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Abstract

Physics-guided Neural Networks (PGNNs) represent an
emerging class of neural networks that are trained us-
ing physics-guided (PG) loss functions (capturing vio-
lations in network outputs with known physics), along
with the supervision contained in data. Existing work
in PGNNs have demonstrated the efficacy of adding sin-
gle PG loss functions in the neural network objectives,
using constant trade-off parameters, to ensure better
generalizability. However, in the presence of multi-
ple physics loss functions with competing gradient di-
rections, there is a need to adaptively tune the con-
tribution of competing PG loss functions during the
course of training to arrive at generalizable solutions.
We demonstrate the presence of competing PG losses
in the generic neural network problem of solving for
the lowest (or highest) eigenvector of a physics-based
eigenvalue equation, common to many scientific prob-
lems. We present a novel approach to handle compet-
ing PG losses and demonstrate its efficacy in learning
generalizable solutions in two motivating applications of
quantum mechanics and electromagnetic propagation.
All the code and data used in this work is available at
https://github.com/jayroxis/Cophy-PGNN.

Keywords: PGML, ML, Quantum physics, Ising
model, Electromagnetic propagation

1 Introduction

With the increasing impact of deep learning methods
in diverse scientific disciplines [1, 2], there is a growing
realization in the scientific community to harness the
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Figure 1: A toy example showing competing physics losses
that can lead to local minima when minimized together.

power of artificial neural networks (ANNs) without
ignoring the rich supervision available in the form of
physics knowledge in several scientific problems [3, 4].
One of the promising lines of research in this direction
is to modify the objective function of neural networks
by adding loss functions that measure the violations
of ANN outputs with physical equations, termed as
physics-guided (PG) loss functions [5, 6]. By anchoring
ANN models to be consistent with physics, PG loss
functions have been shown to impart generalizability
even in the paucity of training data across several
scientific problems [7–10]. We refer to the class of neural
networks that are trained using PG loss functions as
physics-guided neural networks (PGNNs).

While some existing work in PGNN have attempted
to learn neural networks by solely minimizing PG loss
(and thus being label-free) [6,9], others have used both
PG loss and data label loss using appropriate trade-
off hyper-parameters [7,8]. However, what is even more
challenging is when there are multiple physics equations
with competing PG loss functions that need to be min-
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imized together, where each PG loss may show multi-
ple local minima. In such situations, simple addition
of PG losses in the objective function with constant
trade-off hyper-parameters may result in the learning
of non-generalizable solutions. This may seem counter-
intuitive since the addition of PG loss is generally as-
sumed to offer generalizability in the PGNN literature
[8, 10,11].

Figure 1 shows a toy example with two competing
physics losses to illustrate their effects on the generaliz-
ability of learned solutions. If we add the two loss func-
tions with constant weights and optimize the weighted
sum using gradient descent methods, it is easy to end
up at local minima x1 and x2. However, if we pay
importance to physics loss 2 in the first few epochs of
gradient descent, and then optimize physics loss 1 at
later epochs, we are more likely to arrive at the global
minimum x0. This simple observation, although derived
from an artificially constructed toy problem, motivates
us to ask the question: is it possible to adaptively bal-
ance the importance of competing PG loss functions at
different stages of neural network learning to arrive at
generalizable solutions?

In this work, we introduce a novel framework of
CoPhy-PGNN, which is an abbreviation for Competing
Physics Physics-Guided Neural Networks, to handle
competing PG loss functions in neural network train-
ing. We specifically consider the domain of scientific
problems where physics knowledge are represented as
eigenvalue equations and we are required to solve for
the highest or lowest eigen-solution. This representa-
tion is common to many types of physics such as the
Schrödinger equation in the domain of quantum me-
chanics and Maxwell’s equations in the domain of elec-
tromagnetic propagation. In these applications, solving
eigenvalue equations using exact numerical techniques
(e.g., diagonalization methods) can be computationally
expensive especially for large physical systems. On the
other hand, PGNN models, once trained, can be ap-
plied on testing scenarios to predict their eigen-solutions
in drastically smaller running times. We empirically
demonstrate the efficacy of our CoPhy-PGNN solution
on two diverse applications in quantum mechanics and
electromagnetic propagation, highlighting the generaliz-
ability of our proposed approach to many physics prob-
lems.

The remainder of the paper is organized as follows.
Section 2 provides background of our physics problems
and describes related work. Section 3 presents our
proposed approach. Section 4 describes evaluation
setup while Sections 5 and 6 present our results and
concluding remarks, respectively.

2 Background

2.1 Overview of Physics Problems: While our
target applications of quantum mechanics and electro-
magnetic propagation are from quite distinct domains,
they share a common property that the physics of the
problem is avaialable in the form of an eigen-value equa-
tion of the form: Ây = by, where, for a given input
matrix Â, b is an eigenvalue and y is the correspond-
ing eigenvector. We are interested in solving the lowest
or highest eigen-solution of this equation in our target
problems. We provide a brief overview of the two tar-
get applications in the following (detailed overviews are
provided in the supplementary materials).

Quantum Mechanics: In this application, the
goal is to predict the ground-state wave function of
an Ising chain model with n = 4 particles. This
problem can be described by the Schrödinger equation
HΨ̂ = ÊΨ̂, where Ê, the energy level, is the eigenvalue;
Ψ̂, the wave function, is the eigenvector, and H, the
Hamiltonian, is the matrix. Since the ground-state
weave function corresponds to the lowest energy level,
we are interested in finding the lowest eigen-solution of
this eigen-value equation.

Electromagnetic Propagation: To illustrate our
model’s scalability to large systems, we consider another
application involving the propagation of the electromag-
netic waves in periodically stratified layer stacks. The
description of this propagation can be reduced to the
eigenvalue problem Â~hm = km

2

z hm where km
2

z , the prop-
agation constant of the electromagnetic modes along the
layers, is the eigenvalue; and ~hm, the coefficients of the
Fourier transform of the spatial profile of the electro-
magnetic field, is the eigenvector. It is important to
note that these quantities are complex valued, unlike in
the target application of quantum mechanics. Also, un-
like the quantum mechanics problem, we are interested
in the largest eigenvalue rather than the smallest.

2.2 Related work in PGNN: PGNN has found
successful applications in several disciplines including
fluid dynamics [12–14], climate science [10], and lake
modeling [7, 8, 15]. However, to the best of our knowl-
edge, PGNN formulations have not been explored yet
for our target applications of solving eigen-value equa-
tions in the field of quantum mechanics and electro-
magnetic propagation. Existing work in PGNN can
be broadly divided into two categories. The first cat-
egory involves label-free learning by only minimizing
PG loss without using any labeled data. For exam-
ple, Physics-informed neural networks (PINNs) and its
variants [9,16,17] have been recently developed to solve
PDEs by solely minimizing PG loss functions, for sim-
ple canonical problems such as Burger’s equation. Since
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these methods are label-free, they do not explore the in-
terplay between PG loss and label loss. We consider an
analogue of PINN for our target application as a base-
line in our experiments.

The second category of methods incorporate PG
loss as additional terms in the objective function
along with label loss, using constant trade-off hyper-
parameters. This includes work in basic Physics-guided
Neural Networks (PGNNs) [7, 8] for the target applica-
tion of lake temperature modeling. We use an analogue
of this basic PGNN as a baseline in our experiments.

While some recent works have investigated the
effects of PG loss on generalization performance [11]
and the importance of normalizing the scale of hyper-
parameters corresponding to PG loss terms [18], they do
not study the effects of competing physics losses which
is the focus of this paper. Our work is related to the field
of multi-task learning (MTL) [19], as the minimization
of physics losses and label loss can be viewed as multiple
shared tasks. For example, alternating minimization
techniques in MTL [20] in MTL can be used to alternate
between minimizing different PG loss and label loss
terms over different mini-batches. We consider this as
a baseline approach in our experiments.

3 Methodology

3.1 Problem statement: From an ML perspective,
we are given a collection of training pairs, DTr :=
{Âi, (yi, bi)}Ni=1, where (yi, bi) is generated by diagonal-
ization solvers. We consider the problem of learning an
ANN model, (ŷ, b̂) = fNN (Â, θ), that can predict (y, b)
for any input matrix, Â, where θ are the learnable pa-
rameters of ANN. We are also given a set of unlabeled
examples, DU := {Âi}Mi=1, which will be used for test-
ing. We consider a simple feed-forward architecture of
fNN in all our formulations.

3.2 Designing physics-guided loss functions: A
näıve approach for learning fNN is to minimize the
mean sum of squared errors (MSE) of predictions on
the training set, referred to as the Train-MSE(θ) :=

1/N(
∑
i ||ŷi − yi||2 + ||b̂i − bi||2). However, instead of

solely relying on Train-MSE, we consider the following
PG loss terms to guide the learning of fNN to general-
izable solutions:

Characteristic Loss: A fundamental equation we
want to satisfy in our predictions, (ŷ, b̂), for any input

Â is the eigen-value equation, Âŷ = b̂ŷ. Hence, we
consider minimizing the following equation:

(3.1) C-Loss(θ) :=
∑
i

||Âiŷi − b̂iŷi||2
ŷ>ŷ

,

where the denominator term ensures that ŷ resides on
a unit hyper-sphere with ||ŷ|| = 1, thus avoiding scaling
issues. Note that by construction, C-Loss only depends
on the predictions of fNN and does not rely on true
labels, (y, b). Hence, C-Loss can be evaluated even on
the unlabeled test data, DU .

Spectrum Loss: Note that there are many non-
interesting solutions of Âŷ = b̂ŷ that can appear as
“local minima” in the optimization landscape of C-
Loss. For example, for every input Âi ∈ DU , there
are d possible eigen-solutions (where d is the length of
ŷ), each of which will result in a perfectly low value of
C-Loss = 0, thus acting as a local minima. However,
we are only interested in a specific eigenvalue -usually
the smallest or the largest- for every Âi. Therefore, we
consider minimizing another PG loss term that ensures
the predicted b̂ at every sample is the desired one. In
the case of the quantum mechanics application, we use
the following loss to find the smallest eigen-solution:

(3.2) S-Loss(θ) :=
∑
i

exp
(
b̂i

)
The use of exp function ensures that E-Loss is always
positive, even when predicted eigenvalues are negative.
As for the electromagnetic propagation application,
we simply direct the optimization towards the largest
eigenvalue by replacing b̂i with −Re(b̂i), where Re
extracts the real part of the complex eigenvalue.

3.3 Adaptive tuning of PG loss weights: A sim-
ple strategy for incorporating PG loss terms in the learn-
ing objective of fNN is to add them to Train-MSE us-
ing trade-off weight parameters, λC and λS , for C-Loss
and S-Loss, respectively. Conventionally, such trade-
off weights are kept constant to a certain value across
all epochs of gradient descent. This inherently assumes
that the importance of PG loss terms in guiding the
learning of fNN towards a generalizable solution is con-
stant across all stages (or epochs) of gradient descent,
and they are in agreement with each other. However, in
practice, we empirically find that C-Loss, S-Loss, and
Train-MSE compete with each other and have varying
importance at different stages (or epochs) of ANN learn-
ing. Hence, we consider the following ways of adaptively
tuning the trade-off weights of C-Loss and S-Loss, λC
and λS as a function of the epoch number t.

Annealing λS: The first observation we make is
that S-Loss plays a critical role in the initial stages of
learning, where gradient descent has a tendency to move
towards a local minima solution and then refine the
solution until convergence. Having a large value of λS
in the beginning few epochs is thus helpful to avoid the
selection of local minima and instead converge towards
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a generalizable solution. Hence, we consider performing
a simulated annealing of λS that takes on a high value
in the beginning epochs, that slowly decays to 0 after
sufficiently many epochs. Specifically, we consider the
following annealing procedure for λS :

(3.3) λS(t) = λS0 × (1− αS)bt/Te,

where, λS0 is a hyper-parameter denoting the starting
value of λS at epoch 0, αS < 1 is a hyper-parameter
that controls the rate of annealing, and T is a scaling
hyper-parameter.

Cold Starting λC : The second observation we
make is on the effect of C-Loss on the convergence of
gradient descent towards a generalizable solution. Note
that C-Loss, while being critical in ensuring physical
consistency of our predictions with the eigenvalue equa-
tion, suffers from a large number of local minima and
hence is susceptible to favoring the learning of non-
generalizable solutions due to its high non-convexity.
Hence, in the beginning epochs, when we are taking
large steps in the gradient descent algorithm to move to-
wards a minimum, it is important to keep C-Loss turned
off so that the learning process does not get stuck in
one of the non-generalizable minima of C-Loss. Once
we have crossed a sufficient number of epochs and have
already zoomed into a region in the parameter space in
close vicinity to a generalizable solution, we can safely
turn on C-Loss so that it can help refine θ to converge
to the generalizable solution. Based on this observation,
we consider “cold starting” λC , where its value is kept
to 0 in the beginning epochs after which it is raised to
a constant value, as given by the following procedure:

(3.4) λC(t) = λC0 × sigmoid(αC × (t− Ta)),

where, λC0 is a hyper-parameter denoting the constant
value of λC after a sufficient number of epochs, αC is
a hyper-parameter that dictates the rate of growth of
the sigmoid function, and Ta is a hyper-parameter that
controls the cutoff number of epochs after which λC is
activated from a cold start of 0.

Overall Learning Objective: Combining all of
the innovations described above in designing and incor-
porating PG loss functions, we consider the following
overall learning objective:

E(t) = Train-Loss + λC(t) C-Loss + λS(t) S-Loss

Note that Train-Loss is only computed over DTr,
whereas the PG loss terms, C-Loss and S-Loss, are com-
puted over DTr as well as the set of unlabeled samples,
DU . We refer to our proposed model trained using the
above learning objective as CoPhy-PGNN, which is an
abbreviation for Competing Physics PGNN.

4 Evaluation setup

Data in Quantum Physics: We considered n = 4
spin systems of Ising chain models for predicting their
ground-state wave-function under varying influences of
two controlling parameters: Bx and Bz, which represent
the strength of external magnetic field along the X
axis (parallel to the direction of Ising chain), and Z
axis (perpendicular to the direction of the Ising chain),
respectively. The Hamiltonian matrix H for these
systems is then given as:

(4.5) H = −
n−1∑
i=0

σzi σ
z
i+1 −Bx

n−1∑
i=0

σxi −Bz
n−1∑
i=0

σzi ,

where σx,y,z are Pauli operators and ring boundary
conditions are imposed. Note that the size of H is
d = 2n = 16. We set Bz to be equal to 0.01 to break the
ground state degeneracy, while Bx was sampled from a
uniform distribution from the interval [0, 2].

Note that when Bx < 1, the system is said to be in
a ferromagnetic phase, since all the spins prefer to either
point upward or downward collectively. However, when
Bx > 1, the system transitions to paramagnetic phase,
where both upward and downward spins are equally
possible. Because the ground-state wave-function be-
haves differently in the two regions, the system actually
exhibits different physical properties. Hence, in order
to test for the generalizability of ANN models when
training and test distributions are different, we gener-
ate training data only from the region deep inside the
ferromagnetic phase for Bx < 0.5, while the test data is
generated from a much wider range 0 < Bx < 2, cov-
ering both ferromagnetic and paramagnetic phases. In
particular, the training set comprises of N = 100, 000
points with Bx uniformly sampled from 0 to 0.5, while
the test set comprises of M = 20, 000 points with Bx
uniformly sampled from 0 to 2. Labels for the ground-
state wave-function for all training and test points were
obtained by direct diagonalization of the Ising Hamilto-
nian using Intel’s implementation of LAPACK (MKL).
We used uniform sub-sampling and variedN from 100 to
20, 000 to study the effect of training size on the gener-
alization performance of comparative ANN models. For
validation, we also used sub-sampling on the training
set to obtain a validation set of 2000 samples. We per-
formed 10 random runs of uniform sampling for every
value of N , to show the mean and variance of the per-
formance metrics of comparative ANN models, where at
every run, a different random initializtion of the ANN
models is also used. Unless otherwise stated, the re-
sults in any experiment are presented over training size
N = 2000.
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Data in Electromagnetic Propagation: We
considered a periodically stratified layer stack of 10 lay-
ers of equal length per period. The refractive index n
of each layer was randomly assigned an integer value
between 1 and 4. Hence, the permittivity ε = n2 can
take values from {1, 4, 9, 16}. We chose the period of the
multilayer stack to be 5 times the free-space wavelength
at the operating frequency (ω/c = 2π; Λ = 5). The
increase of the complexity of the electromagnetic struc-
ture leads to an increase in the matrix size Â, making
the solution of the eigenvalue problem both computa-
tionally and memory-intensive. Note that the majority
of eigenvalue solvers rely on iterative algorithms and are
therefore not easily deployable in GPU environments.
However, a neural net can, in principle, learn to predict
the eigenvalues and eigenvectors of the matrix Â. To
demonstrate the scalability of our approach we gener-
ate N = 2000 realizations of the layered structure. For
each example, we also generate the associated Â of size
401×401 complex values, making the scale of this prob-
lem about 2500 times larger than that of the quantum
mecanics problem. The combination of the challeng-
ing scale of this eigen-decompostion and the scarcity of
training data makes this problem interesting from scal-
ability and generalizaility perspective. To demonstrate
extrapolation ability, we take a training size |DTr| = 370
realizations that has a refractive index of only 1 in its
first layer. On the other hand, we take a test set of
size |DU | = 1630 with the first layer’s refractive index
unconstrained (i.e. any value from the set {1,2,3,4}).

Baseline Methods: Since there does not exist any
related work in PGNN that has been explored for our
target applications, we construct analogue versions of
PINN-analogue [9] and PGNN-analogue [8] adapted to
our problem using their major features. We describe
these baselines along with others in the following:

1. Black-box NN (or NN): This refers to the “black-
box” ANN model trained just using Train-Loss
without any PG loss terms.

2. PGNN-analogue: The analogue version of PGNN
[8] for our problem where the hyper-parameters
corresponding to S-Loss and C-Loss are set to a
constant value.

3. PINN-analogue: The analogue version of PINN [9]
for our problem that performs label-free learning
only using PG loss terms with constant weights.
Note that the PG loss terms are not defined as
PDEs in our problem.

4. MTL-PGNN: Multi-task Learning (MTL) variant
of PGNN where PG loss terms are optimized alter-
natively [20] by randomly selecting one from all the
loss terms for each mini-batch in every epoch.

Models MSE (×102) Cosine Similarity
CoPhy-PGNN (proposed) 0.35 ± 0.12 99.50 ± 0.12%
Black-box NN 1.06± 0.16 95.32± 0.58%
PINN-analogue 6.27± 6.94 87.37± 12.87%
PGNN-analogue 0.91± 1.90 97.97± 4.89%
MTL-PGNN 6.33± 2.69 84.26± 6.33%
CoPhy-PGNN (only-DTr) 1.82± 0.36 93.61± 0.91%
CoPhy-PGNN (w/o S-Loss) 10.97± 0.71 76.27± 0.80%
CoPhy-PGNN (Label-free) 9.97± 4.42 63.97± 16.20%

Table 1: Test-MSE and Cosine Similarity of compar-
ative ANN models on training size N = 1000 on the
quantum physics application.

We also consider the following ablation models:

1. CoPhy-PGNN (only-DTr): This is an ablation
model where the PG loss terms are only trained
over the training set, DTr. Comparing our results
with this model will help in evaluating the impor-
tance of using unlabeled samples DU in the com-
putation of PG loss.

2. CoPhy-PGNN (w/o S-Loss): This is another abla-
tion model where we only consider C-Loss in the
learning objective, while discarding S-Loss.

3. CoPhy-PGNN (Label-free): This ablation model
drops Train-MSE from the learning objective and
hence performs label-free (LF) learning only using
PG loss terms.

Evaluation Metrics: We use two evaluation met-
rics: (a) Test MSE, and (b) Cosine Similarity between
our predicted eigenvector, ŷ, and the ground-truth,
y, averaged across all test samples. We particularly
chose the cosine similarity for multiple reasons. First,
Euclidean distances are not very meaningful in high-
dimensional spaces of wave-functions, such as the ones
we are considering in our analyses. Second, an ideal co-
sine similarity of 1 provides an intuitive baseline to eval-
uate goodness of results. But most importantly, in the
electromagnetic propagation application, it is crucial to
compare not just Fourier coefficients of the expansion
(which is what the neural net produces) but rather the
actual profile of the magnetic field in the real space.
The accuracy of this prediction can be tested by calcu-
lating the overlap integral between the exact and the
predicted profiles. That integral, due to orthogonality
of Fourier expansion, reduces to the cosine similarity.
This facilitates testing whether our predicted vectors re
valid eigenvectors from a physical standpoint.

5 Results and analysis

5.1 Quantum Physics Application: Table 1 pro-
vides a summary of the comparison of CoPhy-PGNN
with baseline methods on the quantum physics applica-
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Figure 2: Cosine similarity across training sizes.

tion. We can see that our proposed model shows signifi-
cantly better performance in terms of both Test-MSE
and Cosine Similarity. In fact, the cosine similarity
of our proposed model is almost 1, indicating almost
perfect fit with test labels. (Note that even a small
drop in cosine similarity can lead to cascading errors
in the estimation of other physical properties derived
from the ground-state wave-function.) An interesting
observation from Table 1 is that CoPhy-PGNN (Label-
free) actually performs even worse than black-box NN.
This shows that solely relying on PG loss without con-
sidering Train-MSE is fraught with challenges in arriv-
ing at a generalizable solution. Indeed, using a small
number of labeled examples to compute Train-MSE pro-
vides a significant nudge to ANN learning to arrive at
more accurate solutions. Another interesting observa-
tion is that CoPhy-PGNN (only-DTr) again performs
even worse than Black-box NN. This demonstrates that
it is important to use unlabeled samples in DU , which
are representative of the test set, to compute the PG
loss. Furthermore, notice that CoPhy-PGNN (w/o S-
Loss) actually performs worst across all models, possibly
due to the highly non-convex nature of C-Loss function
that can easily lead to local minima when used without
S-Loss. This sheds light on another important aspect
of PGNN that is often over-looked, which is that it does
not suffice to simply add a PG-Loss term in the objec-
tive function in order to achieve generalizable solutions.
In fact, an improper use of PG Loss can result in worse
performance than a black-box model.

5.1.1 Effect of varying training size: Fig. 2
shows the differences in performance of comparative
algorithms as we vary the training size from 100 to
20000. We can see that PGNN-analogue, which does
not perform adaptive tuning, shows a high variance in
its results across training sizes. This is because without
cold starting λC , C-Loss can be quite unstable in the
beginning epochs and can guide the gradient descent

into one of its many local minima, especially when
the gradients of train-MSE are weak due to paucity
of training data. On the other hand, CoPhy-PGNN
performs consistently better than all other baseline
methods, with smallest variance in its results across 10
random runs. In fact, our proposed model is able to
perform well even over 100 training samples.

5.1.2 Studying convergence across epochs: Fig-
ure 3 shows the variations in Train-MSE, Test-MSE,
and C-Loss terms for four comparative models at every
epoch of gradient descent. We can see that all models
are able to achieve a reasonably low value of Train-MSE
at the final solution expect CoPhy-PGNN (Label-free),
which is expected since it does not consider minimiz-
ing Train-MSE in the learning objective. Black-box NN
actually shows the lowest value of Train-MSE than all
other models. However, the quantity that we really care
to minimize is not the Train-MSE but the Test-MSE,
which is indicative of generalization performance. We
can see that while our proposed model, CoPhy-PGNN
shows slightly higher Train-MSE than Black-box NN, it
shows drastically smaller Test-MSE at the converged so-
lution, demonstrating the effectiveness of our proposed
approach.

A contrasting feature of the convergence plots of
CoPhy-PGNN relative to Black-box NN is the presence
of an initial jump in the Test-MSE values during the
first few epochs. This likely arises due to the compet-
ing nature of two different loss terms that we are trying
to minimize in the beginning epochs: the Train-MSE,
that tries to move towards local minima solutions favor-
able to training data, and S-Loss, that pushes the gra-
dient descent towards generalizable solutions. Indeed,
this initial jump in Test-MSE helps in moving out of lo-
cal minima solutions, after which the Test-MSE plum-
mets to significantly smaller values. Notice that CoPhy-
PGNN (Label-free) shows a similar jump in Test-MSE
in the beginning epochs, because it experiences a simi-
lar effect of S-Loss gradients during the initial stages of
ANN learning. However, we can see that its Test-MSE
is never able to drop beyond a certain value after the
initial jump, as it does not receive the necessary gra-
dients of Train-MSE that helps in converging towards
generalizable solutions.

Another interesting observation is that CoPhy-
PGNN (w/o S-Loss) does not show any jump in Test-
MSE during the beginning epochs in contrast to our
proposed model, since it is not affected by S-Loss. If we
further look at C-Loss curves, we can see that CoPhy-
PGNN (w/o S-Loss) achieves lowest values, since it only
considers C-Loss as the PG loss term to be minimized
in the learning objective. However, we know that C-
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Figure 3: Convergence plots showing Train-MSE, Test-MSE, and C-Loss over epochs.
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Figure 4: Cosine Similarity on test samples as a function of
Bx. The dashed line represents the boundary between the
interval used for training (left) and testing (right).

Loss is home to a large number of local minima, and
for that reason, even though CoPhy-PGNN (w/o S-
Loss) shows low C-Loss values, its test-MSE quickly
grows to a large value, indicating its convergence on a
local minima. These results demonstrate that a careful
trade-off of PG loss terms along with Train-MSE is
critical to ensure good generalization performance, such
as that of our proposed model. To better understand
the behavior of competing loss terms, we conducted
a novel gradient analysis that can be found in the
supplementary materials.

5.1.3 Evaluating generalization power: Instead
of computing the average cosine similarity across all test
samples, Figure 4 analyzes the trends in cosine similar-
ity over test samples with different values of Bx, for
four comparative models. Note that none of these mod-
els have observed any labeled data during training out-
side the interval of Bx ∈ [0, 0.5]. Hence, by testing for
the cosine similarity over test samples with Bx > 0.5,
we are directly testing for the ability of ANN models
to generalize outside the data distributions it has been
trained upon. Evidently, all label-aware models perform
well on the interval of Bx ∈ [0, 0.5]. However, except for
CoPhy-PGNN, all baseline models degrade significantly

outside that interval, proving their lack of generaliz-
ability. Moreover, the label-free, CoPhy-PGNN (Label-
free), model is highly erratic, and performs poorly across
the board.

5.1.4 Analysis of loss landscapes: To truly under-
stand the effect of adding PG loss to ANN’s generaliza-
tion performance, here we visualize the landscape of dif-
ferent loss functions w.r.t. ANN model parameters. In
particular, we use the code in [21] to plot a 2D view of
the landscape of different loss functions, namely Train-
MSE, Test-MSE, and PG-Loss (sum of C-Loss and S-
Loss), in the neighborhood of a model solution, as shown
in Figure 5. In each of the sub-figures of this plot, the
model’s parameters are treated with filter normalization
as described in [22], and hence, the coordinate values of
the axes are unit-less. Also, the model solutions are rep-
resented by blue dots. As can be seen, all label-aware
models have found a minimum in Train-MSE landscape.
However, when the test-MSE loss surface is plotted, it
is clear that while the CoPhy-PGNN model is still at
a minimum, the other baseline models are not. This
is a strong indication that using the PG loss with un-
labeled data can lead to better extrapolation; it allows
the model to generalize beyond in-distribution data. We
can see that without using labels, CoPhy-PGNN (Label-
free) fails to reach a good minimum of Test-MSE, even
though it arrives at a minimum of PG Loss.

To understand the interactions among competing
PG loss terms, we further computed the projection of
the gradient of every loss term w.r.t. the optimal gradi-
ent direction (computed empirically) at every epoch and
investigated the importance of PG loss terms in guiding
towards the optimal gradient at different stages of neu-
ral network learning. See supplementary materials for
more details.

5.2 Electromagnetic Propagation Application:
For this application, the size of Â is 401× 401, making
it a daunting task for an eigensolver in terms of compu-
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Figure 5: A comprehensive comparison between CoPhy-PGNN and different baselines. The 1st and 2nd columns show
that without using unlabeled data, the model does not generalize well. On the other hand, the 3rd column shows that
without labeled data, the model fails to reach a good minimum. Only the last column, our proposed model, shows a good
fit across both labeled and unlabeled data. The best performing model is also the model that best optimizes the PG loss.

tation time. As a result, a grid search hyper-parameter
tuning of ANN models is prohibitively expensive. This
is due to the large number of epochs needed to optimize
a model for a problem of this scale. Nonetheless, we
were still able to optimize a model to do fairly well by
manually adjusting the hyper-parameters and architec-
ture of CoPhy-PGNN to yield acceptable results on the
validation set (see supplementary material for more de-
tails). We emphasize, however, that a more exhaustive
tuning could lead to better results that surpass the ones
we obtained. Figure 6 shows that CoPhy-PGNN is still
able to better extrapolate than a Black-box NN on test-
ing scenarios with permittivity greater than 1. In fact,
we have observed that as Black-box NN solely optimizes
Train-MSE, its cosine similarity measure deteriorates on
the test set. This is in contrast to CoPhy-PGNN’s abil-
ity to maintain a cosine similarity close to 1 even though
its validation loss is comparable to Black-box NN’s.

While training our model still takes a significant
amount of time (about 12 hours), its effectiveness
with respect to testing speed is demonstrated in Table
2. We can see that our approach is at least an
order of magnitude faster during testing than any
numerical eigensolver. This highlights the promise in
using neural networks to solve physics-based eigen-
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Figure 6: Cosine similarity of CoPhy-PGNN compared to
Black-box NN for the electromagnetic propagation applica-
tion. The dashed line represents the boundary between the
interval used for training (left) and testing (right).

value problems, since, once trained, they can be used
to produce eigen-solutions on test points much faster
than numerical methods. Further, while CoPhy-PGNN
shows higher error than numerical solvers, note that the
cosine similarity of our model’s predictions with ground-
truth is close to 0.8, thus admitting physical usability.
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Solver average time (seconds) average |Ây − by|
CoPhy-PGNN 0.0430 1.878× 102

numpy.linalg.eig [23] 93.743 7.714× 10−6

Matlab [24] 0.196 8.747× 10−12

torch.eig [25] 16.565 6.821× 10−13

scipy.linalg.eig [26] 106.223 7.538× 10−4

scipy.sparse.linalg.eigs [27] 8.893 4.418× 10−3

Table 2: Comparison of speed and accuracy between CoPhy-
PGNN and other numerical eigensolvers.

6 Conclusions and future work

This work proposed novel strategies to address the prob-
lem of competing physics loss functions in PGNN. For
the general problem of solving eigen-value equations,
we designed a PGNN model CoPhy-PGNN and demon-
strated its efficacy in two target applications in quan-
tum mechanics and electromagnetic propagation. From
our results, we found that: 1) PG loss helps to extrap-
olate and gives the model better generalizablity; and
2) Using labeled data along with PG loss results in
more stable PGNN models. Moreover, we visualized
the loss landscape to give a better understanding of how
the combination of both labeled data loss and PG loss
leads to better generalization performance. We have
also demonstrated the generalizability of our CoPhy-
PGNN to multiple application domains with varying
types of physics loss functions, as well as its scalability
to large systems. Future work can focus on reducing the
training time of our model so as to perform extensive
hyper-parameter tuning to reach a better global min-
ima. Finally, while this work empirically demonstrated
the value of CoPhy-PGNN in combating with compet-
ing PG loss terms, future work can focus on theoretical
analyses of our approach.
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Appendix
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8 Relevant Physics Background

8.1 Ising Chain and Quantum Mechanics Quan-
tum mechanics provides a theoretically rigorous frame-
work to investigate physical properties of quantum ma-
terials by solving the Schrödinger’s equation—the fun-
damental law in quantum mechanics. The Schrödinger’s
equation is essentially a PDE that can be easily trans-
formed into an eigenvalue problem of the form: HΨ =
EΨ, where H is the Hamiltonian Matrix, Ψ is the
wave-function, and E is the energy, a scalar quantity.
(Note that many other PDEs in physical sciences, e.g.,
Maxwell’s equations, yield to a similar transformation
to an eigenvalue problem.) All information related to
the dynamics of the quantum system is encoded in
the eigen-vectors of Ĥ, i.e., Ψ. Among these eigen-
vectors, the ground state wave-function, Ψ0, defined as
the eigen-vector with lowest energy, E0, is a fundamen-
tal quantity for understanding the properties of quan-
tum systems. Exploring how Ψ0 evolves with controlling
parameters, e.g., magnetic field and bias voltage, is an
important subject of study in material science.

A major computational bottleneck in solving for the
ground-state wave-function Ψ0 is the diagonalization
of the Hamiltonian matrix, H, whose dimension grows
exponentially with the size of the system. In order
to study the effects of controlling parameters on the
physical properties of a quantum system, theorists
routinely have to perform diagonalizations on an entire
family of Hamiltonian matrices, with the same structure

∗equal contribution
†Department of Computer Science, Virginia Tech
‡Department of Physics, Binghamton University
§Department of Physics and Applied Physics, University of

Massachusetts Lowell
∗equal contribution
†Department of Computer Science, Virginia Tech
‡Department of Physics, Binghamton University
§Department of Physics and Applied Physics, University of

Massachusetts Lowell

but slightly different parameters.

Bx

Figure 7: Schematic illustration of the Ising spin chain.
Each site is occupied by a spin that can only take two
values, either spin up (+1) or spin down (-1). The
external magnetic field Bx is applied along the chain
direction.

Here we study a quintessential model of the trans-
verse field: Ising chain model [28], which is a uni-
dimensional spin chain model under the influence of
a transverse magnetic field Bx, as shown in Fig. 7.
Spin is the intrinsic angular momentum possessed by
elementary particles including electrons, protons, and
neutrons. The Ising spin chain model describes a sys-
tem in which multiple spins are located along a chain
and they interact only with their neighbors. By adding
an external magnetic field (Bx), the ground state wave-
function could change dramatically. This model and its
derivatives have been used to study a number of novel
quantum materials( [29, 30]) and can also be used for
quantum computing [31], since the qubit, the basic unit
of quantum computing, can also be represented as a
spin. However, the challenge in finding the ground-
state wave-function of this model is that the dimen-
sion d of the Hamiltonian H grows exponentially as
d = 2n, where n equals the number of spins. We aim
to develop PGNN approaches that can learn the pre-
dictive mapping from the space of Hamiltonians, H, to
ground-state wave-functions, Ψ, using the physics of the
Schrödinger’s equation along with labels produced by
diagonalization solvers on training set.
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8.2 Electromagnetic Propagation and Maxwell
Equations Mathematically, the propagation of the
electromagnetic waves in periodically stratified layer
stacks can be described by Maxwell equations:

~∇× ~H =
1

c
ε
∂ ~E

∂t
(8.6)

~∇× ~E = −1

c

∂ ~H

∂t
,(8.7)

where ~E, ~H, ε, and c represent electric and magnetic
fields, permittivity of layered material, and speed of
light in vacuum (in Gaussian units) respectively, and
t stands for time. When permittivity of layered array
is periodic function of x: ε(x + Λ) = ε(x), propagation

of monochromatic ( ~E, ~H ∝ e−iωt) transverse-magnetic

(TM) polarized waves ( ~H‖ŷ) can be reduced to the
eigenvalue problem:

Â~hm = kmz hm(8.8)

where kz represents the propagation constant of the
electromagnetic modes along the layers ( ~E, ~H ∝ eikzz),
~hm represent coefficients of the Fourier transform of
the spatial profile of ~H(x), and the elements of the
matrix Â is related to operating frequency ω, structure
of the electromagnetic waves in the direction normal
to the layers (parameterized by quasi-wavenumber kx),
and spatial profile of permittivity ε(x) [32]. This
technique, known as Rigorous Coupled Wave Analysis,
has been extended to electromagnetic structures with
two dimensional periodicity [33] as well as to aperiodic
structures [34].

9 Hyper-parameter Selection

9.1 Quantum physics application

9.1.1 Hyperparameter search To exploit the best
potential of the models, we conducted hyperparameter
search prior to many of our experiments1 on training
set of size N = 20000, by doing random sampling in
a fixed range for every hyper-parameter value. We
chose the average of the top-5 hyper-parameter settings
that showed the lowest error on the validation set,
which was 2000 instances sampled from the training set.
For the proposed CoPhy-PGNN model, this resulted
in the following set of hyper-parameters: {λS0 =
2.3, αS = 0.14, λC0 = 0.85, αC = 0.17, Ta = 51}, and

1All the code and data used in this work is avail-
able at https://github.com/jayroxis/Cophy-PGNN. A com-
plete set of code, data, pretrained models, and stored vari-

ables can be found at: https://osf.io/ps3wx/?view_only=

9681ddd5c43e48ed91af0db019bf285a (cophy-pgnn.tar.gz).

we chose T = 50 fixed for all models. The same hyper-
parameter values were used across all values of N in our
experiments to show the robustness of these values.

We searched for the best model architecture using
simple multi-layer neural networks that does not show
significant overfitting or underfitting, then we fixed
the architecture for all the models in our work. The
models comprise of four fully-connected layers with tanh
activation and an linear output layer. The widths of
all the hidden states are 100. All the experiments
used Adamax [35] optimizer and set maximum training
epochs to 500 that most of the models will converge
before that limit.

Since different models may use different loss terms,
the numbers of hyperparameters to search are different,
and some of them were not being searched. We use
random search [36] and run around 300 to 500 runs per
model to keep a balance between search quality and the
time spent. The hyperparameters we searched include:

1. For S-Loss: λC0 ∼ U(0, 5), αE ∼ U(0, 0.5).

2. For C-Loss: λC0 ∼ U(0, 2), αC ∼ N (0, 0.5), Tα ∼
U(0, 200)

9.1.2 Sigmoid Cold-start and Other Different
Modes Additionally, to further prove our choice on
sigmoid is indeed effective. We compared three other
modes with sigmoid: quick-drop (Eq. 9.10), quick-start
(Eq. 9.11), inversed-sigmoid (Eq. 9.9).

(9.9) λC(t) = λC0 × [1− sigmoid(αC(t− Tα))]

(9.10) λC(t) = λC0 × (1 + αC)min(0,−t+Tα)

(9.11) λC(t) = λC0 × [1− (1 + αC)min(0,−t+Tα)]

We replaced the sigmoid cold-start with the three
modes in CoPhy-PGNN and ran 400 times for each
mode to do hyperparameter search on λC0, αC , Tα.
Using the average hyperparameter values for the top-
5 models that have the lowest validation error. The
results are:

1. quick-drop: λC0 = 0.836881, αC = 0.062851,
Tα = 14.0.

2. quick-start : λC0 = 0.936669, αC = 0.073074,
Tα = 61.2.

3. sigmoid : λC0 = 0.846349, αC = 0.020170, Tα =
51.0.

4. inversed-sigmoid : λC0 = 0.939779, αC = 0.171778,
Tα = 59.2.
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Figure 8: Wave function cosine similarity of different
adaptive C-loss w.r.t. different training size. Left:
cosine similarity on different training sizes. Right:
Mean cosine similarity over all training sizes.

Using the hyperparameter values to set up models,
and run 10 times per setting on different training sizes,
the results are shown in Fig. 8. We can see that sigmoid
consistently performed better than other modes in both
stability and accuracy. Another important information
it conveys is that, quick-start, like sigmoid though it
increases the weight of C-Loss much faster, results in
a much more unstable results. Actually our results
show that quick − start dominates the leaderboard of
both top-10 best and worst performances (also showed
in the barplot in Figure 8). It implies that a smooth
and gradual switch of dominance between different loss
terms is better in terms of stability.

9.2 Electromagnetic Propagation Application
For this application, due to the prohibitively expensive
training time, we have not conducted an exhaustive
hyper-parameter search. Instead, we have manually
tweaked the model until the optimization converged to
an acceptable solution. The hyper-parameters we used
are λC0 = 10−8, λS0 = 0.01, αS = 0.9, αC = 0.003, T =

50, and Ta = 1500. In terms of architecture, we used a
fully-connected ANN, with 2 hidden layers of width 100.
Also, instead of using Train-MSE, we used an L1-loss
based formula Train-Loss(θ):

∑
i

∑
j

(
|ŷij − yij |+ |b̂ij − bij |

)
+ (||ŷi|| − ||yi||)


(9.12)

Here, the sum of errors was used instead of the
mean as we have empirically found it to help the model
converge faster. We hypothesize that the mean-squared-
error was too small to drive the optimization. We
trained the model for 4000 epochs, and selected the best
snapshot based on the lowest validation error.

10 Analysis of gradients

10.1 Contribution of Loss Terms The compli-
cated interactions between competing loss terms mo-
tivate us to further investigate the different role each
loss term plays in the aggregated loss function. The
sharp bulge in both MSE and C-Loss in the first few
epochs (Fig. 3 in the main document) shows that the
optimization process is not quite smooth. Our specula-
tion is that S-Loss and C-Loss are competing loss terms
in the combined optimization problem. To monitor the
contribution of every loss term in the learning process,
we need to measure if the gradients of a loss term points
towards the optimal direction of descent to a generaliz-
able model. One way to achieve this is to compute the
component of the gradient of a loss term in the optimal
direction of descent (leading to a generalizable model).
Suppose the desired (or optimal) direction is d∗ and the
gradient of a loss term L is ∇L. We can then compute
the projection of ∇L along the direction of d∗ at the
kth epoch as:

(10.13) p
(k)
L =

〈∇L(k),d∗(k)〉
‖d∗(k)‖ .

A higher projection value indicates a larger step
toward the optimal direction at the kth epoch, d∗(k),
which is defined as:

(10.14) d∗(k) = θ(k) − θ∗,

where θ(k) is the model parameters θ (i.e., weights
and biases of the neural network) at the kth epoch and
θ∗ is the optimal state of the model that is known to
be generalizable. Note that finding an exact solution
for θ∗ that is the global optima of the loss function
is practically infeasible for deep neural networks [37].
Hence, in our experiments, we consider the final model
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arrived on convergence of the training process as a
reasonable approximation of θ∗. For methods such as
PGNN-analogue and CoPhy-PGNN, the final models at
convergence performed significantly well and showed a
cosine similarity of ≥ 99.5% with ground-truth. This is
very close to a model trained directly on the test set that
only reaches 99.8%. This gives some confidence that the
final models at convergence are good approximations to
θ∗. To compute the inner products between ∇L and
d∗, we used a flattened representation of the model
parameters by concatenating the weights and biases
across the layers.
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Figure 9: The projection of gradient of each term on the
optimal direction. The optimal direction of a certain
iteration points from current state to the optimal state.

10.2 Experiment Results We analyze the role of
S-Loss and C-Loss in the training process of the two
methods: CoPhy-PGNN and PGNN-analogue. Both
these methods were run with the same initialization of
model parameters. Training size is 2000 and the rest of
settings are same as in Section 5 of the main document.

Figure 9 shows that in the early epochs, the S-Loss
has positive projection values, which means that it is
helping the method to move towards the optimal state.
On the other hand, the projection of C-Loss starts
with a negative value, indicating that the gradient of
the C-Loss term is counterproductive at the beginning.
Hence, S-Loss helps in moving out of the neighborhood
of the local minima of C-Loss towards a generalizable
solution. However, the projection of C-Loss does not
remain negative (and thus counterproductive) across all
epochs. In fact, C-Loss makes a significant contribution
by having a large positive projection value after around
50 epochs. This shows that as long as we manage to

escape from the initial trap caused by the local minima
of the C-Loss, then it can turn to guide the model
towards desired direction d∗. By initially setting λC
close to zero, it allows the S-Loss to dominate in the
initial epochs and move out of the local minima. Later,
we let C-Loss to recover to a reasonable value and it
will start to play its role. These findings align quite
well with the cold-start and annealing idea proposed in
this work and show that it works best when the two loss
terms are combined together using adaptive weights.

Note that for this analysis method to produce valid
findings, we need to ensure that the loss terms are
not pointing towards the direction of an equally good
θ∗ that can be arrived at from the same initialization.
To ensure this, we investigated how similar the trained
models (optimal states) are when started from the same
initialization for the two methods. The parameters
of the PGNN-analogue and CoPhy-PGNN showed an
average cosine similarity of 98.6%, and in many cases
reached 99%. This gave us more confidence to believe
that our approximations to the optimal model were
sufficient.
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