Annals of Botany 127: 305-315, 2021

doi: 10.1093/aob/mcaal54, available online at www.academic.oup.com/aob

ANNALS OF
BOTANY

Founded 1887

Fossil evidence from South America for the diversification of Cunoniaceae by
the earliest Palaeocene

Nathan A. Jud"* and Maria A. Gandolfo?

!Department of Biology, William Jewell College, Liberty, MO 64068, USA and *L. H. Bailey Hortorium, Plant Biology Section,
School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
*For correspondence. E-mail judn@william.jewell.edu

Returned for revision: 11 May 2020 Editorial decision: 19 August 2020 Accepted: 27 August 2020
Electronically published: 29 August 2020

* Background and Aims Cunoniaceae are woody plants with a distribution that suggests a complex history of
Gondwanan vicariance, long-distance dispersal, diversification and extinction. Only four out of ~27 genera in
Cunoniaceae are native to South America today, but the discovery of extinct species from Argentine Patagonia is
providing new information about the history of this family in South America.

* Methods We describe fossil flowers collected from early Danian (early Palacocene, ~64 Mya) deposits of the
Salamanca Formation. We compare them with similar flowers from extant and extinct species using published
literature and herbarium specimens. We used simultaneous analysis of morphology and available chloroplast
DNA sequences (trnl—F, rbcL, matK, trnH-psbA) to determine the probable relationship of these fossils to living
Cunoniaceae and the co-occurring fossil species Lacinipetalum spectabilum.

* Key Results Cunoniantha bicarpellata gen. et sp. nov. is the second species of Cunoniaceae to be recog-
nized among the flowers preserved in the Salamanca Formation. Cunoniantha flowers are pentamerous and
complete, the anthers contain in sifu pollen, and the gynoecium is bicarpellate and syncarpous with two free
styles. Phylogenetic analysis indicates that Cunoniantha belongs to crown-group Cunoniaceae among the core
Cunoniaceae clade, although it does not have obvious affinity with any tribe. Lacinipetalum spectabilum, also
from the Salamanca Formation, belongs to the Cunoniaceae crown group as well, but close to tribe Schizomerieae.
* Conclusions Our findings highlight the importance of West Gondwana in the evolution of Cunoniaceae
during the early Palaecogene. The co-occurrence of C. bicarpellata and L. spectabilum, belonging to different
clades within Cunoniaceae, indicates that the diversification of crown-group Cunoniaceae was under way by

64 Mya.
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INTRODUCTION

The distribution of Cunoniaceae throughout tropical and
southern temperate forests suggests a deep Gondwanan legacy
(Raven and Axelrod, 1974; Carpenter and Buchanan, 1993;
Bradford et al., 2004). The family includes 28 extant genera
and six tribes, but six of the genera are not assigned to a tribe
(Fig. 1). Several species groups have intercontinental dis-
tributions, such as Cunonia L., Eucryphia Cav., Geissoieae,
Schizomerieae and Weinmannia L. (Bradford and Barnes, 2001;
Sweeney et al., 2004; Hopkins et al., 2013), but disentangling
the relative importance of vicariance, long-distance dispersal,
extinction and diversification in explaining these disjunctions
depends on direct evidence of ancient distributions from the
fossil record (Pole, 1994, 2001; Barnes et al., 2001; Sanmartin
and Ronquist, 2004; Wilf and Escapa, 2015).

The rich fossil record of Cunoniaceae in Australia provides
evidence of at least 11 genera during the Cenozoic, but limited
Cretaceous outcrops obscure the earlier history of the family
on the continent (Barnes et al., 2001). Elsewhere, fossil oc-
currences of the family are comparatively rare; therefore, new
discoveries have the potential to provide valuable information

about the evolution and biogeographic history of Cunoniaceae
(e.g. Gandolfo and Hermsen, 2017). In South America and
the Antarctic Peninsula (Fig. 2), fossil woods (Petriella, 1972;
Archangelsky, 1973; Baldoni and Askin, 1993; Raigemborn
et al., 2009) and pollen (Archangelsky, 1973; Romero and
Archangelsky, 1986; Troncoso, 1991; Zamaloa, 2000) ascribed
to Cunoniaceae have been known for decades, but their possible
relationships to extant tribes have not been evaluated through
phylogenetic analyses.

Here, we build on an earlier study (Jud et al., 2018a) by
describing a second extinct species of Cunoniaceae from
fossil flowers collected from the Salamanca Formation
(earliest Palaeocene, ~64 Mya) in Patagonia, Argentina.
The fossils have a combination of character states that in-
dicates a close relationship with the syncarpous members
of Cunoniaceae. We use phylogenetic analyses to explore
the relationships of this new species and of Lacinipetalum
spectabilum (Jud et al., 2018a) to other living and extinct
members of the family. Finally, we discuss the implica-
tions of the co-occurrence of these two species at an early
Palaeocene site in Patagonia for understanding the diversi-
fication of Cunoniaceae.

© The Author(s) 2020. Published by Oxford University Press on behalf of the Annals of Botany Company.
All rights reserved. For permissions, please e-mail: journals.permissions @oup.com.
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FiG. 1. Summary of phylogenetic relationships among Cunoniaceae based on
previous work (Bradford and Barnes, 2001; Sweeney et al., 2004; Hopkins
etal., 2013).

MATERIALS AND METHODS

Geological setting

The Salamanca Formation crops out in the San Jorge Basin
in Patagonia, Argentina. It consists primarily of estuarine and
shallow marine deposits and yields abundant plant micro- and
megafossils (Berry, 1937; Romero, 1968; Petriella, 1972;
Iglesias et al., 2007; Brea et al., 2008; Zucol et al., 2008;
Futey et al., 2012; Jud et al., 2017, 2018a, b; Ruiz et al., 2017,
Andruchow-Colombo et al., 2019; Hermsen et al., 2019). The
Salamanca Formation overlies the Cretaceous Chubut Group
and underlies the Palacocene—Eocene Rio Chico Group (Clyde
et al., 2014; Comer et al., 2015). The fossils described here
were collected from the Palacio de los Loros-2 (PL-2) locality
in the lower part of the formation in south-eastern Chubut
Province (Iglesias et al., 2007). The age of the PL-2 locality is
constrained to geomagnetic polarity chron C28n. Comer et al.
(2015) dated this chron to 64.67-63.49 Ma (early Danian) on the
2012 Geomagnetic Polarity Timescale, but the age of the lower
boundary was revised to 64.535 +0.040 Ma by Clyde et al.
(2016). This site yields an allochthonous assemblage of leaves,
fruits and flowers, but so far Cunoniaceae have not been iden-
tified among the dicot leaves (Iglesias et al., 2007). The fossils
are preserved in a grey clay shale that is interpreted as a swale
between point-bar ridges of a tidally influenced fluvial channel
that meandered across the coastal flats (Comer et al., 2015).

All necessary permits were obtained for this study, which
complied with all relevant regulations. Coordinates for the lo-
cality are on file at the Museo Paleontoldgico Egidio Feruglio
(MEF), Trelew, Chubut, Argentina.

Fossil preparation

The fossils were collected over the course of four field
seasons (2005, 2009, 2011 and 2012) and are curated at the
Palaeobotanical Collection of the Museo Paleontolégico Egidio
Feruglio (MPEF-Pb), Trelew, Chubut, Argentina. We captured
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FI1G. 2. Map of southern South America and the Antarctic Peninsula showing
the occurrences of macrofossils identified to Cunoniaceae. (1) Williams Point
Beds (Upper Cretaceous), Williams Point, Antarctica (Poole et al., 2000). (2)
Salamanca Formation (Palaeocene), Chubut Province, Argentina (Jud et al.,
2018a; this study). (3) Pefias Coloradas Formation (Palaecocene), Chubut
Province, Argentina (Raigemborn et al., 2009). (4) Cerro Bororé Formation
(Palacocene), Chubut Province, Argentina (Petriella, 1972). (5) Fossil Hill
Formation (Eocene), King George (25 de Mayo) Island, Antarctica (Zhang
and Wang, 1994). (6) Sobral Formation (Palacocene), Seymour (Marambio)
Island, Antarctica (Poole et al., 2003). (7) Lopez de Bertodano Formation
(Palaeocene), Seymour Island, Antarctica (Poole et al., 2003). (8) La Meseta
Formation (Eocene), Seymour Island, Antarctica (Poole et al., 2003). (9)
Fildes Formation (Eocene) King George Island, Antarctica (Poole et al.,
2001, Francis and Poole, 2002). (10) Huitrera Formation (Eocene), Chubut
Province, Argentina (Hermsen e al., 2010; Gandolfo and Hermsen, 2017). (11)
Ligorio Marquez Formation (Eocene), Chile (Terada et al., 2006). (12) Ligorio
Mairquez Formation (Eocene), Chile (Carpenter et al., 2018) (13) ‘Forest Bed’
(Miocene), West Point Island, Falkland (Malvinas) Islands (Poole and Cantrill,
2007). (14) Seymour Island (Cretaceous), Antarctica (Pujana et al., 2018).

images of macroscopic features with a Canon EOS 7D DSLR
camera and microscopic details were photographed with a
Nikon DS Fil camera mounted on a Nikon SMZ1000 stereo-
scope at the MEF. We used epifluorescence microscopy to
examine the anthers for preserved pollen grains. We captured
images of fossil and modern pollen grains with a Jeol NeoScope
JCM-5000 scanning electron microscope at the Paleontological
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Research Institute (PRI), Ithaca, NY, USA. We processed the
images using whole-image manipulations only with Adobe
Photoshop CC 2017 (San Jose, CA, USA).

Molecular data

We began by obtaining the trnl—F and rbcL sequence data
used by Bradford and Barnes (2001) from GenBank. We modi-
fied the dataset to include additional trnl—F and rbcL se-
quence data from GenBank. We also modified the dataset to
reflect changes to the taxonomy since the work of Bradford
and Barnes (2001), including the synonymy of Acsmithia
Hoogland with Spiraeanthemum A.Gray (Pillon et al., 2009),
the segregation of Karrabina Rozefelds & H.C.Hopkins from
Geissois Labill. (Hopkins et al., 2013) and the rediscovery of
Hooglandia ignambiensis (McPherson and Lowry, 2004). We
used one exemplar species for each section of Weinmannia
(Bradford, 2002). Next, we searched for additional informative

sequences available on GenBank using the BLAST search tool
and obtained matK and the trnH-psbA intergenic spacer region
sequences for nine and seven species, respectively (Table 1).

We used Brunelliaceae (represented by Brunellia colombiana
Cuatrec. and B. oliveriBritton) as the outgroup. Cunoniaceae form
a clade with Brunelliaceae, Cephalotaceae and Elaeocarpaceae
(Moody and Hufford, 2000; Bradford and Barnes, 2001; Sun
et al., 2016; Valencia et al., 2020), but the sister taxon of
Cunoniaceae is unclear. We did not use Cephalotaceae because
they are morphologically specialized herbaceous pitcher plants
and we did not use Elaeocarpaceae because the alignment of the
trnL—F sequences with Cunoniaceae was ambiguous.

We aligned each locus independently using MUSCLE
v. 3.8.31 in Aliview v. 1.18 (Larsson, 2014). The final concat-
enated matrix of sequence data (Supplementary Data NEXUS
file) consists of the #rnL intron (36 species, positions 1-618), the
trnL—F intergenic spacer (36 species, positions 619-1167), rbcL
(31 species, positions 1168-2638), matK (9 species, positions
2639-4151) and trnH—psbA (7 species, positions 4152-4752).

TABLE 1. GenBank accession numbers for each sequence used in the phylogenetic analyses

Term tRNA-Leu (trnL) trnL—F intergenic rbcL matK trnH-psbA
trnL c—d spacer trnL e—F

Ackama rosifolia AF299162 AF299215 KT626660 NA NA
Acrophyllum australe AF299168 AF299221 AF291926 NA NA
Anodopetalum biglandulosum AF299175 AF299228 AF291932 NA NA
Bauera rubioides AF299183 AF299236 L11174.2 NA NA

Bauera sessiliflora AF299184 AF299237 NA NA NA
Brunellia colombiana AF299181 AF299234 AF291937 NA NA
Brunellia oliveri AF299182 AF299235 AF291938 NA NA
Caldcluvia paniculata AF299163 AF299216 AF291922 NA NA
Callicoma serratifolia AF299170 AF299223 AF291928 KM894952 NA
Ceratopetalum apetalum NA NA KM895900 KM894747 KM895248
Ceratopetalum gummiferum AF299176 AF299229 LO1895 NA NA

Codia discolor AF299171 AF299224 AF291929 NA NA
Cunonia atrorubens AF299154 AF299207 AF291918 NA NA
Cunonia capensis AF299156 AF299209 NA JX517913 NA
Davidsonia jerseyana AF299185 AF299238 AF206759 AY935930 NA
Davidsonia johnsonii AF299186 AF299239 KM895905 NA KM895252
Eucryphia cordifolia AF299173 AF299226 AF291931 KF224980 NA
Eucryphia moorei AF299174 AF299227 NA NA NA
Geissois superba AF299166 AF299219 NA NA NA
Gillbeea adenopetala AF299169 AF299222 AF291927 NA NA
Hooglandia ignambiensis AY549639 AY 549640 AY549641 NA NA
Karrabina benthamiana AF299165 AF299218 AF291924 NA KM895230
Lamanonia ternata JX236029 1X236029 JX236032 MG833493 KF421056
Opocunonia nymanii NA NA MHS826693 NA MHS826497
Pancheria engleriana AF299158 AF299211 AF291919 NA NA
Platylophus trifoliatus AF299177 AF299230 AF291933 JX517817 NA
Pseudoweinmannia AF299167 AF299220 AF291925 NA NA

lachnocarpa

Pullea glabra AF299172 AF299225 AF291930 NA NA
Schizomeria ovata AF299178 AF299231 KM895629 KM894933 KM895087
Schizomeria serrata 1X236028 1X236028 JX236031 NA NA
Spiraeanthemum samoense AF299180 AF299233 AF291936 NA NA
Spiraeanthemum ellipticum EU867222 EU867222 AF291935 NA NA
Spiraeopsis celebica AF299164 AF299217 AF291923 NA NA
Vesselowskya rubifolia AF299160 AF299213 AF291920 NA NA
Weinmannia bangii AF299145 AF299198 AF291915 NA NA
Weinmannia fraxinea AF299149 AF299202 NA AMS889750 GQ248402
Weinmannia madagascarensis AF299152 AF299205 AF291916 NA NA
Weinmannia minutiflora AF299150 AF299203 NA NA NA
Weinmannia raiateensis AF291917 NA GQ248402
Lacinipetalum spectabilum NA NA NA NA NA
Cunoniantha bicarpellata NA NA NA NA NA
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Morphological data

We examined the matrix of morphological characters used
by Bradford and Barnes (2001) and modified several charac-
ters. Leaf arrangement is treated as unordered to remove any
assumption about how this character evolves. Marginal tooth
vascularization was replaced with secondary vein framework
following Ellis et al. (2009). The stipule characters are modi-
fied from present/absent and lateral/interpetiolar/axillary to
a single character where the various stipule types are con-
sidered alternative states along with the absence of stipules
(Rutishauser and Dickison, 1989; Dickison and Rutishauser,
1990). We replaced the character of petal morphology (entire/
incised) with a more complex set of four states to reflect the
diversity of venation, shape, and type of incision across the
family: ovate to obovate and single veined/large multiveined—
obovate/flabellate incised/retuse. We used these new character
states because we doubt the homology between the pattern of
petal incision in Schizomerieae (Barnes and Rozefelds, 2000;
Rozefelds and Barnes, 2002; Hopkins, 2018) and the retuse
glandular petals of Gillbeea F.Muell. (Endress and Matthews,
2006). We also added new characters. These include winged
rachis (absent/present), diffuse axial parenchyma in the wood
(absent/present), irregular discontinuous bands of axial par-
enchyma in the wood (absent/present), regular bands of axial
parenchyma in the wood (absent/present), number of parts
per perianth whorl, number of stamens, anther attachment,
number of carpels, texture of the ovary, type of stigma and
accrescent calyx. We circumscribed character states with the
aims of limiting polymorphic terminals and identifying clear
discontinuities in interspecific variation. We coded the char-
acter states using descriptions and illustrations available in the
literature and with herbarium specimens at the L. H. Bailey
Hortorium Herbarium (BH), Cornell University, Ithaca, NY,
USA (Supplementary Data Table S1). Missing data associated
with the fossil taxa are unknown because the flowers have not
yet been matched to co-occurring fossilized leaves, wood or
fruits. All characters are treated as unordered. The final dataset
comprises 41 taxa and 58 morphological characters. The char-
acter descriptions and morphological matrix are available
online at the Morphobank website (www.morphobank.com;
project P2600, matrix 26123).

Search strategy: parsimony analysis

We concatenated the molecular and morphological matrices
using the ‘new matrix merge’ function in Winclada v. 1.99
spawned through ASADO version 1.99 (Nixon, 2008). The re-
sulting matrix includes 41 taxa and 4810 total characters. Of
these, 340 characters are parsimony-informative. We omitted
all non-informative characters to optimize calculation of branch
support values. To minimize a priori assumptions about char-
acter evolution and character importance, all characters were
equally weighted and unpolarized. We conducted a tree search
using NONA version 2.0 (Goloboff, 1999) spawned through
ASADO version 1.99 (Nixon, 2008) using the following
parameters: ‘hold 1000; mult*100; hold/100’, using the uncon-
strained ‘mult*max*’ search strategy. Bootstrap support values
and jackknife values for branches were estimated by employing

1000 replicates, ten search pseudoreplicates and ten starting
trees per pseudoreplicate. We then mapped the support values
onto those branches also present in the strict consensus of the
the most parsimonious trees.

RESULTS

Systematics

Order. Oxalidales Heintze.

Family. Cunoniaceae R.Br.

Genus. Cunoniantha Jud & Gandolfo gen. nov.

Type species. Cunoniantha bicarpellata Jud & Gandolfo sp.
nov. (Figs 3 and 4A, B).

Generic diagnosis. Flowers pedicellate, perfect, hypogynous,
actinomorphic, with two perianth whorls of five organs; sepals
ovate, inserted at the margin of the floral disc; petals obovate,
entire, and equal to or greater than the length of the sepals; an-
droecium of five stamens in one cycle, alternipetalous, anthers
dorsifixed, without a connective extension, thecae with longitu-
dinal dehiscence, pollen tricolpate, prolate and reticulate; gy-
noecium superior, bicarpellate, syncarpous with two free styles;
stigmas non-capitate, ovary pubescent.

Specific diagnosis. As for the genus Cunoniantha.

Etymology. The name Cunoniantha refers to the morphology
of the flowers typical of the syncarpous Cunoniaceae, and the
epithet refers to the bicarpellate gynoecium.

Holotype. 35MPEF-Pb 8523a, b.

Repository. Museo Paleontolégico Egidio Feruglio Paleobotany
Collection (MPEF-Pb), Trelew, Chubut, Argentina.

Type locality. Palacio de Los Loros-2 (PL-2), Chubut,
Argentina.

Stratigraphic position and age. Lower Salamanca Formation;
Palaeocene, early Danian (Clyde et al., 2014; Comer et al.,
2015).

Description. The flowers are perfect, actinomorphic, and borne
on a pedicel ~5.8 mm long (5.0-7.9 mm) (Fig. 3). Most flowers
were recovered isolated, but one is attached to an axis with
sub-opposite lateral scars (Fig. 3C) indicating that the flowers
were borne on an inflorescence. Inflorescence type is variable
in Cunoniaceae, but this fragment is more consistent with a
thyrsoid or cymiform inflorescence structure than a capitate,
racemose or paniculiform structure. The perianth is composed
of calyx and corolla, each with five parts and whorled phyl-
lotaxis. The sepals are free and ovate, their bases are broadly
attached at the rim of the floral cup and their apices are acute
and straight. Sepals are 4.5 mm long by 2.0 mm wide (n = 9)
(Fig. 3A). The petals are alternisepalous, narrow, 0.8—1.5 mm
wide and 3.4-3.8 mm long, slightly obovate, and entire with a
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FiG. 3. Longitudinal views of 35TCunoniantha bicarpellata Jud & Gandolfo gen. et sp. nov.35T specimens from PL-2 locality, Salamanca Formation. (A)

Flower with pedicel, remains of petals (black arrowhead), filaments (white arrow), and a superior syncarpous ovary with two diverging styles (white arrowheads).

MPEF-Pb 8523a. (B) Flower showing five anthers (arrows). MPEF-Pb 8545. (C) Flower attached to a partial possible thyrsoid/cymiform inflorescence. Note the

abscission zone where the terminal flower is attached (at arrow) and the scars where other flowers or bracts were attached (at arrowheads). MPEF-Pb 8533. (D)

Flower showing the pedicel, calyx (black arrows), petals (black arrowheads), filaments (white arrow) and a superior ovary. MPEF-Pb 8530b. (E) Counterpart of

(D) showing pedicel, calyx (black arrow), petals (black arrowheads), filaments (white arrow) and a superior ovary with two parallel styles (white arrowhead).
MPEEF-Pb 8530a. (F) Close-up of (E) showing the pubescent ovary (black arrow). Scale bars: A—E = 3.0 mm; F = 1.0 mm.

single midvein (Fig. 3D, E). Individual specimens have up to
five stamens preserved (Fig. 3B); the stamen filaments taper
from the base towards the anther and are 2.8-3.9 mm long
(Fig. 3B); the anthers are dorsifixed, introrse, and versatile with
longitudinal dehiscence along a ventral slit, ~1.1 mm long by
0.9 mm wide (n = 5) (Figs 3A and 4A). They contain prolate,
tricolpate pollen grains (18 pm x 12 pm; n = 3) with a reticulate
tectum (Fig. 4A, B). The gynoecium is superior, bicarpellate,
and syncarpous with two free diverging styles (Fig. 3A, B). The
ovary is pubescent (Fig. 3F), 2.4 mm long by 1.7 mm wide
(n="17). The styles are ~2.1 mm long (n = 5) and have indistinct
stigmas (Fig. 3A, B, D). At the base of the gynoecium in many
specimens there are abundant coalified remains, suggestive of
an annular or segmented floral disc (Fig. 3A, B, D). Floral for-
mula: *Ca’ Co® A5 G®.

Material examined. MPEF-Pb 8522, 8523, 8527, 8529, 8530,
8533, 8534, 8536, 8540, 8541, 8542, 8545, 9731, 9732, 9733.

Phylogenetic analyses

Parsimony analysis yielded 92 equally short trees of 748
steps (Fig. 5). The consistency index is 0.56 and the retention

index is 0.69. In all trees, Cunoniantha is nested in the ‘core
Cunoniaceae’ clade of Bradford and Barnes (2001), but out-
side the tribes. Lacinipetalum is sister to extant members of
Schizomerieae in all trees. Bootstrap support values are gen-
erally low around the position of the fossil species, but this is
typical when including taxa with a high proportion of missing
data (Fig. 5).

DISCUSSION

The position of Cunoniantha

Character states that support the placement of Cunoniantha
within Cunoniaceae include a pentamerous, actinomorphic
perianth with free sepals and petals, dorsifixed versatile an-
thers with longitudinal dehiscence, reticulate tricolpate pollen
<20 um long in maximum diameter (e.g. Fig. 4C-E), and a su-
perior syncarpous bicarpellate gynoecium with two free styles
and non-capitate stigmas (Bradford et al., 2004). Cunoniaceae
are morphologically diverse; identification of morphological
synapomorphies that apply to flowers across the entire family
is challenging. Nonetheless, the combination of character states
preserved in Cunoniantha falls within the range of variation for
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FIG. 4. Anther of 35T Cunoniantha bicarpellata Jud & Gandolfo, gen et sp. nov. 35Tand scanning electron microscope micrographs of fossil and pollen of modern

Cunoniaceae. (A) Close-up of an anther showing the longitudinal dehiscence slits and the absence of a connective extension. MPEF-Pb 8541a. (B) Two pollen

grains 35Twith finely reticulate tectum35T (at arrows) preserved within the anthers of 35T Cunoniantha bicarpellata. MPEF-Pb 35T97335T. (C) Prolate, tricolpate

pollen grain Weinmannia glabra L.f. Note the perforate tectum. BH 000 054 033. (D) Prolate, tricolpate pollen grain Weinmannia glabra. Note the finely reticu-

late tectum. BH 000 054 033. (E) Oblate, tricolpate pollen grains of Opocunonia nymanii Schultr. See the finely reticulate tectum. BH 000 046 024. Scale bars:
A =0.5mm, B =10 pm, C35T-E =5 pm.

Cunoniaceae. Similar flowers occur in Saxifragaceae (Hideux
and Ferguson, 1976; De Craene, 2010); however, Saxifragaceae
are characterized by some combination of clawed petals,
basifixed anthers and capitate stigmas (Soltis, 2007). These
features are not present in Cunoniantha. Saxifragaceae are also
less likely to be fossilized because they are herbaceous, and
they are relatively recent arrivals to Patagonia (Deng et al.,
2015). Matthews et al. (2001) found numerous similarities be-
tween Cunoniaceae and Anisophylleaceae, but flowers with
bicarpellate gynoecia are exceptional in Anisophylleaceae,
whereas this is the typical condition in most Cunoniaceae and
in Cunoniantha.

The combination of undissected petals, only five stamens
per flower, anthers without a thecal connective protuberance,
and a thyrsoid/cymiform inflorescence structure observed in
Cunoniantha does not match any extant genus. Nor does it
match any of the previously described fossil genera that have
been compared with Cunoniaceae (Matthews et al., 2001;
Schonenberger et al., 2001; Poinar et al., 2008; Chambers et al.,
2010; Poinar and Chambers, 2017, 2019; Jud et al., 2018a).
Nonetheless, the results of our phylogenetic analysis indicate
that Cunoniantha is nested within the syncarpous Cunoniaceae
(Supplementary Data Fig. S1) and among the predominantly
bicarpellate lineages (Supplementary Data Fig. S2). Bradford

and Barnes (2001) recognized a ‘core Cunoniaceae’ clade
that excludes Schizomerieae, Davidsonia and Bauera, but
includes Eucryphia and is united by a shared deletion in the
trnL—F spacer region (Fig. 1). More recent analyses also re-
solve this clade using maximum likelihood and Bayesian infer-
ence (Sweeney et al., 2004; Hopkins et al., 2013). Our analysis
places Cunoniantha among this ‘core Cunoniaceae’ clade
(Fig. 5).

The position of Lacinipetalum

Jud et al. (2018a) included the fossil Lacinipetalum
spectabilum in a phylogenetic analysis of Schizomerieae with
Davidsonia as the outgroup. In that analysis, Lacinipetalum
was recovered as sister to Schizomerieae. We included
Lacinipetalum in this broader analysis for three reasons.
First, we updated some of the characters in this new ana-
lysis based on available data from the literature and a broader
examination of morphological variation in the family (see
Materials and methods section). Second, the absence of
petals in Davidsonia means that it does not provide polariza-
tion for the characters related to the corolla that are preserved
in the Lacinipetalum (Supplementary Data Fig. S3). Third,
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FIG. 5. Strict consensus of 92 most parsimonious trees based on simultaneous analysis of rbcL, trnL—F, matK and trnH-psbA sequence data and morphology. Note
the positions of the fossil taxa within crown-group Cunoniaceae indicated by the daggers (). Numbers above the branches are bootstrap support values followed
by jackknife support values. Clades indicated by grey shading are tribes.

by using an ingroup consisting only of the fossil and extant
Schizomerieae, Jud et al. (2018a) evaluated the most par-
simonious position of Lacinipetalum within Schizomerieae,
not the hypothesis that Lacinipetalum is more closely related
to Schizomerieae than to other tribes. Indeed, this new ana-
lysis confirms a close relationship between Lacinipetalum
and Schizomerieae (Fig. 5).

Biogeography and diversification of Cunoniaceae

Several extant genera in Cunoniaceae likely had broader dis-
tributions during the Palaecogene when the climate was warmer
and wetter in Patagonia and when Australia was further south.
These include Ceratopetalum Sm. (Holmes and Holmes,
1992; Barnes and Hill, 1999a; Gandolfo and Hermsen, 2017),
Callicoma Andrews (Barnes and Hill, 1999b0), Codia J.R.Forst
& G.Forst (Barnes and Hill, 1999b), Eucryphia (Hill, 1991;
Barnes and Jordan, 2000), Spiraeanthemum (Carpenter and
Pole, 1995; Barnes et al., 2001) and Weinmannia (Carpenter

and Buchanan, 1993; Barnes et al., 2001). The presence of
Ceratopetalum, Eucryphia and Spiraeanthemum by the middle
Eocene implies either a Cretaceous origin of crown-group
Cunoniaceae or rapid diversification during the Palacogene.
Heibl and Renner (2012) presented the results of an analysis
calibrated with early Eocene Eucryphia fossils (Barnes and
Jordan, 2000) showing a late Eocene or younger divergence for
most of the tribes in Cunoniaceae (except Spiraeanthemieae);
however, given the Eocene—early Oligocene fossil occurrences
discussed above, their ages are likely underestimates.

With the exception of the early Eocene Ceratopetalum
(Gandolfo and Hermsen, 2017), most Upper Cretaceous and
Palaeogene fossils from Patagonia and Antarctica assigned to
Cunoniaceae are not included in any extant genus (Table 2).
Nonetheless, fossil pollen from Upper Cretaceous and early
Palaeogene sites across South America (Archangelsky, 1973;
Romero and Archangelsky, 1986; Troncoso, 1991; Baldoni
and Askin, 1993; Zamaloa, 2000; Barreda er al., 2020),
Antarctica (Cranwell, 1959; Cantrill and Poole, 2012) and
Australia (Kershaw and Sluiter, 1982; Hill and MacPhail,
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1983; Christophel et al., 1987; Sluiter, 1991; Macphail, 1997;
Alley, 1998; Barnes and Jordan, 2000) indicate that the family
was widespread when floristic interchange was still pos-
sible without invoking trans-oceanic long distance dispersal.
Similarly, fossil woods of Weinmannioxylon Petriella and
Eucryphioxylon Poole Mennega & Cantrill are widespread
in Upper Cretaceous and Palaeocene deposits in Patagonia
(Petriella, 1972; Terada et al., 2006; Raigemborn et al.,
2009) and Antarctica (Chapman and Smellie, 1992; Zhang
and Wang, 1994; Poole et al., 2000, 2001, 2003; Cantrill and
Poole, 2012; Pujana et al., 2018). However, these genera may
or may not belong to the crown group. They have suites of
plesiomorphic character states for the family including dif-
fuse porosity, scalariform perforation plates, vessel-ray par-
enchyma pits that are scalariform to opposite, and diffuse
axial parenchyma (Ingle and Dadswell, 1956; Dickison,
1980). Fossil leaves similar to Cunoniaceae have also been re-
ported from the Eocene Ligorio Marquez Formation in South
America, but these were not identified to genus (Carpenter
etal.,2018).

The discovery of Cunoniantha and Lacinipetalum from the
early Palaeocene of Argentine Patagonia provides strong evi-
dence that the diversification of crown-group Cunoniaceae was
under way by 64 Mya. Although both genera are extinct, our
phylogenetic analysis indicates that they belong to two dif-
ferent clades within the syncarpous Cunoniaceae. Together

with other occurrences of fossil wood, pollen and Eucryphia
leaves discussed above (Table 2), these fossils also indi-
cate that the family was widespread across Gondwana by the
Palaeocene, when warm climates permitted floristic exchange
between South America and Australia via Antarctica (Hallam,
1995; Sanmartin and Ronquist, 2004; Cantrill and Poole, 2012;
Wilf et al., 2013).

Evidence from fossil mammals suggests the land con-
nection between South America and Antarctica was severed
during the late Palaeocene or early Eocene (Reguero et al.,
2014). Climate deterioration associated with global cooling
and eventually deep-water currents through the Drake Passage
(Lawver and Gahagan, 2003; Livermore et al., 2007; Eagles
and Jokat, 2014) rendered the Antarctic peninsula inhospit-
able to Cunoniaceae by the mid-Eocene (Anderson et al.,
2011). It appears that Cunoniaceae grew on the Falkland
(Malvinas) Islands until at least the Miocene, but the age of
these fossils is poorly constrained (Poole and Cantrill, 2007).
During the late Palaeogene and Neogene, much of Patagonia
also became increasingly moisture-limited (Palazzesi et al.,
2014; Dunn et al., 2015). Suitable habitat for Cunoniaceae
in South America retreated northward with the montane for-
ests of the rising Andes. This dramatic reduction in avail-
able habitat area could explain the loss of some Cunoniaceae
from South America, whereas Lamanonia, Weinmannia,
Eucryphia and Caldcluvia survive.

TABLE 2. Macrofossils attributed to Cunoniaceae from Antarctica, South America (Australian record summarized by Barnes et al., 2001)

Taxon Organs  Age Locality Continent Reference Latitude Longitude

Eucryphiaceoxylon Wood Eocene King George Island (8) Antarctica Poole et al., 2001 -62.17 -59.07
eucryphioides

Eucryphiaceoxylon Wood Cretaceous- Seymour Island (7) Antarctica Poole et al., 2003 -64.2784 -56.7324
eucryphioides Eocene?

Eucryphiaceoxylon Wood Upper James Ross Island (14) Antarctica Pujana et al., 2018 —63.898 -57.948
eucryphioides Cretaceous

Weinmannioxylon Wood Palaeocene King George Island (5)  Antarctica Zhang and Wang, 1994 -62.33 -58.45
ackamoides

Weinmannioxylon Wood Upper Williams Point (1) Antarctica Poole et al., 2000 -62.475 -60.137
nordenskjoeldii Cretaceous

Weinmannioxylon Wood Upper James Ross Island (14)  Antarctica Pujana et al., 2018 —63.876 -57.906
trichospermoides Cretaceous

Weinmannioxylon sp. ‘Wood Neogene Falkland Island (13) South America  Poole and Cantrill, 2007  -51.35 —-60.66

cf. Weinmannioxylon Wood Middle Eocene Arroyo Cardenio South America  Terada et al., 2006 -46.763 =71.775

River (11)

Weinmannioxylon Wood Palaeocene Pefias Coloradas (3) South America  Raigemborn et al., 2009  —-46.82 -69
multiperforatum

Weinmannioxylon Wood Palaecogene Chubut (4) South America  Petriella, 1972 —43.65 -67.71
multiperforatum

Weinmannioxylon Wood Palaecogene Chubut (4) South America  Petriella, 1972 —43.65 -67.71
pluriradiatum

Ceratopetalum Fruit Eocene Laguna del Hunco (10) ~ South America  Gandolfo and Hermsen, = —42.461 —-70.037
edgaroromeroi 2017

undetermined Leaf Middle Eocene Rio Zeballos (12) South America  Carpenter et al., 2018 -46.834 -71.856
Cunoniaceae

Cunoniantha Flower Palaeocene PL-2, Chubut (2) South America  This study -45.912 -69.214
bicarpellata

Lacinipetalum Flower Palaeocene LE, Chubut (2) South America  Jud et al., 2018a -45.69 -68.611
spectabilum

Lacinipetalum Flower Palaeocene PL-2, Chubut (2) South America  Jud et al., 2018a -45912 -69.214
spectabilum

Lacinipetalum Flower Palaeocene PL-5, Chubut (2) South America  Jud et al., 2018a -45.909 -69.226

spectabilum

Numbers following each locality correspond to points on the map in Fig. 2.
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Conclusions

Cunoniantha bicarpellata exhibits a mosaic of features con-
sistent with Cunoniaceae. Phylogenetic analysis of morphological
and molecular characters supports its position within crown-group
Cunoniaceae among the syncarpous lineages. This is the second
genus of Cunoniaceae from the Salamanca Formation described
from fossilized flowers. Based on our phylogenetic analysis,
Cunoniantha and Lacinipetalum together provide the oldest evi-
dence of crown-group Cunoniaceae worldwide and show that the
diversification was under way by 64 Mya.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
oup.com/aob and consist of the following. Table S1: herb-
arium specimens at the L. H. Bailey Hortorium Herbarium,
Cornell University, Ithaca, NY, USA, examined for this study.
NEXUS file: character matrix (frnL intron, trnl—F intergenic
spacer, rbcL, matK, trnH-psbA). Figure S1: one of the most
parsimonious trees showing the distribution of carpel number
in Cunoniaceae. Figure S2: one of the most parsimonious
trees showing the distribution of apocarpy and syncarpy in
Cunoniaceae. Figure S3: one of the most parsimonious trees
showing the distribution of petal type in Cunoniaceae.
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