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Abstract 

Opioids and benzodiazepines have complex drug-drug interactions (DDIs), which serve as 

an important source of adverse drug effects. In this work, we predicted the DDI between 

oxycodone (OXY) and diazepam (DZP) in the human body by applying in silico pharmacokinetic 

(PK) and pharmacodynamic (PD) modeling and simulation. First, we studied the PK interaction 

between OXY and DZP with a Physiologically-based Pharmacokinetic (PBPK) model. Second, 

we applied molecular modeling techniques including molecular docking, molecular dynamics 

(MD) simulation, and the molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) free 

energy method to predict the PD-DDI between these two drugs. The PK interaction between OXY 

and DZP predicted by the PBPK model was not obvious. No significant interaction was observed 

between the two drugs at normal doses, though very high doses of DZP demonstrated a non-

negligible inhibitory effect on OXY metabolism. On the other hand, molecular modeling study 

shows DZP has the potential to compete with OXY at the same binding pocket of the active µ-

opioid receptor (MOR) and -opioid receptor (KOR). MD simulation and MM-PBSA calculation 

results demonstrated that there is likely a synergetic effect between OXY and DZP binding to 

opioid receptors, as OXY is likely to target the active MOR while DZP selectively binds to the 

active KOR. Thus, pharmacokinetics contributes slightly to the DDI between OXY and DZP 

although an overdose of DZP has been brought to attention.  Pharmacodynamics is likely to play 

a more important role than pharmacokinetics in revealing the mechanism of DDI between OXY 

and DZP.  

Keywords: Oxycodone, Diazepam, Drug-Drug Interaction (DDI), Pharmacokinetic-DDI, 

Pharmacodynamic-DDI, Physiologically-based Pharmacokinetics (PBPK), Molecular Docking, 

MD simulations 
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1. Introduction 

            Prescription drug abuse and overdose is a growing problem in the United States. The 

number of deaths per year due to drug overdose increased dramatically. For example, the number 

increased about 23%, from 38,329 to 47,055 between 2010 and 2014.1 Although overdose deaths 

are largely assumed to be the result of excessive opioid administration alone, the percentage of 

overdose deaths involving at least one specific drug ranged from 67% in 2010 to 78% in 2014, 

suggesting opioid abusers are often polydrug abusers.1 Benzodiazepines are also one of the most 

commonly co-administered drugs and are often prescribed for patients with anxiety disorders, 

muscle spasms and major depression.2 From 2004 to 2011, the rate of nonmedical use-related 

emergency department (ED) visits for benzodiazepines-opioid co-ingestion increased from 11.0 to 

34.2 per 100,000 population, while the prevalence of overdose death involving both drugs 

increased from 0.6 to 1.7 per 100,000 population.3 Thus, serious risks are associated with the 

combined use of opioids and benzodiazepines. The Food and Drug Administration of United States 

added Boxed Warnings to the drug labeling of prescription opioids and benzodiazepines in 2016. 

It is believed that opioids and benzodiazepines have complex drug-drug interactions (DDIs), which 

serve as an important and potentially preventable source of adverse drug effects and overdose 

death. However, there is still much unknown about how these two types of drugs are interacting 

with each other.4  

Oxycodone (6-deoxy-7,8-dehydro-14-hydroxy-3-O-methyl-6-oxymorphine), also known 

as Percocet and Oxycontin, is an opioid drug which acts as an agonist of µ- and -opioid receptors.5, 

6 It is often used as a reliever of moderate to severe pain for its effect similar to morphine as well 

as its high bioavailability (60%) with different formulations, such as oral (most common), 

intramuscular, intravenous and subcutaneous administration.7 Oxycodone (OXY) primarily 

undergoes CYP3A4-mediated N-demethylation to form noroxycodone (NOC) as well as 

CYP2D6-mediated O-demethylation to form oxymorphone (OM).  Both NOC and OM can be 

further converted into noroxymorphone (NOM).8 Only a very small amount of oxycodone is 

metabolized by UDP-glucuronosyltransferases through conjugation.9 The detailed metabolic 

scheme of oxycodone is presented in the left panel of Figure 1.  

Diazepam (DZP) is a long-acting benzodiazepine with its brand name Valium. It is one of 

the most frequently prescribed benzodiazepine and is widely accepted and used by people for the 
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treatment of anxiety, muscle spasms, seizures, trouble sleeping, etc.10 DZP has a calming effect 

and it can be administered by oral, rectal, intramuscular and intravenous injection. The overdose 

effects of taking DZP alone are drowsiness, mental confusion and coma. Concurrent use of 

diazepam and other drugs like alcohol and opiates may be fatal.11 DZP is mainly metabolized in 

the liver by cytochrome P450-mediated reactions (Figure 1).  DZP undergoes CYP3A4 and 

CYP2C19-mediated bioactivation to yield nordazepam (N-demethylation) (NDZ) and temazepam 

(3-hydroxylation) (TMZ), respectively.  Both metabolites can be further converted to oxazepam.12 

Generally, CYP2C19 contributes majorly to the N-demethylation while CYP3A4 makes its main 

contribution to the 3-hydroxylation. The bioavailability of DZP is larger than 90% and its plasma 

protein binding fraction is also very high (approximately 97%).13 Compared to OXY (3-5 hours), 

DZP has a much longer half-life (30-56 hours), which is explained by the low hepatic extraction 

ratio and more extensive tissue distribution of unbound fraction.13, 14 

Basically, DDIs can be broadly categorized into pharmacokinetic drug-drug interaction 

(PK-DDI) and pharmacodynamic drug-drug interaction (PD-DDI). For the former, the DDI arises 

since CYP3A4 is the common major player in metabolism pathways of both OXY and DZP. 

Indeed, DZP has also been reported as the inhibitor of CYP3A4 in some in vitro studies.15, 16 In 

our previous work, we have utilized Physiologically-based Pharmacokinetic Modeling (PBPK) 

models to study DDIs between a series of opioids and benzodiazepines.17 In this work, we attempt 

to further study if DZP, which is suggested to be served as an inhibitor of CYP3A4, could alter the 

pharmacokinetic (PK) profile of OXY in vivo when co-administering with DZP by taking more 

inhibition mechanisms as well as more types of formulations into consideration. Another source 

of interaction between OXY and DZP comes from pharmacodynamic interactions, i.e. there is a 

synergic or additive effect for the two drugs acting on their drug targets. It is believed that people 

may concomitantly take opioids and benzodiazepines to increase the µ agonist effects of opioids.  

Indeed, some preclinical evidence shows some effects of benzodiazepines like analgesic and 

anxiolytic are partially mediated by opioidergic mechanisms, even though some contrasting data 

in terms of the evidence was also reported.18 Also, it is reported that 72 % of patients who use 

methadone are also DZP users simultaneously, indicating that DZP can enhance the drug effects 

of methadone.19 Hence in this work, we attempt to study if DZP has a positive synergistic effect 

with OXY by also interacting with the opioid receptors.     
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Since the DDI studies of the two types of drugs in human subjects are limited, alternative 

methods for evaluating DDIs at toxic levels in humans are needed. In this work, we attempt to 

address this problem from both the pharmacokinetic (PK) and pharmacodynamic (PD) 

perspectives. First, we quantitatively simulated the PK profiles of OXY and DZP by utilizing the 

PBPK modeling method; we then used hierarchical molecular modeling techniques including 

molecular docking, molecular dynamics (MD) simulation and molecular mechanics/Poisson 

Boltzmann surface area-WSAS (MM-PBSA-WSAS) binding free energy calculations to predict 

the PD interaction between these two drugs.  Lastly, we discussed the relative contribution of PK 

and PD to the DDI between OXY and DZP by analyzing the simulations results at both the normal 

and overdosed scenarios.   

 

2. Results and Discussion 

In this study, we investigated DDI between OXY and DZP by applying in silico computational 

approaches pharmacokinetically and pharmacodynamically. To the best of our knowledge, this is 

the first time PBPK modeling and molecular modeling techniques have been applied in the DDI 

exploration. We first established a PBPK model by utilizing SimCYP to predict the DDI between 

OXY and DZP. As a result, DZP has a limited effect on OXY's metabolism and only a severe high 

dose of DZP can exert a minor inhibitory effect on OXY. Then we moved on to PD interaction 

between these two drugs by investigating the pharmacological effect of DZP on the two types of 

opioid receptors. The molecular modeling study shows that DZP has the potential to compete with 

OXY at the same binding pocket of the active MOR and KOR. Interestingly, MD simulation and 

MM-PBSA-WSAS calculation results demonstrated that DZP is able to bind stably with active 

KOR and has selectivity for KOR. We concluded that pharmacodynamics is likely to contribute 

mostly to the DDI between OXY and DZP, and there is a synergistic or additive effect when DZP 

is taken with OXY simultaneously.   

2.1 Pharmacokinetic DDI 

PBPK modeling has been increasingly used for the prediction of DDIs recently, especially for the 

prediction of CYP-mediated DDIs.20 PBPK modeling utilizes in vitro drug data (e.g. intrinsic 

clearance and bioavailability) describing a drug’s ADME properties and utilizes system data 

depicting the physiological properties of human subjects in a population, to explore the in vivo 

pharmacokinetics of drugs and DDIs scenarios. The PBPK approach has been valued by the US 
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Food and Drug Administration (FDA) and the European Medicines Agency (EMA) through the 

guidelines for DDIs in 2012 and 2013.21 Moreover, PBPK modeling currently receives high 

attention in the drug development and drug discovery process. A full PBPK model is probably the 

most complicated PK model existing currently, which consists of different organs in the human 

body linked by blood circulation. A PBPK model is different from the empirical PK model and 

has multiple compartments being included. As a result, DDI modeling and simulation based on a 

PBPK model are closer to the real situation than that of an empirical PK model. In this study, the 

transporter-mediated DDI was not considered in our model because there is limited clinical 

evidence that shows transporters, such as those found in the blood-brain-barrier (BBB), cause 

significant interactions between the two types of drugs. We also did not include the inhibitory 

abilities of metabolites given the fact that the concentration of metabolites of DZP is only 

approximately one-tenth of the concentration of the parent drug. Since both drugs go through the 

metabolic pathway by CYP3A4, and the docking results showed that DZP had better binding 

affinity than OXY when binding to CYP3A4, we mainly studied the effect of DZP on OXY.  

2.1.1 Validation of PBPK models for OXY and DZP 

 First, we validated the PBPK models of OXY and DZP by creating models and generating 

PK profiles for them individually. We collected experimental data of plasma Concentration ~ Time 

(CT) curves for these two drugs from the literature, and the data were used to verify our models. 

The ADME profiles for OXY and DZP as well as their metabolites were predicted by using 

SimCYP software and are listed in Table S1. Some of the PK parameters were collected from the 

literature, while others came from SimCYP internal databases, still others were predicted by 

SimCYP calculators. Then we created an oral (PO) model for 30 mg OXY, an intravenous (IV) 

model for 0.1 mg/kg DZP and a PO model for 10 mg DZP according to the recommended dosages 

of the two drugs. In the PO OXY model, the absorption was described as a first order process, 

while in the PO DZP model, the procedure was described by the ADAM absorption model 

implemented in the SimCYP software. For the IV DZP model, DZP was modeled to enter the 

systemic circulation by venous blood vessels. Experimental PK data obtained from the literature 

which included area under the curve (AUC), maximal concentration (Cmax) and time of maximal 

concentration observed (Tmax) were used to verify our PBPK models. Last, we compared how 

different formulations affected how DZP interacted with OXY. 
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 The observed and predicted PK data are listed in Table 1. The Cmax and Tmax of DZP are 

missing due to the limitation of existing experimental studies. The CT curves for OXY and DZP 

are depicted in Figure 2. From the Table 1 and Figure 2, we can see that all the predicted AUC, 

Cmax and Tmax of OXY and DZP were within the ranges of their observed data (within the standard 

deviations (SD)). All the CT curves ranged from 0 to 24 hours except for PO DZP, for which our 

predicted CT data of PO DZP was only limited to 12 hours for the sake of comparison.   

2.1.2 DDI simulation following competitive inhibition mechanism  

 Since the interaction between two different substrates with the same enzyme is commonly 

considered as competitive inhibition,22 we first hypothesized that DZP is a competitive inhibitor 

of CYP3A4 and can inhibit the metabolism of OXY which is predominately metabolized by 

CYP3A4. Hence in our PBPK models, OXY served as the substrate while DZP served as the 

inhibitor. We estimated the inhibitory constant, Ki value, by using the Glide docking score, because 

currently there is no available experimental Ki value for the two drugs binding to the cytochromes 

P450 enzymes. The Ki parameter of DZP was calculated by Eq. 2 and other input parameters are 

listed in Table S1. DDI models for OXY and PO/IV DZP were built using the calculated Ki in 

addition to the other PK parameters (Table S2). To better compare the DDI effect between OXY 

and DZP, we adjusted the dosage of DZP from normal to overdose. The AUC of the substrate was 

then compared between substrate and substrate-inhibitor profiles to investigate the DDI between 

these two drugs. The simulated concentration profiles of 30 mg OXY co-administered with 

different doses of PO DZP are shown in Figure 3. The predicted AUC Ratios and Cmax Ratios of 

the DDI profiles with and without the presence of DZP are shown in Table 2. 

As shown in Figure 3, the OXY concentration raise can only be remarkably observed when 

the dosage of PO DZP reaches to 1000 mg. The plasma concentration of OXY increases as the 

administrated dosage of PO DZP increases, but the difference is not obvious for low doses of PO 

DZP. Correspondingly, both of the AUC24h (the drug exposure from time zero to 24 hours) ratio 

and Cmax ratio are 1.01 with the co-treatment of 30 mg PO OXY and10 mg of PO DZP. The AUC 

ratio increases by 4.0% when the dose of PO DZP increases to 10 times of the normal dose. Only 

when the dose of PO DZP was increased to 1000 mg can the simulated interaction between OXY 

and PO DZP result in a growth of AUC of OXY by 1.20 folds, which is a commonly used threshold 

to determine whether two drugs have a DDI or not. The Cmax of OXY increased to 1.12 folds when 

the dosage of PO DZP was 1000 mg. Accordingly, 1000 mg IV DZP exhibited a similar but weaker 
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PK effect compared to the simulation result of PO formulation. The comparison of AUC Ratio for 

OXY with different formulations of DZP is shown in Figure 4. The AUC ratio of OXY with PO 

DZP is a little bit higher than with the same dosage of IV DZP as suggested by Figure 4. As a 

result, the inhibitory ability of oral administration of DZP is slightly stronger than DZP with IV 

administration. The reason for causing this difference might be the relatively smoother change of 

PO DZP concentration since PO drug does not directly go into blood circulation while IV 

formulation does. 

According to the report in 2005,23 the toxic concentration of OXY is 690 ng/mL, which is 

much higher than the Cmax of the 30 mg OXY when taken together with 1000 mg DZP. Even 

though there is a report about taking DZP over 1000 mg,24 the dosage of 1000 mg still greatly 

exceeded the normal dose and lacked  clinical meaning. According to the literature, when the 

plasma concentration of the DZP was as high as 4792 ng/mL, patients were minimally sedated and 

were discharged within 24 h.25 To mimic this realistic case, in our model, we set the dosage of PO 

DZP as 200 mg and its maximal concentration was predicted as 4500 ng/mL. Then we used a full 

PBPK model to simulate DDI for co-administration of 30 mg OXY and 200 mg DZP. It was found 

that there was almost no PK interaction between these two drugs (AUC ratio = 1.08, Cmax ratio = 

1.06).    

 Similarly, we also investigated how PK profiles of DZP were affected by OXY. After 

changing the roles of OXY and DZP, the results of DDI between the two drugs were consistent 

with the previous findings. The AUC ratio of 10 mg DZP with the administration of 30 mg OXY 

is 1.01; even though the dosage of OXY was increased to 500 mg, the AUC ratio only changed 

slightly to 1.07. 

 We also studied how the different multiple-dosage regimens and long period of drug 

administration affect the PK-DDI between OXY and DZP. Our simulation result suggests that 

there is no or little PK-DDI between OXY and DZP under those circumstances. 

 Given the limitations of docking scoring function, such as the lack of structural flexibility 

of target protein, there is possibility that the estimated Ki, which calculated from the docking score, 

is not accurate enough. Hence to minimize the potential source of error, the additional sensitivity 

analysis for Ki was also conducted for the DDI model between OXY and PO DZP by changing the 

Ki value from 0.165 µM to 165 µM in order to find out the impact of Ki value on the simulation 

results.  A surface plot which depicts the change of the AUC ratio of OXY with the change of the 
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Ki value of the dosage of DZP was created (Figure S4). When concurrently taking 30 mg OXY 

and different dosages of DZP (from 10 mg to 1000 mg) with the Ki ranging from 0.165 µM - 165 

µM, the corresponding AUC ratio of DDI moved from 1.000 to 1.375, indicating the error of Ki 

does not have a significant influence on the prediction of DDI between these two drugs. Even 

though a relatively low Ki and a very high dosage of DZP (1000 mg) are considered, the exposure 

of OXY still shows no significant growth with the presence of DZP. The results imply that the PK 

interaction between OXY and DZP is very weak and has little clinical meaning, 

2.1.3 DDI simulation following mixed-type inhibition mechanism 

 Although it is believed that competitive inhibition is the inhibition type that most 

commonly happens between two substrates for the same enzyme, the interaction between CYP3A4 

substrates can always become more complicated, considering the inactivation of the enzyme in the 

realistic situation. Therefore, in this study, we combined the competitive inhibition with the 

mechanism-based inhibition in modeling the DDI of OXY and PO DZP. The concentration of the 

mechanism-based inhibitor associated with half-maximal inactivation rate (Kapp) and the 

inactivation rate of the enzyme (Kinact) is listed in Table S1. The detailed mechanisms of 

competitive and mechanism-based inhibitions have been described in the Methods Section. The 

comparison of the AUC ratio of OXY with different dosages of PO DZP under the competitive 

inhibition and mixed-type inhibition is displayed in Figure 4. In addition, the detailed AUC ratio 

of DDI profiles based on mixed-type inhibition is listed in Table 3. According to the results, the 

AUC and Cmax Ratios predicted by using the mixed-type inhibition mechanism are slightly higher 

than the competitive inhibition as discussed in 2.1.2. To conclude, the inhibitory effect of DZP is 

slightly stronger when applying a mixed-type inhibition mechanism to the DDI model of OXY 

and DZP, especially when DZP is overdosed. For example, the AUC ratio in the mixed-type 

inhibition model is 8.3% higher than the AUC ratio predicted by the simple competitive inhibition 

model. 

2.2 Pharmacodynamic DDI 

 To better investigate the PD DDI between OXY and DZP, we performed molecular 

docking and MD simulation sequentially for OXY and DZP as well as other typical opioid 

modulators (4VO, BF0, CVV, JDC) targeting to both the MOR and KOR.  

2.2.1 Molecular docking 
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To predict the binding affinity between ligands and receptors as well as the features of the 

binding sites of models, docking analysis was performed on several ligands, including opioid 

agonists (OXY, 4VO and CVV), opioid antagonists (BF0 and JDC), and DZP towards MOR and 

KOR. The docking results of opioids and DZP are summarized in Table 4. The docking 

performance of a ligand is considered to be better when the docking score is lower. As shown in 

Table 4, the docking results of opioids are reasonable, as native co-crystallized ligands all show 

better performance when binding to their own crystal receptors. In Table 4, among four co-

crystallized ligands, 4VO and CVV are the two agonists, while BF0 and JDC are the two 

antagonists. For an agonist, either 4VO or CVV, its docking score to the active receptor is always 

better than that of binding to the inactive receptor. While for an antagonist, the docking score 

binding to an inactive receptor is better than that of binding to an active one. Those docking results 

are very reasonable.  

As to OXY and DZP, both have comparable docking scores to either active/inactive MOR and 

KOR. The docking scores with active opioid receptors are slightly better than the corresponding 

inactive opioid receptors, suggesting OXY and DZP are more likely as agonists. However, the 

docking result of OXY is unexpected since it exhibits a worse docking score than that of JDC, an 

antagonist of KOR. Overall, the docking results of DZP are acceptable: it has a better docking 

score than OXY when binding to active MOR and a similar docking score to OXY when it binds 

to inactive KOR. From the docking results, we can preliminarily infer that DZP might be able to 

compete with OXY at the same binding pockets of the active MOR and KOR. Unfortunately, 

although the docking method is efficient, it is still not accurate enough since its performance only 

reflects the static binding situation and mainly depends on how well the binding pocket of the 

native ligand resembles the ones for OXY and DZP.  

2.2.2 Molecular dynamics simulation 

Unlike the docking method, MD simulations can reflect the dynamics of interaction 

between ligand and protein and can better mimic the realistic situation. To investigate the dynamics 

of ligand binding, MD simulations were also performed for these two systems: active/inactive 

MOR and active/inactive KOR in complex with opioids and DZP. The starting conformations of 

MOR/KOR in complex with ligands were selected from the best flexible docking poses. We 

adopted the statistic parameter, root-mean-square deviation (RMSD) to measure the fluctuation of 

a ligand and its receptor against the starting conformation of the simulation, which is either the 
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crystal structure if the ligand is the native ligand of the crystal structure or the best docking pose 

otherwise. The RMSD values as well as the fluctuation of RMSD curves were applied to measure 

the dynamic stability of a ligand binding. We calculated four types of RMSDs for different subsets 

of atoms, including the main chain atoms of the receptor (black curve, Type 1); the main chain 

atoms of the seven transmembrane domains (red curve, Type 2); the ligand with the consideration 

of all its movement and conformational changes (labeled as “Non-Fitting Ligand,” orange curve, 

Type 3); and the ligand after aligned to its initial conformation (labeled as “Fitting Ligand,” purple 

curve, Type 4). To calculate the Type 3 RMSDs, we first performed the least-square fitting for the 

7TM main chain atoms, then the resulting translation-rotation matrix was applied to the ligand and 

the RMSDs were calculated directly. The “Non-Fitting ligand” RMSDs not only measure the 

conformational changes of the ligand during the MD simulations, but also its translation and 

rotation movements inside the binding pocket. The time courses of those RMSDs are shown in 

Figure 5. The representative conformations aligned to the corresponding initial structures are 

shown in Figure 6.  

 For the MOR system, overall, the Type 1 and Type 2 RMSDs are lower than 3 Å, except 

for OXY, whose RMSDs are slightly larger than 3 Å when binding to the active MOR (Figures 

5A-H). As expected, all four types of RMSDs are very small and stable for 4VO binding to the 

active MOR, and the Type 3 RMSDs are much larger when 4VO is bound to the inactive MOR. 

Similarly, the observations for BF0, an antagonist of MOR are also reasonable (Figures 5B, 5F). 

For OXY, the two ligand RMSDs binding to active MOR are larger than when binding to inactive 

MOR. In contrast, DZP is much more stable when binding to the active MOR.   

 As for the KOR system, the Type 1 and 2 RMSDs are all lower than 3 Å and relatively 

stable. For CVV, the native ligand of the active KOR, the RMSD curves when binding to active 

KOR are lower and more stable than when binding to the inactive KOR. However, the 

corresponding RMSD curves are similar for JDC, an antagonist, when binding to either the active 

or inactive KOR. As to OXY, the corresponding RMSD curves are also similar when binding to 

active or inactive KOR. Unlike OXY, DZP demonstrates higher stability when binding to the 

active KOR than to inactive KOR. Particularly, the Type 3 RMSDs of DZP are larger than 5.0 Å 

when binding to inactive KOR, suggesting the docking-predicted pose may not be energetically 

favorable. This finding could be partially validated by an in vitro study in 2001, which explored 

the potential interactions of benzodiazepines with cloned human opioid receptor subtypes and 
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implied that three other benzodiazepines- midazolam, chlordiazepoxide, and diazepam- were 

agonists for KOR.26 More interestingly, as suggested by the RMSD curves of DZP bound to the 

inactive KOR, both the receptor and the ligand  underwent a larger fluctuation during the MD 

simulation and the ligand significantly drifted away from the initial docking binding pose (Figure 

5P). In contrast, the RMSD curves are more stable and RMSD values are much smaller for DZP 

bound to the active KOR, indicating a strong selectivity of DZP towards KOR. 

2.2.3 MM-PBSA-WSAS calculations 

 To further understand the PD-DDI between OXY and DZP, we conducted MM-PBSA-

WSAS free binding energy calculations. The calculated binding free energies and individual 

energy terms for MOR and KOR systems are shown in Table 5. Of note, the absolute binding 

affinities may be overestimated or underestimated by the MM-PBSA-WSAS method, and one 

should focus on the relative binding free energies. Encouragingly, the results of binding free 

energy calculations were consistent with the results of stability analysis on the MD trajectories, 

indicating the reliability of our binding free energy method. For the active MOR, DZP (-1.33±0.05 

kcal/mol) had a binding energy comparable to that of OXY (-1.19±0.11 kcal/mol); while for 

inactive MOR, OXY has apparently more potent binding affinity (-5.40 kcal/mol) than DZP (1.07 

kcal/mol). DZP had a much more potent binding than OXY to the active KOR, while OXY had a 

much more potent binding than DZP to the inactive KOR. Taken together, DZP is likely to 

selectively bind to active KOR as an agonist since its binding free energy is much lower (Gbind 

= -5.27 kcal/mol) than that of binding to the inactive KOR. Encouragingly, this result is consistent 

with the experimental findings by Cox and Collins,26 who pointed out that diazepam directly 

displaced displaced [(3)H]-diprenorphine binding from  and -opioid receptors, but not the  

receptor.  

 Although OXY has the best binding affinity to the inactive MOR, it is regarded as an 

agonist of opioid receptors.27 Comparing the binding affinities of OXY to the active opioid 

receptors, apparently, it can bind to the active MOR with a better binding affinity (Table 5); this 

observation agrees with the known fact that OXY is a μ-opioid receptor agonist.28, 29 Overall, our 

MM-PBSA-WSAS free energy results are reasonable. Irrespective of the kinetics of OXY and 

DZP binding to MOR or KOR, there is very likely a synergic effect when DZP is co-administered 

with OXY, as it binds to active KOR while OXY binds to active MOR. The detailed ligand-protein 

interactions are illustrated in Figure 7. It is shown that OXY forms one hydrogen bond with 
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histidine (HIS)-297 in active MOR, and two hydrogen bonds with lysine (LYS)-227 and aspartic 

acid (ASP)-138 in active KOR. On the other hand, DZP forms a Pi-Pi stacking interaction with 

tryptophan (TRP)-287 using its phenyl function group in active KOR system. However, no 

favorable interaction was identified between DZP and active MOR. In summary, there is a 

pharmacodynamic DDI between OXY and DZP.  

 2.3 Limitation and future work 

Even though the study has been well designed, there are still some limitations. For the PK-DDI 

study, first, we relied on molecular docking to predict the kinetic parameters for the mechanistic 

model. The docking method may not be an accurate tool to estimate binding affinities. More 

advanced molecular modeling techniques on endpoint free energy calculations30-32 will be applied 

to this project in the future. Second, clinical data for these two drugs are limited and in vivo 

experiments are needed in the future. Moreover, a metabolite of OXY, oxymorphone, an active 

metabolite which can produce a similar effect as OXY, was not included in our PBPK model.13 

 For the PD-DDI study, we performed MM-PBSA-WSAS analysis to calculate binding free 

energies. Although this endpoint method has gained its popularity recently,31-34 the performance 

of this method is overall inferior to the alchemical free energy-based methods, like free energy 

perturbation,35 thermodynamic integration (TI).36 In the future, we will apply thermodynamic 

integration method to study PD-DDIs between opioids and benzodiazepines.  Last, as most studies 

in the field of drug design, the kinetics of OXY and DZP binding to the opioid receptors was not 

taken into account to explore their synergic effect.   

 

Conclusion 

 In our study, we developed the PBPK model and conducted molecular modeling to study 

DDI between OXY and DZP pharmacokinetically and pharmacodynamically. Overall, there is no 

PK-DDI between the normal doses of OXY and DZP, but DDI can be expected to occur when 

DZP is highly overdosed. The inhibitory effect of oral administration of DZP on OXY is slightly 

stronger than that of IV administration. From the PBPK model, we predicted that the PK only 

contributes marginally to the DDI between the two drugs. In the PD-DDI study, we mainly 

explored the effect of DZP on two types of opioid receptors in both the active and inactive forms 

and found the PD-DDI is the major factor that causes the interaction between OXY and DZP.  
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Based on the results of molecular modeling study, DZP may exert a synergistic or additive effect 

on the opioid receptors when it is co-administered with OXY. In a conclusion, the DDI between 

OXY and DZP is mainly caused by pharmacodynamic interaction, but pharmacokinetic interaction 

also makes a contribution when one or both drugs are severely overdosed.   

 

4. Methods and Materials 

4.1 Pharmacokinetic DDI 

 For PK-DDI study, we applied PBPK modeling to investigate the possible DDI between 

OXY and DZP using the SimCYP software (Version 17 Release 1, Sheffield, UK). First of all, the 

whole body PBPK models for both OXY and DZP were separately constructed and the models 

were validated by using the experimental data.  Then, we developed a PBPK-based DDI model by 

including DZP as an inhibitor in the PBPK model of OXY.  DDI simulations were performed by 

using a virtual healthy population of 100 subjects with the defaults of system data. Drug data 

including the normal dose of OXY and DZP came from the literature or were predicted by SimCYP 

if not available. All the system-related parameters came from the SimCYP internal database. The 

details of all the parameters above are listed in the Supplemental Material.  

4.1.1 Inhibitory constant calculation 

 Since there is no experimental data of the Ki (inhibitory constant) value of OXY and DZP 

binding to their metabolic enzymes (such as CYP3A4), we performed molecular docking 

simulations to estimate the Ki values. The selected docking poses not only have the similar binding 

modes as that of the co-crystallized ligand, but also have the best docking scores.  Then the Ki 

values for a typical enzyme-catalyzed reaction (Eq. 1) were calculated by Eqs. 2-3.37   

𝑆
𝑘𝑓
↔
𝑘𝑟

𝐸𝑆
𝐾𝑐𝑎𝑡
↔  𝐸 + 𝑃   (1) 

 ∆𝐺0 = −𝑅𝑇𝑙𝑛𝐾𝑒𝑞 = −𝑅𝑇𝑙𝑛
𝑘𝑓

𝑘𝑟
   (2) 

     𝐾𝑖 =
[𝐸][𝐼]

[𝐸𝐼]
=
𝑘𝑟

𝑘𝑓
     (3)                            

Where kf is the forward reaction rate constant of E+S, kr is the reverse reaction constant describing 

rate of falling apart to E+S from ES (enzyme-substrate complex), and Kcat is the rate constant of 
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the irreversible reaction of generating product P from ES. Keq = kf / kr, is the equilibrium constant 

for the reversible reaction of forming ES.  ∆𝐺0, the binding free energy, can be estimated using 

the Glide docking score (kcal/mol) as Glide docking scoring function was trained to reproduce 

experimental binding free energies.38 

4.1.2 PBPK modeling.  

 A PBPK model consists of multiple compartments which represent different physiological 

organs of the human body. The blood circulation system links all of the compartments. Similar 

full PBPK models were built for both drugs, and the major difference between the models comes 

from the absorption processes. The absorption of OXY is described by the first-order absorption 

model, while the Advanced Dissolution, Absorption and Metabolism (ADAM) model was applied 

to describe the absorption process of diazepam. The ADAM model implemented in SimCYP 

considers the complicated process of drug absorption and interplays with the underlying 

physiological characteristics of the gastrointestinal (GI) tract.39, 40 The generic full PBPK model 

and ADAM model are shown in Figure S1.  

 The SimCYP Simulator was used in the development of PBPK models. The Simulator, 

which can link the in vitro experimental data to the in vivo absorption, distribution, metabolism 

and excretion (ADME) and PK/PD outcomes, is able to facilitate us to develop a dosing strategy 

and to inform product labeling. We chose the healthy volunteer population in the SimCYP database 

to predict the PK profiles of drugs. All of the PK parameters for the two drugs are summarized in 

Table S1.41-43 7, 8, 12, 13, 15, 44-50 The docking poses for OXY and DZP are shown in Figure S2. The 

docking scores and calculated Ki are listed in Table S2. We also conducted sensitivity analysis to 

investigate the impact of Ki values towards the DDI effect, utilizing the built-in sensitivity analysis 

function in SimCYP. 

 Besides competitive inhibition, mixed-type inhibition which includes both the competitive 

and mechanism-based inhibitions, was applied to predict the DDI between two drugs. Mechanism-

based inhibition occurs when a drug binds to the CYP enzyme fully or partially irreversible (e.g. 

forming covalent bonds), which inactivates the CYP enzyme and changes PK parameters, such as 

concentration of inactivator required for the half-maximal inactivation and inactivation rate of 

enzyme (kinact).
51 The schematic diagram of mechanism-based inhibition is exhibited by Eq. 4.37 

The kinact and kapp were evaluated by fitting and extrapolating Eq. 537, 52 which describes the 
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relationship between the observed inactivation rate constants (Kobs) and the concentration of the 

test inhibitor ([I]).                                  

                                                                                            

                                                                                                       (4) 

 

  𝐾𝑜𝑏𝑠 =
𝐾𝑖𝑛𝑎𝑐𝑡×[𝐼]

𝐾𝑎𝑝𝑝+[𝐼]
  (5) 

4.2 Pharmacodynamic DDI 

 For PD-DDI study, to determine if OXY and DZP have a synergistic or additive effect on 

the opioid receptor, we decided to investigate how strong DZP binds to µ- and -opioid receptors 

by utilizing molecular modeling techniques, including molecular docking and MD simulation and 

MM-PBSA-WSAS energy calculation. Agonist-bound µ- and -opioid receptors were obtained 

from the Protein Data Bank (http://www.rcsb.org). Molecular docking, MD simulation and MM-

PBSA-WSAS calculations were performed sequentially as described below. 

4.2.1 Molecular docking 

 Molecular docking was performed using the Glide module of the Schrodinger suite of 

software (Maestro, version 11.2) for the aforementioned receptors: active µ-opioid receptor (MOR) 

(PDB entry: 5C1M, co-crystallized agonist 4VO (BU72)) and inactive MOR (PDB entry: 4DKL, 

co-crystallized antagonist BF0 (-funaltrexamine)), active -opioid receptor (KOR) (PDB entry: 

6B73, co-crystallized agonist CVV (MP1104)) and inactive KOR (PDB entry: 4DJH, co-

crystallized antagonist JDC (JDTic)). For each receptor, the “Protein Preparation Wizard” was 

applied to prepare the receptor structure for the Glide docking including adding hydrogens, 

creating disulfide bonds, conducting restraint minimization, etc.  Glide grid was then generated 

with the default setting, such as, the van der Waals radius scaling factor is 1.0 and partial charge 

cutoff is 0.25. The grid site was automatically set to the central location of workspace ligand and 

its size was manually adjusted to match the size of co-crystallized ligand without any constraints 

or rotatable groups. In total, six ligands were selected for the docking studies: two co-crystallized 

ligands (4VO and BF0) of µ-opioid receptors (5C1M and 4DKL), two co-crystallized ligands 

(CVV and JDC) of -opioid receptors (6B73 and 4DJH), OXY and DZP. The 2D and 3D structures 

of the above six ligands are shown in Figure S3. To explore the pharmacological effects of 

𝑘𝑟  
E+S 

𝑘𝑓
↔ ES 

𝑘𝑐𝑎𝑡
ሱ   E+P 
𝑘𝑖𝑛𝑎𝑐𝑡  ↓ 

𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 Enzyme 

http://www.rcsb.org/
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metabolites, OM, TMZ and NDZ were also docked to opioid receptors (See 2.2.1 Molecular 

docking). Flexible ligand docking was finally performed with the default setting (the van der Waals 

radius scaling factor is 0.80, partial charge cutoff is 0.15 for ligands, no constraints, etc.) except 

that the “reward intramolecular hydrogen bonds” was turned on and the maximal poses per ligand 

was set to 10. In most situations, the best docking poses ranked by the Glide “Standard Precision” 

docking scoring function, are selected for the subsequent modeling studies. Sometimes, other top 

docking poses are selected if they can much better overlap with the conformation of co-crystallized 

ligands.   

4.2.2 Molecular dynamics simulation 

 The basic conformations of the membrane for the opioid receptor complex were built using 

CHARMM-GUI53 by adding 240 POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) 

lipid molecules. The complexes were immersed in a cuboid box with TIP3P water molecules54 in 

all three dimensions. A set of Na+ and Cl- ions were added to make a 0.15 M concentration of NaCl 

and to neutralize the whole system. In molecular mechanics (MM) minimizations and MD 

simulations, FF14SB55 and the General Amber force field (GAFF)56 were applied to describe the 

protein and ligand molecules, respectively. The atomic partial charges of ligands were derived by 

restrained electrostatic potential (RESP)57 to fit the HF/6-31G* electrostatic potentials generated 

using the Gaussian 16 software package.58 All the residue topologies of ligands were generated 

using the Antechamber module.59 

MD simulations were conducted using the PMEMD.mpi and PMEMD.cuda modules in the 

AMBER 16 package.60-62 At first, to dedicatedly remove possible steric clashes in the systems, 

five constrained energy minimizations were performed by applying a gradually reduced harmonic 

restraint force constants, from 20 to 10, 5, 1 and 0 kcal/mol/ Å2, to both the main chain residues of 

the protein and the ligand. Water and ions were always relaxed.  There are two phases for the 

subsequent constant pressure MD simulation stage: the equilibrium and sampling phases. For both 

phases, the desired temperature was set to 298.15 K. The pressure was controlled at 1atm with the 

relaxation time of 2 ps. The temperature was regulated by Langevin dynamics.63, 64 To constrain 

all hydrogen atoms, the SHAKE algorithm33 was applied. After the 20-ns equilibration phase, MD 

snapshots were collected every 250 ps for at least 160 ns.   

4.2.3 MM-PBSA-WSAS binding free energy calculation 
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 One of the most commonly used endpoint methods in free energy calculations is MM-

PBSA.31-33, 65-67 MD simulation is usually applied to capture the dynamics of the system and a set 

of conformations were collected for post-analyses, including the generation of representative 

conformation for demonstration, and the MM-PBSA-WSAS binding free energy calculations.68 In 

MM-PBSA calculation, the binding free energy (∆GMM-PBSA-WSAS) between a receptor and a ligand 

to form a complex is expressed in the following equation. 

∆𝐺𝑀𝑀−𝑃𝐵𝑆𝐴−𝑊𝑆𝐴𝑆 = ∆𝐻 − 𝑇∆𝑆 = ∆𝐸𝑣𝑑𝑤 + ∆𝐸𝑒𝑙𝑒 + ∆𝐺𝑝
𝑠𝑜𝑙 + ∆𝐺𝑛𝑝

𝑠𝑜𝑙 − 𝑇∆𝑆 (6) 

 Where ∆Evdw is the change of MM van der Waals energy, ∆Eele is the change of MM 

electrostatic energy, ∆𝐺𝑝
𝑠𝑜𝑙 is the polar solvation free energy, ∆𝐺𝑛𝑝

𝑠𝑜𝑙 is the nonpolar solvation free 

energy. -𝑇∆𝑆 is the change of conformational entropy, where T is the absolute temperature and ∆S 

is the change of entropy. It is noted that in Eq. 6, the contribution of internal bonded MM energy 

was cancelled out when using the “Single Trajectory” protocol.32 In this study, around 660 

snapshots were evenly selected for the binding free energy calculations. The Poisson Boltzmann 

calculation for the polar contribution of the solvation free energy was conducted by using Delphi 

98 software.65 The nonpolar contribution was estimated using solvent-accessible surface areas 

(SASA) with a surface tension coefficient of 0.00542 kcal/(mol·Å2) and an offset value of 0.92 

kcal/mol. For the estimation of entropic term, we used the weighted solvent accessible surface area 

(WSAS) method as described elsewhere.69  

 

5. Supporting Information 

The input parameters for OXY and DZP as well as their metabolites in PBPK models were 

listed in Table S1. The docking scores and calculated Ki for oxycodone and diazepam when 

binding to CYP3A4 were listed in Table S2. Figure S1 shows the structures of the PBPK model 

and ADAM model. Figure S2 shows the docking poses of OXY and DZP in CYP3A4. Figure S3 

shows the 2D and 3D structures of all ligands binding to opioid receptors. Figure S4 displays the 

variation of AUC ratio of OXY with a different dosage of DZP when Ki value is ranged from 0.165 

to 16.5 µM.  

 

6. Abbreviations 

Abbreviation Full name 
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DDI drug-drug interaction 

OXY oxycodone 

NOC noroxycodone 

OM oxymorphone 

DZP diazepam 

PK pharmacokinetic 

PD pharmacodynamic 

PBPK Physiologically-based Pharmacokinetic model 

MD molecular dynamics 

MM-PBSA molecular mechanics/Poisson Boltzmann 

surface area 

MOR µ-opioid receptor 

KOR -opioid receptor 

ED emergency department  

FDA Food and Drug Administration 

EMA European Medicines Agency 

BBB blood-brain-barrier 

SD standard deviations 

IV intravenous 

PO oral 

CT Concentration ~ Time 

AUC area under the curve 

AUC24h the drug exposure from time zero to 24 hours 

Cmax maximal concentration 

Tmax time of maximal concentration observed 

Ki inhibitory constant 

Kapp half-maximal inactivation rate 

Kinact inactivation rate of the enzyme 

RMSD root-mean-square deviation 

S substrate 
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ES enzyme-substrate complex 

E enzyme 

P product 

kf forward reaction rate constant 

kr reverse reaction constant 

Kcat Kcat is the rate constant of the irreversible 

reaction of generating product P from ES 

Keq equilibrium constant for the reversible reaction 

kinact inactivation rate of enzyme 

Kobs observed inactivation rate constants 

ADME absorption, distribution, metabolism and 

excretion 

ADAM Advanced Dissolution, Absorption and 

Metabolism 

GI gastrointestinal 

POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine 

GAFF General Amber force field 

RESP restrained electrostatic potential 
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Tables 

Table 1. The AUC, Cmax and Tmax of 30 mg PO OXY, 10 mg PO DZP and 1 mg/kg DZP. SD is 

standard deviation and all units are shown in parenthesis. a: Observed 1 and Observed 2 are the 

experimental data collected from Drugs.com (https://www.drugs.com). b, c: Observed data for PO 

and IV DZP are respectively obtained from two reports.70, 71 

Dosing Strategy 
 

AUC (SD) 

(ng∙h/mL) 

Cmax (SD) 

(ng/mL) 

Tmax (SD) 

(h) 

OXY PO 30 mg 

(0-24 h) 

Observed 1a 268.2 (60.7) 39.3 (14.0) 2.6 (3) 

Observed 2a 277.0 (89.6) 48.5 (15.9) 1.5 (NA) 

Predicted 311.83 (150.67) 38.0 (14.69) 1.2 (0.31) 

DZP PO 10 mg 

(0-12 h) 

Observedb 1530 (464.33) 317 (89.55) 1.32 (0.56) 

Predicted 1677.12 (434.66) 221.89 (51.5) 1.15 (0.35) 

DZP IV 0.1 mg/kg 

(0-24 h) 

Observedc 2198.5 (NA) NA NA 

Predicted 1932.46 (582.83) NA NA 

 

 

  

https://www.drugs.com/
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Table 2. The AUC ratio and Cmax ratio of the DDI profiles for PO OXY and 10 mg, 100 mg and 

500 mg and 1000 mg of PO/IV DZP. CI is the 95% Confidence Interval. AUC24h ratio is the 

exposure of AUC ratio from the time 0 to 24 hours.  

Dosing Strategy Formulation AUC24h 

ratio 

CI [5%,95%] Cmax 

ratio 

CI 

[5%,95%] 

OXY 30 mg + 

DZP 10mg 

PO 1.01 [1.00,1.01] 1.01 [1.00,1.01] 

IV 1.00 [1.00,1.01] 1.00 [1.00,1.00] 

OXY 30 mg + 

DZP 100mg 

PO 1.05 [1.03,1.07] 1.04 [1.02,1.06] 

IV 1.03 [1.02,1.05] 1.02 [1.01,1.04] 

OXY 30 mg + 

DZP 500mg 

PO 1.13 [1.09,1.19] 1.09 [1.06,1.14] 

IV 1.12 [1.07,1.17] 1.07 [1.04,1.12] 

OXY 30 mg + 

DZP 1000mg 

PO 1.20 [1.12,1.29] 1.12 [1.07,1.19] 

IV 1.18 [1.18,1.27] 1.10 [1.05,1.17] 
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Table 3. The AUC ratio and Cmax ratio of the DDI profiles for PO OXY and 10 mg, 100 mg, 500 

mg and 1000 mg of PO DZP when applying mixed-type inhibition to the DDI model. CI is the 

95% Confidence Interval. AUC24h ratio is the exposure of AUC ratio from the time 0 to 24 hours.  

Dosing Strategy AUC24h ratio CI [5%,95%] Cmax ratio CI [5%,95%] 

OXY 30 mg + DZP 10mg 1.01 [1.01,1.02] 1.01 [1.00,1.02] 

OXY 30 mg + DZP 100mg 1.07 [1.04,1.09] 1.04 [1.03,1.06] 

OXY 30 mg + DZP 500mg 1.21 [1.13,1.31] 1.10 [1.06,1.16] 

OXY 30 mg + DZP 1000mg 1.30 [1.17,1.48] 1.13 [1.07,1.22] 
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Table 4. The docking results (kcal/mol) for opioids and diazepam targeting to both the active 

and inactive X-ray structures of MOR and KOR. 

 OXY  DZP 4VO BF0 CVV JDC 

active MOR -6.38 -6.81 -9.47 -6.07 - - 

inactive MOR -5.93 -6.38 -5.42 -7.39 - - 

active KOR -7.20 -6.51 - - -7.47 -7.32 

inactive KOR -5.49 -5.50 - - -6.42 -8.68 
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Table 5. Calculated binding free energies (kcal/mol) and the individual energy terms for opioids 

and DZP using the MM-PBSA-WSAS method. 

Ligands ∆𝑬𝒗𝒅𝒘 ∆𝑬𝒆𝒍𝒆 ∆𝑮𝒑
𝒔𝒐𝒍 ∆𝑮𝒏𝒑

𝒔𝒐𝒍 𝑻∆𝑺 ∆𝑮𝑴𝑴−𝑷𝑩𝑺𝑨 

active MOR 

4VO -50.45±0.08 -5.75±0.01 35.59±0.11 -4.41±0.01 -22.05±0.04 -2.98±0.13 

BF0 -53.48±0.11 -14.88±0.37 53.08±0.45 -4.91±0.01 -23.34±0.02 3.15±0.18 

OXY -36.05±0.06 -4.43±0.49 22.52±0.55 -2.86±0.00 -19.62±0.02 -1.19±0.11 

DZP -33.51±0.06 -8.64±0.19 24.81±0.23 -2.88±0.00 -18.89±0.07 -1.33±0.05 

  inactive MOR 

4VO -41.34±0.03 -5.54±0.09 29.17±0.25 -3.81±0.00 -19.55±0.01 -1.97±0.21 

BF0 -45.60±0.16 -27.56±0.36 52.26±0.26 -4.00±0.01 -21.83±0.04 -3.06±0.28 

OXY -40.95±0.10 -15.44±0.07 33.55±0.10 -2.97±0.00 -20.41±0.02 -5.40±0.05 

DZP -39.33±0.16 -8.78±0.08 32.32±0.31 -2.84±0.00 -19.69±0.02 1.07±0.13 

  active KOR 

CVV -65.93±0.14 -20.98±0.21 58.27±0.07 -4.90±0.00 -26.76±0.01 -6.78±0.24 

JDC -59.00±0.21 -24.28±0.43 59.69±0.47 -5.51±0.00 -25.64±0.02 -3.46±0.22 

OXY -38.56±0.06 -9.43±0.16 30.69±0.25 -2.96±0.00 -19.92±0.04 -0.34±0.16 

DZP -36.84±0.12 0.18±0.14 18.49±0.06 -2.90±0.01 -19.30±0.03 -1.78±0.19 

  inactive KOR 

CVV -57.17±0.03 -22.40±0.21 61.26±0.31 -4.90±0.00 -24.88±0.04 1.66±0.46 

JDC -59.08±0.15 -29.80±0.22 67.32±0.48 -5.32±0.00 -26.63±0.03 -0.25±0.28 

OXY -38.73±0.08 -9.25±0.13 28.95±0.15 -2.95±0.00 -19.97±0.03 -2.01±0.29 

DZP -37.97±0.13 -15.50±0.09 39.58±0.12 -2.73±0.01 -20.12±0.04 3.49±0.09 
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