

EuroSys ’21, April 26ś28, 2021, Online, United Kingdom Brian Choi, Randal Burns, and Peng Huang

PM versions. We collect 20 real-world bugs in Redis and

Memcached and reproduce them in their persistent versions.

We summarize the common practices of persisting program

state (Section 2.2) that may contribute to the rise of the hard

fault problem. We then analyze individual collected cases.

We find that the root causes of the studied cases are diverse

(6 types). Even after multiple restarts, these bugs cause the

PM systems to continue to experience deterministic failures,

or even worse deteriorating failures. In addition, the major-

ity (68%) of the cases involve bad state propagation across

volatile and persistent variables in different code locations.

When a PM system experiences a hard failure in production,

it is critical to get the system functional as soon as possible.

For hard faults, however, typical mitigation actions such as

process restart or node reboot will not make the failure symp-

tom disappear. Developers may then be forced to shutdown

the system, debug the issue offline, pinpoint the root cause,

fix the bug, and re-deploy the system to production. Unfor-

tunately, the challenge remains in this scenario—even after

the code bug is found and fixed, the underlying bad persistent

states still exist, so the system will likely fail again in the re-

deployment. Essentially, to deal with hard failures, we need

a solution to restore the PM system state to a point in which

the system is operational again.

We propose a tool, Arthas, to help users systematically

restore PM systems from hard failures, during either online

failure mitigation or offline diagnosis and fixing. Guided by

our study, we observe that when persistent memory objects

are assigned with bad values the persistence point (root cause)

often occurs long before the failure point, and the bad states

may have already been propagated to multiple volatile and per-

sistent variables along the execution flow. Properly recovering

from a hard failure must revert these bad persistent values.

We design Arthas to use checkpoint/rollback of dependent

states that carefully eliminates bad values in the PM.

The central challenge Arthas addresses is to ensure recov-

erability while minimizing the amount of discarded data due

to rollback. Current checkpoint-rollback solutions operate on

coarse-grained, point-in-time memory snapshots. They are

not effective in recovering PM systems. Even if the PM sys-

tem is temporarily recovered, the hard failures could occur

soon because contaminated states are not properly rolled back.

In addition, these solutions tend to incur significant data loss

by rolling-back states that are independent of the failure, e.g.,

they would undo many successful key/value operations that

are independent of the failure.

To address this challenge, Arthas designs PM-aware fine-

grained check-pointing by versioning PM states at program

memory object level. To accurately identify “just enough”

PM states to roll back for a failure, Arthas takes a novel ap-

proach with static analysis and lightweight runtime tracing

techniques. In particular, the Arthas analyzer computes the

Program Dependency Graph (PDG) of a PM system offline.

It further instruments tracing code to the target system, which

CCEH Dash PMEMKV LevelHash RECIPE Memc. Redis

Cases 1 1 2 2 2 9 11

Type New New New New New Port Port

Table 1. Collected hard fault bugs in new and ported PM systems.

will emit PM addresses and the instruction sources at runtime.

Upon detecting a suspected hard fault, the Arthas reactor

leverages the PDG, fault instruction, and PM trace to com-

pute the set of PM states related to the failure. Based on this

information, Arthas reverts only dependent bad PM states.

For evaluation, we reproduce 12 hard fault bugs from five

large PM systems (Redis, Memcached, Pelikan, PMEMKV

and CCEH). Arthas successfully mitigates the failures in all

cases. In achieving the recoverability, Arthas only discards an

average 3.1% of the PM state updates. For comparison, we

enhance the state-of-the-art process-level checkpointing solu-

tion, CRIU [1], to support PM checkpointing. CRIU mitigates

9 cases deterministically and 2 cases with some probability. It

discards an average of 56.5% of the persistent states. Arthas

only incurs up to 4.8% runtime overhead.

The main contributions of this work are:

• We study the emergent hard fault problem in PM systems.

• We propose a novel solution, Arthas, to effectively mitigate

hard faults in PM systems while minimizing the data loss.

• We evaluate Arthas with hard fault bugs in real-world PM

systems to demonstrate its effectiveness.

2 Empirical Study on PM Hard Faults

We present an empirical study for the hard fault problem in

PM systems. We aim to understand the characteristics of hard

faults and leverage the insights to guide our solution design.

2.1 Definition and Study Methodology

In this paper, we define a hard fault to be “bad” values in

persistent memory that originate from software bugs or tran-

sient hardware errors and cause the PM systems to experience

recurring failures across runs. By “bad”, we mean a PM loca-

tion holding a value that is incorrect and affects subsequent

program behavior (trigger crash, assertion, leak, wrong result,

etc.). If a PM location holds an incorrect value but it does not

influence subsequent program behavior, it is a benign fault.

We examine several new PM systems [3, 40, 43, 47, 66, 68]

to search for bugs related to PM programming and check if

the bug leads to hard faults. One challenge is that most new

PM systems only have a few reported bugs due to their short

development history. We have to inspect the commit messages

to complement the bug trackers. We found 8 hard fault bugs

from five new PM systems (Table 1).

To enrich our study dataset, we observe the growing in-

terests from developers and researchers in porting mature

systems to support PM. New bugs can be introduced in the

ported versions. In addition, mature systems have a rich de-

velopment history with various bugs. Some of the historical

bugs affect the volatile variables or data structures that are

now stored in PM. Were these bugs re-introduced in the PM

2

442

Understanding and Dealing with Hard Faults in Persistent Memory Systems EuroSys ’21, April 26ś28, 2021, Online, United Kingdom

dict *dictCreate(dictType *t,

 void *p) {

 dict *d = zmalloc(…);

 _dictInit(d, t, p);

 return d;

}

dict *dictCreate(dictType *t,void *p){

 PMEMoid oid = pmemobj_zalloc(…);

 dict *d = pmemobj_direct(oid);

 _dictInit(d, t, p);

 return d;

}
Volatile Redis PMEM Redis

1
2
3
4
5
6

after this, d becomes a

persistent memory object

Figure 1. Original Redis vs. PMEM-Redis.

versions, they can potentially result in hard faults. We study

two widely-used, in-memory key-value stores, Redis [13] and

Memcached [5]. There are several efforts that port them to

support PM [44, 48, 50, 59], including the effort from the of-

ficial Memcached developers [30]. We manually go through

bug trackers of the two systems and inspect existing bugs that

affect PM related code in the ported versions. In total, we

collect 11 bugs from Memcached and 9 bugs from Redis, and

reproduce these bugs on the persistent versions.

2.2 Volatile vs. Persistent States

We first summarize the common practices used in making

program state persistent in the studied systems.

Usually, traditional systems only persist critical data or

adopt in-memory designs for performance. For example, all

states in Redis by default are volatile. Redis does provide a

feature [15] that allows users to take periodic snapshots to

disks. But even with this feature, only the key-value items are

written to disk infrequently.

PM enables developers to save not only critical data but

also various “progress” state. More active persistence allows

a PM system to restart quickly and pick up the progress.

One category of program state that is usually stored in

DRAM in traditional systems but can be stored in PM is aux-

iliary data structures. Take key-value stores as an example.

Their indexing structures like hashtables are usually not per-

sisted, because persisting their updates hurts performance.

Instead, upon restart, the hashtables are re-constructed by

re-inserting all items into newly allocated hashtables. A PM

implementation can keep the hashtables in persistent memory

besides the items. This reduces the recovery time because the

system can directly use the hashtables upon restart.

Another category is cache-related data structures. For ex-

ample, in the RocksDB PM version [17], developers persist

the LRU cache. Volatile states may also be persisted as a

by-product. This occurs because persistent and volatile ob-

jects can have complex dependencies [48]. For example, in

N-Store [20], by persisting the core table structure, develop-

ers inevitably end up with persisting several other transient

data structures due to their dependencies [10]. Developers

may also put volatile states in PM to avoid complexity. For

example, in the persistent Memcached [30], developers di-

rectly persist the entire item data structure for the purpose

of simplicity, even though it includes some fields that one

could classify as “transient”. Last but not least, we observe

in several cases in which developers also persist queues or

asynchronous processing data structures.

Adding PM persistence is natural because the PM program-

ming model is similar to DRAM’s. The snippet in Figure 1

shows how the original Redis and PMEM-Redis create the

dict object. After line 3, the two versions are indistinguish-

able. We also observe some studied systems add PM persis-

tence through using a global persistent memory allocator or a

memory mapped file in PM device. This makes it easy to use

PM since any program objects allocated or referring to the

mapped region will be backed by PM. But the implication is

that a large portion of a system’s code may touch or interact

with persistent objects and introduce bad values.

2.3 Bug Examples

We explain several bug cases in detail, and then describe the

general patterns in the following sections.

CCEH directory doubling bug. CCEH [51] is a new dy-

namic hashing scheme designed for PM. It has a bug reported

by the authors of RECIPE [43]. CCEH doubles the size of its

directory structure when the number of buckets grows large,

which modifies several pieces of metadata. If an untimely

crash occurs before the global depth is updated, the insertion

operations will get stuck in an infinite loop. We reproduced

this bug and confirmed the failure recurs across restarts. Just

fixing the bug does not make the previous failure symptom

go away. We must also correct the bad persistent metadata.

PMEMKV asynchronous free leaks. PMEMKV [3] is PM

key-value database designed by Intel and supports multiple

storage engines. When handling the client delete requests, for

performance, PMEMKV sets the hashtable to be unlinked and

uses an asynchronous thread to free the key-value items later.

The bug will cause a persistent memory leak if PMEMKV

crashes before the asynchronous thread frees the objects [12].

Memcached corrupt hashtables. Memcached tracks refer-

ence counts for key-value items. It has a bug [7] where the

refcount is incremented without checking for integer over-

flow. Memcached checks for any items with refcount 0 and

frees them. It assumes that items with refcount 0 have been

unlinked from the hashtables. Since the overflow prematurely

sets the refount to 0 without unlinking this item, its address

is still in the hashtables. If the same key is reinserted, it will

reclaim the same memory address. As a result, there are two

key-value items of the same address in the hashtable. The

item’s hashtable next pointer will point to itself. Upon a GET

request, Memcached gets stuck in an infinite loop:
while (it) {

if (!memcmp(key, it->key, n)) return it;

it = it->h_next; // next point to itself

}

In the original version, the key-value item and the hashta-

bles were volatile. So the bad refcount and contaminated

hashtable are gone after restart. But in the PMEM-Memcached,

developers would naturally persist the entire item structure [8]

including an item’s refcount. Even if the refcount is not per-

sisted, the corrupt hashtables are persisted. Consequently,

Memcached would hang again after restart.

Redis listpack buffer overflow. Redis’ listpack structure

stores lists of encoded strings. The encoding function has

3

443

Understanding and Dealing with Hard Faults in Persistent Memory Systems EuroSys ’21, April 26ś28, 2021, Online, United Kingdom

This motivates the need for more effective solutions other

than process restart to mitigate failures for production PM

systems. Our insight from the study is that, despite its diverse

root causes and manifestations, the essence of the soft-to-hard

fault problem is that some volatile states with bad values are

now persistent. Mitigating these faults thus requires getting

rid of the bad persistent states in the PM systems.

A natural approach is to checkpoint PM states and roll-

back them upon failures. However, traditional checkpoint

solutions are not PM-aware and could not effectively rollback

PM hard faults. In addition, they typically perform period-

ical, coarse-grained snapshots of the entire memory, which

would incur significant data loss during rollback. Moreover,

as Section 2.6 shows, the majority of hard failures involve

bad state propagation among volatile and persistent variables

in different functions. Consequently, even when one bad PM

state is rolled back, the PM system could still quickly hit the

same failure if the root cause of the bad state is not reverted.

The Memcached refcount overflow bug is such an example.

Even if the Memcached states are reverted to prior to creation

of the problematic persistent hashtable, it soon encounters the

same infinite loop because the bad refcount still exists.

3 Overview of Arthas

Based the insights from our study in Section 2, we propose

a PM-aware, fine-grained checkpoint-rollback mechanism

and design a toolchain called Arthas to aid PM systems re-

cover from hard faults. The design goals of Arthas are: (1) to

bring a PM system experiencing hard faults back to normal

quickly, (2) to minimize the amount of data discarded during

the rollback, and (3) to incur small runtime overhead.

3.1 Basic Idea and Workflow

The basic idea of Arthas is to checkpoint PM state updates

at variable/address level and record the program data flow.

The latter is used to accurately identify which PM states are

affected during a failure for effective rollback with minimal

data loss. However, tracking such information dynamically

can be expensive. To address this challenge, Arthas takes

a novel approach that uses program analysis to statically

analyze the PM system’s data dependencies, and then applies

lightweight address tracing and checkpointing at runtime.

Figure 4 shows an overview of the Arthas workflow. The

analyzer takes input the source code of a target PM system

and performs static analysis. It is responsible for two tasks.

First, it identifies program variables that may potentially re-

side in persistent memory. For potential persistent variables,

the analyzer instruments a lightweight tracing API call in the

program that will record the memory addresses of these vari-

ables at runtime. Second, the analyzer computes a Program

Dependence Graph (PDG) to track the dependency informa-

tion. This static PDG will later be used in the rollback process.

Arthas also provides a checkpointing library to transparently

PMEM
System
Code

Arthas

Analyzer

+ pmem
trace code

PMEM
System
Binary

Checkpoint

Library Arthas

Detector

Soft failure,
Do nothing

Potential
hard failure

strcpy(addr, buf);

Fault
instruction(s)

Arthas

Reactor

Program
Dependence
Graph (PDG)

PMEM trace +
checkpoints

Rollback

1

2

3

5

6

7

4

Run

metadata files: static PDG, GUID mappings

Figure 4. Overview of Arthas design.

checkpoint persistent memory updates in the target PM sys-

tem. Arthas links the checkpoint library and tracing code to

the target system and produce an enhanced executable.

As the enhanced PM system executes, it emits the PM

address trace, and Arthas versions PM state updates in a

persistent checkpoint region. Arthas detector monitors the

PM system and determines if a potential hard failure occurs.

If so, the detector will identify the faulty instruction and

invoke the reactor component. The reactor analyzes the faulty

instruction, computes the dependent instructions based on the

static PDG and dynamic PM address trace. The reactor then

computes a list of states that should be reverted and the order.

This rollback plan is presented to operator for inspection.

When confirmed, Arthas automatically executes this plan.

3.2 Supported PM Systems

Arthas currently supports two kinds of PM systems: (1) sys-

tems written with the popular PMDK framework [11]; (2)

systems written with persistence instructions such as clwb

and sfence. For PMDK-based systems, we particularly sup-

port two PMDK libraries—libpmem, which provides low-level

primitives such as pmem_persist, pmem_map _file, etc., and

libpmemobj, which provides high-level transaction interfaces.

These two types—library persistence and native persis-

tence [50]—cover many existing PM systems. We choose

PMDK to represent the library approach because it is widely-

used, and most systems we study use it, including the PM-

ports of Redis and Memcached. Our static analysis scheme,

checkpoint, and rollback designs are not limited to PMDK.

To support additional PM frameworks such as NVHeaps [28],

Mnemosyne [62] and Memkind [9], Arthas needs to intercept

specific calls in order to enact checkpointing. Arthas’s un-

derlying checkpoint data structure design and functions are

the same across different frameworks. Therefore, the main

effort of incorporating such frameworks would involve iden-

tifying which functions/instructions in a framework should

be intercepted. The main functionalities to consider are: (a)

PM initialization or allocation function, (b) flush/fence/com-

mit function, (c) free function, (d) misc functions such as

re-alloc. Typically, PM frameworks only provide a handful of

interfaces. Thus, the support effort is small.

3.3 Use Cases and Limitations

Arthas activates in response to a persistent fault in which the

system becomes inoperable. In this case, some state/data loss

5

445

EuroSys ’21, April 26ś28, 2021, Online, United Kingdom Brian Choi, Randal Burns, and Peng Huang

is inevitable to recover the system, and the amount inherently

depends on the specific fault and how the fault propagates dy-

namically in the specific system execution. Arthas performs

a more fine-grained recovery than traditional checkpoint-

rollback solutions to minimize the state/data loss.

Arthas’ approach is suitable for PM applications that have

many concurrent clients. A driving concern for them is that

a fault arising in handling one client can cause loss of state

updates from many other concurrent clients. Arthas leverages

static analysis to isolate the dependent operations from inde-

pendent operations and avoid unnecessary state reversions. In

contrast, a traditional checkpoint/rollback approach reverts

that entire state of the system. In doing so, it will lose many

independent state changes from concurrent clients.

Example applications that have to manage concurrent clients

and avoid state-loss impact on innocent clients include direc-

tory services, web apps that store user state and preferences,

recommendation systems, content-distribution networks, and

feature storage for machine learning. Clients of these appli-

cations conduct individual read and write requests with the

expectation that reads are repeatable and writes are persis-

tent. Most clients rely on the state persistence for correctness.

Arthas’s recovery minimizes the state loss damage to the

many concurrent clients that (1) have completed and are no

longer available or (2) do not implement recovery logic for

completed operations. Thus, it allows the target system to

maintain repeatable reads and persistence for as many com-

pleted operations as possible.

Arthas focuses on the analysis and recovery within a sin-

gle component. It is unable to detect or respond to external

dependencies. Consequently, it do not match the needs of

distributed PM applications. It may also introduce inconsis-

tency if a PM application has a client that makes multiple

semantically related requests that Arthas cannot detect as de-

pendent. However, Arthas’s ability to isolate the impact on

other clients and minimize state loss may still be desirable.

4 Arthas Design

In this Section, we describe the design details for the core

Arthas components as shown in Figure 4.

4.1 Static Analysis and Instrumentation

Locating PM Variables and Instructions. The Arthas an-

alyzer scans the entire PM system code to systematically

identify instructions that create or access program variables

backed by PM. We build the dataflow analysis on top of the

LLVM framework [42]. The analyzer first locates instructions

that call APIs of common PM libraries. If these API calls re-

turn a value that is stored in a variable, e.g., pmemobj_create,

pmemobj_direct, we identify the initial set of PM variables.

For PM systems using low-level persistence instructions

like clwb, the analyzer extracts PM variables from the instruc-

tion operands. The analyzer also supports identifying PM vari-

ables from mmapped-style APIs such as pmem_map_file. We

treat the return value variables (e.g., ptr=pmem_map_file(...))

as well as variables whose values come from the return vari-

ables (e.g., fptr = ptr+10;) as PM variables.

Starting from these initial PM variables, the analyzer com-

putes the transitive closure of all instructions that use the PM

variables using the def-use chain analysis and add the vari-

ables into the PM variable/instruction set. In real-world PM

systems, persistent variables often involve pointers and are

passed across functions. To properly handle such cases, our

analysis is inter-procedural and incorporates field-sensitive,

context-sensitive pointer alias analysis [64].

Instrumenting Tracing Code (❶). Once the instructions that

create or access PM variables are identified, we would ideally

track their dependencies with other instructions during exe-

cution using techniques like dynamic taint analysis [54, 58].

However, such tracking can be intrusive and adds significant

overhead to the PM systems. Instead, Arthas’s approach is

to compute dependencies statically and enhance the static

dependencies with lightweight runtime information.

The most critical piece of information Arthas needs from

the system runtime execution is the dynamic addresses of

the PM variables and program locations of the associated

instructions. To get this information, the Arthas analyzer as-

signs a Globally Unique Identifier (GUID) for each identified

PM instruction and generates a metadata file that records the

mappings of <GUID,source_location,instruction>. Arthas

then instruments an API call to a lightweight runtime tracing

library just before the PM instruction. The tracing code will

emit a trace of <GUID,pmem_address> at runtime. To reduce

the tracing overhead, we inline the tracing code, buffer ad-

dress traces in memory, and asynchronously flush the traces

to a file when the buffer is full or the system stops execution.

Constructing Program Dependence Graph (❷). To tackle

the challenge of complex bad state propagation (Section 2.7),

Arthas statically analyzes the dependency information by

computing a Program Dependence Graph (PDG) [32]. Nodes

in the PDG are LLVM IR instructions and edges represent

dependencies among the instructions. We analyze two types

of dependencies. Data dependencies represents data flow rela-

tionship. Control dependencies occur when an instruction de-

termines if another instruction should be executed or not. Our

dependency analysis is inter-procedural and flow-sensitive. It

handles pointers, including function pointers (the callgraphs

contain edges to potential targets in the points-to set).

The PDG and the GUID mappings are static metadata of the

target program. This metadata is stored in regular files. They

will be read as input by the Arthas reactor later in production.

As long as the target program code does not change, the

dependency metadata is consistent with the application code.

4.2 Eager Checkpointing of PM States with Versioning

To rollback a PM system, we need to checkpoint PM states.

Arthas performs checkpointing through versioning PM states

6

446

Understanding and Dealing with Hard Faults in Persistent Memory Systems EuroSys ’21, April 26ś28, 2021, Online, United Kingdom

1
2
3
4
5
6

7
8
9
10
11

typedef struct {
 const void *address;
 uint64_t offset;
 int version;
 int data_type;
 void *data[MAX_VERSIONS];

 size_t sizes[MAX_VERSIONS];
 int seq_nums[MAX_VERSIONS];
 uint64_t old_entry;
 uint64_t new_entry;
} checkpoint_log_entry;

Figure 5. Checkpoint log entry definition.

at the granularity of program variables/addresses. This differs

from existing solutions such as Flashback [60], CRIU [1] and

ThyNVM [57] that perform periodic snapshots at a coarse

granularity, e.g., entire process state or memory pages.

The Arthas checkpointing functionalities are implemented

as a generic library. During the compilation phase, this library

is linked with the target program (❸).

When the PM system starts, the checkpoint library initial-

izes a checkpoint log in persistent memory. When the system

performs an update to PM address r of size n, the library trans-

parently stores the update into the checkpoint log based on r

and records n (❹). Each log entry holds a maximum number

(default 3) of versions of data for that address. In addition, the

checkpoint library maintains an atomic sequence number

to order PM updates by logical time, which is used during

rollback. Figure 5 shows the checkpoint log entry.

The Arthas library performs checkpointing eagerly on each

update rather than periodically. But it respects the program’s

persistence points to avoid premature checkpointing if the

data is still in DRAM or partially persisted. It ensures so

by intercepting all the well-defined durability APIs such as

pmemobj_persist, sfence, which are called by the target pro-

gram to ensure an address range is stored durably in PM. We

only checkpoint when these calls succeed. Besides using ex-

plicit durability APIs, a PM system may use transaction APIs

like those in the libpmemobj library to implicitly flush updates

to PM at the end of a successful transaction. Such libraries

already keep an undo log (or some form of logging/tracking)

that records all update operations within the transaction. We

modify the internal transaction commit function to copy each

updated address range in the undo log to our checkpoint log.

In summary, both the granularity and the timing of our

checkpointing are consistent with how the target system up-

dates its persistent states and makes them durable in its code.

For multi-threaded PM systems, we assume their persistence

program points are properly synchronized, so Arthas would

not checkpoint PM updates with data races.

The library does not checkpoint program states in volatile

DRAM. PM systems usually reconstruct volatile states based

on persistent states upon restart, which we rely on to handle

volatile states. We could use Arthas together with traditional

checkpointing techniques to checkpoint volatile states and

reduce the state reconstruction time. But the rollback of per-

sistent state must be done carefully together with volatile

states rollback to respect their complex dependencies. Recon-

structing volatile states is a simpler and more robust choice.

Some PM programs may resize a persistent memory block,

which can present challenges during reversion. We add a

field old_entry in the checkpoint log entry to connect entries

persistent memory write

volatile memory write
crashdependency

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t15t14

root cause

Figure 6. Timeline of volatile and persistent memory writes.

that have reallocation relationship. Our technical report [27]

describes the solution in more detail.

4.3 Detecting Hard Failures

The Arthas detector monitors the target PM system in produc-

tion for various failures such as crash, assertion failure, hang

or memory leak (❺). It also supports user-defined checks (e.g.,

inserted key-value items exist). When a failure is detected,

the detector use heuristics to assess whether the issue might

be a potential hard failure. It retrieves the faulting instruction,

exit code, stack trace, memory usage, etc., and compares if

the symptom is similar to the previously recorded failure (e.g.,

having the same exit code, fault instruction, loosely the same

stack trace). The heuristics are imperfect and may flag issues

that turn out to be a soft failure or are not caused by bad PM

states. This does not cause problems because Arthas reactor is

able to prune these false alarms in the mitigation stage (§ 4.5).

4.4 Rollback Strategies

Once the detector suspects a potential hard failure, Arthas

invokes the reactor to recover the system (❻). The reactor

reverts PM states at fine granularity. It also leverages the PDG

from the static analyzer to guide the mitigation.

Arthas takes a dependency-based rollback approach, while

the traditional rollback approach is typically time-based. Fig-

ure 6 shows an abstract example of the volatile and persistent

memory write timeline in a crash, which we use to compare

the rollback approaches. The arrows represent data dependen-

cies among the updates. The immediate crash site is at time

t15 and involves a volatile variable, e.g., strcpy(addr, buf);,

but the root cause is a buggy update to a persistent variable at

time t5 that later tainted the volatile variable addr or buf.

Note that the root cause point is unknown to a rollback solu-

tion. It has to be deduced post-failure. In addition, a rollback

solution judges and reverts buggy states from an operational

point of view—if it recovers a system to be operational again,

it may not further search for those benign buggy states that

do not influence system execution success.

Time-based vs. Dependency-based Rollback. In traditional

time-based checkpoint-rollback (Figure 7a), program states

including persistent memory states are checkpointed at peri-

odic intervals. When the failure occurs, the program states

are reverted to the previous checkpoint, i.e., ckpt4 at time

t12. Unfortunately, the program will crash again because the

volatile addr or buf are again assigned by the bad persistent

value at time t10. The program is further reverted to ckpt3 at

time t10. While in this snapshot, the bad persistent value at

t10 is gone, the failure is not over because the bad value at t5
7

447

EuroSys ’21, April 26ś28, 2021, Online, United Kingdom Brian Choi, Randal Burns, and Peng Huang

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t15t14

ckpt1 ckpt2 ckpt3 ckpt4

reverted dependency

(a) Traditional time-based rollback

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10

t
11

t
12

t
13

t
15

t
14

(b) Arthas dependency-based rollback

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10

t
11

t
12

t
13

t
15

t
14

(c) Arthas dependency-based purge mode

Figure 7. Three rollback strategies for Figure 6.

pollutes t10 and then addr or buf again. So the program has to

be reverted to ckpt2 and then finally ckpt1.

In Arthas’s dependency-based rollback (Figure 7b), the

Arthas reactor analyzes the updates that a program variable

depends on and reverts by following the dependency chain.

It finds that the crash site t15 depends on t10 and thus directly

reverts the program states back to be before t10. This rollback

does not fix the failure, because t10 propagates the bad value

from t5. The reactor identifies t10 has a dependency on t9, a

volatile variable that in turn has a dependency on t5. Thus,

Arthas further reverts the program states to be before t5.

Compared to the time-based rollback, the dependency-

based rollback has two advantages. First, the dependency

information enables it to jump to the functional point with

fewer trials (e.g., 2 versus 4). Second, time-based rollback has

to revert an entire checkpoint at a time, thus easily incurring

unnecessary state loss (e.g., t3 and t4), whereas dependency-

based approach can revert to a precise point.

Dependency-based Rollback vs. Purge. Besides dependency-

based rollback, the Arthas reactor supports a more aggressive

reversion operation–purging. Rollback strictly follows time

order. If the system is reverted to time ti, any state updates

after ti are reverted. In purging mode, the reactor only reverts

selected PM objects to their old versions. Updates to other

objects after the reverted time points may not be reverted if

they do not depend on the selected objects. Figure 7c shows

that the reactor identifies dependency between t15 and t10 and

reverts t10 to the old value. While t11, t13 and t14 occur after

t10, they do not create dependencies to t15 and thus are not re-

verted. Because t10 is not the root cause, the crash still recurs;

the reactor then reverts dependent update from t5.

Compared to dependency-based rollback (Figure 7b), purg-

ing has the advantage of reducing the amount of unnecessary

state loss. But it may introduce inconsistencies. To reduce

this risk, when operating in the purging mode, the Arthas re-

actor runs a second pass to identify whether there are forward

dependencies from the reverted states and then purges them

as well. For example, even though t7 does not directly affect

the crash site, after we revert the direct dependent update in

t5, the reactor analyzes that the t5 influences t7 and reverts t7
as well to maintain the consistency between them.

In practice, we observe that for request-based server pro-

grams, such as key-value stores, the state dependencies are

typically partitioned based on requests. The system failure is

usually caused by a specific request that only pollutes states

related to that request. In this case, purging removes only

those bad states. In comparison, rollback may have to get rid

of states from many other requests that are not responsible

for or influenced by the fault.

4.5 Rollback Workflow

For a given fault instruction, the Arthas reactor first derives a

reversion plan based on the recorded checkpoint log (§ 4.2),

the static PDG (§ 4.1), the PM address trace file, and the

static metadata file of trace GUIDs (§ 4.1). The reversion

plan is a candidate list of sequence numbers in the checkpoint

log that might need reversions. The reactor first computes

the backward slices [63] of the fault instruction based on

the PDG. A backward slice for an instruction A includes all

instructions that may affect the values in A. We only retain

instructions that have persistent variables operands.

With the backward slices, we use the dynamic address trace

to check whether a node of a slice generates a PM update. If

so, we find the checkpoint log entries that have the same PM

address and add the sequence number (§ 4.1) of the log entries

along with the slice node into a list. In the end, we apply a

policy function to obtain the final candidate list of sequence

numbers. Our default policy function sorts and de-duplicates

the supplied sequence numbers. A more complex function

could arrange the sequence numbers based on DFS or BFS

order of the slices and enforce a maximum distance with the

fault instruction to filter excessive sequence numbers.

It is possible that the final reversion plan ends up being

empty. This could occur due to an inaccuracy from the detec-

tor (§ 4.3), i.e., the failure is not caused by bad values in PM.

The reactor then safely aborts and resorts to simple restart.

If the reversion plan is not empty, the reactor proceeds

to reversions (❻). It keeps a current version v and tries the

selected sequence number in order. To revert a sequence num-

ber s, the reactor copies the data from version v-1 to the PM

address associated with s. After reversion, the reactor invokes

a re-execution script that re-runs the target program with the

same arguments as the prior run. The re-execution status is

checked to see if the PM fault has been fixed. If the failure per-

sists, the reactor moves on to try reverting the next sequence

number in the candidate list. When all sequence numbers in

the list are reverted and the failure still persists, the reactor

retries reversion to an older version v-2 until the max versions

are exhausted. For the purge mode, if re-execution triggers

assertion checks in the target program’s recovery function or

a configurable maximum number of tries have reached, the

reactor switches to the conservative rollback mode.

8

448

Understanding and Dealing with Hard Faults in Persistent Memory Systems EuroSys ’21, April 26ś28, 2021, Online, United Kingdom

We make the design decision of multi-attempt rollback for

the goal of minimizing data loss. Since we do not know where

the root cause bad state is, we revert in a smaller granularity

and check if the system is in a good state. If the root cause

is not in that small segment, we would have to rollback fur-

ther. Other traditional checkpoint-rollback solutions such as

Rx [56] also perform rollback in multiple iterations. Another

factor is that the inaccuracies in static analysis could cause a

single-attempt rollback ineffective, multiple attempts would

become necessary to address the inaccuracies.

4.6 Rollback Consistencies

As described in Section 4.2, the granularity and timing of

Arthas checkpointing strictly respects the developers’ choice

of persistence granularity and timing in the PM program.

For example, for a persistent data structure item that has

many fields, if developers choose to update one field of item

and then call pmem_persist or sfence, Arthas will create a

checkpoint entry just for that field. Or, if developers choose

to update multiple fields of item and then call a durability

API, Arthas will create one checkpoint entry for the persisted

fields right after the durability API call.

Because of this, the rollback in Arthas preserves the update

consistency of the target PM program. It will not revert the

PM states to intermediately updated PM states. In addition,

Arthas’s reversion strategies carefully follow the dependency

chains extracted from the PM program’s source code. This

ensures a sequence number (PM update) in the checkpoint

will not be reverted before its dependent sequence numbers

(PM updates). For PM programs that use transaction inter-

faces, Arthas’s checkpoint library inserts special entries for

transaction starts and commits. Later, if the Arthas reactor

rollbacks some checkpoint entry within a transaction, the re-

actor will rollback other checkpoint entries in the transaction.

This preserves the transaction-level consistency.

If a PM program is written in a buggy way, e.g., some

PM objects were persisted individually when they should be

persisted atomically, Arthas may rollback the program to a se-

mantically inconsistent point. However, such inconsistencies

are not caused by the rollback but the program bugs. Such

bugs are exactly one common root cause for the hard failure.

To Arthas, if the reactor reverts a program to such a buggy

point, the PM program likely encounter a hard failure again;

the reactor just needs to further rollback the program.

4.7 Mitigating Persistent Memory Leak

Persistent memory leaks are a challenging type of hard failure

to mitigate for two reasons. First, the fault instruction—when

the system runs out of PM space or is stopped by a PM usage

monitor—is often not connected to the root cause. Second,

we need to revert the states far back to before the leaked

persistent variables are created. Traditional volatile memory

leak detection tools such as Valgrind are ineffective (Intel

implements a PM Valgrind [2, 16] and a persistent inspec-

tor [55], but they detect bugs like unnecessary flushes, not

persistent leaks). Tracing reachability of PM objects during

an execution is also not enough, because a PM program may

not call free on persistent variables (values in PM locations

may be used after restart).

We observe that typically a PM program’s recovery func-

tion retrieves almost all PM data structures before proceeding.

At the same time, the Arthas checkpoint component keeps

track of all PM variable updates. So our idea is to compare the

PM variables that are accessed during recovery and the PM

variable updates that are recorded in the Arthas checkpoint

log. To capture the PM variable accesses in the recovery func-

tion, we provide two simple APIs pmem_recover_begin and

pmem_recover_end that can be used to annotate the recovery

function. The Arthas reactor then discovers all PM variables

that are not freed in the checkpoint log and not accessed in

the recovery function. This mitigation approach is simple and

effective. To be safe, the Arthas reactor outputs the suspected

leak PM variables and only frees them after confirmation.

5 Implementation

We implement Arthas in C/C++, with a total of 7,800 lines of

code. The Arthas static analysis and PM trace instrumentation

are built on top of LLVM [42]. The program dependency

graph (PDG) construction uses an existing library dg [4, 24].

Computing the static PDG and pointer analysis can take a

long time for large programs. Also, the PM trace can grow so

large that it takes a substantial time to parse. These costs delay

mitigation. To reduce delay, we implement the Arthas reactor

in a client-server architecture. The Arthas reactor server starts

once the target system code is available. It computes the PDG

in the background. Once the PDG is computed, it can be

re-used until the target system code changes. The reactor

server also creates a thread to incrementally parse the PM

trace file. When Arthas detects a suspected persistent failure,

it invokes the reactor using an RPC client. The reactor server

can compute the mitigation plan quickly.

6 Evaluation

We evaluate Arthas to answer several key questions: (1) Can

Arthas mitigate hard faults in real-world PM systems? (2)

How fast is the mitigation? (3) How much data loss is incurred

in the rollback? (4) How do different reversion strategies

compare? (5) What is the performance overhead?

6.1 Experimental Setup

We evaluate Arthas on 5 large PM systems, CCEH, PMEMKV,

Memcached, Redis, and Pelikan. Their SLOC are 2.6K, 14K,

24K, 94K, and 20K, respectively. The first two are new PM

systems, whereas the last three are mature systems adapted to

add PM support. The experiments are conducted on a server

with one 8-core CPU (2.50GHz), 94 GB DRAM, and two 128

GB Intel Optane DC Persistent Memory DIMMs.

9

449

EuroSys ’21, April 26ś28, 2021, Online, United Kingdom Brian Choi, Randal Burns, and Peng Huang

No. System Fault Consequence

f1 Memcached Refcount overflow Deadlock

f2 Memcached flush_all logic bug Data loss

f3 Memcached Hashtable lock data race Data loss

f4 Memcached Integer overflow in append Segfault

f5 Memcached Rehashing flag bit flip Data loss

f6 Redis Listpack buffer overflow Segfault

f7 Redis Logic bug in refcount Server panic

f8 Redis slowlogEntry leak Persistent leak

f9 CCEH directory doubling bug Infinite loop

f10 Pelikan Value length overflow Segfault

f11 Pelikan Null stats response Segfault

f12 PMEMKV Asynchronous lazy free Persistent leak

Table 2. List of persistent faults reproduced for evaluation

Failure Dataset. We collect and reproduce 12 persistent fault

bugs from the five systems. Seven bugs are from our study

dataset described in Section 2. Table 2 lists the 12 cases.

Methodology. For each case, we run the target system for 5

minutes. In 10 out of the 12 cases, the bug triggering con-

dition for that case can be externally controlled (e.g., when

a special request or workload is issued or a particular com-

mand is executed). We apply this triggering condition around

half-way (2.5 minutes) of the system execution to trigger the

bug. For two cases (f3 and f8), their triggering conditions

are difficult to be externally introduced and instead happen

naturally at some point as the system runs. We let failures

in these two cases manifest on their own. After the 5-minute

workload finishes or whenever the bug is detected, we begin

fault mitigation using either Arthas or the baselines.

Baselines. We use a state-of-the-art checkpoint-rollback sys-

tem CRIU [1] to compare with Arthas. CRIU is designed for

traditional systems and takes a coarse-grained approach to

periodically checkpoint the system states (snapshot the entire

process states). It does not handle PM states. We enhance it

to take a snapshot of the PM pools of a target system during

checkpointing, which we refer to as pmCRIU.

In addition, we evaluate a PM-aware checkpointing solu-

tion based on Arthas, which only keeps the checkpoint related

functionality of Arthas and disables the analyzer involvement.

We refer to this baseline as ArCkpt. In ArCkpt, the reactor only

considers the existing checkpoints and follows strict time or-

der to rollback, like the rollback algorithm in pmCRIU. Note

that ArCkpt is designed as a fine-grained rollback solution

that leverages Arthas’s information to perform reversion of

individual checkpoint entries. It should be perceived more as

a facet of Arthas, not as an alternative.

6.2 Effectiveness of Mitigation

Recoverability. We first evaluate how effective Arthas is at

mitigating the persistent faults compared to pmCRIU and

ArCkpt. We consider a case recovered when (a) the failure

symptom (e.g., crash or deadlock) no longer appears, and

(b) the system has at least some persistent states left. Arthas

reverts PM states based on the computed slices and sequence

Solution
Fault Id.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

pmCRIU ✓ ✓ ✗ ✓ 1/10∗ ✓ ✓ 4/10 ✓ ✓ ✓ ✓

ArCkpt ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Arthas ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3. Recoverability in mitigating the evaluated failures. ∗: 10%

probability of success.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

pmCRIU ✓ ✓ n/a ✓ 1/10 ✓ ✓ 4/10 ✓ ✓ ✓ ✓

ArCkpt n/a n/a n/a ✓ n/a n/a n/a n/a n/a ✓ n/a n/a

Arthas (pg) ✓ ✓ ✓ 8/10 ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓

Arthas (rb) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4. Checking if the recovered system is in a semantically con-

sistent state. Arthas (pg): purge mode; Arthas (rb): rollback mode.

numbers. pmCRIU dumps a snapshot image every minute.

ArCkpt reverts PM states one at a time only based on sequence

numbers. Each solution is configured with a timeout so that if

it cannot mitigate the failure within 10 minutes, it will abort.

Table 3 shows the results. Arthas successfully recovers the

target systems for all 12 cases. This notable success can be

attributed to the facts that (1) Arthas performs fine-grained

checkpointing and maintains multiple old versions for an en-

try, which preserves the previous good states; (2) Arthas’s roll-

back follows the dependency chains, which naturally matches

how the root cause bug contaminates the PM states at runtime.

In comparison, pmCRIU mitigates 9 cases, and 2 cases

with a probability. The probabilistic successes occur because

the bugs for the two failures have a chance to be triggered in

the first 1 minute, before pmCRIU has taken the first snapshot.

ArCkpt only successfully mitigates 2 cases. This is because

ArCkpt rolls back at an individual checkpoint entry granu-

larity. As a result, since we revert one entry at a time and

try re-execution, most of the bugs whose root-causes are trig-

gered far earlier end up timing out. ArCkpt works better for

bugs that immediately crash the system.

Consistency. We further evaluate whether a successfully re-

covered system is in a semantically consistent state: (1) we

run sanity checks on the persistent memory file with tools

such as pmempool-check, which catch bad PM blocks; (2) we

run the rollbacked system for 20 minutes and use multiple

clients to issue a mix of requests; (3) if a system has stability

test cases, we run these test cases; (4) we add basic consis-

tency checks based on domain knowledge, e.g., the number

of items should be equal to the hashtable size.

Table 4 shows that pmCRIU’s and ArCkpt’s results match

with the basic recoverability. Arthas can preserve consisten-

cies for most of the cases it recovered. This is because of its

careful checkpoint designs and dependency analyses (§4.6).

Two cases are the exceptions under Arthas’s purge mode

(§4.4). When reverting f7, Arthas only reverts the bad keys

but not the values, leading to a semantic inconsistency when

the client issues a GET command for that key. In f4, the sys-

tem occasionally aborts in do_slabs_free in 2 out of 10 runs.

10

450

Understanding and Dealing with Hard Faults in Persistent Memory Systems EuroSys ’21, April 26ś28, 2021, Online, United Kingdom

Memcached Redis Pelikan PMEMKV CCEH

Static Analysis 468.80 256.07 225.23 52.98 165.90

Instrumentation 10.23 10.37 17.76 6.01 13.64

Slicing 0.38 0.54 0.04 0.05 0.59

Table 9. Time taken (in seconds) for Arthas to analyze and instru-

ment the evaluated systems.

overheads (3–5%) The instrumentation introduces negligible

overhead. Its low cost comes from buffering and asynchro-

nous flushing. We also measure the latency overhead Arthas

introduces to the target systems. Arthas incurs an average of

6% overhead for reads and 7% for writes.

6.8 Performance

We measure the time it takes for Arthas to analyze the target

systems, instrument them and slice a given fault instruction.

Table 9 shows the result. With a timeout enabled for the

reaching definitions and pointer analysis, the Arthas static

analysis takes from 53 to 469 seconds. Arthas is implemented

in the client-server architecture (§5), so the analysis time does

not influence the mitigation time. When the target PM system

fails, the Arthas server already has the PDG computed. The

main latency is the slicing to compute the candidate list for

reversion. This depends on the fault instruction. As Table 9

shows, with the PDG available, the slicing finishes quickly.

7 Discussion and Limitations

Hard fault is a challenging problem for emerging PM systems.

Arthas is a first step towards tackling this problem. It has

several limitations to be addressed in future work.

Scalability Arthas uses static analysis to identify dependen-

cies among PM states for efficient rollback. Static analysis in

general faces scalability challenges. Our overall experience is

that for existing large PM systems, static analysis can handle

them well. Indeed, although Arthas analyzer did not use the

most advanced static analysis algorithms, we have success-

fully applied Arthas to analyze Redis, Memcached and other

popular PM systems that contain tens of thousands of SLOC.

Scaling static analysis to very large systems (millions of lines

of code) is actively researched (e.g., [37]). These advances

can be incorporated into Arthas.

Analysis Accuracy False positives in the static analysis (e.g.,

alias analysis) can cause unnecessary dependencies. The main

consequence is that Arthas would revert more than necessary

and/or take more time to rollback. False negatives are more

concerning to Arthas. The worst-case consequence would

be missing dependencies, which can lead to inconsistencies.

The timeouts that we add in the static analysis could create

possible false negatives. From our observations, adding some

prioritization/filtering often helps Arthas correctly capture the

dependencies before the timeout. Future work could explore

using techniques such as dynamic program slicing [18] to

improve the analysis accuracy while addressing the challenge

of reducing their high runtime overhead.

Consistency Semantic inconsistencies could arise in Arthas’s

purge mode. From our experience, though, such inconsisten-

cies are rare (in 2 out of 12 evaluated cases) because of several

designs. Arthas’s checkpoint respects the program’s choice

of persistence granularity, so it will not revert a program to

an intermediate state. In reverting multiple PM updates, it

carefully follows the dependency chain. If a program uses

transactions, Arthas reverts updates within the programmer-

defined transaction. Most consistency requirements can be

captured correctly with these mechanisms. We assume the

remaining inconsistencies can cause noticeable anomalies

(e.g., triggers assertions) that Arthas can be enacted to further

revert the PM updates until the anomalies are gone. If seman-

tic inconsistencies are intolerable to the target application,

Arthas’s more conservative rollback mode is a better option.

Distributed Application Arthas only works on standalone

PM systems. It cannot handle distributed applications. Arthas

also does not capture dependencies that are created by exter-

nal communication outside this system. For example, a client

first sends a request r1 and then sends another request r2

based on the r1 result. Their dependency may not be reflected

in the PM system’s code. Our studied hard fault bugs do not

involve such indirect dependencies.

If such a dependency does occur in a hard fault, currently

under the purge mode, Arthas may revert PM states associ-

ated with r1 (assuming it triggers the root cause bug) and

may not revert PM states associated with r2, which cause an

inconsistency for that client. Under the rollback mode, Arthas

should be able to revert r2-related PM state updates as well,

because they occur after the r1 state updates (c.f., Figure 7b).

Hard faults in distributed PM systems that are concerned

about external dependencies are interesting problems for fu-

ture work. When recovering a distributed PM system, a dis-

tributed checkpoint-rollback solution might be needed. We

could have each component checkpoint PM states locally, and

add a global coordinator that runs a special rollback-recovery

protocol [31]. We can expose the Arthas metadata in each

component to the coordinator for determining an effective

recovery plan. For external dependencies created by clients, if

the client is stateful, it may need to be involved in the recovery.

For instance, the PM system and client can maintain vector

clocks [33]; after the PM system successfully rollbacks to a

particular point, the client will then be notified to rollback its

events with vector clocks after that point.

8 Related Work

Crash Consistency: The crash consistency problem has been

extensively studied in prior work in the context of traditional

file systems [25, 26, 34, 49] and PM systems [57, 62]. PM sys-

tems typically ensure crash consistency by requiring program-

mers to carefully order writes with persistence primitives,

such as cache line flushes or the use of transactions.

13

453

EuroSys ’21, April 26ś28, 2021, Online, United Kingdom Brian Choi, Randal Burns, and Peng Huang

Several solutions [23, 35, 38, 65] aim to provide transpar-

ent crash consistency/failure atomicity for PM systems. For

example, PMThreads [65] maintains a shadow DRAM page

for each persistent page allocated to a program, along with a

working copy, and a consistent copy in NVM. NVThreads [38]

buffers intermediate changes and commits shared data at the

end of a critical section to ensure it is consistent after crashes.

Our work investigates a different type of reliability issues

in PM systems—hard faults caused by traditionally “soft”

bugs such as race condition, memory leak, random bit flip,

etc. These issues occur during regular program execution.

They are not state inconsistencies induced by crashes. Arthas

is therefore complimentary to crash consistency solutions.

Finding Bugs in PM Systems: Liu et al. propose PMTest [46],

a testing framework to detect crash consistency bugs in persis-

tent memory systems. Pmemcheck [2] is a framework based

on Valgrind [53] to check persistent memory programming

errors such as store operations not being persisted, memory

being added to two different transactions, and unnecessary

flushes. XFDetector [45] is recently proposed to detect crash

consistency bugs that concern the recovery and re-execution

after the crash. A post-failure execution may read data that is

not persisted during pre-failure execution. Or a post-failure ex-

ecution may read from older committed data. These bugs still

belong to crash-consistency bugs. AGAMOTTO [52] uses

symbolic execution to discover bugs in PM systems related

to misuse of persistent memory.

We investigate a different spectrum of bugs—soft-to-hard

faults—in PM systems. From our study (Section 2), the errors

that lead to hard faults are outside of the detection scope of

these prior solutions. In addition, our work aims to mitigate

hard faults instead of finding bugs.

Checkpointing and Rollback: Flashback [60] proposes check-

pointing and rollback through a shadow process. Flashback

periodically checkpoints a running process’ execution state

through copying its process structure and logging I/O interac-

tions. When a failure occurs, the process is rolled back to pre-

vious state in the shadow process. CROCHET [21] proposes

fine-grained checkpoints an individual variable granularity

within unmodified commodity JVMs by using a lazy heap

traversal algorithm that models a page-fault like checkpoint

mechanism. Arthas targets PM systems and checkpoints at

fine granularity (PM variables) in an eager fashion (as soon

as the PM system reaches persistence points).

ThyNVM [57] proposes a hardware-assisted mechanism

that supports checkpointing of persistent memory at both

cache block and page granularities. Compared to ThyNVM,

Arthas checkpointing does not require hardware modifica-

tion and is not bound by periodic epochs. Also importantly,

ThyNVM’s checkpointing is a system-wide mechanism for

ensuring crash consistency, but Arthas’s checkpointing is for

mitigating hard faults in different PM applications. Because

of this, the Arthas checkpoint is tailored to each target appli-

cation: it matches the exact granularity that the application

issues PM updates at the code level.

Cohen et al. [29] propose a new language extension and

runtime system called NVMReconstruction that takes an

object-oriented approach to reconstruct persistent objects’

states during restart. It requires developers to annotate the PM

programs and focuses on avoiding inconsistencies between

transient and persistent data during restart. Arthas focuses on

transparently helping PM systems recover from hard faults

that are caused by persistent bad PM states.

Elnozahy et al. [31] surveys rollback recovery protocols

in distributed systems. At a high level, Arthas takes a similar

dependency tracking approach, but with a different goal in a

drastically different context. We track dependency through

static analysis of instructions in a PM system and use the

dependency information to revert the PM data to a good state

with minimal data loss.

Coping with State Corruptions: Many of our studied hard

faults in PM systems arise due when some persistent states

become “bad” due to a logic error, race condition, integer

overflow, etc. SafeNVM [41] uses a thread-based protection

schema with hardware changes to combat against stray writes

and offer data safety for non-volatile memory. File systems

have tackled the issue of data integrity [19, 67], using a variety

of checks to detect and avoid integrity violations. The hard

faults Arthas target have a broader scope and are specific to

PM applications. Generic integrity checks like checksums

can only prevent a small portion of these hard faults.

9 Conclusion

This paper investigates the hard-fault reliability challenge

in persistent memory systems. We analyze 28 bugs in popu-

lar PM systems to understand how they incur severe conse-

quences that cannot be mitigated with restarts. We propose

Arthas, a tool to mitigate hard faults in PM systems. Arthas

designs PM-aware fine-grained checkpointing, program anal-

ysis and tracing to rollback persistent states to a working

version while minimizing the discarded data. We evaluate

Arthas on 12 hard faults from five large PM systems. Arthas

successfully mitigates all cases and discards 10× less state

on average when compared to traditional rollback solutions.

The source code of Arthas is publicly available at:

https://github.com/OrderLab/Arthas

Acknowledgments

We would like to thank our shepherd Yang Wang and the

anonymous EuroSys reviewers for their valuable feedback.

We thank the members of the OrderLab and Parv Saxena for

their feedback during discussion and assistance on the project.

Brian Choi is supported by an NSF Graduate Research Fel-

lowship (No. DGE-1746891). This work was supported by

NSF grant CNS-1942794.

14

454

Understanding and Dealing with Hard Faults in Persistent Memory Systems EuroSys ’21, April 26ś28, 2021, Online, United Kingdom

References
[1] Checkpoint/Restore In Userspace, or CRIU. https://criu.org/Main_

Page.

[2] Discover persistent memory programming errors with Pmem-

check. https://software.intel.com/en-us/articles/discover-persistent-

memory-programming-errors-with-pmemcheck.

[3] Key/value datastore for persistent memory. https://github.com/pmem/

pmemkv.

[4] LLVM DependenceGraph. https://github.com/mchalupa/dg.

[5] Memcached. https://memcached.org.

[6] Memcached flush_all bug. https://code.google.com/archive/p/

memcached/issues/249.

[7] Memcached gets a dead loop in func assoc_find. https://github.com/

memcached/memcached/issues/271.

[8] Memcached release notes for 1.5.18 (support for persistent

memory). https://github.com/memcached/memcached/wiki/

ReleaseNotes1518.

[9] Memkind - user extensible heap manager. http://memkind.github.io/

memkind.

[10] N-store persists transient data structures due to de-

pendencies. https://github.com/snalli/nstore/commit/

a2f1997f855764196ccef2bf6d36d3e750ea3c86.

[11] Persistent memory development kit. https://pmem.io/pmdk.

[12] Pmemkv lazy free causes persistent memory leak. https://github.com/

pmem/pmemkv/issues/7.

[13] Redis. https://redis.io.

[14] Redis crashes inside lpnext for large values. https://github.com/antirez/

redis/issues/4349.

[15] Redis persistence options. https://redis.io/topics/persistence.

[16] Valgrind: an enhanced version for pmem. https://github.com/pmem/

valgrind.

[17] A version of rocksdb that uses persistent memory. https://github.com/

pmem/pmem-rocksdb.

[18] H. Agrawal and J. R. Horgan. Dynamic program slicing. In Proceedings

of the ACM SIGPLAN 1990 Conference on Programming Language

Design and Implementation, PLDI ’90, page 246–256, White Plains,

New York, USA, 1990.

[19] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-

Dusseau. ffsck: The Fast File System Checker. In Proceedings of the

11th Conference on File and Storage Technologies (FAST ’13), San

Jose, California, February 2013.

[20] J. Arulraj, A. Pavlo, and S. R. Dulloor. Let’s talk about storage & recov-

ery methods for non-volatile memory database systems. In Proceedings

of the 2015 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’15, page 707–722, Melbourne, Victoria, Australia,

2015.

[21] J. Bell and L. Pina. CROCHET: Checkpoint and rollback via light-

weight heap traversal on stock JVMs. In T. Millstein, editor, 32nd

European Conference on Object-Oriented Programming (ECOOP

2018), volume 109 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 17:1–17:31. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, 2018.

[22] E. Berrocal. Making NoSQL databases persistent-memory-aware:

The Apache Cassandra example. https://software.intel.com/en-

us/articles/making-nosql-databases-persistent-memory-aware-the-

apache-cassandra-example, 2018.

[23] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari. Atlas: Leveraging

locks for non-volatile memory consistency. In Proceedings of the 2014

ACM International Conference on Object Oriented Programming Sys-

tems Languages & Applications, OOPSLA ’14, page 433–452, Portland,

Oregon, USA, 2014.

[24] M. Chalupa. Slicing of LLVM bitcode. Master’s thesis, Masaryk

University, Faculty of Informatics, Brno, 2016.

[25] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. Optimistic crash consistency. In Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles, SOSP ’13,

page 228–243, Farminton, Pennsylvania, 2013.

[26] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. Consistency without ordering. In Proceedings of the 10th

USENIX Conference on File and Storage Technologies, FAST’12,

page 9, San Jose, CA, 2012.

[27] B. Choi, R. Burns, and P. Huang. Understanding and dealing with

hard faults in persistent memory systems (technical report). https:

//orderlab.io/paper/arthas-tech-report.pdf, April 2021.

[28] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,

and S. Swanson. Nv-heaps: Making persistent objects fast and safe

with next-generation, non-volatile memories. In Proceedings of the

Sixteenth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS XVI, page

105–118, Newport Beach, California, USA, 2011.

[29] N. Cohen, D. T. Aksun, and J. R. Larus. Object-oriented recovery

for non-volatile memory. Proceedings of the ACM on Programming

Languages, 2(OOPSLA), Oct. 2018.

[30] Dormando. The volatile benefit of persistent memory. https://

memcached.org/blog/persistent-memory, 2019.

[31] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey

of rollback-recovery protocols in message-passing systems. ACM

Comput. Surv., 34(3):375–408, Sept. 2002.

[32] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence

graph and its use in optimization. ACM Trans. Program. Lang. Syst.,

9(3):319–349, July 1987.

[33] C. J. Fidge. Timestamps in message-passing systems that preserve

the partial ordering. In Proceedings of the 11th Australian Computer

Science Communications, ACSC ’88, pages 56–66, 1988.

[34] G. R. Ganger, M. K. McKusick, C. A. N. Soules, and Y. N. Patt. Soft

updates: A solution to the metadata update problem in file systems.

ACM Trans. Comput. Syst., 18(2):127–153, May 2000.

[35] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and

T. F. Wenisch. Persistency for synchronization-free regions. In Proceed-

ings of the 39th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2018, page 46–61, Philadelphia, PA,

USA, 2018.

[36] J. Gray. Why do computers stop and what can be done about it?

Technical Report TR-85.7, June 1985.

[37] B. Hardekopf and C. Lin. Flow-sensitive pointer analysis for millions

of lines of code. In Proceedings of the 9th Annual IEEE/ACM Inter-

national Symposium on Code Generation and Optimization, CGO ’11,

page 289–298. IEEE Computer Society, 2011.

[38] T. C.-H. Hsu, H. Brügner, I. Roy, K. Keeton, and P. Eugster. NVthreads:

Practical persistence for multi-threaded applications. In Proceedings of

the Twelfth European Conference on Computer Systems, EuroSys ’17,

page 468–482, Belgrade, Serbia, 2017.

[39] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.

Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson. Basic

Performance Measurements of the Intel Optane DC Persistent Memory

Module. arXiv e-prints, page arXiv:1903.05714, Mar 2019.

[40] R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, A. Kolli, and V. Chi-

dambaram. SplitFS: Reducing software overhead in file systems for

persistent memory. In Proceedings of the 27th ACM Symposium on

Operating Systems Principles, SOSP ’19, page 494–508, Huntsville,

Ontario, Canada, 2019.

[41] P. Kumar and H. H. Huang. SafeNVM: A non-volatile memory store

with thread-level page protection. In 2017 IEEE International Congress

on Big Data (BigData Congress), pages 65–72. IEEE, 2017.

[42] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong

program analysis & transformation. In Proceedings of the 2004 Inter-

national Symposium on Code Generation and Optimization, CGO ’04,

15

455

EuroSys ’21, April 26ś28, 2021, Online, United Kingdom Brian Choi, Randal Burns, and Peng Huang

pages 75–, Palo Alto, California, 2004.

[43] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram. Recipe:

Converting concurrent DRAM indexes to persistent-memory indexes.

In Proceedings of the 27th ACM Symposium on Operating Systems

Principles, SOSP ’19, page 462–477, Huntsville, Ontario, Canada,

2019.

[44] Lenovo. memcached-pmem. https://github.com/lenovo/memcached-

pmem, 2018.

[45] S. Liu, K. Seemakhupt, Y. Wei, T. Wenisch, A. Kolli, and S. Khan.

Cross-failure bug detection in persistent memory programs. In Pro-

ceedings of the Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS

’20, page 1187–1202, Lausanne, Switzerland, 2020.

[46] S. Liu, Y. Wei, J. Zhao, A. Kolli, and S. Khan. PMTest: A fast and

flexible testing framework for persistent memory programs. In Proceed-

ings of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS

’19, page 411–425, Providence, RI, USA, 2019.

[47] B. Lu, X. Hao, T. Wang, and E. Lo. Dash: Scalable hashing on persistent

memory. Proc. VLDB Endow., 13(10):1147–1161, Apr. 2020.

[48] V. J. Marathe, M. Seltzer, S. Byan, and T. Harris. Persistent Mem-

cached: Bringing legacy code to byte-addressable persistent memory.

In Proceedings of the 9th USENIX Conference on Hot Topics in Storage

and File Systems, HotStorage’17, pages 4–4, Santa Clara, CA, 2017.

[49] J. Mohan, A. Martinez, S. Ponnapalli, P. Raju, and V. Chidambaram.

Finding crash-consistency bugs with bounded black-box crash testing.

In Proceedings of the 12th USENIX Conference on Operating Systems

Design and Implementation, OSDI’18, page 33–50, Carlsbad, CA, USA,

2018.

[50] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton. An

analysis of persistent memory use with WHISPER. In Proceedings of

the Twenty-Second International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS ’17,

pages 135–148, Xi’an, China, 2017.

[51] M. Nam, H. Cha, Y. ri Choi, S. H. Noh, and B. Nam. Write-optimized

dynamic hashing for persistent memory. In 17th USENIX Conference

on File and Storage Technologies (FAST 19), pages 31–44, Boston,

Massachusetts, USA, 2019.

[52] I. Neal, B. Reeves, B. Stoler, A. Quinn, Y. Kwon, S. Peter, and

B. Kasikci. AGAMOTTO: How persistent is your persistent mem-

ory application? In 14th USENIX Symposium on Operating Systems

Design and Implementation, OSDI ’20, pages 1047–1064, Banff, Al-

berta, Canada, Nov. 2020.

[53] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight

dynamic binary instrumentation. In Proceedings of the 28th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’07, page 89–100, San Diego, California, USA, 2007.

[54] J. Newsome and D. X. Song. Dynamic taint analysis for automatic

detection, analysis, and signature generation of exploits on commodity

software. In Proceedings of the 2005 Network and Distributed System

Security Symposium, NDSS ’05, San Diego, California, USA, 2005.

[55] K. P. O’Leary. How to Detect Persistent Memory Programming

Errors Using Intel® Inspector - Persistence Inspector. https:

//software.intel.com/content/www/us/en/develop/articles/detect-

persistent-memory-programming-errors-with-intel-inspector-

persistence-inspector.html. Accessed: 2021-03-22.

[56] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs as

allergies—a safe method to survive software failures. In Proceedings

of the Twentieth ACM Symposium on Operating Systems Principles,

SOSP ’05, page 235–248, Brighton, United Kingdom, 2005.

[57] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu. ThyNVM:

Enabling software-transparent crash consistency in persistent mem-

ory systems. In Proceedings of the 48th International Symposium on

Microarchitecture, MICRO-48, pages 672–685, Waikiki, Hawaii, 2015.

[58] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted

to know about dynamic taint analysis and forward symbolic execution

(but might have been afraid to ask). In Proceedings of the 2010 IEEE

Symposium on Security and Privacy, SP ’10, page 317–331. IEEE

Computer Society, 2010.

[59] Snalli. Redis pmem. https://github.com/snalli/redis, 2016.

[60] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou. Flashback: A

lightweight extension for rollback and deterministic replay for software

debugging. In Proceedings of the Annual Conference on USENIX

Annual Technical Conference, ATEC ’04, page 3, Boston, MA, 2004.

[61] Y. I. Takashi Menjo. Introducing PMDK into PostgreSQL: Challenges

and implementations towards PMEM-generation elephant. https://

www.pgcon.org/2018/schedule/events/1154.en.html, 2018.

[62] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight persis-

tent memory. In Proceedings of the Sixteenth International Conference

on Architectural Support for Programming Languages and Operating

Systems, ASPLOS XVI, pages 91–104, Newport Beach, California,

USA, 2011.

[63] M. Weiser. Program slicing. In Proceedings of the 5th International

Conference on Software Engineering, ICSE ’81, page 439–449, San

Diego, California, USA, 1981.

[64] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis

for C programs. In Proceedings of the ACM SIGPLAN 1995 Conference

on Programming Language Design and Implementation, PLDI ’95,

page 1–12, La Jolla, California, USA, 1995.

[65] Z. Wu, K. Lu, A. Nisbet, W. Zhang, and M. Luján. PMThreads: Persis-

tent memory threads harnessing versioned shadow copies. In Proceed-

ings of the 41st ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2020, page 623–637, London, UK,

2020.

[66] J. Xu and S. Swanson. NOVA: A log-structured file system for hybrid

volatile/non-volatile main memories. In Proceedings of the 14th Usenix

Conference on File and Storage Technologies, FAST ’16, page 323–338,

Santa Clara, CA, 2016.

[67] Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. End-to-end data integrity for file systems: A zfs case study.

In Proceedings of the 8th USENIX Conference on File and Storage

Technologies, FAST’10, page 3, San Jose, California, 2010.

[68] P. Zuo, Y. Hua, and J. Wu. Write-optimized and high-performance

hashing index scheme for persistent memory. In Proceedings of the 12th

USENIX Conference on Operating Systems Design and Implementation,

OSDI ’18, pages 461–476, Carlsbad, CA, USA, 2018.

A Artifact Appendix

A.1 Abstract

Arthas is a tool that aims to properly recover persistent mem-

ory systems by mitigating hard faults. Arthas uses a combi-

nation of instrumentation and dynamic checkpointing in con-

junction with static analysis program slicing to rollback Per-

sistent Data while minimizing data loss. Arthas is publically

available on github and there are testing scripts to verify the

workflow of Arthas as described in the paper. Arthas requires

access to either emulated or real PM Hardware. The artifact

is publicly available at: https://github.com/OrderLab/arthas.

A.2 Artifact Check-list

• Hardware: One 8-core CPU (2.50GHz), 94 GB DRAM, and

two 128 GB Intel Optane DC Persistent Memory DIMMs.

• Run-time environment: Ubuntu 18.04.4 LTS

• Public link: https://github.com/OrderLab/arthas

16

456

Understanding and Dealing with Hard Faults in Persistent Memory Systems EuroSys ’21, April 26ś28, 2021, Online, United Kingdom

• Artifact Instructions: https://github.com/OrderLab/Arthas/

blob/master/artifactREADME.md

• Code licenses: Apache License 2.0.

A.3 Description

A.3.1 Arthas’s Components. Arthas comprises of four primary

components:

• Checkpoint Component: Uses dynamic checkpointing to store

old versions of Persistent Data. Used alongside a modified

version of PMDK, which intercepts PMDK functions to call

checkpoint functions

• Analyzer: Uses llvm and dg to form a dependency graph of

the analyzed system and detect PM variables. The analyzer

is also responsible for inserting instrumentation points in

a target system to obtain runtime information such as the

dynamic address of the persistent variable in a slice

• Detector: Used to detect hard PM failures

• Reactor: The runtime meta environment that reacts on a hard

fault and brings the system back to a normal state using

repeated reversion and re-execution

Arthas first uses the analyzer to instrument the executable of the

target PM system with Arthas’s checkpoint support. The target sys-

tem runs while dynamically checkpointing PM data and then upon

detection of a fault, Arthas’s reactor server and client are enacted to

react to the hard fault and revert the target system to a normal state.

A.4 Installation

A.4.1 Dependencies.

• Hardware: Either emulated or real PM hardware

• The Arthas analyzer requires LLVM 3.9: https://github.com/

llvm/llvm-project

• wllvm

• PMDK: https://github.com/pmem/pmdk

• Custom PMDK: https://github.com/OrderLab/Arthas-PMDK.

git

• We also need to install PMDK’s dependencies

• Other dependencies that need to be installed include cmake

(3.4+), protobuf (3.11), and grpc (1.28.1)

1 pip install wllvm

2 sudo apt install autoconf automake pkg-config libglib2.0-dev

libfabric-dev pandoc libncurses5-dev cmake

A.5 Experiment Deployment

In this experiment we will see Arthas mitigate bug f1: the Mem-

cached refcount bug described in the paper.

A.5.1 Setting Up Environment Variables. To use the wllvm wrap-

per for compiling a target system, set the following environment

variables:

1 export LLVM_COMPILER=clang

2 export LLVM_HOME=/opt/software/llvm/3.9.1/dist

3 export LLVM_COMPILER_PATH=$LLVM_HOME/bin

4 export PATH=$LLVM_COMPILER_PATH:$PATH

The LLVM_HOME path should be replaced appropriately.

A.5.2 Testing Arthas: Minimal Interaction.

1 git clone https://github.com/OrderLab/Arthas.git

2 cd Arthas

3 scripts/artifact_test.sh

The test script will build Arthas, custom PMDK, vanilla PMDK,

target system Memcached, and finally run the Arthas analyzer on

the Memcached to instrument it.

If successful, you should see a Memcached bitcode file in eval-

sys/memcached/memcached.bc and a Arthas hooks metadata file in

experiment/memcached/memcached-hook-guids.map.

You can further test Arthas by a real bug in Memcached:

1 scripts/experiment_memcached_refcount.sh

This demo script will do the following things:

1. Start a buggy version of Memcached server (instrumented).

2. Insert some workload to Memcached.

3. Invoke another script to trigger the bug (refcount overflow)

and cause Memcached to fail.

4. Start Arthas reactor server.

5. Run the Arthas reactor client to mitigate the failure.

Note that in practice, Arthas’s reactor server (step 4) is typically

started along with the target system (step 1).

If successful, a message of "Recovery finished" will be printed.

A.5.3 Expected Result. We should see the lines "done with binary

reversion [num]" where the binary value of num (0 or 1) will tell

you if Arthas was successful in mitigating a bug or not. We should

also see "total reverted items is [num]" which will tell you the total

number of items reverted.

A.6 Full Usage

To see a walkthrough of the Arthas workflow and the detailed instruc-

tions for using the Arthas components, please refer to the READMEs

in Arthas’s public repository.

17

457

	Abstract
	1 Introduction
	2 Empirical Study on PM Hard Faults
	2.1 Definition and Study Methodology
	2.2 Volatile vs. Persistent States
	2.3 Bug Examples
	2.4 Root Causes
	2.5 Bug Consequences
	2.6 Fault Propagation Patterns
	2.7 Implications

	3 Overview of Arthas
	3.1 Basic Idea and Workflow
	3.2 Supported PM Systems
	3.3 Use Cases and Limitations

	4 Arthas Design
	4.1 Static Analysis and Instrumentation
	4.2 Eager Checkpointing of PM States with Versioning
	4.3 Detecting Hard Failures
	4.4 Rollback Strategies
	4.5 Rollback Workflow
	4.6 Rollback Consistencies
	4.7 Mitigating Persistent Memory Leak

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Effectiveness of Mitigation
	6.3 Efficiency of Mitigation
	6.4 Amount of Discarded State
	6.5 Reversion Strategy
	6.6 Checksum and Invariant Approaches
	6.7 Overhead
	6.8 Performance

	7 Discussion and Limitations
	8 Related Work
	9 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-list
	A.3 Description
	A.4 Installation
	A.5 Experiment Deployment
	A.6 Full Usage

