our previous work also indicated that ELIE method could significantly improve the 

correlation between estimated and experimentally values of compounds with wider range binding 

affinity.25 To further strengthen the applicability of ELIE in the application of lead optimization 

stage, we explored how MD simulation length, a key parameter of sampling protocol, affect the 

ranking power of ELIE, and came out practice guidance on binding free energy calculations with 

ELIE, i.e. one may conduct ELIE analysis using MD snapshots sampled from 1 to 25 ns for a 

typical drug target, and make adjustment on sampling protocol whenever necessary. As for TI 

calculations of one ligand, it costs approximately 195.8, 173.3, 148.5, and 184.5 hours GPU time 

for BACE1, CDK2, MCL1 and PTP1B, respectively.22 As for 100-ns MD simulation of one 

ligand, it costs approximately 53.3, 53.1, 26.1 and 50.3 hours GPU time for BACE1, CDK2, 

MCL1 and PTP1B, respectively. As for 100-ns MM-PBSA-WSAS calculations, it costs 

approximately 6.6, 6.6, 3.2 and 6.5 hours CPU time for BACE1, CDK2, MCL1 and PTP1B, 

respectively. Obviously, 25-ns MMPBSA calculation is highly efficient comprared to TI 

calculations. However, we should not expect too much for the transferbility and generality of the 

scaling parameters of LIE and ELIE methods. As the Zhou and Jorgensen suggested that we have 
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to sacrifice generality to obtain the high accuracy.24 Thus, the parameters should be developed for 

the specific receptor, which is especially appropriate for drug lead optimization whose ligands 

have similar binding modes. It is interesting to note that the the ELIE parameters of BACE1 was 

very close to the ELIE parameters Thrombin, despite with different binding modes. Thus, our 

future work will concentrate on the transferability of ELIE.   

5. Conclusions 

In this work, we conducted a systematic evaluation on how ELIE, which is a hybrid method of 

MM-PBSA and LIE, performed on ranking series of structurally similar ligands evolved from the 

same drug leads for eight target proteins. We also make comparison of ELIE to other popular 

methods, including Glide docking, regular MM-PBSA-WSAS, and FEP/TI. Overall, ELIE 

achieved a comparable accuracy as that of TI and FEP, and outperformed Glide docking and 

regular MM-PBSA-WSAS. Moreover, we found that 25 ns MD simulation is enough for optimal 

performance of ELIE binding free energy calculations for most systems. Considering ELIE 

achieves a good tradeoff between computational efficiency and accuracy, we expect this method 

will have a great application in drug lead optimization, especially after the binding affinities of 

many compounds for the target receptor have been measured.  
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Table 1.  

Overall Performance of Docking, MM-PBSA-WSAS and ELIE on Eight Protein Systems 

System BACE1 CDK2 JNK1 MCL1 P38 PTP1B Thrombin TYK2 average 

no. of ligands 41 22 21 44 35 27 23 16 29  

The null hypothesis RMSEa 0.78 1.13 0.84 1.06 0.99 1.27 1.39 1.26 1.09 

Docking RMSE 0.86  1.42  1.02  0.97  0.94  0.95  1.33  0.84  1.04  

Docking PI-value 0.03  0.25  -0.13  0.42  0.30  0.72  0.27  0.85  0.34  

Docking R-value   0.04  -0.22  -0.07  0.42  0.24  0.68  0.30  0.75  0.27  

Docking τ-value  0.00  -0.14  -0.08  0.28  0.22  0.52  0.23  0.65  0.21  

MMPBSA-WSAS(1-25ns)  RMSE 1.37  2.13  1.87  3.63  3.16  3.88  1.98  1.74  2.47  

MMPBSA-WSAS(1-25ns)  PI-value  0.23  0.35  -0.10  0.24  0.12  -0.23  0.68  0.29  0.20  

MMPBSA-WSAS(1-25ns)  R-value  0.11  0.28  -0.02  0.17  0.05  -0.10  0.50  0.15  0.14  

MMPBSA-WSAS(1-25ns) t-value   3.63  3.63  3.63  3.63  3.63  3.63  3.63  3.63  3.63  

ELIE(1-25ns) RMSE  0.88  0.80  1.30  0.98  1.30  0.88  1.06  1.12  1.04  

ELIE(1-25ns) PI-value 0.39  0.73  0.55  0.40  0.62  0.75  0.75  0.51  0.59  

ELIE(1-25ns) R-value  0.35  0.71  0.55  0.41  0.58  0.73  0.67  0.51  0.56  

ELIE(1-25ns) τ-value  0.20  0.57  0.47  0.27  0.47  0.53  0.55  0.35  0.43  

MMPBSA-WSAS(1-100ns) RMSE  1.40  1.59  1.85  3.70  2.30  6.22  2.13  1.52  2.59  

MMPBSA-WSAS(1-100ns) PI-
value  

0.29  0.56  0.04  0.28  0.23  -0.09  0.68  0.51  0.31  

MMPBSA-WSAS(1-100ns) R-value  0.29  0.52  0.04  0.33  0.22  -0.25  0.62  0.54  0.29  

MMPBSA-WSAS(1-100ns) τ-value  0.16  0.39  0.05  0.20  0.14  -0.06  0.50  0.33  0.21  

ELIE(1-100ns) RMSE  0.84  0.75  0.76  0.99  0.92  1.13  1.15  1.00  0.94  

ELIE(1-100ns) PI-value  0.42  0.80  0.61  0.42  0.68  0.64  0.70  0.64  0.62  

ELIE(1-100ns) R-value  0.39  0.75  0.60  0.41  0.67  0.57  0.63  0.62  0.58  

ELIE(1-100ns) τ-value  0.25  0.57  0.54  0.29  0.51  0.40  0.53  0.43  0.44  

FEP RMSEb  1.03  1.11  1.00  1.41  1.03  1.22  0.93  0.93  1.08  

FEP R-valueb  0.78  0.48  0.85  0.77  0.65  0.80  0.71  0.89  0.74  

TI RMSEc  0.92  1.01  ** 0.98  ** 0.92  ** ** 0.96  

TI R-valuec  0.48  0.64  ** 0.65  ** 0.75  ** ** 0.63  

Note: (a) The null hypothesis RMSEs were calculated by setting all predicted affinities to the 

average of experimental affinities for each protein system; (b) FEP RMSEs and FEP R-values are 

taken from Ref 16; (c) TI RMSEs and TI R-values are taken from Ref 22. 
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Figure captions 

 

FIGURE 1 Absolute binding free energies predicted by docking method versus 

experimental values for the ligands of the eight systems. 
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FIGURE 2 Absolute binding free energies predicted by MM-PBSA-WSAS versus 

experimental values for the ligands of the eight systems. 
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FIGURE 3 Relative binding free energies predicted by ELIE versus experimental values for 

the ligands of the eight systems. 

  



25 

 

 

FIGURE 4 Perfomance of ELIE for test sets. 

a)BACE1, b) MCL1, c) MCL1 



26 

 

 

FIGURE 5 PI & R & τ between the experimental and the calculated binding free energies 

using 20 different lengths of MD simulation. 

(a)BACE1, (b) CDK2, (c) JNK1, and (d)MCL1, (e)P38, (f)PTP1B, (g) Thrombin，(h)TYK2 
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