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Abstract

The advent of Persistent Memory (PM) devices enables sys-
tems to actively persist information at low costs, including
program state traditionally in volatile memory. However, this
trend poses a reliability challenge in which multiple classes of
soft faults that go away after restart in traditional systems turn
into hard (recurring) faults in PM systems. In this paper, we
first characterize this rising problem with an empirical study
of 28 real-world bugs. We analyze how they cause hard faults
in PM systems. We then propose Arthas, a tool to effectively
recover PM systems from hard faults. Arthas checkpoints PM
states via fine-grained versioning and uses program slicing of
fault instructions to revert problematic PM states to good ver-
sions. We evaluate Arthas on 12 real-world hard faults from
five large PM systems. Arthas successfully recovers the sys-
tems for all cases while discarding 10X less data on average
compared to state-of-the-art checkpoint-rollback solutions.
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1 Introduction

Modern systems maintain a vast amount of state. Persisting
state allows important information to be saved across runs.
Yet, persistence has costs, so developers have to make a care-
ful decision on what program state to persist and when. For
performance, many systems store a substantial amount of (or
all) state in volatile DRAM, which will be lost or have to be
re-constructed upon restart. The advent of low-latency, byte-
addressable Persistent Memory (PM) alleviates this tension
and enables developers to persist much more information at
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low cost [39]. For example, developers can store previously
volatile cache data structures in PM, which allows applica-
tions to restart quickly with a warm cache [48].

From a reliability perspective, however, PM leads to an
emergent challenge we call the soft-to-hard fault transforma-
tion problem. Without PM, process restart is often a simple
but effective method to mitigate production failures because
the issues are “soft™!, i.e., they only affect volatile state and
go away upon restart. But the integration with PM can cause
buggy state to persist after restart, i.e., becoming “hard” faults.

The soft-to-hard fault transformation produces classes of
bugs that have much more severe effects in PM systems than
the same bugs in traditional systems. For example, a rare race
condition or CPU bit flip in traditional systems can corrupt a
volatile pointer and cause a system crash upon dereference,
but the crash would disappear after restart. In PM systems,
this fault could cause repeated crashes. As another example, a
memory leak that previously would be cleaned up after restart
could become permanently leaked space in PM.

While hard faults also occur in traditional systems if a
bad state is written to storage (e.g., a file) and retrieved after
restart, this problem is particularly acute in PM systems. This
is because, developers can afford to store much more state in
persistent memory, and/or persist states more frequently. As a
result, PM systems are much more susceptible to the danger
of bad persistent state.

Prior works [23, 25, 38, 43, 45, 46, 50, 57, 65] have ex-
tensively investigated the crash consistency problem in PM
systems, which is caused by partial or reordered PM writes
leading to inconsistent state affer crashes. The hard fault prob-
lem significantly impacts PM system reliability with a variety
of common bugs during the program executions. Unfortu-
nately, the problem has received less attention, nor has it been
formally classified.

To understand this emergent problem’s characteristics, we
first conduct an empirical study. We collect 8 real-world hard
fault bugs from five new PM systems. One challenge is that
existing new PM systems do not have a rich development
history yet and have a limited number of reported issues.
Fortunately, there are growing interests in adapting [43] and
porting [17, 22, 30, 48, 61] mature systems that have long
histories to PM. We thus propose a forward-looking methodol-
ogy that uses historical bugs to study their effect in the ported

'We adopt the terms from a classic paper [36] by Jim Gray, which conjectures
that most production software faults are soft (transient) while most “hard”
faults (always fail on retry) in software are eliminated before production.
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PM versions. We collect 20 real-world bugs in Redis and
Memcached and reproduce them in their persistent versions.
We summarize the common practices of persisting program
state (Section 2.2) that may contribute to the rise of the hard
fault problem. We then analyze individual collected cases.
We find that the root causes of the studied cases are diverse
(6 types). Even after multiple restarts, these bugs cause the
PM systems to continue to experience deterministic failures,
or even worse deteriorating failures. In addition, the major-
ity (68%) of the cases involve bad state propagation across
volatile and persistent variables in different code locations.

When a PM system experiences a hard failure in production,
it is critical to get the system functional as soon as possible.
For hard faults, however, typical mitigation actions such as
process restart or node reboot will not make the failure symp-
tom disappear. Developers may then be forced to shutdown
the system, debug the issue offline, pinpoint the root cause,
fix the bug, and re-deploy the system to production. Unfor-
tunately, the challenge remains in this scenario—even after
the code bug is found and fixed, the underlying bad persistent
states still exist, so the system will likely fail again in the re-
deployment. Essentially, to deal with hard failures, we need
a solution to restore the PM system state to a point in which
the system is operational again.

We propose a tool, Arthas, to help users systematically
restore PM systems from hard failures, during either online
failure mitigation or offline diagnosis and fixing. Guided by
our study, we observe that when persistent memory objects
are assigned with bad values the persistence point (root cause)
often occurs long before the failure point, and the bad states
may have already been propagated to multiple volatile and per-
sistent variables along the execution flow. Properly recovering
from a hard failure must revert these bad persistent values.
We design Arthas to use checkpoint/rollback of dependent
states that carefully eliminates bad values in the PM.

The central challenge Arthas addresses is to ensure recov-
erability while minimizing the amount of discarded data due
to rollback. Current checkpoint-rollback solutions operate on
coarse-grained, point-in-time memory snapshots. They are
not effective in recovering PM systems. Even if the PM sys-
tem is temporarily recovered, the hard failures could occur
soon because contaminated states are not properly rolled back.
In addition, these solutions tend to incur significant data loss
by rolling-back states that are independent of the failure, e.g.,
they would undo many successful key/value operations that
are independent of the failure.

To address this challenge, Arthas designs PM-aware fine-
grained check-pointing by versioning PM states at program
memory object level. To accurately identify “just enough”
PM states to roll back for a failure, Arthas takes a novel ap-
proach with static analysis and lightweight runtime tracing
techniques. In particular, the Arthas analyzer computes the
Program Dependency Graph (PDG) of a PM system offline.
It further instruments tracing code to the target system, which
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CCEH Dash PMEMKYV LevelHash RECIPE Memc. Redis
Cases 1 1 2 2 2 9 11
Type New New New New New Port Port

Table 1. Collected hard fault bugs in new and ported PM systems.

will emit PM addresses and the instruction sources at runtime.
Upon detecting a suspected hard fault, the Arthas reactor
leverages the PDG, fault instruction, and PM trace to com-
pute the set of PM states related to the failure. Based on this
information, Arthas reverts only dependent bad PM states.
For evaluation, we reproduce 12 hard fault bugs from five
large PM systems (Redis, Memcached, Pelikan, PMEMKV
and CCEH). Arthas successfully mitigates the failures in all
cases. In achieving the recoverability, Arthas only discards an
average 3.1% of the PM state updates. For comparison, we
enhance the state-of-the-art process-level checkpointing solu-
tion, CRIU [1], to support PM checkpointing. CRIU mitigates
9 cases deterministically and 2 cases with some probability. It
discards an average of 56.5% of the persistent states. Arthas
only incurs up to 4.8% runtime overhead.
The main contributions of this work are:
e We study the emergent hard fault problem in PM systems.
e We propose a novel solution, Arthas, to effectively mitigate
hard faults in PM systems while minimizing the data loss.
o We evaluate Arthas with hard fault bugs in real-world PM
systems to demonstrate its effectiveness.

2 Empirical Study on PM Hard Faults

We present an empirical study for the hard fault problem in
PM systems. We aim to understand the characteristics of hard
faults and leverage the insights to guide our solution design.

2.1 Definition and Study Methodology

In this paper, we define a hard fault to be “bad” values in
persistent memory that originate from software bugs or tran-
sient hardware errors and cause the PM systems to experience
recurring failures across runs. By “bad”, we mean a PM loca-
tion holding a value that is incorrect and affects subsequent
program behavior (trigger crash, assertion, leak, wrong result,
etc.). If a PM location holds an incorrect value but it does not
influence subsequent program behavior, it is a benign fault.

We examine several new PM systems [3, 40, 43, 47, 66, 68]
to search for bugs related to PM programming and check if
the bug leads to hard faults. One challenge is that most new
PM systems only have a few reported bugs due to their short
development history. We have to inspect the commit messages
to complement the bug trackers. We found 8 hard fault bugs
from five new PM systems (Table 1).

To enrich our study dataset, we observe the growing in-
terests from developers and researchers in porting mature
systems to support PM. New bugs can be introduced in the
ported versions. In addition, mature systems have a rich de-
velopment history with various bugs. Some of the historical
bugs affect the volatile variables or data structures that are
now stored in PM. Were these bugs re-introduced in the PM
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dict *dictCreate(dictType *t,
void *p) {

dict *dictCreate(dictType *t,void *p){
PMEMoid oid = pmemobj_zalloc(..);
dict *d = pmemobj_direct(oid);
_dictInit(d, t, p)7
return d; return d; after this, d becomes a

} Volatile Redis } PMEMRedis persistent memory object

Figure 1. Original Redis vs. PMEM-Redis.
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3 dict *d = zmalloc(..);
4 _dictInit(d, t, p);
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6

versions, they can potentially result in hard faults. We study
two widely-used, in-memory key-value stores, Redis [13] and
Memcached [5]. There are several efforts that port them to
support PM [44, 48, 50, 59], including the effort from the of-
ficial Memcached developers [30]. We manually go through
bug trackers of the two systems and inspect existing bugs that
affect PM related code in the ported versions. In total, we
collect 11 bugs from Memcached and 9 bugs from Redis, and
reproduce these bugs on the persistent versions.

2.2 Volatile vs. Persistent States

We first summarize the common practices used in making
program state persistent in the studied systems.

Usually, traditional systems only persist critical data or
adopt in-memory designs for performance. For example, all
states in Redis by default are volatile. Redis does provide a
feature [15] that allows users to take periodic snapshots to
disks. But even with this feature, only the key-value items are
written to disk infrequently.

PM enables developers to save not only critical data but
also various “progress” state. More active persistence allows
a PM system to restart quickly and pick up the progress.

One category of program state that is usually stored in
DRAM in traditional systems but can be stored in PM is aux-
iliary data structures. Take key-value stores as an example.
Their indexing structures like hashtables are usually not per-
sisted, because persisting their updates hurts performance.
Instead, upon restart, the hashtables are re-constructed by
re-inserting all items into newly allocated hashtables. A PM
implementation can keep the hashtables in persistent memory
besides the items. This reduces the recovery time because the
system can directly use the hashtables upon restart.

Another category is cache-related data structures. For ex-
ample, in the RocksDB PM version [17], developers persist
the LRU cache. Volatile states may also be persisted as a
by-product. This occurs because persistent and volatile ob-
jects can have complex dependencies [48]. For example, in
N-Store [20], by persisting the core table structure, develop-
ers inevitably end up with persisting several other transient
data structures due to their dependencies [10]. Developers
may also put volatile states in PM to avoid complexity. For
example, in the persistent Memcached [30], developers di-
rectly persist the entire item data structure for the purpose
of simplicity, even though it includes some fields that one
could classify as “transient”. Last but not least, we observe
in several cases in which developers also persist queues or
asynchronous processing data structures.

Adding PM persistence is natural because the PM program-
ming model is similar to DRAM’s. The snippet in Figure 1
shows how the original Redis and PMEM-Redis create the
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dict object. After line 3, the two versions are indistinguish-
able. We also observe some studied systems add PM persis-
tence through using a global persistent memory allocator or a
memory mapped file in PM device. This makes it easy to use
PM since any program objects allocated or referring to the
mapped region will be backed by PM. But the implication is
that a large portion of a system’s code may touch or interact
with persistent objects and introduce bad values.

2.3 Bug Examples

We explain several bug cases in detail, and then describe the
general patterns in the following sections.

CCEH directory doubling bug. CCEH [51] is a new dy-
namic hashing scheme designed for PM. It has a bug reported
by the authors of RECIPE [43]. CCEH doubles the size of its
directory structure when the number of buckets grows large,
which modifies several pieces of metadata. If an untimely
crash occurs before the global depth is updated, the insertion
operations will get stuck in an infinite loop. We reproduced
this bug and confirmed the failure recurs across restarts. Just
fixing the bug does not make the previous failure symptom
go away. We must also correct the bad persistent metadata.

PMEMKY asynchronous free leaks. PMEMKYV [3] is PM
key-value database designed by Intel and supports multiple
storage engines. When handling the client delete requests, for
performance, PMEMKYV sets the hashtable to be unlinked and
uses an asynchronous thread to free the key-value items later.
The bug will cause a persistent memory leak if PMEMKV
crashes before the asynchronous thread frees the objects [12].

Memcached corrupt hashtables. Memcached tracks refer-
ence counts for key-value items. It has a bug [7] where the
refcount is incremented without checking for integer over-
flow. Memcached checks for any items with refcount 0 and
frees them. It assumes that items with refcount O have been
unlinked from the hashtables. Since the overflow prematurely
sets the refount to 0 without unlinking this item, its address
is still in the hashtables. If the same key is reinserted, it will
reclaim the same memory address. As a result, there are two
key-value items of the same address in the hashtable. The
item’s hashtable next pointer will point to itself. Upon a GET
request, Memcached gets stuck in an infinite loop:

while (it) {

if (!memcmp(key, it->key, n)) return it;

it = it->h_next; // next point to itself
}

In the original version, the key-value item and the hashta-
bles were volatile. So the bad refcount and contaminated
hashtable are gone after restart. But in the PMEM-Memcached,
developers would naturally persist the entire item structure [8]
including an item’s refcount. Even if the refcount is not per-
sisted, the corrupt hashtables are persisted. Consequently,
Memcached would hang again after restart.

Redis listpack buffer overflow. Redis’ listpack structure
stores lists of encoded strings. The encoding function has
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a logic error bug [14] that results in buffer overflow for list-
packs of size larger than 4096 bytes. Even though the listpack
insertion request succeeds, the listpack size value gets cor-
rupted. Subsequently, when a client makes a request to read
that listpack, Redis encounters a segmentation fault. In the
original Redis with default options, the corrupt listpack will
be gone after the restart. However, in a PMEM Redis, since
the corrupt listpack is immediately written to PM, Redis will
experience repeated segfaults after restart.

2.4 Root Causes
We categorize the studied hard faults by their root causes.

Logic Errors. These bugs involve temporary variables that
are assigned with problematic values. In regular systems, such
variables are volatile, and restart typically recovers the system.
In PM systems, the bad values can get persisted and incur
permanent failures. An example is a bug [6] in Memcached
where calling flush_all at a future time incorrectly begins
removing valid items in the LRU before the time comes.

Buffer Overflow. These are bugs in which the system re-
ceives an unexpected input and misbehaves. This includes the
Redis listpack issue described earlier, which causes corrupt
items. In the original version, the unexpected input usually
only affects volatile variables. In the PM version, some per-
sistent variables can be affected as well, e.g., the bogus length
is persisted, and introduce persistent faults.

Concurrency Bugs. These issues are known for behaving
non-deterministically. That is, they often disappear in re-
executions. So restart is usually an effective approach to
mitigate them. But in persistent systems, race conditions or
resource contention can lead to permanent wrong results or
deadlocks when locks or shared variables are made persistent.

Hardware Faults. Defects in hardware can corrupt program
variables. This can occur in CPU (bitflip), DRAM, or net-
work messages. Typically such hardware faults are rare and
transient, i.e., after restart or retry the faults will be gone.
With persistent memory, the affected system states can re-
main corrupted even after restart. The Memcached hashtable
expansion flag discussed previously is one such example.

Memory Leaks. Volatile heap objects that are not properly
freed can lead to performance degradation. But after restart,
the memory leak is gone. In PM systems, however, the mem-
ory leaks will be permanent, causing a cascading amount of
performance and storage issues after each run.

Figure 2 shows the root cause distribution. We can see
that logic errors make up the largest percentage (46%). The
second largest contributor (18%) are race condition errors.

2.5 Bug Consequences

We analyze the consequences of these studied bugs. Figure 3
categorizes the outcomes and shows the frequencies of oc-
currences for each consequence. For ported PM systems, all
bugs cause more severe impact than the consequences in the
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original versions, such as repeated crashes, permanent corrup-
tion, persistent leak, and repeated hang. Repeated crashes are
the most common (32%) consequence.

Another interesting comparison is PM versus disk-based
persistence. Take Redis and the listpack bug (Section 2.3) as
an example. Redis allows users to configure periodic snap-
shots to disk. If users enable this feature, Redis will store
its listpacks to files. The bug consequence will then depend
on the snapshot frequency: if Redis crashes before the snap-
shot of corrupt listpack, no future crash will occur; if Redis
crashes after the snapshot, the segfault will recur (assuming
the GET request is still issued). In other words, even with this
persistence option, vanilla Redis can still nondeterministically
avoid this problem. However, in the PM version of Redis, this
failure will deterministically recur after restart.

2.6 Fault Propagation Patterns

Besides root causes and consequences, we also classify these
bugs into three different programming patterns based on
which type of memory the root cause resides in and how
the fault propagates through the system during runtime:

e Type I: A program variable backed by persistent memory
has bad value that directly causes the failure. Example:
corrupt persistent pointer resulting in segmentation fault.

o Type II: A program variable or data structure gets assigned
a bad value. The bad value propagates across the system
and indirectly causes the system failure. Some variable
along the propagation chain is written to persistent memory.
Example: an incorrect persistent flag causes the program to
unexpectedly execute a function and deadlock.

e Type III: Persistent variables cause undesirable behavior,
not due to bad values, but because of other programming
mistakes. Example: forget to free persistent objects and
lead to persistent memory leak.

Among the 20 bugs we studied, the majority (68%) of them
are of Type I, i.e., they involve bad state propagation. 18% of
them belong to Type 1, i.e., some bad persistent state directly
causes system failures. The remaining 14% are of Type III.

2.7 Implications

Our study shows that several classes of bugs would incur
much more severe consequences in PM systems than the same
bugs in systems without PM. Even after multiple restarts, a
PM system continues to experience the same failure or even
deteriorating failures. These issues occur in new PM systems
as well as in traditional systems adapted to PM.
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This motivates the need for more effective solutions other
than process restart to mitigate failures for production PM
systems. Our insight from the study is that, despite its diverse
root causes and manifestations, the essence of the soft-to-hard
fault problem is that some volatile states with bad values are
now persistent. Mitigating these faults thus requires getting
rid of the bad persistent states in the PM systems.

A natural approach is to checkpoint PM states and roll-
back them upon failures. However, traditional checkpoint
solutions are not PM-aware and could not effectively rollback
PM hard faults. In addition, they typically perform period-
ical, coarse-grained snapshots of the entire memory, which
would incur significant data loss during rollback. Moreover,
as Section 2.6 shows, the majority of hard failures involve
bad state propagation among volatile and persistent variables
in different functions. Consequently, even when one bad PM
state is rolled back, the PM system could still quickly hit the
same failure if the root cause of the bad state is not reverted.
The Memcached refcount overflow bug is such an example.
Even if the Memcached states are reverted to prior to creation
of the problematic persistent hashtable, it soon encounters the
same infinite loop because the bad refcount still exists.

3 Overview of Arthas

Based the insights from our study in Section 2, we propose
a PM-aware, fine-grained checkpoint-rollback mechanism
and design a toolchain called Arthas to aid PM systems re-
cover from hard faults. The design goals of Arthas are: (1) to
bring a PM system experiencing hard faults back to normal
quickly, (2) to minimize the amount of data discarded during
the rollback, and (3) to incur small runtime overhead.

3.1 Basic Idea and Workflow

The basic idea of Arthas is to checkpoint PM state updates
at variable/address level and record the program data flow.
The latter is used to accurately identify which PM states are
affected during a failure for effective rollback with minimal
data loss. However, tracking such information dynamically
can be expensive. To address this challenge, Arthas takes
a novel approach that uses program analysis to statically
analyze the PM system’s data dependencies, and then applies
lightweight address tracing and checkpointing at runtime.
Figure 4 shows an overview of the Arthas workflow. The
analyzer takes input the source code of a target PM system
and performs static analysis. It is responsible for two tasks.
First, it identifies program variables that may potentially re-
side in persistent memory. For potential persistent variables,
the analyzer instruments a lightweight tracing API call in the
program that will record the memory addresses of these vari-
ables at runtime. Second, the analyzer computes a Program
Dependence Graph (PDG) to track the dependency informa-
tion. This static PDG will later be used in the rollback process.
Arthas also provides a checkpointing library to transparently
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Figure 4. Overview of Arthas design.
checkpoint persistent memory updates in the target PM sys-
tem. Arthas links the checkpoint library and tracing code to
the target system and produce an enhanced executable.

As the enhanced PM system executes, it emits the PM
address trace, and Arthas versions PM state updates in a
persistent checkpoint region. Arthas detector monitors the
PM system and determines if a potential hard failure occurs.
If so, the detector will identify the faulty instruction and
invoke the reactor component. The reactor analyzes the faulty
instruction, computes the dependent instructions based on the
static PDG and dynamic PM address trace. The reactor then
computes a list of states that should be reverted and the order.
This rollback plan is presented to operator for inspection.
When confirmed, Arthas automatically executes this plan.

3.2 Supported PM Systems

Arthas currently supports two kinds of PM systems: (1) sys-
tems written with the popular PMDK framework [11]; (2)
systems written with persistence instructions such as clwb
and sfence. For PMDK-based systems, we particularly sup-
port two PMDK libraries—1ibpmem, which provides low-level
primitives such as pmem_persist, pmem_map _file, etc., and
libpmemobj, which provides high-level transaction interfaces.

These two types—Ilibrary persistence and native persis-
tence [S0]—cover many existing PM systems. We choose
PMDK to represent the library approach because it is widely-
used, and most systems we study use it, including the PM-
ports of Redis and Memcached. Our static analysis scheme,
checkpoint, and rollback designs are not limited to PMDK.

To support additional PM frameworks such as NVHeaps [28],
Mnemosyne [62] and Memkind [9], Arthas needs to intercept
specific calls in order to enact checkpointing. Arthas’s un-
derlying checkpoint data structure design and functions are
the same across different frameworks. Therefore, the main
effort of incorporating such frameworks would involve iden-
tifying which functions/instructions in a framework should
be intercepted. The main functionalities to consider are: (a)
PM initialization or allocation function, (b) flush/fence/com-
mit function, (c) free function, (d) misc functions such as
re-alloc. Typically, PM frameworks only provide a handful of
interfaces. Thus, the support effort is small.

3.3 Use Cases and Limitations

Arthas activates in response to a persistent fault in which the
system becomes inoperable. In this case, some state/data loss
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is inevitable to recover the system, and the amount inherently
depends on the specific fault and how the fault propagates dy-
namically in the specific system execution. Arthas performs
a more fine-grained recovery than traditional checkpoint-
rollback solutions to minimize the state/data loss.

Arthas’ approach is suitable for PM applications that have
many concurrent clients. A driving concern for them is that
a fault arising in handling one client can cause loss of state
updates from many other concurrent clients. Arthas leverages
static analysis to isolate the dependent operations from inde-
pendent operations and avoid unnecessary state reversions. In
contrast, a traditional checkpoint/rollback approach reverts
that entire state of the system. In doing so, it will lose many
independent state changes from concurrent clients.

Example applications that have to manage concurrent clients
and avoid state-loss impact on innocent clients include direc-
tory services, web apps that store user state and preferences,
recommendation systems, content-distribution networks, and
feature storage for machine learning. Clients of these appli-
cations conduct individual read and write requests with the
expectation that reads are repeatable and writes are persis-
tent. Most clients rely on the state persistence for correctness.
Arthas’s recovery minimizes the state loss damage to the
many concurrent clients that (1) have completed and are no
longer available or (2) do not implement recovery logic for
completed operations. Thus, it allows the target system to
maintain repeatable reads and persistence for as many com-
pleted operations as possible.

Arthas focuses on the analysis and recovery within a sin-
gle component. It is unable to detect or respond to external
dependencies. Consequently, it do not match the needs of
distributed PM applications. It may also introduce inconsis-
tency if a PM application has a client that makes multiple
semantically related requests that Arthas cannot detect as de-
pendent. However, Arthas’s ability to isolate the impact on
other clients and minimize state loss may still be desirable.

4 Arthas Design

In this Section, we describe the design details for the core
Arthas components as shown in Figure 4.

4.1 Static Analysis and Instrumentation

Locating PM Variables and Instructions. The Arthas an-
alyzer scans the entire PM system code to systematically
identify instructions that create or access program variables
backed by PM. We build the dataflow analysis on top of the
LLVM framework [42]. The analyzer first locates instructions
that call APIs of common PM libraries. If these API calls re-
turn a value that is stored in a variable, e.g., pmemobj_create,
pmemobj_direct, we identify the initial set of PM variables.
For PM systems using low-level persistence instructions
like clwb, the analyzer extracts PM variables from the instruc-
tion operands. The analyzer also supports identifying PM vari-
ables from mmapped-style APIs such as pmem_map_file. We
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treat the return value variables (e.g., ptr=pmem_map_file(...))
as well as variables whose values come from the return vari-
ables (e.g., fptr = ptr+10;) as PM variables.

Starting from these initial PM variables, the analyzer com-
putes the transitive closure of all instructions that use the PM
variables using the def-use chain analysis and add the vari-
ables into the PM variable/instruction set. In real-world PM
systems, persistent variables often involve pointers and are
passed across functions. To properly handle such cases, our
analysis is inter-procedural and incorporates field-sensitive,
context-sensitive pointer alias analysis [64].

Instrumenting Tracing Code (@). Once the instructions that
create or access PM variables are identified, we would ideally
track their dependencies with other instructions during exe-
cution using techniques like dynamic taint analysis [54, 58].
However, such tracking can be intrusive and adds significant
overhead to the PM systems. Instead, Arthas’s approach is
to compute dependencies statically and enhance the static
dependencies with lightweight runtime information.

The most critical piece of information Arthas needs from
the system runtime execution is the dynamic addresses of
the PM variables and program locations of the associated
instructions. To get this information, the Arthas analyzer as-
signs a Globally Unique Identifier (GUID) for each identified
PM instruction and generates a metadata file that records the
mappings of <GUID, source_location,instruction>. Arthas
then instruments an API call to a lightweight runtime tracing
library just before the PM instruction. The tracing code will
emit a trace of <GUID, pmem_address> at runtime. To reduce
the tracing overhead, we inline the tracing code, buffer ad-
dress traces in memory, and asynchronously flush the traces
to a file when the buffer is full or the system stops execution.

Constructing Program Dependence Graph (®). To tackle
the challenge of complex bad state propagation (Section 2.7),
Arthas statically analyzes the dependency information by
computing a Program Dependence Graph (PDG) [32]. Nodes
in the PDG are LLVM IR instructions and edges represent
dependencies among the instructions. We analyze two types
of dependencies. Data dependencies represents data flow rela-
tionship. Control dependencies occur when an instruction de-
termines if another instruction should be executed or not. Our
dependency analysis is inter-procedural and flow-sensitive. It
handles pointers, including function pointers (the callgraphs
contain edges to potential targets in the points-to set).

The PDG and the GUID mappings are static metadata of the
target program. This metadata is stored in regular files. They
will be read as input by the Arthas reactor later in production.
As long as the target program code does not change, the
dependency metadata is consistent with the application code.

4.2 Eager Checkpointing of PM States with Versioning

To rollback a PM system, we need to checkpoint PM states.
Arthas performs checkpointing through versioning PM states
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1 typedef struct { size_t sizes[MAX_VERSIONS];

7
2 const void *address; 8 int seq_nums[MAX_ VERSIONS];
3 uint64_t offset; 9 uint64_t old_entry;
4 int version; 10 uint64_t new_entry;
5 int data_type; 11 } checkpoint_log_entry;
6 void *data[MAX_VERSIONS];

Figure 5. Checkpoint log entry definition.

at the granularity of program variables/addresses. This differs
from existing solutions such as Flashback [60], CRIU [1] and
ThyNVM [57] that perform periodic snapshots at a coarse
granularity, e.g., entire process state or memory pages.

The Arthas checkpointing functionalities are implemented
as a generic library. During the compilation phase, this library
is linked with the target program ().

When the PM system starts, the checkpoint library initial-
izes a checkpoint log in persistent memory. When the system
performs an update to PM address r of size n, the library trans-
parently stores the update into the checkpoint log based on r
and records n (@). Each log entry holds a maximum number
(default 3) of versions of data for that address. In addition, the
checkpoint library maintains an atomic sequence number
to order PM updates by logical time, which is used during
rollback. Figure 5 shows the checkpoint log entry.

The Arthas library performs checkpointing eagerly on each
update rather than periodically. But it respects the program’s
persistence points to avoid premature checkpointing if the
data is still in DRAM or partially persisted. It ensures so
by intercepting all the well-defined durability APIs such as
pmemobj_persist, sfence, which are called by the target pro-
gram to ensure an address range is stored durably in PM. We
only checkpoint when these calls succeed. Besides using ex-
plicit durability APIs, a PM system may use transaction APIs
like those in the 1ibpmemobj library to implicitly flush updates
to PM at the end of a successful transaction. Such libraries
already keep an undo log (or some form of logging/tracking)
that records all update operations within the transaction. We
modify the internal transaction commit function to copy each
updated address range in the undo log to our checkpoint log.

In summary, both the granularity and the timing of our
checkpointing are consistent with how the target system up-
dates its persistent states and makes them durable in its code.
For multi-threaded PM systems, we assume their persistence
program points are properly synchronized, so Arthas would
not checkpoint PM updates with data races.

The library does not checkpoint program states in volatile
DRAM. PM systems usually reconstruct volatile states based
on persistent states upon restart, which we rely on to handle
volatile states. We could use Arthas together with traditional
checkpointing techniques to checkpoint volatile states and
reduce the state reconstruction time. But the rollback of per-
sistent state must be done carefully together with volatile
states rollback to respect their complex dependencies. Recon-
structing volatile states is a simpler and more robust choice.

Some PM programs may resize a persistent memory block,
which can present challenges during reversion. We add a
field old_entry in the checkpoint log entry to connect entries
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Figure 6. Timeline of volatile and persistent memory writes.

crash

t12 t13 t14
that have reallocation relationship. Our technical report [27]
describes the solution in more detail.

4.3 Detecting Hard Failures

The Arthas detector monitors the target PM system in produc-
tion for various failures such as crash, assertion failure, hang
or memory leak (@). It also supports user-defined checks (e.g.,
inserted key-value items exist). When a failure is detected,
the detector use heuristics to assess whether the issue might
be a potential hard failure. It retrieves the faulting instruction,
exit code, stack trace, memory usage, etc., and compares if
the symptom is similar to the previously recorded failure (e.g.,
having the same exit code, fault instruction, loosely the same
stack trace). The heuristics are imperfect and may flag issues
that turn out to be a soft failure or are not caused by bad PM
states. This does not cause problems because Arthas reactor is
able to prune these false alarms in the mitigation stage (§ 4.5).

4.4 Rollback Strategies

Once the detector suspects a potential hard failure, Arthas
invokes the reactor to recover the system (®). The reactor
reverts PM states at fine granularity. It also leverages the PDG
from the static analyzer to guide the mitigation.

Arthas takes a dependency-based rollback approach, while
the traditional rollback approach is typically time-based. Fig-
ure 6 shows an abstract example of the volatile and persistent
memory write timeline in a crash, which we use to compare
the rollback approaches. The arrows represent data dependen-
cies among the updates. The immediate crash site is at time
115 and involves a volatile variable, e.g., strcpy(addr, buf);,
but the root cause is a buggy update to a persistent variable at
time f5 that later tainted the volatile variable addr or buf.

Note that the root cause point is unknown to a rollback solu-
tion. It has to be deduced post-failure. In addition, a rollback
solution judges and reverts buggy states from an operational
point of view—if it recovers a system to be operational again,
it may not further search for those benign buggy states that
do not influence system execution success.

Time-based vs. Dependency-based Rollback. In traditional
time-based checkpoint-rollback (Figure 7a), program states
including persistent memory states are checkpointed at peri-
odic intervals. When the failure occurs, the program states
are reverted to the previous checkpoint, i.e., ckpt4 at time
t12. Unfortunately, the program will crash again because the
volatile addr or buf are again assigned by the bad persistent
value at time #1g. The program is further reverted to ckpt3 at
time #19. While in this snapshot, the bad persistent value at
t1o is gone, the failure is not over because the bad value at f5



EuroSys ’21, April 26-28, 2021, Online, United Kingdom

[ reverted /N dependency ]
ckpt1 ckpt2 ckpt3 ckpt4

0.0 V. YV V0. = m s = " ’

t1 t2 t3 t4 t5 t6 t7 tS tQ tTO tﬂ t12 tTS t14 t15

(a) Traditional time-based rollback

A AW VL

e Vet y Ay tylgiiy N
t1 t2 tS t4 tS tG t7 t8 t9 tWO tﬁ t12 t13 t14 t15
(b) Arthas dependency-based rollback

(N NA XA~ o~

P Ay S S = R e Sy Ay ->
ot g 4ty gttty by by te taty ts

(c) Arthas dependency-based purge mode
Figure 7. Three rollback strategies for Figure 6.

pollutes t1¢ and then addr or buf again. So the program has to
be reverted to ckpt2 and then finally ckptl.

In Arthas’s dependency-based rollback (Figure 7b), the
Arthas reactor analyzes the updates that a program variable
depends on and reverts by following the dependency chain.
It finds that the crash site |5 depends on #1¢ and thus directly
reverts the program states back to be before #¢. This rollback
does not fix the failure, because 719 propagates the bad value
from ¢s. The reactor identifies #1¢ has a dependency on 79, a
volatile variable that in turn has a dependency on t5. Thus,
Arthas further reverts the program states to be before fs.

Compared to the time-based rollback, the dependency-
based rollback has two advantages. First, the dependency
information enables it to jump to the functional point with
fewer trials (e.g., 2 versus 4). Second, time-based rollback has
to revert an entire checkpoint at a time, thus easily incurring
unnecessary state loss (e.g., #3 and #4), whereas dependency-
based approach can revert to a precise point.

Dependency-based Rollback vs. Purge. Besides dependency-
based rollback, the Arthas reactor supports a more aggressive
reversion operation—purging. Rollback strictly follows time
order. If the system is reverted to time #;, any state updates
after t; are reverted. In purging mode, the reactor only reverts
selected PM objects to their old versions. Updates to other
objects after the reverted time points may not be reverted if
they do not depend on the selected objects. Figure 7c shows
that the reactor identifies dependency between t5 and #1¢ and
reverts t1¢ to the old value. While #11, t13 and t14 occur after
110, they do not create dependencies to #;5 and thus are not re-
verted. Because #1( is not the root cause, the crash still recurs;
the reactor then reverts dependent update from fs.

Compared to dependency-based rollback (Figure 7b), purg-
ing has the advantage of reducing the amount of unnecessary
state loss. But it may introduce inconsistencies. To reduce
this risk, when operating in the purging mode, the Arthas re-
actor runs a second pass to identify whether there are forward
dependencies from the reverted states and then purges them
as well. For example, even though #; does not directly affect
the crash site, after we revert the direct dependent update in
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ts, the reactor analyzes that the 75 influences 77 and reverts #;
as well to maintain the consistency between them.

In practice, we observe that for request-based server pro-
grams, such as key-value stores, the state dependencies are
typically partitioned based on requests. The system failure is
usually caused by a specific request that only pollutes states
related to that request. In this case, purging removes only
those bad states. In comparison, rollback may have to get rid
of states from many other requests that are not responsible
for or influenced by the fault.

4.5 Rollback Workflow

For a given fault instruction, the Arthas reactor first derives a
reversion plan based on the recorded checkpoint log (§ 4.2),
the static PDG (§ 4.1), the PM address trace file, and the
static metadata file of trace GUIDs (§ 4.1). The reversion
plan is a candidate list of sequence numbers in the checkpoint
log that might need reversions. The reactor first computes
the backward slices [63] of the fault instruction based on
the PDG. A backward slice for an instruction A includes all
instructions that may affect the values in A. We only retain
instructions that have persistent variables operands.

With the backward slices, we use the dynamic address trace
to check whether a node of a slice generates a PM update. If
so, we find the checkpoint log entries that have the same PM
address and add the sequence number (§ 4.1) of the log entries
along with the slice node into a list. In the end, we apply a
policy function to obtain the final candidate list of sequence
numbers. Our default policy function sorts and de-duplicates
the supplied sequence numbers. A more complex function
could arrange the sequence numbers based on DFS or BFS
order of the slices and enforce a maximum distance with the
fault instruction to filter excessive sequence numbers.

It is possible that the final reversion plan ends up being
empty. This could occur due to an inaccuracy from the detec-
tor (§ 4.3), i.e., the failure is not caused by bad values in PM.
The reactor then safely aborts and resorts to simple restart.

If the reversion plan is not empty, the reactor proceeds
to reversions (®). It keeps a current version v and tries the
selected sequence number in order. To revert a sequence num-
ber s, the reactor copies the data from version v-1 to the PM
address associated with s. After reversion, the reactor invokes
a re-execution script that re-runs the target program with the
same arguments as the prior run. The re-execution status is
checked to see if the PM fault has been fixed. If the failure per-
sists, the reactor moves on to try reverting the next sequence
number in the candidate list. When all sequence numbers in
the list are reverted and the failure still persists, the reactor
retries reversion to an older version v-2 until the max versions
are exhausted. For the purge mode, if re-execution triggers
assertion checks in the target program’s recovery function or
a configurable maximum number of tries have reached, the
reactor switches to the conservative rollback mode.
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We make the design decision of multi-attempt rollback for
the goal of minimizing data loss. Since we do not know where
the root cause bad state is, we revert in a smaller granularity
and check if the system is in a good state. If the root cause
is not in that small segment, we would have to rollback fur-
ther. Other traditional checkpoint-rollback solutions such as
Rx [56] also perform rollback in multiple iterations. Another
factor is that the inaccuracies in static analysis could cause a
single-attempt rollback ineffective, multiple attempts would
become necessary to address the inaccuracies.

4.6 Rollback Consistencies

As described in Section 4.2, the granularity and timing of
Arthas checkpointing strictly respects the developers’ choice
of persistence granularity and timing in the PM program.

For example, for a persistent data structure item that has
many fields, if developers choose to update one field of item
and then call pmem_persist or sfence, Arthas will create a
checkpoint entry just for that field. Or, if developers choose
to update multiple fields of item and then call a durability
API, Arthas will create one checkpoint entry for the persisted
fields right after the durability API call.

Because of this, the rollback in Arthas preserves the update
consistency of the target PM program. It will not revert the
PM states to intermediately updated PM states. In addition,
Arthas’s reversion strategies carefully follow the dependency
chains extracted from the PM program’s source code. This
ensures a sequence number (PM update) in the checkpoint
will not be reverted before its dependent sequence numbers
(PM updates). For PM programs that use transaction inter-
faces, Arthas’s checkpoint library inserts special entries for
transaction starts and commits. Later, if the Arthas reactor
rollbacks some checkpoint entry within a transaction, the re-
actor will rollback other checkpoint entries in the transaction.
This preserves the transaction-level consistency.

If a PM program is written in a buggy way, e.g., some
PM objects were persisted individually when they should be
persisted atomically, Arthas may rollback the program to a se-
mantically inconsistent point. However, such inconsistencies
are not caused by the rollback but the program bugs. Such
bugs are exactly one common root cause for the hard failure.
To Arthas, if the reactor reverts a program to such a buggy
point, the PM program likely encounter a hard failure again;
the reactor just needs to further rollback the program.

4.7 Mitigating Persistent Memory Leak

Persistent memory leaks are a challenging type of hard failure
to mitigate for two reasons. First, the fault instruction—when
the system runs out of PM space or is stopped by a PM usage
monitor—is often not connected to the root cause. Second,
we need to revert the states far back to before the leaked
persistent variables are created. Traditional volatile memory
leak detection tools such as Valgrind are ineffective (Intel
implements a PM Valgrind [2, 16] and a persistent inspec-
tor [55], but they detect bugs like unnecessary flushes, not
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persistent leaks). Tracing reachability of PM objects during
an execution is also not enough, because a PM program may
not call free on persistent variables (values in PM locations
may be used after restart).

We observe that typically a PM program’s recovery func-
tion retrieves almost all PM data structures before proceeding.
At the same time, the Arthas checkpoint component keeps
track of all PM variable updates. So our idea is to compare the
PM variables that are accessed during recovery and the PM
variable updates that are recorded in the Arthas checkpoint
log. To capture the PM variable accesses in the recovery func-
tion, we provide two simple APIs pmem_recover_begin and
pmem_recover_end that can be used to annotate the recovery
function. The Arthas reactor then discovers all PM variables
that are not freed in the checkpoint log and not accessed in
the recovery function. This mitigation approach is simple and
effective. To be safe, the Arthas reactor outputs the suspected
leak PM variables and only frees them after confirmation.

S Implementation

We implement Arthas in C/C++, with a total of 7,800 lines of
code. The Arthas static analysis and PM trace instrumentation
are built on top of LLVM [42]. The program dependency
graph (PDG) construction uses an existing library dg [4, 24].

Computing the static PDG and pointer analysis can take a
long time for large programs. Also, the PM trace can grow so
large that it takes a substantial time to parse. These costs delay
mitigation. To reduce delay, we implement the Arthas reactor
in a client-server architecture. The Arthas reactor server starts
once the target system code is available. It computes the PDG
in the background. Once the PDG is computed, it can be
re-used until the target system code changes. The reactor
server also creates a thread to incrementally parse the PM
trace file. When Arthas detects a suspected persistent failure,
it invokes the reactor using an RPC client. The reactor server
can compute the mitigation plan quickly.

6 Evaluation

We evaluate Arthas to answer several key questions: (1) Can
Arthas mitigate hard faults in real-world PM systems? (2)
How fast is the mitigation? (3) How much data loss is incurred
in the rollback? (4) How do different reversion strategies
compare? (5) What is the performance overhead?

6.1 Experimental Setup

We evaluate Arthas on 5 large PM systems, CCEH, PMEMKY,
Memcached, Redis, and Pelikan. Their SLOC are 2.6K, 14K,
24K, 94K, and 20K, respectively. The first two are new PM
systems, whereas the last three are mature systems adapted to
add PM support. The experiments are conducted on a server
with one 8-core CPU (2.50GHz), 94 GB DRAM, and two 128
GB Intel Optane DC Persistent Memory DIMMs.
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No. System Fault Consequence
fl Memcached Refcount overflow Deadlock

f2 Memcached flush_all logic bug Data loss

f3 Memcached Hashtable lock datarace  Data loss

f4 Memcached Integer overflow in append Segfault

f5 Memcached Rehashing flag bit flip Data loss

f6 Redis Listpack buffer overflow  Segfault

f7 Redis Logic bug in refcount Server panic
f8 Redis slowlogEntry leak Persistent leak
f9 CCEH directory doubling bug Infinite loop
f10 Pelikan Value length overflow Segfault

f11 Pelikan Null stats response Segfault

f12 PMEMKYV  Asynchronous lazy free Persistent leak

Table 2. List of persistent faults reproduced for evaluation

Failure Dataset. We collect and reproduce 12 persistent fault
bugs from the five systems. Seven bugs are from our study
dataset described in Section 2. Table 2 lists the 12 cases.

Methodology. For each case, we run the target system for 5
minutes. In 10 out of the 12 cases, the bug triggering con-
dition for that case can be externally controlled (e.g., when
a special request or workload is issued or a particular com-
mand is executed). We apply this triggering condition around
half-way (2.5 minutes) of the system execution to trigger the
bug. For two cases (f3 and f8), their triggering conditions
are difficult to be externally introduced and instead happen
naturally at some point as the system runs. We let failures
in these two cases manifest on their own. After the 5-minute
workload finishes or whenever the bug is detected, we begin
fault mitigation using either Arthas or the baselines.
Baselines. We use a state-of-the-art checkpoint-rollback sys-
tem CRIU [1] to compare with Arthas. CRIU is designed for
traditional systems and takes a coarse-grained approach to
periodically checkpoint the system states (snapshot the entire
process states). It does not handle PM states. We enhance it
to take a snapshot of the PM pools of a target system during
checkpointing, which we refer to as pmCRIU.

In addition, we evaluate a PM-aware checkpointing solu-
tion based on Arthas, which only keeps the checkpoint related
functionality of Arthas and disables the analyzer involvement.
We refer to this baseline as ArCkpt. In ArCkpt, the reactor only
considers the existing checkpoints and follows strict time or-
der to rollback, like the rollback algorithm in pmCRIU. Note
that ArCkpt is designed as a fine-grained rollback solution
that leverages Arthas’s information to perform reversion of
individual checkpoint entries. It should be perceived more as
a facet of Arthas, not as an alternative.

6.2 Effectiveness of Mitigation

Recoverability. We first evaluate how effective Arthas is at
mitigating the persistent faults compared to pmCRIU and
ArCkpt. We consider a case recovered when (a) the failure
symptom (e.g., crash or deadlock) no longer appears, and
(b) the system has at least some persistent states left. Arthas
reverts PM states based on the computed slices and sequence
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Solution Fault Id.

fl 2 3 f4 {5 f6 7 f8 f9 f10 f11 f12
pmCRIU (v v X VvV 10" v v 410 v v V
ArCkpt | X X X / X X x X X v X X
Arthas v v Vv Vv / v v / v v Vv

Table 3. Recoverability in mitigating the evaluated failures. *: 10%
probability of success.

f1 f2 f3 f4 f5 fo {7 f8 9 f10 f11 fI2
pmCRIU (v ¢V nav 110V Vv 410V Vv V V
ArCkpt n/a n/a nfa vV n/a n/a nfa na n/a / n/a n/a
Arthas (pg) |v v v 810 v Vv X Vv V V V V/
Arthas(d) (v vV V /S

Table 4. Checking if the recovered system is in a semantically con-
sistent state. Arthas (pg): purge mode; Arthas (rb): rollback mode.

numbers. pmCRIU dumps a snapshot image every minute.
ArCkpt reverts PM states one at a time only based on sequence
numbers. Each solution is configured with a timeout so that if
it cannot mitigate the failure within 10 minutes, it will abort.

Table 3 shows the results. Arthas successfully recovers the
target systems for all 12 cases. This notable success can be
attributed to the facts that (1) Arthas performs fine-grained
checkpointing and maintains multiple old versions for an en-
try, which preserves the previous good states; (2) Arthas’s roll-
back follows the dependency chains, which naturally matches
how the root cause bug contaminates the PM states at runtime.

In comparison, pmCRIU mitigates 9 cases, and 2 cases
with a probability. The probabilistic successes occur because
the bugs for the two failures have a chance to be triggered in
the first 1 minute, before pmCRIU has taken the first snapshot.

ArCkpt only successfully mitigates 2 cases. This is because
ArCkpt rolls back at an individual checkpoint entry granu-
larity. As a result, since we revert one entry at a time and
try re-execution, most of the bugs whose root-causes are trig-
gered far earlier end up timing out. ArCkpt works better for
bugs that immediately crash the system.

Consistency. We further evaluate whether a successfully re-
covered system is in a semantically consistent state: (1) we
run sanity checks on the persistent memory file with tools
such as pmempool-check, which catch bad PM blocks; (2) we
run the rollbacked system for 20 minutes and use multiple
clients to issue a mix of requests; (3) if a system has stability
test cases, we run these test cases; (4) we add basic consis-
tency checks based on domain knowledge, e.g., the number
of items should be equal to the hashtable size.

Table 4 shows that pmCRIU’s and ArCkpt’s results match
with the basic recoverability. Arthas can preserve consisten-
cies for most of the cases it recovered. This is because of its
careful checkpoint designs and dependency analyses (§4.6).
Two cases are the exceptions under Arthas’s purge mode
(§4.4). When reverting f7, Arthas only reverts the bad keys
but not the values, leading to a semantic inconsistency when
the client issues a GET command for that key. In f4, the sys-
tem occasionally aborts in do_slabs_free in 2 out of 10 runs.



Understanding and Dealing with Hard Faults in Persistent Memory Systems

--------- Arthas N\ ArCkpt  7#/2 pmCRIU
R P
1Rl
g 101 4 E 78 75
= .'m/f.'m/f.
= ARSI
100 './"./'
f6 7
Failure Id

Figure 8. Time to mitigate the failures (including re-execution).

fl 2 f3 f4 5 f6 f7 f8 f9 f10 f11 f12
pmCRIU|1 3 X I 3% 3 3 3% 1 3 1 1
ArCkpt ([T T T 1 T T T T T 1 T T
Arthas 125 1 12 108 8 1 1 11 46 1

Table 5. Attempts of rollback during mitigation.

Although reversion in each individual slice maintains con-
sistency by following the dependency order, reverting multi-
ple slices—because reverting one slice does not resolve the
issue—can lead to subtle inconsistencies. In this case, one
reverted slice is about the slab class slice and another is about
some metadata. We plan to fix this issue in Arthas. In Arthas’s
rollback mode, the reverted system does not experience in-
consistencies because it conservatively reverts all changes
between two dependent updates.

6.3 Efficiency of Mitigation

Next, we measure the time the three solutions take to mitigate
the failures. Figure 8 shows the result. On average, Arthas
can mitigate the failures within 103.55 seconds. pmCRIU’s
average mitigation time is 32.33 seconds. ArCkpt’s average
mitigation time is 30.19 seconds. For each reversion, we need
to invoke a re-execution script that restarts the target system
and waits for it to finish initialization and pass the bug check.
This re-execution delay (typically 3—5 seconds) consumes a
significant portion of the mitigation time.

We further measure the number of rollback attempts for
each failure. Table 5 shows the result. The median rollback
attempts for Arthas is 8. pmCRIU checkpoints every minute
and thus results in fewer rollback attempts, with a median of
3 attempts. But this coarse-grained checkpointing incurs sig-
nificant data loss as we show later. Finally, ArCkpt manages
to quickly recover when the bad PM updates cause immediate
failures (rollback attempt of 1). However, when the bad PM
values do not immediately cause problems, ArCkpt times out.

Interestingly, Table 5 reveals that, even though Arthas’s
checkpointing is fine-grained, the median rollback attempts
is still relatively small. This is because Arthas follows the
dependency order, rather than just sequence orders. In addi-
tion, our tested PM systems generally apply transactions with
larger ranges of data. Arthas respects transaction units in the
program when storing checkpoint log entries (Section 4.2).
With smaller-size transactions,Arthas’s rollback attempts can
increase significantly. For example, for bug f1 with smaller
transactions, the rollback attempts increase from 12 to 28.
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Figure 10. Mitigation time of Arthas using batch and one-by-one
reversion. f8 and f12 do not fall under these reversion schemes.

6.4 Amount of Discarded State

Rollback solutions inevitably discard state changes made to a
target system. A key requirement is to minimize the amount
of discarded changes. For Arthas and ArCkpt, we track the
number of reverted checkpoint entries; for pmCRIU (which
has no concept of checkpoint entries), we measure the number
of inserted key-value pairs right before the failure minus the
number in the rollbacked system.

Figure 9 shows the results. Arthas on average only discards
3.1% of items and a minimum of 3.1e-5%. Note that the
discarded data remains in the checkpoint log instead of being
lost. In two cases, Arthas only discards one item. This is
due to the fact that Arthas carefully decides “just enough”
PM states to revert to based on the slicing analysis of fault
instructions. For both of the persistent memory leak cases, f8
and f12, Arthas properly mitigates them using the checkpoint
comparison mechanism (Section 4.7), and does not discard
any good item: it precisely discards only the leaked objects.

In comparison, while pmCRIU mitigates 11 cases, it achieves
so at the expense of discarding significant data. On average,
pmCRIU incurs data loss of 56.5%. ArCkpt fails to properly
mitigate most bugs. But for the two immediate crash cases
that it mitigates, it only incurs a data loss of 1 item.

Note that in several cases, even with dependency analysis
and one-by-one reversion, Arthas still reverts thousands of
items (the ratio over total items is still small). This is because
our dependency analysis is static. One dependent instruction
in a slice may be invoked many times while only some invo-
cations are bad. In the PM trace, an instruction such as this
aliases to many sequence numbers that we cannot distinguish.
The reactor conservatively reverts these sequence numbers.
Our technical report [27] describes a binary search algorithm
that reduces the sequence number set that we have to revert.

6.5 Reversion Strategy

Arthas leverages dependency analysis to compute the candi-
date list of logical sequence numbers (checkpoint log entries)
to revert. We evaluate two main design choices regarding how
to revert given the candidate list.
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f1 2 f3 f4 5 f6 7 f8 9 f10 f11 f12
Batch 105 5 5 1 5 5 nfa* 2 15 15 n/a*
One-by-one|6 2 1 2 1 2 2 n/a* 1 11 12 n/a*

Table 6. Number of discarded items using a batch and one-by-one
reversion strategy. *: £8 and f12 are memory leaks that do not fall
under these reversion schemes.
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Figure 11. Discarded changes with rollback and purging modes.

V.

Fault Id.
fl 2 f3 f4 5 f6 7 f8 {9 f10 f11 f12
Detectable | v X X v X V X X X V X X

Table 7. Detect the hard failures using common invariant checks.

Batching vs One-by-One Reversion. We by default revert
sequence numbers in the candidate list one by one to minimize
the discarded data. Another strategy is to revert the candidate
list in batches. To evaluate these two strategies, we got several
key bugs from Memcached and Redis and used a reduced
workload. This was done in order to avoid influence from
having slice nodes that alias to multiple sequence numbers
(described in the previous Section). We use a batch limit of 5
sequence numbers and only revert when we either reach the
end of the candidate list or pass the threshold.

Compared to the one-by-one strategy, using batch reversion
reduces the number of re-execution attempts by 2.67x on
average. However, due to the fact that the one-by-one strategy
attempts re-execution after each reversion, the number of
attempts will scale up depending on the max versions in
the checkpoint. In Figure 10, we can see that one-by-one
reversion is slower than the batch strategy due to the increased
number of re-execution attempts. However, Table 6 shows
that one-by-one reversion discards much less data than the
batch strategy, because it reverts at a finer granularity.

Rollback vs Purging. Another decision is whether to roll-
back or purge (§4.4). Purging reverts only those in the can-
didate list. Rollback additionally reverts all the checkpoint
log entries that are higher than the chosen sequence number.
We compare the two modes by the data loss they incur for
the evaluated failures. Figure 11 shows the result. Rollback
introduces an average of 16.9% data loss while purging intro-
duces an average of 3.6%. Rollback is more conservative than
purging and is less likely to cause semantic inconsistencies.

6.6 Checksum and Invariant Approaches

An alternative to checkpoint-rollback solutions is to use check-
sums. Checksums are effective for catching value corruption
and are widely used in storage systems. In the PM context,
developers need to compute checksums for a PM state, store

12
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Figure 12. System throughput (op/s) relative to Vanilla.

Memcached Redis Pelikan PMEMKV CCEH
Vanilla 62.36K 46.96K 36.02K 25.24K 146.76K
w/ Checkpoint | 60.22K 46.44K 34.82K 24.10K 142.96K
w/ Instru. 61.62K 45.73K 35.94K 25.34K 143.94K

Table 8. Average system throughput (op/s), with Arthas checkpoint
and with Arthas instrumentation.

it, and update it if the PM state changes. To be comprehensive,
each important PM state should be checksummed, which can
be expensive. In addition, bad PM states in hard failures are
much more than just value corruption. The checksum of an
incorrect value (e.g., due to logic error) cannot be used to
validate the correctness of the value. Indeed, only one of the
12 failures we evalute (f5) can be caught by checksums.
Another solution is invariant checking. Developers figure
out and maintain a maintain a comprehensive set of invariants.
For traditional systems that have well-known invariants, this
is doable, e.g., fsck. For PM systems, this can be more chal-
lenging because they have many fine-grained PM states with
application-specific invariants that are difficult to identify. In
practice, developers do check common invariants, e.g., the
number of key-value items must be equal to the hashtable
size. But their comprehensiveness is rather limited. Table 7
shows that only 4 failures can potentially be detected by com-
mon invariant checks. More importantly, invariant checking
only helps with detection. Fixing the inconsistent PM states
remains a challenge, which Arthas is designed to address.

6.7 Overhead

We measure the runtime overhead that Arthas introduces to
the target systems and compare it with pmCRIU. For Re-
dis and Memcached, we use the YCSB benchmark config-
ured with 4 threads and a workload of 3 million operations
(50% writes and 50% reads). We use a custom benchmark for
PMEMKY and Pelikan with 6 million insertions, and a cus-
tom benchmark for CCEH with 1 million insertions. Figure 12
shows the average throughput for the vanilla systems, with
Arthas, and with pmCRIU. Arthas introduces an overhead
of between 2.9% to 4.8%. pmCRIU introduces an overhead
of between 0.2% to 2.7%. pmCRIU’s overhead comes from
freezing the process and dumping the image. Given a one
minute snapshot frequency, it incurs relatively low overhead.

Arthas’s overhead comes from the PM state checkpointing
and the instrumentation for tracing PM addresses. We mea-
sure their costs individually. Table 8 shows the result. We can
see that the checkpointing contributes the majority of Arthas’s
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Memcached Redis Pelikan PMEMKV CCEH
Static Analysis | 468.80 256.07 225.23 52.98 165.90
Instrumentation | 10.23 1037 17.76  6.01 13.64
Slicing 0.38 0.54 0.04 0.05 0.59

Table 9. Time taken (in seconds) for Arthas to analyze and instru-
ment the evaluated systems.

overheads (3—5%) The instrumentation introduces negligible
overhead. Its low cost comes from buffering and asynchro-
nous flushing. We also measure the latency overhead Arthas
introduces to the target systems. Arthas incurs an average of
6% overhead for reads and 7% for writes.

6.8 Performance

We measure the time it takes for Arthas to analyze the target
systems, instrument them and slice a given fault instruction.
Table 9 shows the result. With a timeout enabled for the
reaching definitions and pointer analysis, the Arthas static
analysis takes from 53 to 469 seconds. Arthas is implemented
in the client-server architecture (§5), so the analysis time does
not influence the mitigation time. When the target PM system
fails, the Arthas server already has the PDG computed. The
main latency is the slicing to compute the candidate list for
reversion. This depends on the fault instruction. As Table 9
shows, with the PDG available, the slicing finishes quickly.

7 Discussion and Limitations

Hard fault is a challenging problem for emerging PM systems.
Arthas is a first step towards tackling this problem. It has
several limitations to be addressed in future work.

Scalability Arthas uses static analysis to identify dependen-
cies among PM states for efficient rollback. Static analysis in
general faces scalability challenges. Our overall experience is
that for existing large PM systems, static analysis can handle
them well. Indeed, although Arthas analyzer did not use the
most advanced static analysis algorithms, we have success-
fully applied Arthas to analyze Redis, Memcached and other
popular PM systems that contain tens of thousands of SLOC.
Scaling static analysis to very large systems (millions of lines
of code) is actively researched (e.g., [37]). These advances
can be incorporated into Arthas.

Analysis Accuracy False positives in the static analysis (e.g.,
alias analysis) can cause unnecessary dependencies. The main
consequence is that Arthas would revert more than necessary
and/or take more time to rollback. False negatives are more
concerning to Arthas. The worst-case consequence would
be missing dependencies, which can lead to inconsistencies.
The timeouts that we add in the static analysis could create
possible false negatives. From our observations, adding some
prioritization/filtering often helps Arthas correctly capture the
dependencies before the timeout. Future work could explore
using techniques such as dynamic program slicing [18] to
improve the analysis accuracy while addressing the challenge
of reducing their high runtime overhead.
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Consistency Semantic inconsistencies could arise in Arthas’s
purge mode. From our experience, though, such inconsisten-
cies are rare (in 2 out of 12 evaluated cases) because of several
designs. Arthas’s checkpoint respects the program’s choice
of persistence granularity, so it will not revert a program to
an intermediate state. In reverting multiple PM updates, it
carefully follows the dependency chain. If a program uses
transactions, Arthas reverts updates within the programmer-
defined transaction. Most consistency requirements can be
captured correctly with these mechanisms. We assume the
remaining inconsistencies can cause noticeable anomalies
(e.g., triggers assertions) that Arthas can be enacted to further
revert the PM updates until the anomalies are gone. If seman-
tic inconsistencies are intolerable to the target application,
Arthas’s more conservative rollback mode is a better option.

Distributed Application Arthas only works on standalone
PM systems. It cannot handle distributed applications. Arthas
also does not capture dependencies that are created by exter-
nal communication outside this system. For example, a client
first sends a request r1 and then sends another request r2
based on the r1 result. Their dependency may not be reflected
in the PM system’s code. Our studied hard fault bugs do not
involve such indirect dependencies.

If such a dependency does occur in a hard fault, currently
under the purge mode, Arthas may revert PM states associ-
ated with r1 (assuming it triggers the root cause bug) and
may not revert PM states associated with r2, which cause an
inconsistency for that client. Under the rollback mode, Arthas
should be able to revert r2-related PM state updates as well,
because they occur after the r1 state updates (c.f., Figure 7b).

Hard faults in distributed PM systems that are concerned
about external dependencies are interesting problems for fu-
ture work. When recovering a distributed PM system, a dis-
tributed checkpoint-rollback solution might be needed. We
could have each component checkpoint PM states locally, and
add a global coordinator that runs a special rollback-recovery
protocol [31]. We can expose the Arthas metadata in each
component to the coordinator for determining an effective
recovery plan. For external dependencies created by clients, if
the client is stateful, it may need to be involved in the recovery.
For instance, the PM system and client can maintain vector
clocks [33]; after the PM system successfully rollbacks to a
particular point, the client will then be notified to rollback its
events with vector clocks after that point.

8 Related Work

Crash Consistency: The crash consistency problem has been
extensively studied in prior work in the context of traditional
file systems [25, 26, 34, 49] and PM systems [57, 62]. PM sys-
tems typically ensure crash consistency by requiring program-
mers to carefully order writes with persistence primitives,
such as cache line flushes or the use of transactions.
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Several solutions [23, 35, 38, 65] aim to provide transpar-
ent crash consistency/failure atomicity for PM systems. For
example, PMThreads [65] maintains a shadow DRAM page
for each persistent page allocated to a program, along with a
working copy, and a consistent copy in NVM. NVThreads [38]
buffers intermediate changes and commits shared data at the
end of a critical section to ensure it is consistent after crashes.

Our work investigates a different type of reliability issues
in PM systems—hard faults caused by traditionally “soft”
bugs such as race condition, memory leak, random bit flip,
etc. These issues occur during regular program execution.
They are not state inconsistencies induced by crashes. Arthas
is therefore complimentary to crash consistency solutions.

Finding Bugs in PM Systems: Liu et al. propose PMTest [46],
a testing framework to detect crash consistency bugs in persis-
tent memory systems. Pmemcheck [2] is a framework based
on Valgrind [53] to check persistent memory programming
errors such as store operations not being persisted, memory
being added to two different transactions, and unnecessary
flushes. XFDetector [45] is recently proposed to detect crash
consistency bugs that concern the recovery and re-execution
after the crash. A post-failure execution may read data that is
not persisted during pre-failure execution. Or a post-failure ex-
ecution may read from older committed data. These bugs still
belong to crash-consistency bugs. AGAMOTTO [52] uses
symbolic execution to discover bugs in PM systems related
to misuse of persistent memory.

We investigate a different spectrum of bugs—soft-to-hard
faults—in PM systems. From our study (Section 2), the errors
that lead to hard faults are outside of the detection scope of
these prior solutions. In addition, our work aims to mitigate
hard faults instead of finding bugs.

Checkpointing and Rollback: Flashback [60] proposes check-
pointing and rollback through a shadow process. Flashback
periodically checkpoints a running process’ execution state
through copying its process structure and logging I/O interac-
tions. When a failure occurs, the process is rolled back to pre-
vious state in the shadow process. CROCHET [21] proposes
fine-grained checkpoints an individual variable granularity
within unmodified commodity JVMs by using a lazy heap
traversal algorithm that models a page-fault like checkpoint
mechanism. Arthas targets PM systems and checkpoints at
fine granularity (PM variables) in an eager fashion (as soon
as the PM system reaches persistence points).

ThyNVM [57] proposes a hardware-assisted mechanism
that supports checkpointing of persistent memory at both
cache block and page granularities. Compared to ThyNVM,
Arthas checkpointing does not require hardware modifica-
tion and is not bound by periodic epochs. Also importantly,
ThyNVM’s checkpointing is a system-wide mechanism for
ensuring crash consistency, but Arthas’s checkpointing is for
mitigating hard faults in different PM applications. Because
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of this, the Arthas checkpoint is tailored to each target appli-
cation: it matches the exact granularity that the application
issues PM updates at the code level.

Cohen et al. [29] propose a new language extension and
runtime system called NVMReconstruction that takes an
object-oriented approach to reconstruct persistent objects’
states during restart. It requires developers to annotate the PM
programs and focuses on avoiding inconsistencies between
transient and persistent data during restart. Arthas focuses on
transparently helping PM systems recover from hard faults
that are caused by persistent bad PM states.

Elnozahy et al. [31] surveys rollback recovery protocols
in distributed systems. At a high level, Arthas takes a similar
dependency tracking approach, but with a different goal in a
drastically different context. We track dependency through
static analysis of instructions in a PM system and use the
dependency information to revert the PM data to a good state
with minimal data loss.

Coping with State Corruptions: Many of our studied hard
faults in PM systems arise due when some persistent states
become “bad” due to a logic error, race condition, integer
overflow, etc. SafeNVM [41] uses a thread-based protection
schema with hardware changes to combat against stray writes
and offer data safety for non-volatile memory. File systems
have tackled the issue of data integrity [19, 67], using a variety
of checks to detect and avoid integrity violations. The hard
faults Arthas target have a broader scope and are specific to
PM applications. Generic integrity checks like checksums
can only prevent a small portion of these hard faults.

9 Conclusion

This paper investigates the hard-fault reliability challenge
in persistent memory systems. We analyze 28 bugs in popu-
lar PM systems to understand how they incur severe conse-
quences that cannot be mitigated with restarts. We propose
Arthas, a tool to mitigate hard faults in PM systems. Arthas
designs PM-aware fine-grained checkpointing, program anal-
ysis and tracing to rollback persistent states to a working
version while minimizing the discarded data. We evaluate
Arthas on 12 hard faults from five large PM systems. Arthas
successfully mitigates all cases and discards 10x less state
on average when compared to traditional rollback solutions.
The source code of Arthas is publicly available at:
https://github.com/OrderLab/Arthas
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A Artifact Appendix
A.1 Abstract

Arthas is a tool that aims to properly recover persistent mem-
ory systems by mitigating hard faults. Arthas uses a combi-
nation of instrumentation and dynamic checkpointing in con-
junction with static analysis program slicing to rollback Per-
sistent Data while minimizing data loss. Arthas is publically
available on github and there are testing scripts to verify the
workflow of Arthas as described in the paper. Arthas requires
access to either emulated or real PM Hardware. The artifact
is publicly available at: https://github.com/OrderLab/arthas.

A.2 Artifact Check-list

e Hardware: One 8-core CPU (2.50GHz), 94 GB DRAM, and
two 128 GB Intel Optane DC Persistent Memory DIMMs.

e Run-time environment: Ubuntu 18.04.4 LTS

e Public link: https://github.com/OrderLab/arthas
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o Artifact Instructions: https://github.com/OrderLab/Arthas,
blob/master/artifact README.md
e Code licenses: Apache License 2.0.

A.3 Description

A.3.1 Arthas’s Components. Arthas comprises of four primary
components:

e Checkpoint Component: Uses dynamic checkpointing to store
old versions of Persistent Data. Used alongside a modified
version of PMDK, which intercepts PMDK functions to call
checkpoint functions

e Analyzer: Uses llvm and dg to form a dependency graph of
the analyzed system and detect PM variables. The analyzer
is also responsible for inserting instrumentation points in
a target system to obtain runtime information such as the
dynamic address of the persistent variable in a slice

e Detector: Used to detect hard PM failures

e Reactor: The runtime meta environment that reacts on a hard
fault and brings the system back to a normal state using
repeated reversion and re-execution

Arthas first uses the analyzer to instrument the executable of the
target PM system with Arthas’s checkpoint support. The target sys-
tem runs while dynamically checkpointing PM data and then upon
detection of a fault, Arthas’s reactor server and client are enacted to
react to the hard fault and revert the target system to a normal state.

A.4 Installation
A.4.1 Dependencies.

o Hardware: Either emulated or real PM hardware

o The Arthas analyzer requires LLVM 3.9: https://github.com/
[lvm/llvm-project

e wllvm

e PMDK: https://github.com/pmem/pmdk

o Custom PMDK: https://github.com/OrderLab/Arthas-PMDK.
git

e We also need to install PMDK’s dependencies

e Other dependencies that need to be installed include cmake
(3.44), protobuf (3.11), and grpc (1.28.1)

pip install wllvm
sudo apt install autoconf automake pkg-config libglib2.0-dev

libfabric-dev pandoc libncurses5-dev cmake

A.5 Experiment Deployment

In this experiment we will see Arthas mitigate bug f1: the Mem-
cached refcount bug described in the paper.

A.5.1 Setting Up Environment Variables. To use the wllvm wrap-
per for compiling a target system, set the following environment
variables:

export LLVM_COMPILER=clang

export LLVM_HOME=/opt/software/llvm/3.9.1/dist
export LLVM_COMPILER_PATH=$LLVM_HOME/bin
export PATH=$LLVM_COMPILER_PATH:$PATH

The LLVM_HOME path should be replaced appropriately.
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A.5.2 Testing Arthas: Minimal Interaction.

1 git clone https://github.com/OrderLab/Arthas.git

2 cd Arthas
3 scripts/artifact_test.sh

The test script will build Arthas, custom PMDK, vanilla PMDK,
target system Memcached, and finally run the Arthas analyzer on
the Memcached to instrument it.

If successtul, you should see a Memcached bitcode file in eval-
sys/memcached/memcached.bc and a Arthas hooks metadata file in
experiment/memcached/memcached-hook-guids.map.

You can further test Arthas by a real bug in Memcached:

1 scripts/experiment_memcached_refcount.sh

This demo script will do the following things:

1. Start a buggy version of Memcached server (instrumented).

2. Insert some workload to Memcached.

3. Invoke another script to trigger the bug (refcount overflow)
and cause Memcached to fail.

4. Start Arthas reactor server.

5. Run the Arthas reactor client to mitigate the failure.

Note that in practice, Arthas’s reactor server (step 4) is typically
started along with the target system (step 1).
If successful, a message of "Recovery finished" will be printed.

A.5.3 Expected Result. We should see the lines "done with binary
reversion [num]" where the binary value of num (0 or 1) will tell
you if Arthas was successful in mitigating a bug or not. We should
also see "total reverted items is [num]" which will tell you the total
number of items reverted.

A.6 Full Usage

To see a walkthrough of the Arthas workflow and the detailed instruc-
tions for using the Arthas components, please refer to the READMEs
in Arthas’s public repository.
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