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Abstract

Opioids and benzodiazepines have complex drug-drug interactions (DDIs), which serve as
an important source of adverse drug effects. In this work, we predicted the DDI between
oxycodone (OXY) and diazepam (DZP) in the human body by applying in silico pharmacokinetic
(PK) and pharmacodynamic (PD) modeling and simulation. First, we studied the PK interaction
between OXY and DZP with a Physiologically-based Pharmacokinetic (PBPK) model. Second,
we applied molecular modeling techniques including molecular docking, molecular dynamics
(MD) simulation, and the molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) free
energy method to predict the PD-DDI between these two drugs. The PK interaction between OXY
and DZP predicted by the PBPK model was not obvious. No significant interaction was observed
between the two drugs at normal doses, though very high doses of DZP demonstrated a non-
negligible inhibitory effect on OXY metabolism. On the other hand, molecular modeling study
shows DZP has the potential to compete with OXY at the same binding pocket of the active -
opioid receptor (MOR) and k-opioid receptor (KOR). MD simulation and MM-PBSA calculation
results demonstrated that there is likely a synergetic effect between OXY and DZP binding to
opioid receptors, as OXY is likely to target the active MOR while DZP selectively binds to the
active KOR. Thus, pharmacokinetics contributes slightly to the DDI between OXY and DZP
although an overdose of DZP has been brought to attention. Pharmacodynamics is likely to play
a more important role than pharmacokinetics in revealing the mechanism of DDI between OXY

and DZP.
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1. Introduction

Prescription drug abuse and overdose is a growing problem in the United States. The
number of deaths per year due to drug overdose increased dramatically. For example, the number
increased about 23%, from 38,329 to 47,055 between 2010 and 2014.! Although overdose deaths
are largely assumed to be the result of excessive opioid administration alone, the percentage of
overdose deaths involving at least one specific drug ranged from 67% in 2010 to 78% in 2014,
suggesting opioid abusers are often polydrug abusers.! Benzodiazepines are also one of the most
commonly co-administered drugs and are often prescribed for patients with anxiety disorders,
muscle spasms and major depression.? From 2004 to 2011, the rate of nonmedical use-related
emergency department (ED) visits for benzodiazepines-opioid co-ingestion increased from 11.0 to
34.2 per 100,000 population, while the prevalence of overdose death involving both drugs
increased from 0.6 to 1.7 per 100,000 population.> Thus, serious risks are associated with the
combined use of opioids and benzodiazepines. The Food and Drug Administration of United States
added Boxed Warnings to the drug labeling of prescription opioids and benzodiazepines in 2016.
It is believed that opioids and benzodiazepines have complex drug-drug interactions (DDIs), which
serve as an important and potentially preventable source of adverse drug effects and overdose
death. However, there is still much unknown about how these two types of drugs are interacting

with each other.*

Oxycodone (6-deoxy-7,8-dehydro-14-hydroxy-3-O-methyl-6-oxymorphine), also known
as Percocet and Oxycontin, is an opioid drug which acts as an agonist of - and k-opioid receptors.>
61t is often used as a reliever of moderate to severe pain for its effect similar to morphine as well
as its high bioavailability (60%) with different formulations, such as oral (most common),
intramuscular, intravenous and subcutaneous administration.” Oxycodone (OXY) primarily
undergoes CYP3A4-mediated N-demethylation to form noroxycodone (NOC) as well as
CYP2D6-mediated O-demethylation to form oxymorphone (OM). Both NOC and OM can be
further converted into noroxymorphone (NOM).® Only a very small amount of oxycodone is
metabolized by UDP-glucuronosyltransferases through conjugation.” The detailed metabolic

scheme of oxycodone is presented in the left panel of Figure 1.

Diazepam (DZP) is a long-acting benzodiazepine with its brand name Valium. It is one of

the most frequently prescribed benzodiazepine and is widely accepted and used by people for the



treatment of anxiety, muscle spasms, seizures, trouble sleeping, etc.! DZP has a calming effect
and it can be administered by oral, rectal, intramuscular and intravenous injection. The overdose
effects of taking DZP alone are drowsiness, mental confusion and coma. Concurrent use of
diazepam and other drugs like alcohol and opiates may be fatal.!! DZP is mainly metabolized in
the liver by cytochrome P450-mediated reactions (Figure 1). DZP undergoes CYP3A4 and
CYP2C19-mediated bioactivation to yield nordazepam (N-demethylation) (NDZ) and temazepam
(3-hydroxylation) (TMZ), respectively. Both metabolites can be further converted to oxazepam.'?
Generally, CYP2C19 contributes majorly to the N-demethylation while CYP3A4 makes its main
contribution to the 3-hydroxylation. The bioavailability of DZP is larger than 90% and its plasma
protein binding fraction is also very high (approximately 97%).!*> Compared to OXY (3-5 hours),
DZP has a much longer half-life (30-56 hours), which is explained by the low hepatic extraction

ratio and more extensive tissue distribution of unbound fraction.'> 4

Basically, DDIs can be broadly categorized into pharmacokinetic drug-drug interaction
(PK-DDI) and pharmacodynamic drug-drug interaction (PD-DDI). For the former, the DDI arises
since CYP3A4 is the common major player in metabolism pathways of both OXY and DZP.
Indeed, DZP has also been reported as the inhibitor of CYP3A4 in some in vitro studies.!> !° In
our previous work, we have utilized Physiologically-based Pharmacokinetic Modeling (PBPK)
models to study DDIs between a series of opioids and benzodiazepines.!” In this work, we attempt
to further study if DZP, which is suggested to be served as an inhibitor of CYP3A4, could alter the
pharmacokinetic (PK) profile of OXY in vivo when co-administering with DZP by taking more
inhibition mechanisms as well as more types of formulations into consideration. Another source
of interaction between OXY and DZP comes from pharmacodynamic interactions, i.e. there is a
synergic or additive effect for the two drugs acting on their drug targets. It is believed that people
may concomitantly take opioids and benzodiazepines to increase the p agonist effects of opioids.
Indeed, some preclinical evidence shows some effects of benzodiazepines like analgesic and
anxiolytic are partially mediated by opioidergic mechanisms, even though some contrasting data
in terms of the evidence was also reported.'® Also, it is reported that 72 % of patients who use
methadone are also DZP users simultaneously, indicating that DZP can enhance the drug effects
of methadone.!” Hence in this work, we attempt to study if DZP has a positive synergistic effect

with OXY by also interacting with the opioid receptors.



Since the DDI studies of the two types of drugs in human subjects are limited, alternative
methods for evaluating DDIs at toxic levels in humans are needed. In this work, we attempt to
address this problem from both the pharmacokinetic (PK) and pharmacodynamic (PD)
perspectives. First, we quantitatively simulated the PK profiles of OXY and DZP by utilizing the
PBPK modeling method; we then used hierarchical molecular modeling techniques including
molecular docking, molecular dynamics (MD) simulation and molecular mechanics/Poisson
Boltzmann surface area-WSAS (MM-PBSA-WSAS) binding free energy calculations to predict
the PD interaction between these two drugs. Lastly, we discussed the relative contribution of PK
and PD to the DDI between OXY and DZP by analyzing the simulations results at both the normal

and overdosed scenarios.

2. Results and Discussion

In this study, we investigated DDI between OXY and DZP by applying in silico computational
approaches pharmacokinetically and pharmacodynamically. To the best of our knowledge, this is
the first time PBPK modeling and molecular modeling techniques have been applied in the DDI
exploration. We first established a PBPK model by utilizing SimCYP to predict the DDI between
OXY and DZP. As a result, DZP has a limited effect on OXY's metabolism and only a severe high
dose of DZP can exert a minor inhibitory effect on OXY. Then we moved on to PD interaction
between these two drugs by investigating the pharmacological effect of DZP on the two types of
opioid receptors. The molecular modeling study shows that DZP has the potential to compete with
OXY at the same binding pocket of the active MOR and KOR. Interestingly, MD simulation and
MM-PBSA-WSAS calculation results demonstrated that DZP is able to bind stably with active
KOR and has selectivity for KOR. We concluded that pharmacodynamics is likely to contribute
mostly to the DDI between OXY and DZP, and there is a synergistic or additive effect when DZP

is taken with OXY simultaneously.

2.1 Pharmacokinetic DDI

PBPK modeling has been increasingly used for the prediction of DDIs recently, especially for the
prediction of CYP-mediated DDIs.?® PBPK modeling utilizes in vitro drug data (e.g. intrinsic
clearance and bioavailability) describing a drug’s ADME properties and utilizes system data
depicting the physiological properties of human subjects in a population, to explore the in vivo

pharmacokinetics of drugs and DDIs scenarios. The PBPK approach has been valued by the US
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Food and Drug Administration (FDA) and the European Medicines Agency (EMA) through the
guidelines for DDIs in 2012 and 2013.2! Moreover, PBPK modeling currently receives high
attention in the drug development and drug discovery process. A full PBPK model is probably the
most complicated PK model existing currently, which consists of different organs in the human
body linked by blood circulation. A PBPK model is different from the empirical PK model and
has multiple compartments being included. As a result, DDI modeling and simulation based on a
PBPK model are closer to the real situation than that of an empirical PK model. In this study, the
transporter-mediated DDI was not considered in our model because there is limited clinical
evidence that shows transporters, such as those found in the blood-brain-barrier (BBB), cause
significant interactions between the two types of drugs. We also did not include the inhibitory
abilities of metabolites given the fact that the concentration of metabolites of DZP is only
approximately one-tenth of the concentration of the parent drug. Since both drugs go through the
metabolic pathway by CYP3A4, and the docking results showed that DZP had better binding
affinity than OXY when binding to CYP3A4, we mainly studied the effect of DZP on OXY.
2.1.1 Validation of PBPK models for OXY and DZP

First, we validated the PBPK models of OXY and DZP by creating models and generating
PK profiles for them individually. We collected experimental data of plasma Concentration ~ Time
(CT) curves for these two drugs from the literature, and the data were used to verify our models.
The ADME profiles for OXY and DZP as well as their metabolites were predicted by using
SimCYP software and are listed in Table S1. Some of the PK parameters were collected from the
literature, while others came from SimCYP internal databases, still others were predicted by
SimCYP calculators. Then we created an oral (PO) model for 30 mg OXY, an intravenous (IV)
model for 0.1 mg/kg DZP and a PO model for 10 mg DZP according to the recommended dosages
of the two drugs. In the PO OXY model, the absorption was described as a first order process,
while in the PO DZP model, the procedure was described by the ADAM absorption model
implemented in the SimCYP software. For the IV DZP model, DZP was modeled to enter the
systemic circulation by venous blood vessels. Experimental PK data obtained from the literature
which included area under the curve (AUC), maximal concentration (Cmax) and time of maximal
concentration observed (Tmax) were used to verify our PBPK models. Last, we compared how

different formulations affected how DZP interacted with OXY.



The observed and predicted PK data are listed in Table 1. The Cnax and Tmax of DZP are
missing due to the limitation of existing experimental studies. The CT curves for OXY and DZP
are depicted in Figure 2. From the Table 1 and Figure 2, we can see that all the predicted AUC,
Cmax and Tmax of OXY and DZP were within the ranges of their observed data (within the standard
deviations (SD)). All the CT curves ranged from 0 to 24 hours except for PO DZP, for which our
predicted CT data of PO DZP was only limited to 12 hours for the sake of comparison.

2.1.2 DDI simulation following competitive inhibition mechanism

Since the interaction between two different substrates with the same enzyme is commonly
considered as competitive inhibition,?? we first hypothesized that DZP is a competitive inhibitor
of CYP3A4 and can inhibit the metabolism of OXY which is predominately metabolized by
CYP3A4. Hence in our PBPK models, OXY served as the substrate while DZP served as the
inhibitor. We estimated the inhibitory constant, K; value, by using the Glide docking score, because
currently there is no available experimental K; value for the two drugs binding to the cytochromes
P450 enzymes. The K; parameter of DZP was calculated by Eq. 2 and other input parameters are
listed in Table S1. DDI models for OXY and PO/IV DZP were built using the calculated K; in
addition to the other PK parameters (Table S2). To better compare the DDI effect between OXY
and DZP, we adjusted the dosage of DZP from normal to overdose. The AUC of the substrate was
then compared between substrate and substrate-inhibitor profiles to investigate the DDI between
these two drugs. The simulated concentration profiles of 30 mg OXY co-administered with
different doses of PO DZP are shown in Figure 3. The predicted AUC Ratios and Cmax Ratios of
the DDI profiles with and without the presence of DZP are shown in Table 2.

As shown in Figure 3, the OXY concentration raise can only be remarkably observed when
the dosage of PO DZP reaches to 1000 mg. The plasma concentration of OXY increases as the
administrated dosage of PO DZP increases, but the difference is not obvious for low doses of PO
DZP. Correspondingly, both of the AUC24n (the drug exposure from time zero to 24 hours) ratio
and Cnmax ratio are 1.01 with the co-treatment of 30 mg PO OXY and10 mg of PO DZP. The AUC
ratio increases by 4.0% when the dose of PO DZP increases to 10 times of the normal dose. Only
when the dose of PO DZP was increased to 1000 mg can the simulated interaction between OXY
and PO DZP result in a growth of AUC of OXY by 1.20 folds, which is a commonly used threshold
to determine whether two drugs have a DDI or not. The Cimax of OXY increased to 1.12 folds when
the dosage of PO DZP was 1000 mg. Accordingly, 1000 mg IV DZP exhibited a similar but weaker



PK effect compared to the simulation result of PO formulation. The comparison of AUC Ratio for
OXY with different formulations of DZP is shown in Figure 4. The AUC ratio of OXY with PO
DZP is a little bit higher than with the same dosage of IV DZP as suggested by Figure 4. As a
result, the inhibitory ability of oral administration of DZP is slightly stronger than DZP with IV
administration. The reason for causing this difference might be the relatively smoother change of
PO DZP concentration since PO drug does not directly go into blood circulation while IV
formulation does.

According to the report in 2005,2 the toxic concentration of OXY is 690 ng/mL, which is
much higher than the Cmax of the 30 mg OXY when taken together with 1000 mg DZP. Even
though there is a report about taking DZP over 1000 mg,?* the dosage of 1000 mg still greatly
exceeded the normal dose and lacked clinical meaning. According to the literature, when the
plasma concentration of the DZP was as high as 4792 ng/mL, patients were minimally sedated and
were discharged within 24 h.?* To mimic this realistic case, in our model, we set the dosage of PO
DZP as 200 mg and its maximal concentration was predicted as 4500 ng/mL. Then we used a full
PBPK model to simulate DDI for co-administration of 30 mg OXY and 200 mg DZP. It was found
that there was almost no PK interaction between these two drugs (AUC ratio = 1.08, Cax ratio =
1.06).

Similarly, we also investigated how PK profiles of DZP were affected by OXY. After
changing the roles of OXY and DZP, the results of DDI between the two drugs were consistent
with the previous findings. The AUC ratio of 10 mg DZP with the administration of 30 mg OXY
is 1.01; even though the dosage of OXY was increased to 500 mg, the AUC ratio only changed
slightly to 1.07.

We also studied how the different multiple-dosage regimens and long period of drug
administration affect the PK-DDI between OXY and DZP. Our simulation result suggests that
there is no or little PK-DDI between OXY and DZP under those circumstances.

Given the limitations of docking scoring function, such as the lack of structural flexibility
of target protein, there is possibility that the estimated K;, which calculated from the docking score,
is not accurate enough. Hence to minimize the potential source of error, the additional sensitivity
analysis for K; was also conducted for the DDI model between OXY and PO DZP by changing the
Ki value from 0.165 uM to 165 uM in order to find out the impact of K; value on the simulation
results. A surface plot which depicts the change of the AUC ratio of OXY with the change of the



K; value of the dosage of DZP was created (Figure S4). When concurrently taking 30 mg OXY
and different dosages of DZP (from 10 mg to 1000 mg) with the K; ranging from 0.165 uM - 165
uM, the corresponding AUC ratio of DDI moved from 1.000 to 1.375, indicating the error of K;
does not have a significant influence on the prediction of DDI between these two drugs. Even
though a relatively low K; and a very high dosage of DZP (1000 mg) are considered, the exposure
of OXY still shows no significant growth with the presence of DZP. The results imply that the PK

interaction between OXY and DZP is very weak and has little clinical meaning,

2.1.3 DDI simulation following mixed-type inhibition mechanism

Although it is believed that competitive inhibition is the inhibition type that most
commonly happens between two substrates for the same enzyme, the interaction between CYP3A4
substrates can always become more complicated, considering the inactivation of the enzyme in the
realistic situation. Therefore, in this study, we combined the competitive inhibition with the
mechanism-based inhibition in modeling the DDI of OXY and PO DZP. The concentration of the
mechanism-based inhibitor associated with half-maximal inactivation rate (K.,,) and the
inactivation rate of the enzyme (Kinc) is listed in Table S1. The detailed mechanisms of
competitive and mechanism-based inhibitions have been described in the Methods Section. The
comparison of the AUC ratio of OXY with different dosages of PO DZP under the competitive
inhibition and mixed-type inhibition is displayed in Figure 4. In addition, the detailed AUC ratio
of DDI profiles based on mixed-type inhibition is listed in Table 3. According to the results, the
AUC and Cuax Ratios predicted by using the mixed-type inhibition mechanism are slightly higher
than the competitive inhibition as discussed in 2.1.2. To conclude, the inhibitory effect of DZP is
slightly stronger when applying a mixed-type inhibition mechanism to the DDI model of OXY
and DZP, especially when DZP is overdosed. For example, the AUC ratio in the mixed-type
inhibition model is 8.3% higher than the AUC ratio predicted by the simple competitive inhibition
model.
2.2 Pharmacodynamic DDI

To better investigate the PD DDI between OXY and DZP, we performed molecular
docking and MD simulation sequentially for OXY and DZP as well as other typical opioid
modulators (4VO, BF0, CVV, JDC) targeting to both the MOR and KOR.

2.2.1 Molecular docking



To predict the binding affinity between ligands and receptors as well as the features of the
binding sites of models, docking analysis was performed on several ligands, including opioid
agonists (OXY, 4VO and CVV), opioid antagonists (BF0 and JDC), and DZP towards MOR and
KOR. The docking results of opioids and DZP are summarized in Table 4. The docking
performance of a ligand is considered to be better when the docking score is lower. As shown in
Table 4, the docking results of opioids are reasonable, as native co-crystallized ligands all show
better performance when binding to their own crystal receptors. In Table 4, among four co-
crystallized ligands, 4VO and CVV are the two agonists, while BFO and JDC are the two
antagonists. For an agonist, either 4VO or CVV, its docking score to the active receptor is always
better than that of binding to the inactive receptor. While for an antagonist, the docking score
binding to an inactive receptor is better than that of binding to an active one. Those docking results
are very reasonable.

As to OXY and DZP, both have comparable docking scores to either active/inactive MOR and
KOR. The docking scores with active opioid receptors are slightly better than the corresponding
inactive opioid receptors, suggesting OXY and DZP are more likely as agonists. However, the
docking result of OXY is unexpected since it exhibits a worse docking score than that of JDC, an
antagonist of KOR. Overall, the docking results of DZP are acceptable: it has a better docking
score than OXY when binding to active MOR and a similar docking score to OXY when it binds
to inactive KOR. From the docking results, we can preliminarily infer that DZP might be able to
compete with OXY at the same binding pockets of the active MOR and KOR. Unfortunately,
although the docking method is efficient, it is still not accurate enough since its performance only
reflects the static binding situation and mainly depends on how well the binding pocket of the

native ligand resembles the ones for OXY and DZP.

2.2.2 Molecular dynamics simulation

Unlike the docking method, MD simulations can reflect the dynamics of interaction
between ligand and protein and can better mimic the realistic situation. To investigate the dynamics
of ligand binding, MD simulations were also performed for these two systems: active/inactive
MOR and active/inactive KOR in complex with opioids and DZP. The starting conformations of
MOR/KOR in complex with ligands were selected from the best flexible docking poses. We
adopted the statistic parameter, root-mean-square deviation (RMSD) to measure the fluctuation of

a ligand and its receptor against the starting conformation of the simulation, which is either the
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crystal structure if the ligand is the native ligand of the crystal structure or the best docking pose
otherwise. The RMSD values as well as the fluctuation of RMSD curves were applied to measure
the dynamic stability of a ligand binding. We calculated four types of RMSDs for different subsets
of atoms, including the main chain atoms of the receptor (black curve, Type 1); the main chain
atoms of the seven transmembrane domains (red curve, Type 2); the ligand with the consideration
of all its movement and conformational changes (labeled as “Non-Fitting Ligand,” orange curve,
Type 3); and the ligand after aligned to its initial conformation (labeled as “Fitting Ligand,” purple
curve, Type 4). To calculate the Type 3 RMSDs, we first performed the least-square fitting for the
7TM main chain atoms, then the resulting translation-rotation matrix was applied to the ligand and
the RMSDs were calculated directly. The “Non-Fitting ligand” RMSDs not only measure the
conformational changes of the ligand during the MD simulations, but also its translation and
rotation movements inside the binding pocket. The time courses of those RMSDs are shown in
Figure 5. The representative conformations aligned to the corresponding initial structures are
shown in Figure 6.

For the MOR system, overall, the Type 1 and Type 2 RMSDs are lower than 3 A, except
for OXY, whose RMSDs are slightly larger than 3 A when binding to the active MOR (Figures
5A-H). As expected, all four types of RMSDs are very small and stable for 4VO binding to the
active MOR, and the Type 3 RMSDs are much larger when 4VO is bound to the inactive MOR.
Similarly, the observations for BF0, an antagonist of MOR are also reasonable (Figures 5B, 5F).
For OXY, the two ligand RMSDs binding to active MOR are larger than when binding to inactive
MOR. In contrast, DZP is much more stable when binding to the active MOR.

As for the KOR system, the Type 1 and 2 RMSDs are all lower than 3 A and relatively
stable. For CVV, the native ligand of the active KOR, the RMSD curves when binding to active
KOR are lower and more stable than when binding to the inactive KOR. However, the
corresponding RMSD curves are similar for JDC, an antagonist, when binding to either the active
or inactive KOR. As to OXY, the corresponding RMSD curves are also similar when binding to
active or inactive KOR. Unlike OXY, DZP demonstrates higher stability when binding to the
active KOR than to inactive KOR. Particularly, the Type 3 RMSDs of DZP are larger than 5.0 A
when binding to inactive KOR, suggesting the docking-predicted pose may not be energetically
favorable. This finding could be partially validated by an in vitro study in 2001, which explored

the potential interactions of benzodiazepines with cloned human opioid receptor subtypes and

11



implied that three other benzodiazepines- midazolam, chlordiazepoxide, and diazepam- were
agonists for KOR.?® More interestingly, as suggested by the RMSD curves of DZP bound to the
inactive KOR, both the receptor and the ligand underwent a larger fluctuation during the MD
simulation and the ligand significantly drifted away from the initial docking binding pose (Figure
5P). In contrast, the RMSD curves are more stable and RMSD values are much smaller for DZP
bound to the active KOR, indicating a strong selectivity of DZP towards KOR.

2.2.3 MM-PBSA-WSAS calculations

To further understand the PD-DDI between OXY and DZP, we conducted MM-PBSA-
WSAS free binding energy calculations. The calculated binding free energies and individual
energy terms for MOR and KOR systems are shown in Table 5. Of note, the absolute binding
affinities may be overestimated or underestimated by the MM-PBSA-WSAS method, and one
should focus on the relative binding free energies. Encouragingly, the results of binding free
energy calculations were consistent with the results of stability analysis on the MD trajectories,
indicating the reliability of our binding free energy method. For the active MOR, DZP (-1.334+0.05
kcal/mol) had a binding energy comparable to that of OXY (-1.1940.11 kcal/mol); while for
inactive MOR, OXY has apparently more potent binding affinity (-5.40 kcal/mol) than DZP (1.07
kcal/mol). DZP had a much more potent binding than OXY to the active KOR, while OXY had a
much more potent binding than DZP to the inactive KOR. Taken together, DZP is likely to
selectively bind to active KOR as an agonist since its binding free energy is much lower (AAGpind
= -5.27 kcal/mol) than that of binding to the inactive KOR. Encouragingly, this result is consistent
with the experimental findings by Cox and Collins,?® who pointed out that diazepam directly
displaced displaced [(3)H]-diprenorphine binding from x and &-opioid receptors, but not the p
receptor.

Although OXY has the best binding affinity to the inactive MOR, it is regarded as an
agonist of opioid receptors.”’” Comparing the binding affinities of OXY to the active opioid
receptors, apparently, it can bind to the active MOR with a better binding affinity (Table 5); this
observation agrees with the known fact that OXY is a p-opioid receptor agonist.?® 2 Overall, our
MM-PBSA-WSAS free energy results are reasonable. Irrespective of the kinetics of OXY and
DZP binding to MOR or KOR, there is very likely a synergic effect when DZP is co-administered
with OXY, as it binds to active KOR while OXY binds to active MOR. The detailed ligand-protein

interactions are illustrated in Figure 7. It is shown that OXY forms one hydrogen bond with
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histidine (HIS)-297 in active MOR, and two hydrogen bonds with lysine (LY S)-227 and aspartic
acid (ASP)-138 in active KOR. On the other hand, DZP forms a Pi-Pi stacking interaction with
tryptophan (TRP)-287 using its phenyl function group in active KOR system. However, no
favorable interaction was identified between DZP and active MOR. In summary, there is a

pharmacodynamic DDI between OXY and DZP.
2.3 Limitation and future work

Even though the study has been well designed, there are still some limitations. For the PK-DDI
study, first, we relied on molecular docking to predict the kinetic parameters for the mechanistic
model. The docking method may not be an accurate tool to estimate binding affinities. More

advanced molecular modeling techniques on endpoint free energy calculations>°*

will be applied
to this project in the future. Second, clinical data for these two drugs are limited and in vivo
experiments are needed in the future. Moreover, a metabolite of OXY, oxymorphone, an active
metabolite which can produce a similar effect as OXY, was not included in our PBPK model."

For the PD-DDI study, we performed MM-PBSA-WSAS analysis to calculate binding free
energies. Although this endpoint method has gained its popularity recently,’!** the performance
of this method is overall inferior to the alchemical free energy-based methods, like free energy
perturbation,® thermodynamic integration (TI).’® In the future, we will apply thermodynamic
integration method to study PD-DDIs between opioids and benzodiazepines. Last, as most studies

in the field of drug design, the kinetics of OXY and DZP binding to the opioid receptors was not

taken into account to explore their synergic effect.

Conclusion

In our study, we developed the PBPK model and conducted molecular modeling to study
DDI between OXY and DZP pharmacokinetically and pharmacodynamically. Overall, there is no
PK-DDI between the normal doses of OXY and DZP, but DDI can be expected to occur when
DZP is highly overdosed. The inhibitory effect of oral administration of DZP on OXY is slightly
stronger than that of IV administration. From the PBPK model, we predicted that the PK only
contributes marginally to the DDI between the two drugs. In the PD-DDI study, we mainly
explored the effect of DZP on two types of opioid receptors in both the active and inactive forms

and found the PD-DDI is the major factor that causes the interaction between OXY and DZP.
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Based on the results of molecular modeling study, DZP may exert a synergistic or additive effect
on the opioid receptors when it is co-administered with OXY. In a conclusion, the DDI between
OXY and DZP is mainly caused by pharmacodynamic interaction, but pharmacokinetic interaction

also makes a contribution when one or both drugs are severely overdosed.

4. Methods and Materials

4.1 Pharmacokinetic DDI

For PK-DDI study, we applied PBPK modeling to investigate the possible DDI between
OXY and DZP using the SImCYP software (Version 17 Release 1, Sheffield, UK). First of all, the
whole body PBPK models for both OXY and DZP were separately constructed and the models
were validated by using the experimental data. Then, we developed a PBPK-based DDI model by
including DZP as an inhibitor in the PBPK model of OXY. DDI simulations were performed by
using a virtual healthy population of 100 subjects with the defaults of system data. Drug data
including the normal dose of OXY and DZP came from the literature or were predicted by SImCYP
if not available. All the system-related parameters came from the SImCYP internal database. The
details of all the parameters above are listed in the Supplemental Material.
4.1.1 Inhibitory constant calculation

Since there is no experimental data of the K; (inhibitory constant) value of OXY and DZP
binding to their metabolic enzymes (such as CYP3A4), we performed molecular docking
simulations to estimate the K; values. The selected docking poses not only have the similar binding
modes as that of the co-crystallized ligand, but also have the best docking scores. Then the K;

values for a typical enzyme-catalyzed reaction (Eq. 1) were calculated by Eqgs. 2-3.%

kf Keat
SeES—E+P (1)
k,

AG°=—RTMKW==—RTME£(H

B _ Ky
K; = [EIl ks (3)

Where kris the forward reaction rate constant of £+, & is the reverse reaction constant describing

rate of falling apart to £+S from ES (enzyme-substrate complex), and K. is the rate constant of
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the irreversible reaction of generating product P from ES. K., = &7/ k., 1s the equilibrium constant
for the reversible reaction of forming ES. AG?, the binding free energy, can be estimated using
the Glide docking score (kcal/mol) as Glide docking scoring function was trained to reproduce
experimental binding free energies.®

4.1.2 PBPK modeling.

A PBPK model consists of multiple compartments which represent different physiological
organs of the human body. The blood circulation system links all of the compartments. Similar
full PBPK models were built for both drugs, and the major difference between the models comes
from the absorption processes. The absorption of OXY is described by the first-order absorption
model, while the Advanced Dissolution, Absorption and Metabolism (ADAM) model was applied
to describe the absorption process of diazepam. The ADAM model implemented in SImCYP
considers the complicated process of drug absorption and interplays with the underlying
physiological characteristics of the gastrointestinal (GI) tract.**** The generic full PBPK model
and ADAM model are shown in Figure S1.

The SimCYP Simulator was used in the development of PBPK models. The Simulator,
which can link the in vitro experimental data to the in vivo absorption, distribution, metabolism
and excretion (ADME) and PK/PD outcomes, is able to facilitate us to develop a dosing strategy
and to inform product labeling. We chose the healthy volunteer population in the SImCYP database
to predict the PK profiles of drugs. All of the PK parameters for the two drugs are summarized in
Table S1.41-43 7.8, 12.13.15.44-50 The docking poses for OXY and DZP are shown in Figure S2. The
docking scores and calculated K; are listed in Table S2. We also conducted sensitivity analysis to
investigate the impact of K; values towards the DDI effect, utilizing the built-in sensitivity analysis

function in SImCYP.

Besides competitive inhibition, mixed-type inhibition which includes both the competitive
and mechanism-based inhibitions, was applied to predict the DDI between two drugs. Mechanism-
based inhibition occurs when a drug binds to the CYP enzyme fully or partially irreversible (e.g.
forming covalent bonds), which inactivates the CYP enzyme and changes PK parameters, such as
concentration of inactivator required for the half-maximal inactivation and inactivation rate of
enzyme (Kinacr).”! The schematic diagram of mechanism-based inhibition is exhibited by Eq. 4.3’

The Kinaer and kqpp were evaluated by fitting and extrapolating Eq. 5°7 52 which describes the
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relationship between the observed inactivation rate constants (K,»s) and the concentration of the

test inhibitor (/1]).

kf Kcat
E+S < ES— E+P
kr l kinact (4)

Inactivated Enzyme

_ KingeeX[1]
Kobs - Kapp+[1] (5)

4.2 Pharmacodynamic DDI

For PD-DDI study, to determine if OXY and DZP have a synergistic or additive effect on
the opioid receptor, we decided to investigate how strong DZP binds to p- and k-opioid receptors
by utilizing molecular modeling techniques, including molecular docking and MD simulation and
MM-PBSA-WSAS energy calculation. Agonist-bound p- and k-opioid receptors were obtained
from the Protein Data Bank (http://www.rcsb.org). Molecular docking, MD simulation and MM-

PBSA-WSAS calculations were performed sequentially as described below.
4.2.1 Molecular docking

Molecular docking was performed using the Glide module of the Schrodinger suite of
software (Maestro, version 11.2) for the aforementioned receptors: active p-opioid receptor (MOR)
(PDB entry: 5SC1M, co-crystallized agonist 4VO (BU72)) and inactive MOR (PDB entry: 4DKL,
co-crystallized antagonist BFO (pB-funaltrexamine)), active k-opioid receptor (KOR) (PDB entry:
6B73, co-crystallized agonist CVV (MP1104)) and inactive KOR (PDB entry: 4DJH, co-
crystallized antagonist JDC (JDTic)). For each receptor, the “Protein Preparation Wizard” was
applied to prepare the receptor structure for the Glide docking including adding hydrogens,
creating disulfide bonds, conducting restraint minimization, etc. Glide grid was then generated
with the default setting, such as, the van der Waals radius scaling factor is 1.0 and partial charge
cutoff is 0.25. The grid site was automatically set to the central location of workspace ligand and
its size was manually adjusted to match the size of co-crystallized ligand without any constraints
or rotatable groups. In total, six ligands were selected for the docking studies: two co-crystallized
ligands (4VO and BFO0) of p-opioid receptors (SC1M and 4DKL), two co-crystallized ligands
(CVV and JDC) of k-opioid receptors (6B73 and 4DJH), OXY and DZP. The 2D and 3D structures

of the above six ligands are shown in Figure S3. To explore the pharmacological effects of
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metabolites, OM, TMZ and NDZ were also docked to opioid receptors (See 2.2.1 Molecular
docking). Flexible ligand docking was finally performed with the default setting (the van der Waals
radius scaling factor is 0.80, partial charge cutoff is 0.15 for ligands, no constraints, etc.) except
that the “reward intramolecular hydrogen bonds” was turned on and the maximal poses per ligand
was set to 10. In most situations, the best docking poses ranked by the Glide “Standard Precision”
docking scoring function, are selected for the subsequent modeling studies. Sometimes, other top
docking poses are selected if they can much better overlap with the conformation of co-crystallized
ligands.
4.2.2 Molecular dynamics simulation
The basic conformations of the membrane for the opioid receptor complex were built using

CHARMM-GUI*® by adding 240 POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine)
lipid molecules. The complexes were immersed in a cuboid box with TIP3P water molecules®* in
all three dimensions. A set of Na" and CI ions were added to make a 0.15 M concentration of NaCl
and to neutralize the whole system. In molecular mechanics (MM) minimizations and MD
simulations, FF14SB> and the General Amber force field (GAFF)>® were applied to describe the
protein and ligand molecules, respectively. The atomic partial charges of ligands were derived by
restrained electrostatic potential (RESP)*’ to fit the HF/6-31G* electrostatic potentials generated
using the Gaussian 16 software package.’® All the residue topologies of ligands were generated
using the Antechamber module.>

MD simulations were conducted using the PMEMD.mpi and PMEMD.cuda modules in the
AMBER 16 package."% At first, to dedicatedly remove possible steric clashes in the systems,
five constrained energy minimizations were performed by applying a gradually reduced harmonic
restraint force constants, from 20 to 10, 5, 1 and 0 kcal/mol/ A2, to both the main chain residues of
the protein and the ligand. Water and ions were always relaxed. There are two phases for the
subsequent constant pressure MD simulation stage: the equilibrium and sampling phases. For both
phases, the desired temperature was set to 298.15 K. The pressure was controlled at 1atm with the
relaxation time of 2 ps. The temperature was regulated by Langevin dynamics.%* ® To constrain
all hydrogen atoms, the SHAKE algorithm?? was applied. After the 20-ns equilibration phase, MD
snapshots were collected every 250 ps for at least 160 ns.

4.2.3 MM-PBSA-WSAS binding free energy calculation
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One of the most commonly used endpoint methods in free energy calculations is MM-
PBSA 31336567 MD simulation is usually applied to capture the dynamics of the system and a set
of conformations were collected for post-analyses, including the generation of representative
conformation for demonstration, and the MM-PBSA-WSAS binding free energy calculations.®® In
MM-PBSA calculation, the binding free energy (A Guu-rssa-wsas) between a receptor and a ligand

to form a complex is expressed in the following equation.
AGyp-ppsa-wsas = AH — TAS = AE,q,, + AE,, + AGSt + AGSSH — TAS (6)

Where AEya is the change of MM van der Waals energy, AEc. is the change of MM
electrostatic energy, AGS°" is the polar solvation free energy, AG;5' is the nonpolar solvation free

energy. -TAS is the change of conformational entropy, where 7 is the absolute temperature and AS
is the change of entropy. It is noted that in Eq. 6, the contribution of internal bonded MM energy
was cancelled out when using the “Single Trajectory” protocol.’? In this study, around 660
snapshots were evenly selected for the binding free energy calculations. The Poisson Boltzmann
calculation for the polar contribution of the solvation free energy was conducted by using Delphi
98 software.®> The nonpolar contribution was estimated using solvent-accessible surface areas
(SASA) with a surface tension coefficient of 0.00542 kcal/(mol-A?) and an offset value of 0.92
kcal/mol. For the estimation of entropic term, we used the weighted solvent accessible surface area

(WSAS) method as described elsewhere.®’

5. Supporting Information

The input parameters for OXY and DZP as well as their metabolites in PBPK models were
listed in Table S1. The docking scores and calculated K; for oxycodone and diazepam when
binding to CYP3A4 were listed in Table S2. Figure S1 shows the structures of the PBPK model
and ADAM model. Figure S2 shows the docking poses of OXY and DZP in CYP3A4. Figure S3
shows the 2D and 3D structures of all ligands binding to opioid receptors. Figure S4 displays the
variation of AUC ratio of OXY with a different dosage of DZP when K; value is ranged from 0.165
to 16.5 uM.

6. Abbreviations

Abbreviation Full name
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DDI drug-drug interaction

00,4 oxycodone

NOC noroxycodone

OM oxymorphone

DzP diazepam

PK pharmacokinetic

PD pharmacodynamic

PBPK Physiologically-based Pharmacokinetic model

MD molecular dynamics

MM-PBSA molecular mechanics/Poisson  Boltzmann
surface area

MOR p-opioid receptor

KOR K-opioid receptor

ED emergency department

FDA Food and Drug Administration

EMA European Medicines Agency

BBB blood-brain-barrier

SD standard deviations

v intravenous

PO oral

CT Concentration ~ Time

AUC area under the curve

AUCaan the drug exposure from time zero to 24 hours

Crnax maximal concentration

Tmax time of maximal concentration observed

Ki inhibitory constant

Kapp half-maximal inactivation rate

Kinact inactivation rate of the enzyme

RMSD root-mean-square deviation

S substrate
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ES enzyme-substrate complex
enzyme
product

kr forward reaction rate constant

kr reverse reaction constant

Kear Kcar 1s the rate constant of the irreversible
reaction of generating product P from ES

Keq equilibrium constant for the reversible reaction

Kinact inactivation rate of enzyme

Kobs observed inactivation rate constants

ADME absorption, distribution, metabolism and
excretion

ADAM Advanced Dissolution, Absorption and
Metabolism

GI gastrointestinal

POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine

GAFF General Amber force field

RESP restrained electrostatic potential
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Tables

Table 1. The AUC, Cmax and Tmax of 30 mg PO OXY, 10 mg PO DZP and 1 mg/kg DZP. SD is

standard deviation and all units are shown in parenthesis. a: Observed 1 and Observed 2 are the

experimental data collected from Drugs.com (https://www.drugs.com). b, ¢: Observed data for PO

and IV DZP are respectively obtained from two reports.”® 7!

Dosing Strategy AUC (SD) Cmax (SD) Tmax (SD)
(ng-h/mL) (ng/mL) (h)
OXY PO 30 mg Observed 1? 268.2 (60.7) 39.3 (14.0) 2.6 (3)
(0-241 Observed 2? 277.0 (89.6) 48.5 (15.9) 1.5 (NA)
Predicted 311.83 (150.67) 38.0 (14.69) 1.2 (0.31)
DZP PO 10 mg Observed® 1530 (464.33) 317 (89.55) 1.32 (0.56)
(0-121 Predicted 1677.12 (434.66)  221.89(51.5)  1.15(0.35)
DZP 1V 0.1 mg/kg Observed® 2198.5 (NA) NA NA
(0-24h) Predicted 1932.46 (582.83) NA NA
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Table 2. The AUC ratio and Cnmax ratio of the DDI profiles for PO OXY and 10 mg, 100 mg and
500 mg and 1000 mg of PO/IV DZP. CI is the 95% Confidence Interval. AUC24p ratio is the

exposure of AUC ratio from the time 0 to 24 hours.

Dosing Strategy Formulation AUCoun  CI[5%,95%] Crnax CI
ratio ratio [5%,95%]
OXY 30 mg + PO 1.01 [1.00,1.01] 1.01 [1.00,1.01]
DZP 10mg v 1.00 [1.00,1.01] 1.00 [1.00,1.00]
OXY 30 mg + PO 1.05 [1.03,1.07] 1.04  [1.02,1.06]
DZP 100mg v 1.03 [1.02,1.05] 102 [1.01,1.04]
OXY 30 mg + PO 1.13 [1.09,1.19] 109  [1.06,1.14]
DZP 500mg v 1.12 [1.07,1.17] 1.07 [1.04,1.12]
OXY 30 mg + PO 1.20 [1.12,1.29] 112 [1.07,1.19]
DZP 1000mg v 1.18 [1.18,1.27] 110 [1.05,1.17]
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Table 3. The AUC ratio and Cnmax ratio of the DDI profiles for PO OXY and 10 mg, 100 mg, 500

mg and 1000 mg of PO DZP when applying mixed-type inhibition to the DDI model. CI is the

95% Confidence Interval. AUCa4nratio is the exposure of AUC ratio from the time 0 to 24 hours.

Dosing Strategy AUCo4p ratio CI[5%,95%] Cmaxratio CI[5%,95%]
OXY 30 mg + DZP 10mg 1.01 [1.01,1.02] 1.01 [1.00,1.02]
OXY 30 mg + DZP 100mg 1.07 [1.04,1.09] 1.04 [1.03,1.06]
OXY 30 mg + DZP 500mg 1.21 [1.13,1.31] 1.10 [1.06,1.16]

OXY 30 mg + DZP 1000mg 1.30 [1.17,1.48] 1.13 [1.07,1.22]
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Table 4. The docking results (kcal/mol) for opioids and diazepam targeting to both the active
and inactive X-ray structures of MOR and KOR.

0,44 DZzp 4VO BFO CVvV IDC

active MOR | -6.38 -6.81 -9.47 -6.07 - -
inactive MOR | -5.93 -6.38 -5.42 -7.39 - -
active KOR -7.20 -6.51 - - -7.47 -7.32

inactive KOR | -5.49 -5.50 - - -6.42 -8.68




Table 5. Calculated binding free energies (kcal/mol) and the individual energy terms for opioids

and DZP using the MM-PBSA-WSAS method.

Ligands  AE,g, AE ., AGS! AGSS) TAS AGym—pBsa
active MOR
4VO -50.45+0.08 -5.75+0.01 35.59+0.11 -4.41+0.01 -22.05+0.04 -2.98+0.13
BFO0 -53.48+0.11 -14.88+0.37 53.08+0.45 -4.91+0.01 -23.34+0.02  3.15+0.18
OXY  -36.05+0.06 -4.43+0.49 22.5240.55 -2.86+0.00 -19.62+0.02  -1.19+0.11
DZP -33.51+0.06  -8.64+0.19 24.81+0.23  -2.88+0.00 -18.89+0.07 -1.33+0.05
inactive MOR
4VO -41.34+0.03  -5.54+0.09 29.1740.25 -3.81+0.00 -19.55+0.01 -1.97+0.21
BFO0 -45.60+£0.16  -27.56£0.36  52.26£0.26 -4.00+0.01  -21.83+0.04 -3.06+0.28
OXY  -40.95+0.10 -15.44+0.07 33.55+0.10 -2.97+0.00 -20.41+0.02  -5.40+0.05
DZP -39.33+0.16  -8.78+0.08 32.32+0.31 -2.84+0.00 -19.69+0.02  1.07+0.13
active KOR
CVV  -65.93+0.14 -20.98+0.21 58.27+0.07 -4.90+0.00 -26.76+0.01 -6.78+0.24
JDC -59.00+0.21 -24.28+0.43  59.69+0.47 -5.51£0.00 -25.64+0.02  -3.46+0.22
OXY  -38.56+0.06 -9.43+0.16 30.69+£0.25 -2.96+£0.00 -19.92+0.04  -0.34+0.16
DZP -36.84+0.12 0.18+0.14 18.49+0.06 -2.90+0.01  -19.30+0.03  -1.78+0.19
inactive KOR
CVV  -57.17£0.03 -22.40+0.21 61.26+0.31 -4.90+0.00 -24.88+0.04 1.66+0.46
JDC -59.08+0.15 -29.80+0.22  67.32+0.48 -5.32+0.00 -26.63+0.03  -0.25+0.28
OXY  -38.73+0.08 -9.25+0.13 28.95+0.15 -2.95+0.00 -19.97+0.03  -2.01+£0.29
DZP -37.97+0.13  -15.50+0.09  39.58+0.12 -2.73+0.01  -20.12+0.04  3.49+0.09
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