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Quickest Change Detection of Time Inconsistent
Anticipatory Agents. Human-Sensor and

Cyber-Physical Systems
Vikram Krishnamurthy , Fellow, IEEE

Abstract—In behavioral economics, human decision makers are
modeled as anticipatory agents that make decisions by taking into
account the probability of future decisions (plans). We consider
cyber-physical systems involving the interaction between antici-
patory agents and statistical detection. A sensing device records
the decisions of an anticipatory agent. Given these decisions, how
can the sensing device achieve quickest detection of a change in
the anticipatory system? From a decision theoretic point of view,
anticipatory models are time inconsistent meaning that Bellman’s
principle of optimality does not hold. The appropriate formalism
is the subgame Nash equilibrium. We show that the interaction be-
tween anticipatory agents and sequential quickest detection results
in unusual (nonconvex) structure of the quickest change detection
policy. Our methodology yields a useful framework for situation
awareness systems and anticipatory human decision makers inter-
acting with sequential detectors.

Index Terms—Time inconsistency, anticipatory decision making,
subgame Nash equilibrium, quickest change detection, change
blindness, Blackwell dominance, multi-threshold policy.

NOMENCLATURE

GLOSSARY OF SYMBOLS

Anticipatory agent. Sec. II-B and III

s1, s2 physical state
z1, z2 psychological state (5), (11)
a1, a2 actions (4)
μ∗
1, μ

∗
2 Nash equilibrium policy (9), (8)

V1(·), V2(·) value function

Quickest detection. Sec. IV

n discrete time n (also agent n)
xn jump state (for quickest detection)
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P transition matrix of {xn, n ≥ 0} (22)
f, d false alarm and delay penalty parameters

Anticipatory agents acting sequentially. Sec. IV

sn physical state
zn psychological state
an1

, an2
local decision maker’s actions

ηn private belief of local decision maker n (23)
μ∗
n,1, μ

∗
n,2 Nash equilibrium policy (9), (8)

yn private observation of xn at time n
Bxn,yn

observation likelihood p(yn|xn) (24)
T (π, y) private belief update (25)
σ(π, y) normalization measure for private belief

Global Decision maker. Sec. IV and Sec. V

un action at time n ∈ {1(stop), 2(cont)}
φ∗(π, s) optimal policy for quickest detection
πn public belief at n (23)
Rπ

x,a(s) action likelihood p(a|x, π, s) (27), (28)
T̄ (π, a, s) public belief update (26)
σ̄(π, a, s) normalization measure for public belief
V(π, s) value function
C(π, u) costs incurred in quickest detection

I. INTRODUCTION

‘COGNITIVE SENSING’ is widely used in signal pro-
cessing, but lacks the important property of anticipatory

decision making. An anticipatory agent makes decisions by
taking to account the probability of future decisions. This crucial
property is studied in behavioral economics involving human
decision makers and yields remarkable behavior such as time
inconsistency as discussed below.

This paper is an early step in understanding the interaction
between statistical detection and behavioral economics models.
Signal processing and behavioral economics are mature areas;
yet their intersection, namely cyber-physical systems involving
interaction of human decision makers with sensing based detec-
tion is relatively unexplored. The main question we address is: If
multiple anticipatory decision makers interact sequentially (or
a single anticipatory agent acts repeatedly), how can a global
decision maker use these anticipatory decisions to achieve opti-
mal sequential change detection? Fig. 1 shows our schematic
setup. Anticipatory agents can mimic either strategic human
decision makers [1] or an automated command-control decision
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Fig. 1. Quickest Change Detection Problem involving a single anticipatory
agent acting repeatedly (or multiple anticipatory agents acting sequentially) and
a global decision maker. The anticipatory model for individual decision makers
is discussed in Sec. II-B and Sec. III and results in time inconsistent decision
making. The interaction of the agents with a global decision maker to achieve
quickest detection is detailed in Sec. IV.

system [2]. The anticipatory agents act sequentially and are
affected by the decisions of previous agents. A global decision
maker monitors the decisions of these anticipatory agents. How
can the global decision maker use the local decisions from these
anticipatory agents to perform quickest change detection?

A. Anticipatory Decision Making

Anticipatory decision making has applications in cyber-
physical systems such as human-sensor, human-robot and
command-control systems [2]. Here are two applications.

1) Human decision makers: In behavioral economics, Caplin
& Leahy [1] propose a remarkable model for anticipatory human
decision making via a horizon-2 decision process: the first
stage involves choosing an action to minimize an anticipatory
psychological reward (involving the probabilities of choosing
actions at stage 2), while at the second stage the agent realizes
its actual reward. Such anticipatory models mimic important
features of human decision making:

i) Extensive studies in psychology, neuroscience [4], [5] show
that humans are anticipation-driven, and even simple decisions
involve sophisticated multi-stage planning.

ii) Anticipatory agents act to reduce anxiety. [6] presented
experimental results where people chose a larger electric shock
than waiting anxiously for a smaller shock.

iii) Anticipative agents often deliberately avoid informa-
tion. [7] reports that giving patients more information before
a stressful medical procedure raised their anxiety.

2) Level 3 Situation Awareness: In defense command-control
systems, Level 3 Situation Awareness (SA) [8] involves the
ability to project implications of future actions (plans). Level 3
SA [9] is achieved through knowledge of Levels 1 and 2 SA,
and then extrapolating this information forward in time (as an
anticipatory reward involving probabilities of future actions) to
determine how it will affect future decisions/plans [8]. Predic-
tion is concerned with guessing future states based on extensive
training; in contrast, anticipatory decision making [10] involves
preparing to respond to previously unseen scenarios. [11] shows
that many command and control systems overestimate their
ability to react.

B. Anticipatory Decision Making Yields Time Inconsistency

An important aspect of anticipatory decision making is time
inconsistency. The dependence of the current reward on future
plans results in a deviation between planning and execution. This

phenomenon is called time-inconsistency1 [12] and Bellman’s
principle of optimality no longer holds. Time inconsistency
results in the planning fallacy of Kahneman & Tversky [13]:
people tend to underestimate the time required to complete
a future task. Compared to rational agents, optimistic agents
take higher risk of making the wrong decision but have higher
anticipatory reward. [14] show that it is optimal for agents
with anticipatory reward to take irrational beliefs (referred to
as subjective beliefs) deliberately. This explains the optimistic
planning fallacy, in which people tend to overestimate future
rewards. As will be discussed below, the appropriate concept of
optimality for time-inconsistent problems is the subgame Nash
equilibrium.

C. Quickest Detection With Anticipatory Agents

Having motivated anticipatory decision making, we turn to the
second main idea of the paper, namely, Bayesian quickest change
detection by a global decision maker which uses the decisions
of anticipatory agents (local decision makers); see Fig. 1. In
Bayesian quickest detection, the change time is specified by a
prior [15], [16]. Classical quickest detection deals with detecting
a change in an underlying state given noisy observations. This
paper considers a substantial generalization: How to detect a
change in the strategy of anticipatory agents when they interact
sequentially? Unlike classical quickest detection, we only have
access to the actions of the agents from their sub-game Nash
equilibrium. As a result, the Bayesian belief (posterior) update
structure is much more complex than classical quickest detec-
tion. This causes remarkably counter-intuitive behavior as we
will investigate below.

We start by outlining important applications that motivate the
quickest detection problem with anticipatory agents.

The first class of examples involve social media based accom-
modation systems such as Airbnb. Individuals with anticipatory
feelings make decisions whether to rent a property; these deci-
sions are affected by the reviews (decisions) of previous agents.
A global decision maker (e.g. Airbnb) monitors these local
decisions. How can the global decision maker detect if there
is a sudden change in the demand for a specific accommodation
due to the presence of a new competitor? The supplementary
document discusses this example in detail.

A related example arises in the measurement of the adoption
of a new product using a micro-blogging platform like Twitter.
The adoption of the technology diffuses through the market but
its effects can only be observed through the tweets of select
individuals of the population. These selected individuals interact
and learn from the decisions (tweeted sentiments) of other
members. Suppose the state of nature suddenly changes due
to a sudden market shock or presence of a new competitor. The
goal for a market analyst is to detect this change.

The second class of examples involves anticipatory situation
awareness (SA) in a team setting [17]. For example, [18] intro-
duced a situational adapting system to assess team SA for fighter
pilots based on information fusion. Suppose individual SA sys-
tems monitor an enemy target or enemy radar (state). Given
noisy measurements of the state, each SA system (equipped with

1In game-theoretic terms, time-inconsistency arises when the optimal policy
to the current multi-stage decision problem is sub-game imperfect.
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a Bayesian tracker) makes decisions about the threat and relays
these decisions to subsequent SA systems in the team. A global
decision maker (supervisory system) monitors these decisions
to assess overall threat level. How can the global decision maker
detect a sudden change in the threat? Such a change is reflective
of the enemy target making purposeful maneuvers; or the enemy
radar switching modes between search, acquisition or track.

The third example involves human-sensor interface systems,
where anticipatory human decision makers are equipped with
sensing/computing devices. The sensing device observes the
state in noise. The computing device evaluates the posterior
distribution and provides the agent with these probabilities. The
agent (human) then makes anticipatory decisions. The aim is to
devise a change detection algorithm that compensates for the
anticipatory human decision maker. Such schemes are studied
extensively in situation assessment of pilots [19] and validated
based on simulations involving pilots performing a landing ap-
proach into an airport. Other examples include assistive care for
the dementia [20] where a machine monitors human decisions
(activities) for changes in routine behavior indicating sudden
onset of memory impairment.

D. Main Results

Sec. II reviews time inconsistent sequential decision problems
and the framework for anticipatory decision making as a 2-stage
stochastic optimization problem. Due to the time inconsistency
of the decision problem, the appropriate notion of optimality is
the subgame Nash equilibrium policy. In Sec. III, our main con-
tribution is to introduce sufficient conditions on the anticipatory
model so that the Nash equilibrium has a useful structure; see
Theorem 1. This structure reveals several interesting features
about anticipatory decision making. Sec. IV formulates the
quickest change detection protocol involving multiple anticipa-
tory agents where a global decision maker uses the decisions of
the anticipatory decision makers to decide if a state has changed.
The optimal policy that minimizes the Kolmogorov-Shiryaev
criterion is formulated as the solution of a stochastic dynamic
programming problem. Then Sec. V characterizes the structure
of the Bayesian belief updates and achievable cost of the quickest
detector without brute force computations. It derives important
structural properties of the Bayesian updates of the local and
global decision makers (Theorem 2 and Theorem 3), constructs
a lower bound for the optimal cost incurred using Blackwell
dominance (Theorem 4), and presents numerical examples of
the unusual structure of the optimal quickest change policy
(non-convex stopping region) and non-concave value function.

In classical quickest detection [3], [15], the optimal policy has
a threshold structure: when the posterior probability of change
exceeds a threshold, it is optimal to declare a change; see Fig. 2.
The stopping set (set of posteriors probabilities where it is
optimal to declare “change”) is convex. In quickest detection
involving a global decision maker interacting with anticipatory
agents (this paper), the remarkable feature is that the stopping
set is disconnected, see Fig. 2. One sees the counter-intuitive
property: the optimal detection policy switches from announce
“change” to announce “no change” as the posterior probability of
a change increases! Thus making a global decision as to whether

Fig. 2. Optimal Quickest Change Detection Policy φ∗ as a function of
Bayesian belief π. In classical quickest detection, the stopping set is convex
(connected). In comparison, for quickest detection with anticipatory agents (this
paper), the stopping set is nonconvex (disconnected) as indicated in red.

a change has occurred based on local decisions of interacting
agents is non-trivial.

E. Perspective on Main Results

1) Social Learning. The anticipatory model used in this paper
is from [1]; see also [14], [21]. This generalizes classical social
learning models that have been studied extensively in sociology,
economics and signal processing [22]–[25]. Classical social
learning assumes that agents make one-shot (myopic) decisions
to maximize their expected utility. The behavioral economics
models considered here are useful generalizations of social
learning since they involve multi-stage planning; as mentioned
earlier, even simple human decisions involve multi-stage plan-
ning with time-inconsistency.

Our sequential framework of multiple decision makers is
similar to team decision theory [26], [27]; the key difference
being time inconsistency.

This paper differs from [23] where quickest detection was
considered with myopic social learning based local decisions.
Motivated by behavioral economics [1], we consider a 2-stage
decision framework for each local decision maker that is more
general than myopic social learning. This 2-stage framework
captures several salient features of human decision-making in-
cluding anticipation, time inconsistency and deliberate avoid-
ance of information. Also, in our quickest detection formulation,
the jump change affects both the rewards of the agents and the
transition kernel of the physical state (in the myopic case [23],
there is no transition mechanism).

2) How un-informed local decision makers affect global de-
cision making? In order to optimize its change detection policy,
the global decision maker must interpret decisions of the local
decision makers, knowing that the local decision makers are
anticipatory and that they use decisions from previous agents. A
well known characteristic of this sequential multi-agent frame-
work is that agents herd [22] - they ignore their own observations
and parrot decisions of previous agents. The multi-threshold
structure of the global decision maker’s optimal policy (Fig. 2)
can be interpreted as saying that the global decision maker acts in
a non-trivial manner to compensate for the poorly informed local
decision makers. In comparison, the classical threshold policy
(Fig. 2) results when the local decision makers are well informed
(exchange their posterior distributions rather than anticipatory
actions); see [23] for discussion in terms of Bayesian social
learning.

3) Change Blindness. The multi-threshold change detection
policy in Fig. 2 can be interpreted as a form of change blind-
ness, namely, people fail to detect surprisingly large changes to
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scenes [28]. Even though the posterior probability of a change is
higher than a change threshold, the optimal behavior indicated
is to detect no change.

4) Deliberate Avoidance of Information. Theorem 1 in Sec.
III shows that the subgame Nash equilibrium at time 1 has a
bang-bang structure. It justifies the observation [1] that agents
with anticipatory emotions may choose to deliberately avoid
information. As mentioned earlier, [7] reports that giving some
patients more information before a stressful medical procedure
raised their anxiety. [5] shows that humans selectively treat the
opportunity to gain knowledge about future favorable outcomes,
but not unfavorable outcomes.

Finally, we emphasize that humans likely do not solve time
inconsistent problems to make decisions. The time inconsistent
behavioral economics models in [1], [14], [21] are widely used
because they provide generative models for the peculiarities of
anticipatory human decision making.

F. Organization

The paper is organized into three inter-related parts:
1) Part 1 deals with anticipatory models for a single decision

maker and characterizes the Nash equilibrium.
2) Part 2 of the paper deals with quickest change detection

with a team of anticipatory decision makers.
3) Supplementary Material contains proofs of theorems

and a detailed tutorial example of anticipatory decision
making in social media.

Part 1. Anticipatory Models, Nash Equilibrium
Sec. II formulates anticipatory decision making. Sec. III char-

acterizes the structure of the Nash equilibrium with examples.

II. ANTICIPATORY DECISION MAKING

This section defines time inconsistent decision problems and
reviews the influential behavioral economics model [1] for hu-
man decision making with anticipatory feelings. This model will
be used in Sec. IV to formulate our human sensor interactive
quickest change detection problem.

A. Time Inconsistent Sequential Decision Problems

We start with a brief discussion of time inconsistent decision
problems; see [12] for an exposition. Let {sk, k = 1, . . . , N}
denote a controlled Markov chain evolving on a finite time
horizon size N . The initial distribution for s1 is denoted as π1.
Letμk denote a (possibly randomized) decision policy that maps
the state sk to an action ak at time k. Forn = 1, 2, . . . , N , define
the expected utility-to-go

Jn(sn,µn:N ) = Eµn:N

{
N∑

k=n

rn,k (sn, sk, μk(sk))

}
(1)

The aim is to compute the policy sequence
argmaxµJn(sn,µn:N ). As the reward rn,k depends on n
and k, and also sn, sk, this optimization problem is time
inconsistent since the principle of optimality (Bellman’s
dynamic programming equation) does not hold; see [12].

1) Subgame Perfect Nash Equilibria: As discussed in [12],
an appropriate method of “solving” a time inconsistent problem
is in game-theoretic terms.2

1) Given state sN = s, player N chooses policy

μ∗
N (s) = argmax

aN

JN (s, aN ) (2)

This yields the value function VN = JN (s, μ∗
N ).

2) Given sN−1 = s, and that player N is using policy μ∗
N ,

player N − 1 chooses policy

μ∗
N−1(s) = argmax

aN−1

JN−1(s, aN−1, μ
∗
N )

VN−1(s) = JN−1(s, μ
∗
N−1, μ

∗
N ) (3)

3) Proceed by backward induction to compute policies
μ∗
N−2, . . . , μ

∗
1.

The above procedure is called the extended Bellman equation
in [12]. The sequence of policies µ∗ = (μ∗

1, . . . , μ
∗
N ), consti-

tutes a subgame perfect Nash equilibrium; see [12] for details.
2) Remarks:
i) As might be expected, for the time consistent case where

rn,k(sn, sk, ak) = rk(sk, ak) in (1), the extended Bellman’s
equation becomes the standard Bellman’s dynamic program-
ming equation.

ii) For the time inconsistent case, neither the Nash equilibrium
µ∗ nor its value Jn(µ

∗) are unique. This is in contrast to time
consistent dynamic programming where the optimal policy may
not be unique but the optimal value is always unique.

B. Anticipatory Model of Caplin & Leahy [1]

We now review the time inconsistent model for anticipatory
human decision making in Caplin & Leahy’s paper [1]. Their
model uses the terminology of temporal lotteries in dynamic
choice theory [29]. We translate their model to a more familiar
Markov decision process framework. While the messy notation
below is unavoidable, the reader should keep in mind that the
final outcome is a time inconsistent problem of the form (1)
with horizon N = 2. A key step in the formulation below is the
anticipatory state (5) at time 1 which depends on the probability
of future actions (at time 2); this gives the model its anticipatory
property.

1) Anticipatory Model and Time Inconsistency: The antici-
patory decision model in [1] comprises two time steps indexed by
k = 1, 2. The physical state sk ∈ S , k = 1, 2, where S denotes
the state space, evolves with Markov transition kernel p(s2|s1).
Let a1 ∈ A1 and a2 ∈ A2 denote the actions taken by the agent
(human) at time 1 and 2. These actions are determined by the
non-randomized policies μ1 and μ2 where

a1 = μ1(s1), a2 = μ2(s2, a1). (4)

The first key idea in Caplin & Leahy [1] is to define the
anticipatory (psychological) state zk, k = 1, 2:

z1 = φ (s1, a1, {p(a2 = a|s1, a1, μ2), a ∈ A2}) ,
z2 = (s2, a2, a1), (5)

2The following intuitive argument from [12] is helpful: Looking to maximize
Jn(s,µn:N ) over the class of policies restricted to [n : N ], a player at time n
would like in principle to maximize Jn(s,µn:N ) over μn, . . . , μN . But the
player at time n can only choose the policy μn - so the maximization is not
possible. Instead of looking for optimal feedback laws, in a time inconsistent
problem one considers the subgame perfect Nash equilibrium.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 10,2021 at 13:24:02 UTC from IEEE Xplore.  Restrictions apply. 



1058 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

for some pre-defined function φ. Note μ2 is a deterministic
function that parametrizes p(a2 = a|s1, a1, μ2). In [1], zk mod-
els the human decision maker’s state of mind (anxiety). More
generally, zk can model any anticipatory plan, such as for
example in situation awareness systems. Note that the antici-
patory state z1 depends on the set of conditional probabilities
{p(a2 = a|s1, a1, μ2), a ∈ A2}. These conditional probabili-
ties model anticipation (anxiety)3 of the decision maker at time 1
about possible actions it can make at time 2. The anticipation
is resolved at time 2 when physical state s2 is observed and
all uncertainty is resolved; hence the anticipatory state z2 only
contains physical state s2 and realized action a2.

The next key idea in [1] is that the anticipatory agent makes
decisions by maximizing the 2-stage anticipatory utility

sup
μ1,μ2

J(μ1, μ2) = Eμ1,μ2
{r1(z1) + r2(z2)} (6)

Here rk(zk) ∈ IR denote the reward functions. The 2-stage
anticipatory utility, called psychological utility in [1]. (6) looks
just like a standard time separable utility except for the presence
of the anxiety term {p(a2 = a|s1, a1, μ2), a ∈ A2} in r1(z1).
This μ2 dependency gives rise to time inconsistency in deci-
sion making. Indeed (6) is a special case of the general time
inconsistent formulation (1) with

r2,2 = r2(s2, a2, a1), r1,1 = 0,

r1,2 = r1 (φ(s1, a1, {p(a2 = a|s1, a1, μ2), a ∈ A2})) + r2,2
(7)

As in [1], we assume the agent knows all the parameters in the
above anticipatory model. The key point is that the reward at
time 1 depends on the psychological (anticipatory) state which
in turn depends on the probability of future actions and states.

2) Subgame Perfect Nash Equilibrium: Caplin & Leahy [1]
‘solve’ the time inconsistent decision problem (6) using the
extended Bellman equation described in Sec. II-A. Indeed, the
optimal policy at time 2 simply follows from (2) with N = 2:

μ∗
2(s2, a1) = argmax

a2

r2(s2, a2, a1) (8)

Note that by definition (4), μ∗
2 depends on a1 and s2.

At time 1, due to time inconsistency, the agent chooses time
consistent policy μ∗

1 based on extended Bellman equation (3):

μ∗
1(s1) = argmax

a1

J1(s1, a1, μ
∗
2),

V1(s1) = max
a1

J1(s1, a1, μ
∗
2),

J1(s1, a1, μ
∗
2)=r1 (φ(s1, a1, {p(a2=a|s1, a1, μ∗

2), a ∈ A2}))
+ E{r2(s2, a2, a1)|s1, a1, μ∗

2} (9)

Note that the second term E{r2(s2, a2, a1)|s1, a1, μ∗
2} is∫

S
r2 (s2, μ

∗
2(s2, a1), a1) p(s2|s1) ds2

=

∫
A2

∫
S
r2 (s2, a, a1) I ((a = μ∗

2(s2, a1)) p(s2|s1)ds2da
(10)

3As discussed in [1] introducing anticipatory emotions explains why changing
an outcome from zero to a small positive number can have a large effect on
anticipation. Human decision makers are sensitive to the possibility rather than
probability of negative outcomes [30]. A terrorist attack (unlikely event) worries
people a lot more than a car crash (high probability event).

Recall p(s2|s1) is the transition kernel of the physical state.
Remarks:
1) Eqs.(9), (10) are identical to the master equation [1, Eq.2].
2) The anticipatory (psychological) state z1 in (5) consisted

of the set of conditional probabilities {p(a2 = a|s1, a1, μ2), a ∈
A2}. More generally, one can formulate the anticipatory state
with these conditional probabilities replaced by

{E{Ψ(a2 = a, s2)|s1, a1, μ2}, a ∈ A2} (11)

for some pre-defined function Ψ. As an example (which is
elaborated on in the supplementary material)

z1 = max{p(a2 = 1|s1, a1, μ2),E{s2I(a2 = 2)|s1, a1, μ2)}
3) We mentioned previously that the subgame Nash equilib-

rium approach to time inconsistency disregards the fact thatμ∗
2 is

no longer optimal at time 1. Another insightful way of viewing
this is that the estimated anticipatory reward r1(φ(s1, a1, λ))
requires the agent to extrapolate what might happen at the second
stage, plans are not optimal once an action is taken. As an
example, people tend to assign higher future workload than what
they will actually take on.

Summary. The key point in anticipatory decision making is
the presence of probabilities of choosing future actions in the
current reward, as depicted in the anticipatory state (5). As a
result, maximizing the 2-stage anticipatory utility (6) is a time
inconsistent problem. The anticipatory decision maker chooses
actions a1, a2 according to policies μ∗

1 in (9) and μ∗
2 in (8); these

policies constitute a subgame perfect Nash equilibrium. Indeed
(9), (10) corresponds to the key equation (2) in [1]. The paper [1]
has received significant attention in behavioral economics [4],
neuroscience and psychology [5].

C. Example 1. Financial Investment and Anticipatory Betting

The following example (based on [1]) presents anticipatory
decision making in a simplified setting to illustrate rapidly the
key ideas. The problem is time inconsistent since the utility at
time 1 depends on the expected physical state at time 2.

There are two periods. An investor makes two decisions
denoted a and ā in period 1 (this simplifies the problem).

1) The decision a ∈ {stock, bond} is whether to invest in
short term stock or long term bonds. If a = stock, then
the agent chooses ā ∈ [0,W0], namely how many units to
invest in stock, where W0 denotes the initial wealth.

2) The physical state s1 denotes the probability that stock
yields a return good. For simplicity, assume s1 = 1/2.

3) At time 2, the physical state s2 ∈ {good, bad} denotes
whether the return on stock is satisfactory or not.

4) If the investor choosesa = stock, invests ā, and the return
s2 is good, then it earns 2ā; so its wealth at the end of
period 2 is w = W0 + ā. If the return is bad, the investor
loses ā and its wealth at the end of period 2 isw = W0 − ā.

5) If the investor chooses a = bond, then it invests the entire
W0 and obtains a return of W0 + ι, where ι denotes the
interest payment.

Given final wealth w, assume the agent’s utility at time 2 is

r2(s2, ā, a) = w − β w2 (12)

This utility models a risk averse agent with quadratic penalty
loss (which is used widely in behavioral economics).
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We assume that the agent’s anticipatory utility at time 1 is

J1(s1, a = stock, ā) = α(uA + ā− βā2)+E{r2(s2, ā, a)|s1}
J1(s1, a = bond, ā) = g + E{r2(s2, ā, a)|s1} (13)

where uA, α, g, β are positive constants. This decision problem
is time inconsistent since the utility at time 1 depends on the
expected physical state s2. Recall that decisions a, ā are made
at time 1 only (so there is no μ∗

2 in (9)). The term α(uA + ā−
βā2) is the excitement (suspense) of investing ā; the term −βā2

models the risk averseness of the agent.
Let us work out J1 in (13) explicitly. Since the probability of

stock returning good is 1/2, clearly

E{r2(s2, ā, a = stock)|s1} = W0 − β(W 2
0 + ā2)

E{r2(s2, ā, a = bond)|s1} = W0 + ι− β (W0 + ι)2 (14)

Therefore the optimal investment ā is zero if only the second
period expected utility is considered. The utility J1 in (13) cap-
tures the tradeoff between the excitement and future anticipatory
gain/loss, leading to a time inconsistent problem.

The time consistent optimal policy at time 1 using (9) is:

μ∗
1(s1) = (a∗, ā∗)

ā∗ = argmax
ā≥0

αuA + αā− (1 + α)βā2 =
α

2(1 + α)β

a∗ =

{
stock if ι(1− 2βW0)−βι2 + g<α(uA + α

4(1+α)β )

bond otherwise
(15)

Anticipatory Betting/Gambling [1]

We now describe an example involving anticipatory bet-
ting/gambling [1]. The setup is a special case of above. An agent
chooses action a ∈ {bet, bet}. ā ∈ [0,W0] denotes how much
money is bet. The physical state s1 = P (win) = 1/2, namely,
anticipated probability of win at stage 1, and s2 ∈ {win, lose}
denotes the actual outcome at stage 2.

1) If the agent chooses a = bet then the final wealth isW0 +
ā if the bet is won (s2 = win) or W0 − ā if the bet is lost
(s2 = lose).

2) If the agent choosesa = bet, then the final wealth remains
W0 (instead of W0 + ι, i.e., interest ι = 0).

3) The risk averse utility at stages 2 and 1 are (12), (13) with
ι = 0, bet replacing stock and bet replacing bond.

Then (14) holds with ι = 0. The Nash equilibrium policy
μ∗
1(s1) is (15) with ι = 0, bet replacing stock, bet replacing

bond. Sec. V-E illustrates this model in quickest detection.

Implications of Anticipatory Investment/Betting

The agent chooses stock (or bet) even though it loses in
terms of the risk averse final utility (14), yet individuals gamble
because it heightens the action suspense (anticipation) prior to
the resolution of uncertainty in the second stage. This illustrates
the time inconsistency of the problem: in the final period it is not
useful to invest in stock (or bet). Yet the investment is made
at stage 1 with anticipatory feelings rather than the ultimate
outcome; see [1] for implications in gambling/betting. To quote
Samuelson [31]: “I am satisfied that a large fraction of the
sociology of gambling and of risk taking will never significantly

be discernible in terms of the money prizes alone, as distinct from
elements of suspense....”

III. CHARACTERIZING THE NASH EQUILIBRIUM POLICY OF

ANTICIPATORY DECISION MAKER AND EXAMPLES

The previous section gave a general setup of the anticipatory
decision making model and associated subgame Nash equilib-
rium policy. However, the Nash equilibrium (9), (10) is the
solution of the extended Bellman equation (integral equation)
and is difficult to compute in general. In this section, our main
contribution is to make specific assumptions on the anticipatory
model to give a useful characterization of the Nash equilibrium.
Specifically, these assumptions result in a bang-bang and thresh-
old structure for the subgame Nash equilibrium policy (Theorem
1 below). This structural result illustrates the optimality of sim-
ple decision-making rules and will be illustrated by an example
involving situation awareness.

Bayesian parametrization of transition kernel and reward

Recall r2 is the reward at time 2; see (5), (6). In the rest
of the paper, we will parametrize r2 and the transition kernel
p(s2|s1) by a Bayesian parameter. The parameterized reward
and transition kernel are constructed as follows: Define the
reward r2(s2, a2, a1, x) and transition kernel p(s2|s1, x) which
now also depends on a state of nature (ground truth) x. The
process x ∈ X = {1, 2, . . . ,m} will be formally defined in Sec.
IV to model change in quickest detection. Then define the
parametrized reward rη,2 and transition kernel pη(s2|s1) as

rη,2(s2, a2, a1) =
∑
x∈X

r2(s2, a2, a1, x) η(x)

pη(s2|s1) =
∑
x∈X

p(s2|s1, x) η(x) (16)

Here η is an m-dimensional Bayesian belief (posterior) vector
that lies in the unit m− 1 dimensional simplex Π of probability
mass functions: η = [η(1), . . . η(m)]′ ∈ Π, where

Π = {η : η(i) ∈ [0, 1],

m∑
i=1

η(i) = 1} (17)

The posterior η will be formally defined in (23) and appears
naturally in the quickest change detection formulation in Sec.
IV (where the underlying state of nature x jump changes). In this
section, η is simply a fixed probability vector in the two-stage
anticipatory decision model discussed above.

A. Structural Characterization of Nash Equilibrium

With rη,2 defined in (16), for notational convenience, define

Δη(s2, a1) = rη,2(s2, 2, a1)− rη,2(s2, 1, a1) (18)

We make the following assumptions on the anticipatory decision
model of Sec. II-B:

A1) The action spaces are A1 = [0, 1], A2 = {1, 2}. Recall
the actions a1 ∈ A1 and a2 ∈ A2.
The state space is S = [0, 1]. Recall s1, s2 ∈ S .

A2) rη,2(s2, a2, a1) is convex in a1.
A3) Δη(s2, a1) defined in (18) is increasing in s2. Equiva-

lently, rη,2(s2, a2, a1) is supermodular in (s2, a2).
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A4) The solution s∗2(a1) of Δη(s2, a1) = 0 exists for a1 ∈
(0, 1) and is continuously differentiable on (0,1).

A5) ∂Δη

∂a1

∂2Δη

∂s2∂a1
− ∂Δη

∂s2

∂2Δη

∂a2
1

≥ 0

A6) The anticipatory reward is r1(z1) = βz1 where β > 0
and the psychological state (see (11)) is

z1 = max{E{Ψ(a2 = a, s2)|s1, a1, μ2}, a ∈ A2}

A7) Ψ(a2 = 1, s2) pη(s2|s1) is increasing in s2
Ψ(a2 = 2, s2) pη(s2|s1) is decreasing in s2.

The following structural result characterizes the structure of
the subgame Nash equilibrium. For subsequent reference, we
will denote the explicit dependence of μ∗

1 and μ∗
2 on Bayesian

parameter η (see (17)) as μ∗
1,η and μ∗

2,η .
Theorem 1: Consider the anticipatory decision model of Sec.

II-B with action and state spaces specified by (A1). Then
1) Under (A3), (A4), the subgame perfect Nash equilibrium

policy μ∗
2 specified by (8) has a threshold structure:

μ∗
2,η(s2, a1) =

{
1 if s2 ≤ s∗2,η(a1)
2 s2 > s∗2,η(a1)

(19)

for some threshold state s∗2,η(a1) ∈ [0, 1] which depends
on the Bayesian parameter η.

2) Under (A4), (A5), threshold state s∗2,η(a1) is convex in a1.
3) Under (A2)–(A7), the utility-to-go J1(s, a1, μ

∗
2) defined

in (9) is convex in a1. Therefore, the subgame Nash equi-
librium policy μ∗

1 has the following bang-bang4 structure:

μ∗
1,η(s1) =

{
1 if β > β∗

0 otherwise
(20)

for some positive constant β∗. (β is defined in (A6).)
The proof is in the supplementary document.
Deliberate Avoidance of Information. The structure of the

Nash policy in Theorem 1 yields interesting consequences.
Suppose a1 denotes a non-refundable financial deposit made by
the agent at time 1 in anticipation of choosing action a2 = 1 at
time 2. Due to the bang-bang structure of (20) the agent makes
a full deposit a1 = 1 if β > β∗. Yet this full non-refundable
deposit does not guarantee that the agent will choose a2 = 1
since if s2 > s∗2(a1), then the agent will choose a2 = 2. Thus
the agent would like to avoid observing s2. There is an elegant
interpretation of this in [1], namely, the agent might deliberately
choose not to observe the state s2 in order not to lose the
deposit. “In this manner, anticipatory emotions may rationalize
the deliberate avoidance of information” [1].

B. Discussion of Assumptions

Assumptions (A1)–(A7) are generalizations of (and therefore
weaker than) the assumptions in [1], where an example of
anticipatory decision making for choosing a holiday destination
is discussed. Note that (A2) to (A5) are assumptions on rη,2,
while (A6),(A7) are assumptions on r1.

A1) In [1] and also the social media accommodation example
(supplementary material), A1 = [0, 1]denotes the feasible set of
deposits made to secure an accommodation, while A2 = {1, 2}
denotes the choices of accommodation.

4The phrase “bang-bang controller” comes from classical optimal control
theory. It characterizes a control policy with continuous-valued actions that
switches between two extremes.

A2) In [1] and also the accommodation example, the reward
rη,2 is chosen as linear in a1. This is because a1 is a deposit
made at time 1; so the reward at time 2 is the net wealth minus
the deposit at time 1.

Assuming the reward rη,2 to be convex in a1 is more general
and still yields the same structural result.

A3) is a supermodularity assumption and implies that a2 and
s2 satisfy Edgeworth complementarity [32]. This means that
increasing s2 increases the marginal value of choosing a2 = 2
compared to a2 = 1. This is intuitive: For the accommodation
example, a higher review ofN gives more incentive to choose ac-
commodationN . Supermodularity is widely used to characterize
the structure of policies in stochastic control and game-theory.
By Topkis’ famous theorem [32], supermodularity (A3) implies
Nash policy μ∗

2(s2, a1) is non-decreasing in s2 for fixed a1. This
together with (A4) implies that μ∗

2 has a threshold structure (19)
wrt s2 (see proof). In [1] and the social media accommodation
example, (A3) holds trivially since rη,2(s2, a2 = K, a1) is in-
dependent of s2;

To motivate the remaining assumptions, we first note that
Assumptions (A2)–(A7) imply that the anticipatory state z1 is
convex in a1 (as shown in the proof). Since a convex function is
maximized at its end points of A1 = [0, 1], namely 0 and 1, the
bang-bang structure (20) for μ∗

1 holds. We now dive deeper into
(A4)–(A7).

A4): (A4) is simply an assumption on the well-posedness of
the setup; namely, that there exists a threshold point s∗2,η(a1);
implying that the anticipatory agent makes simple intuitive
decisions a2 based on the state s2.

A5) is a prescriptive assumption on the rewards rη,2. From
a risk averse point of view, it is natural that a higher deposit
a1 should result in requiring a substantially higher review x2 in
order for a2 to forfeit the deposit on K and switch to N . This is
captured by requiring that the threshold point s∗2,η(a1) in (19) is
convex in a1. The natural question then is: What assumptions on
the reward guarantee this convexity? Statement 2 of Theorem 1
is equivalent to showing convexity in a1 of the solution s∗2(a1)
of the algebraic equation Δη(s2, a1) = 0. It is here that (A5)
is used. (A5) and (A4) are sufficient for the implicit solution to
an algebraic equation involving two variables to be convex wrt
the other variable. Showing convexity of the implicit solution to
an algebraic equation dates back to [33] where (A5) is used.
(A4) can be relaxed based on the classical implicit function
theorem [34]; see supplementary document for details. In the
accommodation example, (A4), (A5) hold trivially since Δη is
linear in s2, a1.

A6) states that the anticipatory reward is linear in the psycho-
logical state. Therefore β denotes the importance of the antici-
patory reward relative to the reward at time 2. This assumption
is identical to that in [1].

A7) is also a prescriptive assumption on the system behavior
to ensures that the psychological state z1 is convex in action
a1. Actually in [1] and the accommodation example, the psy-
chological state z1 is linear and increasing in action a1. From a
behavioral point of view, convexity of the psychological state in
a1 is natural since it yields the bang-bang structure (20) of the
Nash equilibrium which motivates the “deliberate avoidance of
information behavior” discussed above.

The convexity of rewards (A2) and assumption (A7) together
with Statement 2 imply that anticipatory (psychological) state
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z1 is convex in a1. Specifically in the accommodation example
and also [1], pη(s2|s1) is uniformly distributed in s2,

Ψ(a2 = 1, s2) = s2 I

(
x2 ∈

[
2 + a1
3η

, 1

])

Ψ(a2 = 2, s2) = I

(
x2 ∈

[
0,

2 + a1
3η

])
which clearly satisfy (A7); see the examples for details.

C. Example 2. Anticipatory Situation Awareness (SA)

We now discuss an anticipatory decision making example
involving Level 3 SA. The example will be developed further in
the context of quickest time change detection in Sec. IV.

1) Model: The physical states s1 and s2 denote the proba-
bility that the threat level of a target (or group of targets) is
low threat or high threat, at stages 1 and 2.

Regarding the actions, at the first stage the SA system chooses
action a1 ∈ [0, 1]which denotes fraction of resources devoted to
tracking a specific target. At the second stage, the SA makes the
final choice of whether to take active measures (e.g. intercept
the target) or choose passive measures (continue to track it), i.e.,
a2 ∈ A2 = {active, passive}.

Next we model the anticipatory decision making of the SA
system. We choose the anticipatory reward to reflect beliefs
about threat levels that will be derived in choosing respectively,
active and passive. We choose the anticipatory state z1 at
time 1 as the conditional probabilities (see (5))

z1 = max{6 p(a2 = active, s2 = high threat|a1, μ2),

4 p(a2 = passive|a1, μ2)} (21)

(We allocate numerical values to make the example more read-
able.) So the anticipatory reward increases with the SA’s plan to
use an active measure if the threat is high.

We now construct the rewards r1, r2 defined in (6).
1) Choosing action a1 expends 2 a1 resources on planning

for active measures at time 2. If passive is chosen at
time 2, then the resources of 2 a1 are wasted (lost).

2) The reward accrued by choosing active when the threat
level is s2 is 6s2η; the reward for choosing passive is
fixed at 4. Here5 η ∈ [0, 1] is the posterior probability
that the threat level with action active is high given
information from sensing functionalities.

Based on the above description, the rewards are

r1 = βz1, rη,2(s2, a2 = active, a1) = 6 s2η − 2 a1,

rη,2(s2, a2 = passive, a1) = 4

2) Structure of Nash Equilibrium: For simplicity, assume s2
is uniformly distributed in [0,1]. For the above example, we
can verify Assumptions (A1)–(A7) hold and therefore Theorem
1 holds. Specifically, (A1) holds by formulation; (A2) holds
trivially since rη,2 is linear in a1; (A3) holds since rη,2(s2, a2 =
passive, a1) is independent of s2; (A4) and (A5) hold trivially
since Δη is linear in s2 and a1; (A6) holds by construction
since it is easily shown that for optimal policyμ∗

2, z1 = 4 p(a2 =
passive|a1, μ∗

2). Finally, (A7) holds since p(s2) is the uniform
density by assumption.

5We assume η = [η(1), η(2)]′ is a 2-dimensional probability vector, i.e.,
m = 2 in (17). For notational convenience, we refer to η(2) as η.

3) Consequences: Theorem 1 implies μ∗
2 has a threshold

structure (19), and μ∗
1 has a bang-bang structure (20). The bang-

bang structure (20), represents a dilemma to the SA system.
The SA system fully utilizes its resources, a1 = 1 towards plan
active ifβ > β∗. Yet this does not guarantee that the SA system
will choose a2 = active since if s2 > s∗2(a1), then the agent
will choose a2 = passive. Thus a human-in the-loop in the SA
system might deliberately choose not to observe the state s2 in
order not to lose the effort invested at stage 1.

D. Other Examples

Example 3. Airbnb example of Social media accommodation:
The supplementary document gives a detailed example in social
media accommodation with a similar dilemma due to the bang-
bang Nash equilibrium structure: avoid information at stage 2
so as not to lose the full deposit made at stage 1.

Example 4. Asset Prices and Anxiety: [1] presents a two
stage model for portfolio choice and the anxiety of holding
risky assets. The anxiety encountered at time 1 depends on the
expected reward and variance of the reward at time 2.

Part 2. Quickest Change Detection for Team Anticipatory
Decision Makers

Part 1 of the paper described how a single anticipatory agent
makes decisions over a two-period time horizon. In Part 2, we
consider a team of anticipatory agents (or equivalently, a single
agent that acts multiple times). These anticipatory agents interact
with each other sequentially. Each anticipatory agent observes
the state of nature (Markov chain) in noise and makes local
decisions as described in Sec. II-B. A global decision maker
observes these decisions. How can a global decision maker use
these local decisions to detect a change in the state of nature?
Specifically the aim is to achieve quickest change detection by
minimizing the Kolmogorov-Shiryaev criterion (defined in (30)
below) which involves the false alarm and delay penalties.

Examples of Team-Based Quickest Detection

Before proceeding with the quickest change detection formu-
lation, it is helpful to keep the following examples in mind:

i) Change in Quality of Social Media Accommodation. Sup-
pose individual anticipatory agents choose between reserving
accommodation in two places. By monitoring these decisions,
how can a global decision maker (e.g. Airbnb) detect if there is
a sudden change in the demand for a specific accommodation
due to the presence of a new competitor (or change on qual-
ity in the accommodation)? This example is discussed in the
supplementary material as a detailed tutorial.

ii) Supervisory SA. Sec. III-C discussed the importance of an-
ticipatory situation assessment. Suppose a supervisory situation
assessment (SA) system monitors the decisions of individual SA
systems. Individual SA systems are anticipatory (as discussed
in Sec. III-C) and monitor an enemy target or radar state. How
can the supervisory decision maker detect if there is a sudden
change in the enemy target (due to a purposeful maneuver)? This
example is discussed in Sec. IV-C.

iii) Detecting change in betting strategy. How to detect a
sudden change in the betting strategy of individuals that act
sequentially? Sec. V-E discusses a numerical example which
builds on the anticipatory betting model of Sec. II-C.
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Fig. 3. Quickest Change Detection Problem involving multiple anticipatory
local decision makers and a global decision maker. (i) Anticipatory agent n =
1, 2 . . .observes state of naturexn in noise asyn and receives public beliefπn−1

from previous agent. It then makes anticipatory decision an as described in The-
orem 1. (ii) The global decision maker uses local decisionan to update the public
belief πn and makes decision un ∈ {1(stop and declare change), 2(continue)}.

iv) Detecting Market Shocks. Suppose individual anticipatory
investors make decisions based on their observation of the
underlying value of an asset as in Sec. II-C, where the decisions
of previous investors affect the individual’s belief. How can an
analyst detect sudden market shocks? See [35] for examples in
high frequency financial trading.

IV. ANTICIPATORY QUICKEST CHANGE DETECTION

Notation: Since we consider the sequential interaction of
multiple anticipatory agents, we adapt the notation of Sec. III:

1) Each anticipatory agent acts in a predetermined order
indexed by n = 1, 2, . . ..

2) The physical states s1, s2 (defined in Sec. II-B) encoun-
tered by agent n are now denoted by sn,1, sn,2.

3) Anticipatory decisions a1, a2 (characterized in Theo-

rem 1) of agent n are denoted as an
defn
= [an,1, an,2].

4) The Bayesian belief parameter η (16) of agent n is ηn.
5) Due to the bang-bang structure ((20) in Theorem 1) of

the Nash equilibrium policy, an,1 is independent of sn,1.
Also from (19), an,2 depends on sn,2 and not sn,1. So for
convenience we denote sn,2 as sn.

6) The physical state process {sn, n ≥ 1} on state space S
is Markovian with transition density p(sn+1|sn, xn), see
(16). Here xn is the state of nature process (defined below)
that models the jump change we aim to detect.

Jump Change Model. The state of nature {xn ∈ {1, 2}, n ≥
0} models the change event we aim to detect. It starts state 2 at
time 0 and jumps to state 1 at a geometrically distributed random
time τ0 with mean 1/(1− p), for some prespecified p ∈ [0, 1).
Equivalently, {xn} is a 2-state Markov chain with absorbing
transition matrix and initial probability

P =

[
1 0

1− p p

]
, π0 =

[
0

1

]
(22)

with change time τ0 = inf{n : xn = 1}. Clearly the transition
matrix P implies that E{τ0} = 1/(1− p).

A. Multi-Agent Quickest Detection Protocol

Quickest detection involves detecting change time τ0 with
minimal cost. The multi-agent formulation considered here com-
prises of interacting local decision makers (anticipatory agents)
and a global decision maker (see Fig. 3):

1) The jump change process (state-of-nature) {xn, n ≥ 0}
affects the transition kernel and reward of the physical
state process {sn, n ≥ 1}; see (16).

2) Each anticipatory agent n acts sequentially indexed by
n = 1, 2, . . .. Agent n observes state of nature xn in noise
and makes a local decisionsan = (an,1, an,2) correspond-
ing to actions a1, a2 in Sec. III.

3) Based on the history of local actions a1, . . . , an,
the global decision maker chooses action un ∈
{1 (stop and announce change), 2 (continue)}

Define the public belief πn and private belief ηn at time n as
the posterior distributions initialized with η0 = π0 = [0 1]′:

πn(x) = P (xn = x|a1, . . . , an), x = 1, 2.

ηn(x) = P (xn = x|a1, . . . , an−1, yn),
(23)

Protocol 1: Multi-Agent Bayesian Quickest Detection.
1) Local anticipatory decision maker n

a) Obtains public belief πn−1 from global decision
maker.
b) The agent records private noisy observation yn ∈ Y
of state of nature xn with conditional density

Bx,y = p(yn = y|xn = x) (24)

c) Private Belief. The agent evaluates the private belief

ηn = T (πn−1, yn) where, T (π, y) =
By P

′π
σ(π, y)

,

σ(π, y) = 1′ByP
′π, By = diag(B1,y, B2,y)

(25)

d) Change Event & Local decision. The agent’s private
belief ηn affects its reward and transition kernel of
physical state process {sn, n ≥ 1} as in (16):

rη,2(s2, a2, a1) =
∑
x∈X

r2(s2, a2, a1, x) η(x)

pη(s2|s1) =
∑
x∈X

p(s2|s1, x)η(x)
(16 repeated)

The agent uses ηn, sn to make anticipatory decisions
an = (an,1, an,2) via (20), (19) in Theorem 1.

2) Global decision maker. Based on the decisions an of
local decision maker n, the global decision maker:
a) Updates the public belief from πn−1 to πn as

πn = T̄ (πn−1, an, sn) (26)

T̄ (π, a, s) =
Rπ

a (s)P
′π

σ̄(π, a, s)
, σ̄(π, a, s) = 1′Rπ

a (s)P
′π

where Rπ
a (s) = diag(Rπ

1,a(s), R
π
2,a(s)),

Rπ
x,an

(s) = P (an = a|xn = x, πn−1, sn = s) (27)

The action probabilities Rπ
x,a are computed as

Rπ
x,a(s) =

∫
Y
I(μ∗

2,T (π,y)(s, an,1) = an,2)Bx,ydy (28)

Recall an = (an,1, an,2) and μ∗
2,η is the local decision

maker’s subgame Nash equilibrium policy (19).
b) Chooses global action un using optimal policy φ∗:

un = φ∗(πn, sn) ∈ {1 (stop), 2 (continue)}. (29)

c) If un = 2, then set n to n+ 1 and go to Step 1.
If un = 1, then stop and announce change.
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where yn is the private observation recorded by agentn (see (24).
Note η = [1− η(2), η(2)]′ andπ = [1− π(2), π(2)]′; they lie in
the one dimensional simplex Π = [0, 1].

We are now ready to describe the multi-agent quickest detec-
tion protocol, see also Fig. 3 for a schematic setup.

Remark: Note that there are two states in our formulation:
the state of nature x (that jump changes) which is observed
in noise by anticipatory agents, and the physical state s which
determines the agent’s anticipation. As specified in Step 1 d, the
state of nature x affects the transition kernel of s and reward of
each anticipatory agent. The global decision maker’s quickest
detection aim is to detect the jump change in x.

B. Quickest Detection Objective of Global Decision Maker

We assume the global decision maker knows P (22), phys-
ical state sn, agent’s action an, and agent’s policy μ∗

2,η . The
global decision maker does not know yn (agent’s observa-
tion/perception) or the agent’s private belief ηn in Step 1. For
simplicity, we assume all agents have the same anticipatory
model parameters; otherwise the optimal quickest detection
strategy is non-stationary. We emphasize that the transition prob-
abilities of the physical state and utility of each agent depends
on its private belief ηn of xn, see (16) in Protocol 1. The aim of
quickest detection is to determine the jump time τ0 of the state of
nature {xn}, i.e., evaluate the optimal stationary policy φ∗ of the
global decision maker that minimizes the Kolmogorov–Shiryaev
criterion for detection of disorder [3]:

Jφ∗(π, s) = inf
φ

Jφ(π, s),

Jφ(π, s) = dEφ{(τ − τ0)+}+ f Pφ(τ < τ0). (30)

Here τ = inf{n : un = 1} is the time at which the global de-
cision maker announces the change. The parameters d and f
specify the delay penalty and false alarm penalty, respectively.
So waiting too long to announce a change incurs a delay penaltyd
at each time instant after the system has changed, while declaring
a change before it happens, incurs a false alarm penalty f . Pφ and
Eφ are the probability measure and expectation of the evolution
of the local decisions, observations and Markov state which are
strategy dependent. In (30), π denotes the initial distribution of
the Markov chain x and s is the initial state of the physical state
process.

Anticipatory
xn ∼ P (change state)
Local Anticipatory Decision:
yn ∼ Bxn,y (observation)
ηn = T (πn−1, yn)

an = μ∗
2,ηn

(sn,2, an,1)

Global Decision maker:
πn = T̄ (πn−1, an, sn)

un = φ∗(πn) ∈ {1, 2}

Classical
xn ∼ P (change state)
Decision maker:
yn ∼ Bxn,y

ηn = T (ηn−1, yn)

un = φ∗(ηn) ∈ {1, 2}
(31)

Remark: Comparison with Classical Quickest Detection.
Quickest detection with anticipatory agents (Protocol 1) is sub-
stantially more general than classical quickest detection.

As shown in (31), in classical quickest detection the decision
maker has access to observations {yn}which are noisy measure-
ments of {xn}, and then computes belief ηn. In comparison, in

our framework the global decision maker only has access to
the local decisions {an} of the anticipatory agents; these local
decisions depend on yn via the dynamics in Steps 1c and 1 d in
Protocol 1. In particular, the public belief πn in (27) depends on
the action likelihoods; whereas in classical quickest detection
the belief depends on the observation likelihoods. The objective
of classical quickest detection is exactly (30) except that the
belief is the classical Bayesian posterior p(xn|y1:n) instead of
πn defined in (23).

C. Example. Change Detection in Team Situation Awareness

Sec. III-C described an individual anticipatory situation
awareness (SA) system. In complex environments individual
SA is no longer adequate. We consider here team-level SA [17].
For example, [18] introduced a situational adapting system to
assess team SA for fighter pilots based on information fusion.
To achieve team SA, individual pilots need to develop and retain
their own SA while performing the task, share their SA and
notice relevant activities of other members in the team. In the
simplest sequential framework of Team SA, we have the setup
of Protocol 1 where:

1) The underlying state of naturexn denotes the enemy target
or radar state that is monitored by the SA system.

2) yn are measurements of the enemy’s state xn.
3) πn−1 is the enemy’s belief p(xn−1|a1, . . . , an−1) obtained

from a Bayesian tracking algorithm.
4) The physical state sn is the probability of threat. Its

transition kernel is modulated by ground truth xn (16).
5) Individual agents in the team SA agent make decisions

an,1, an,2 according to Protocol 1 and relay them to sub-
sequent SA systems in the team.

Then quickest detection is motivated as follows: by moni-
toring the decisions {an} of the individual SA systems, how
can a supervisory system detect if there is a sudden change in
the state {xn}? Such a change is reflective of the enemy target
making purposeful maneuvers; or the enemy radar switching
modes between search, acquisition or track. Since it operates at
a higher level of abstraction, the supervisory system does not
have access to the observations yn of individual SA systems.

A similar framework in social media accommodation is dis-
cussed in the supplementary document. Given the sequence of
decisions {an}, the global decision maker (e.g. Airbnb) wishes
to detect if there is a sudden appearance of competition or sudden
change in quality of the accommodation xn. The physical state
sn is the probability of a good review (review histogram) and its
kernel depends on the ground truth xn.

D. Discussion of Protocol 1

1) Sensor-human Interface. Suppose each anticipatory human
decision maker is equipped with a sensing/computing device
that performs Steps 2 to 4. Specifically, the noisy observation
yn in Step 3 is obtained by a sensor/computing device which
then uses Bayes rule to evaluate the private belief ηn in Step
4 according to (25). The sensing functionality then provides
ηn to the anticipatory decision maker. Recall that ηn enters
the parametrized rewards of the anticipatory decision maker
as discussed in (17). Finally, the anticipatory decision maker
chooses action an in Step 5 according to the framework in

Authorized licensed use limited to: Cornell University Library. Downloaded on May 10,2021 at 13:24:02 UTC from IEEE Xplore.  Restrictions apply. 



1064 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Sec. III. Thus Step 1 preserves the simplicity of the anticipatory
human decision making model in [1].

2) Global decision maker. Step 6 details the decision making
framework of the global decision maker. The global decision
maker has access to the physical state sn and the actions
an,1, an,2 of the local decision maker. These are used by the
global decision maker in Step 7 to update the public belief in
(26). The action likelihoods in (28) follow from (25) and

Rπ
x,a(s) =

∫
I(μ∗

2,η(s, an,1) = an,2) p(η|πn−1, y)Bx,y dη dy

Finally in Step 8, the global decision maker applies the optimal
policy φ∗ to the updated public belief πn, to choose whether to
continue or stop (announce change).

3) Information Structure. Protocol 1 depicts three types of
interactions. Local decision makers learn from previous local
decision makers. Second, the local decisions an determine
global decisionsun. Finally, if the global decision maker chooses
un = 2, then the protocol continues to the next time; otherwise
a change is detected and the process stops.

4) Comparison With Bayesian Social Learning. Protocol 1
generalizes classical Bayesian social learning [22] in two ways.
First, the public belief update (26) is a generalization of the
Bayesian social learning filter [36], where the local decision
maker is a myopic optimizer (in comparison, we now have a
two-stage anticipatory local decision maker). Second, the local
decision makers operate in closed loop; they are controlled by
the global decision maker.

E. Stochastic Dynamic Programming Formulation

The aim of this section is to formulate the global decision
maker’s quickest change detection policy φ∗(π, s) (defined in
(30)) as the solution of a stochastic dynamic programming
equation. The quickest detection problem (30) is an example
of a stopping-time partially observed Markov decision process
(POMDP) problem with a stationary optimal policy [36].

1) Costs: To present the dynamic programming equation, as
is standard, we first formulate the false alarm and delay costs
(30) incurred by the global decision maker in terms of the public
belief (also called the information state), see [36].

i) False alarm penalty: If global decision un = 1 (stop) is
chosen at time n, then the Protocol 1 terminates. If un = 1 is
chosen before the change point τ0, then a false alarm penalty
is incurred. The false alarm event {xn = 2, un = 1} represents
the event that a change is announced before the change happens
at time τ0. Recall (22) the jump change occurs at time τ0 from
state 2 to state 1. Then recalling f ≥ 0 is the false alarm penalty
in (30), the expected false alarm penalty is

f Pφ(τ < τ0) = f Eφ{E I(xn = 2, un = 1)|Gn}}
Gn = σ-algebra generated by (a1, . . . , an) (32)

Clearly E I(xn = 2, un = 1)|Gn} can be expressed in terms of
public belief πn(2) = P (xn = 2|a1, . . . , an) as

C(πn, un = 1) = f e′2πn, where e2 = [0 1]′. (33)

ii) Delay cost of continuing: If global decision un = 2 is taken
then Protocol 1 continues to the next time. A delay cost is in-
curred when the event {xn = 1, un = 2} occurs, i.e., no change
is declared at timen, even though the state has changed at timen.
The expected delay cost is dE{I(xn = 1, un = 2)|Gn} where

d > 0 denotes the delay cost. In terms of the public belief, the
delay cost is

C(πn, un = 2) = de′1πn, where e1 = [1 0]′. (34)

We can re-express Kolmogorov-Shiryaev criterion (30) as6

Jφ(π, s) = Eφ

{
τ−1∑
n=0

C(πn, 2) + C(πτ , 1)

}
(35)

where τ = inf{n : un = 1} is adapted to the σ-algebra Gn.
SinceC(π, 1),C(π, 2) are non-negative and bounded forπ ∈ Π,
stopping is guaranteed in finite time.

2) Bellman’s Equation for Quickest Detection Policy: Con-
sider the costs (33), (34) defined in terms of the public belief
π. Then the optimal stationary policy φ∗(π, s) defined in (29),
(30). and associated value function V (π, s) are the solution of
Bellman’s dynamic programming functional equation [36]

Q(π, s, 1)
defn
= C(π, 1),

Q(π, s, 2)
defn
= C(π, 2)

+

∫
S

∑
a∈A1×A2

V (
T̄ (π, a, s̄), s̄

)
σ̄(π, a, s̄) p(s̄|s)} ds̄

φ∗(π, s) = argmin{Q(π, s, 1), Q(π, s, 2)},
V(π, s) = min{Q(π, s, 1), Q(π, s, 2)} = J∗

φ(π, s) (36)

The public belief update T̄ and normalization measure σ̄ were
defined in (26). Recall (29) that un = φ∗(πn, sn) is the global
decision maker’s action whether to continue or stop.

The goal of the global decision-maker is to solve for the opti-
mal quickest change policy φ∗ in (36) or equivalently, determine
the optimal stopping set S
S = {π, s : φ∗(π, s) = 1} = {π, s : Q(π, s, 1) ≤ Q(π, s, 2)}

(37)
3) Value Iteration Algorithm: The optimal policy φ∗(π, s)

and value function V(π, s) can be constructed as the solution of
a fixed point iteration of Bellman’s equation (36) – the resulting
algorithm is called the value iteration algorithm. The value
iteration algorithm proceeds as follows: Initialize V0(π, s) = 0
and for iterations k = 1, 2, . . .

Vk+1(π, s) = min
u∈U

Qk+1(π, s, u),

φ∗
k+1(π, s) = argmin

u∈U
Qk+1(π, s, u) π ∈ Π,

Qk+1(π, s, 1) = C(π, 1), Qk+1(π, s, 2) = C(π, 2)

+

∫
S

∑
a∈A1×A2

Vk

(
T̄ (π, s̄, a), s̄

)
σ̄(π, s̄, a) p(s̄|s)ds̄, (38)

Let B denote the set of bounded real-valued functions on
Π. For any V, Ṽ ∈ B and π ∈ Π, define the sup-norm metric
sup ‖V(π, s)− Ṽ(π, s)‖, s ∈ S . Since C(π, 1), C(π, 2), π ∈
Π, are bounded, the value iteration algorithm (38) generates a

6The formal construction is as follows. Let (Ω,F) denote the underlying mea-
surable space where Ω = (X × U × Y × S)∞ is the product space endowed
the with product topology, and F is the corresponding σ-algebra. Then for any
π ∈ Π, s ∈ S and policy stationary policy φ, there exists a unique probability
measure Pφ on (Ω,F), see [37]. In (30) and (35), Eφ denotes the expectation
wrt measure Pφ.
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sequence of lower semi-continuous value functions {Vk} ⊂ B
that converge pointwise as k → ∞ to V(π, s) ∈ B, the solution
of Bellman’s equation [37].

Summary. Protocol 1 describes the quickest detection pro-
tocol involving anticipative agents acting sequentially. Each
local decision maker (agent) n = 1, 2, . . . makes anticipatory
decisions an,1, an,2 according to the framework in Sec. III.
The global decision maker uses these actions to make decision
un = φ∗(πn, sn) ∈ {1, 2}. The optimal detection policy φ∗ of
the global decision maker satisfies Bellman’s equation (36) and
can be constructed by value iteration algorithm (38).

Classical quickest detection is a special case of (36), (37) with
Q(π, s, u) independent of s, p(s̄|s)} = I(s̄ = s), and belief π
replaced by classical Bayesian update (31). In classical quickest
detection the optimal policy has a threshold structure and the
stopping region S is convex; however, these properties do not
hold for the multi-agent case considered here.

V. STRUCTURAL RESULTS FOR QUICKEST DETECTION WITH

ANTICIPATORY AGENTS

The previous section formulated Bellman’s dynamic pro-
gramming equation for the quickest detection policy of the
global decision maker. However, since the belief space Π in (17)
is a unit simplex (space of probability vectors), the value iteration
algorithm (38) does not directly yield a practical solution for
computing stopping set S since Vk(π) needs to be evaluated on
the continuum π ∈ Π. Specifically, in quickest detection, since
xk ∈ {1, 2}, the belief space Π is a 1-dimensional simplex com-
prising 2-dimensional beliefs of the form π = [1− π(2), π(2)]′.
The value iteration algorithm (38) can be solved numerically by
one-dimensional grid discretization of Π.

The aim of this section is to characterize mathematically the
structure of the belief updates and achievable optimal cost in
quickest detection without brute force computations.

Specifically we discuss 5 important structural results below:
1) The private belief update of individual anticipatory agents

follows simple rules justifying human decision-making.
2) Even though the public belief update depends on the action

probabilitiesRπ (27) where π ∈ Π is continuum, there are
only a finite number of such action probabilities.

3) In stark contrast to classical quickest detection, the value
function (36) in Bellman’s equation for quickest detection
with anticipative agents is not necessarily concave.

4) We give numerical examples of the optimal quickest de-
tection policy to highlight the unusual structure of non-
concave value function and non-convex stopping regions.
Our numerical examples illustrate change-blindness and
detecting a change in betting strategy.

5) Finally, by using Blackwell dominance, we show that the
cumulative cost incurred is always larger than classical
quickest change detection.

A. Private Belief Update Follows Simple Monotone Rules

As discussed at the beginning of Sec. IV, the agent either
uses a sensing/computing device to evaluate its private Bayesian
belief or constructs an approximation to the private belief in
order to make an anticipative decision. Below we show that
the Bayesian update for the private belief is monotone in the

observation and prior; thus it follows simple rules and is a useful
idealization of human decision making.

Recall Theorem 1 asserted monotonicity of the anticipatory
decision maker’s policy μ∗

2,η(s2, a1) wrt physical state s2. Here
we show monotonicity wrt the Bayesian parameter π (recall π
is the prior for η in the Bayesian update (25)) and observation
y. We make the following assumptions

A8) The observation likelihoods Bx,y (24) are TP2 (totally
positive of order 2); that is, Bx̄,yBx,ȳ ≤ Bx,yBx̄,ȳ , x̄ >
x, ȳ > y.

A9) r2(s2, a2, a1, x) (see (16)) is supermodular in (x, a2),
i.e., r2(s2, a2, a1, x̄)− r2(s2, a2, a1, x) is increasing in
a2.

A8) is widely studied in monotone decision making; see the
classical paper [38]; numerous examples of noise distributions
are TP2. As described in [39], observation ȳ is said to be more
“favorable news” than observation y if (A8) holds. (A9) is a
supermodularity condition on the rewards; see (A3).

In the theorem below recall thatμ∗
2,T (π,y) is the subgame Nash

equilibrium of the local anticipatory decision maker.
Theorem 2: The following properties hold for the anticipatory

action an,2 = μ∗
2,T (π,y)(s, an,1) in (19) made by agent n:

1) Under (A8) and (A9), an,2 is increasing and ordinal in
observation y. That is for any monotone function φ, it
follows that φ(an,2) is also increasing in y.

2) Under (A8), μ∗
2,T (π,y)(s, an,1) is increasing in belief π

with respect to the monotone likelihood ratio (MLR)
stochastic order7 for any observation yn. �

We can interpret Theorem 2 as follows. If anticipative agent
n makes recommendations that are monotone and ordinal in
the observations and monotone in the prior, then they mimic
the Bayesian social learning model. Even if the agent does not
exactly follow a Bayesian social learning model, its monotone
ordinal behavior implies that such a Bayesian model is a useful
idealization. Humans typically make monotone decisions - the
more favorable the private observation, the higher the recom-
mendation. Humans make ordinal decisions8 since humans tend
to think in symbolic ordinal terms.

We now discuss assumption (A9). Denote the reward vector

ra
defn
= [r2(s2, a2=a, a1, x=1), . . . , r2(s2, a2=a, a1, x=m)]′

Then (A9) is a stronger version of the following more general
single-crossing condition [32]: For ȳ > y

(ra+1 − ra)
′Bȳπ ≤ 0 ⇒ (ra+1 − ra)

′Byπ ≤ 0. (39)

This single crossing condition is ordinal, since for any monotone
function φ, it is equivalent to

φ((ra+1 − ra)
′Bȳπ) ≤ 0 ⇒ φ((ra+1 − ra)

′Byπ) ≤ 0.

B. Structure of Public Belief Update

We assume in this section that the observation space and
action space of the anticipatory agent are Y = {1, . . . , Y },

7Given probability mass functions {pi} and {qi}, i = 1, . . . ,X then p MLR
dominates q if log pi − log pi+1 ≤ log qi − log qi+1.

8Humans typically convert numerical attributes to ordinal scales before mak-
ing decisions. For example, it does not matter if the cost of a meal at a restaurant
is $200 or $205; an individual would classify this cost as “high”. Also credit
rating agencies use ordinal symbols such as AAA, AA, A.
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A2 = {1, 2}. The purpose of this section is to show that even
though the public belief π ∈ Π is continuum, there are only
Y + 1 possible distinct action likelihood probability matrices.

Specifically, define the following Y points in the one-
dimensional simplex Π:

π∗
y = {π : (r1 − r2)

′ByP
′π = 0}, y = 1, . . . , Y

Note that π∗
y = [1− π∗

y(2), πy(2)]
′ depends on a1, s.

Theorem 3: Under (A8), (A9), it follows that

π∗
1(2) ≤ π∗

2(2) · · · ≤ π∗
Y (2) (40)

Thus the belief space Π = [0, 1] can be partitioned into at most
Y + 1 non empty intervals denoted P1, . . . ,PY+1 where

P1 = [0, π∗
1(2)],P2 = (π∗

1(2), π
∗
2(2)], . . . ,Py+1 = (π∗

Y (2), 1]
(41)

On each such interval, the action likelihoodRπ (27) is a constant
with respect to belief π. Specifically, for fixed a1, s

Rπ(s) =

[∑l−1
i=0 B1i

∑Y
i=l B1i∑l−1

i=0 B1i

∑Y
i=l B1i

]
, π ∈ Pl (42)

Example. ForY = 3, the 4 possible action likelihood matrices
Rπ are

R1(s) =

[
0 1

0 1

]
, R2(s) =

[
B11 B12 +B13

B21 B22 +B23

]
,

R3(s) =

[
B11 +B12 B13

B21 +B22 B23

]
, R4(s) =

[
1 0

1 0

]
. (43)

Although tangential to this paper, agents deploying Proto-
col 1 can exhibit herding behavior. i.e., agents choose actions
independent of their private observations; see [22], [23] for the
distinction between herds and information cascades.

C. Quickest Detection With Anticipatory Agents is Non-Trivial

In classical quickest change detection, the value function
is always concave and the optimal stopping region is convex,
see [36] for a partially observed Markov decision formulation
and proof of this. The aim of this section is to show that due
to the interaction of local and global decision makers, quickest
detection with anticipatory agents exhibits non-trivial behavior:
the value function is not necessarily concave and the stopping
region is not necessarily a convex set.

Consider the value iteration algorithm (38) which is used as a
basis for mathematical induction to prove properties associated
with Bellman’s equation (36). Note that from (38), Vk(π, s) is
positively homogeneous, that is, for any α > 0, Vk(απ, s) =
αVk(π, s). So choosing α = σ(π, a) yields

Vk+1(π, s) = min

{
C(π, 1)

+

∫
S

∑
a

Y+1∑
l=1

Vk(R
l
a(s)P

′π, s)I(π ∈ Pl)p(s̄|s)ds̄, C(π, 2)

}

(44)

Recall C(π, 1) and C(π, 2) are linear in π. However, it is clear
from (44) that if Vk(π, s) is assumed to be concave on Π,
Vk+1(π, s) is not necessarily concave on Π; since patching
together convex functions on different intervals does not nec-
essarily yield a convex function. The key point is that the action

Fig. 4. Classical Quickest Detection. The optimal policyφ∗(π) has a threshold
structure. So the optimal stopping setS = {π : φ∗(π) = 2} is convex. The value
function V(π) is concave.

Fig. 5. Quickest Detection with Multiple Agents. The optimal policy φ∗(π)
has a multi-threshold structure implying that the optimal stopping set S = {π :
φ∗(π) = 2} is not convex (comprises of disconnected regions). The global
decision maker exhibits change blindness. As the posterior probability of change
π(1) = 1− π(2) increases, the global decision maker declares there is no
change in several regions (between the red lines). Note that the value function
V(π) is not concave.

likelihoods Rπ (47) are explicit and discontinuous functions of
π. This results in a possibly non-concave value function V (π)
making the stopping set S non-convex.

D. Numerical Example of Multi-Threshold Quickest
Detection Policy: Change-Blindness

The non-concave value function in quickest detection with
anticipatory agents leads to unusual multi-threshold behavior in
the optimal policy, as we now illustrate.

1) Setup: Consider quickest detection where the state of
nature {xn, n ≥ 0} jumps according to transition matrix

P =

[
1 0

0.05 0.95

]
. (45)

The global decision maker’s delay and false alarm penalties are
d = 1.05, f = 3; these specify the costs (33), (34) in Bellman’s
equation (36).

The local anticipative decision maker’s reward matrix is

(r2(x, a2), x ∈ {1, 2}, a ∈ {1, 2}) =
[
5 4

6.5 9

]
Also its obser-

vation likelihood matrix is B =

[
0.9 0.1

0.1 0.9

]
.

2) Nonconvex Stopping Time and Value Function: The local
and global decision makers operate according to Protocol 1.
Fig. 4 displays the value function and optimal policy for classical
quickest detection. Fig. 5 displays the value function and optimal
policy for quickest detection with anticipatory agents. The policy
and value function were obtained by running the value iteration
algorithm for 1000 iterations with Π = [0, 1] grid quantized
uniformly to 1000 values.
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For classical quickest detection, Fig. 4 shows that, as ex-
pected, the value function is concave and the optimal policy
is a threshold. So the stopping region {π : φ∗(π) = 1} is the
interval π(2) ∈ [0, 0.466].

In contrast, for quickest detection involving anticipatory
agents, Fig. 5 shows the value function is not concave. Also the
optimal policy has an unusual multi-threshold structure: if it is
optimal to declare a change for a particular posterior probability,
it may not be optimal to declare a change when the posterior
probability of change is larger! (Recall 1− π(2) is the posterior
probability of change). In this sense, Fig. 5 depicts two forms of
change-blindness. First, a human global decision maker might
choose to ignore the optimal policy φ∗(π) and simply use the
classical quickest detection policy φ∗(π). A second, and more
interesting form of change-blindness occurs when the human
global decision maker chooses the “simple” stopping set as
π(2) ∈ [0, a] and ignores the important regions between [a, b]
where it is optimal to stop.

E. Numerical Example. Change Detection of Betting Strategy

Spot fixing is a form of illegal match fixing where players
deliberately under-perform in specific segments of a team sport.
Identifying spot fixing in cricket and soccer is important with the
advent of live betting. Sudden increases in the betting rate, heavy
underdog bets and wide swings in the quality of play can prompt
monitors to take a closer look at a match. Quickest change
detection of these parameters based on monitoring real time
betting is relevant for detecting illegal spot-fixing for example
in T20 cricket; see also [40]–[42]. Here we consider a highly
simplified formulation where the aim is detect a sudden change
in the intrinsic value (state of nature xn) of the bet possibly due
to spot fixing.

1) Model: Suppose each anticipatory betting agent n acts
according to Sec. II-C and makes decisions an ∈ {bet, bet},
ān ∈ [0,W0]. The agents n = 1, 2, . . . act sequentially accord-
ing to Protocol 1. Each agent n has access to whether the
previous agents placed bets, i.e., agent n knows the actions
{al ∈ {bet, bet}, l = 1, . . . n− 1}. The state of nature xn is
the underlying value of the bet. Each agent n obtains a noisy
value yn of xn; this determines its private belief ηn of xn. As in
(12), we assume that each agent is risk averse and we choose its
risk averse parameter β = ηn(1), i.e., the risk averse parameter
of agent n is its belief of the underlying value of the bet. The
current score in the game (physical state sn) also affects β; but
for simplicity we omit this.

An analyst monitors the betting decisions {an}. Due to pri-
vacy constraints, the amounts bet {ān} are not known to the
analyst. How can the analyst detect a sudden change in the
intrinsic value of the bet xn indicating spot fixing?

We chose the anticipatory model parameters uA = 10, g =
15, ι = 0 (recall notation in (15)). The transition probability P
for the jump change and observation probabilities B are as Sec.
V-D1. The quickest detection penalties are d = 1, f = 10. The
system operates according to Protocol 1.

2) Non-Concave Non-Monotone Value Function: Fig. 6 dis-
plays the quickest detection value function V(π) and optimal
policy φ∗ (36). Unlike classical quickest detection the value
function is non-concave and not increasing, but the optimal

Fig. 6. Non-concave value function for quickest change detection of betting
strategy amongst anticipatory agents. The parameters are specified in Sec. V-E.

Fig. 7. Comparison of Optimal Expected Cost for Quickest Detection with
Anticipatory Agents vs Classical case

policy (not shown) still has a threshold structure. Even this
simplistic example shows a rich variation of the value function
as α is adjusted: if α = 0.5, the V(·) is concave; if α = 1.3,
V(·).is non-concave with multiple discontinuities.

3) Performance of Quickest Detectors: Fig. 7 compares the
performance of the quickest detector with anticipatory agents
vs the classical quickest detector using the same parameters as
above with α = 1. The observation probability matrix is B =[

θ 1− θ

1− θ θ

]
where parameter θ is varied. The delay penalty

is fixed at d = 1 while the false alarm f ∈ [0.2, 4]. The optimal
expected cost V was obtained by solving Bellman’s equation
(36) by quantizing the beliefs to a uniform grid of 1000 points
and running 1000 iterations of the value iteration algorithm (38).
We chose π = [0.2, 0.8]′ in the plot since the value function
V(π) has a discontinuity just after π(2) = 0.8.

Fig. 7(a) shows that for quickest detection with multiple
anticipatory agents, the optimal expected cost increases as θ
(accuracy of observations) decreases. Interestingly, the optimal
cost remains unchanged for θ ∈ [0.5, 0.92], i.e., no matter how
accurate the observation probabilities θ are in this range, there is
no decrease in cost (improvement in performance) of the optimal
detector. For each θ, Fig. 7(b) shows that classical quickest
detection has a lower optimal expected cost. For example, all
the performance curves (lines) for θ = 0.5, 0.6, . . . .0.9 in the
classical case (Fig. 7(b)) lie below the curve θ = 0.92 in the
multi-agent case (Fig. 7(a)). This property will be justified in
Theorem 4 below via Blackwell dominance.
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F. Blackwell Dominance Implications for Optimal Cost

In this section we show that quickest detection with antici-
pative agents (Protocol 1) results in a cumulative Kolmogorov
Shiryaev cost Jφ∗(π, s) (defined in (30) or equivalently (35))
that is always larger than that of classical quickest detection.
In Protocol 1, agents have access to the public belief (which
depends on local decisions of previous agents) instead of the
actual observations. One expects that this information loss re-
sults in less efficient quickest time change detection compared
to classical quickest detection. Here we confirm this intuition.
The main idea involves Blackwell dominance of observation
measures. The result is useful because even though explicit
computation of the optimal policy for the setup in Protocol 1
is difficult, we can lower bound the optimal achievable cost by
that of classical quickest detection.

First define the optimal policy and cost in classical quickest
change detection. Similar to (36), the optimal policy φ∗(π) and
cost V(π) incurred in classical quickest detection, satisfy the
following stochastic dynamic programming equation:

φ∗(π) = argmin
u∈U

Q(π, u), V(π) = min
u∈U

Q(π, u),

where Q(π, 2) = C(π, 2) +
∑
y∈Y

V (T (π, y))σ(π, y),

Q(π, 1) = C(π, 1), Jμ∗(π) = V(π). (46)

Here T (π, y) is the Bayesian filter update defined in (25) and
Jμ∗(π) is the cumulative cost of the optimal policy starting with
initial belief π. Note that unlike Protocol 1, in classical quickest
detection, there is no public belief update (26) or interaction
between the public and private beliefs.

The following theorem says that for any initial belief π, the
optimal detection policy with anticipative agents acting sequen-
tially (Protocol 1) incurs a higher cumulative cost than that of
classical quickest detection.

Theorem 4: Consider the quickest change detection problem
involving anticipatory agents described in Protocol 1 and asso-
ciated value function V(π, s) in (36). Consider also the classical
quickest detection problem with value function V(π) in (46).
Then for any initial belief π ∈ Π, the optimal cost incurred
by classical quickest detection is smaller than that of quickest
detection with anticipatory agents. That is, V(π) ≤ V(π, s) for
all π ∈ Π, s ∈ S .

The proof is in the supplementary document. The intuition
behind the proof is as follows. From (28)

Rπ
x,a(s) =

∫
Y
Bx,yM

π
y,a,sdy,

where Mπ
y,a,s

defn
= I(μ∗

2,T (π,y)(s, an,1) = a) (47)

where B and Mπ are stochastic kernels. Thus observation y
with conditional distribution specified by B is said to be more
informative than (Blackwell dominates) observation awith con-
ditional distribution Rπ, see [36]. The main idea in the proof is
that under the assumptions of Theorem 4, the value function
V(π) is concave for π ∈ Π. Then the result is established us-
ing Jensen’s inequality together with Blackwell dominance on
Bellman’s equation (36).

A useful consequence of Theorem 4 is that performance
analysis of standard quickest detection [16] applies as a lower
bound for quickest detection with anticipatory agents.

VI. DISCUSSION

This paper is an early step in addressing sequential detection
problems with behavioral economics constraints. Although both
signal processing and behavioral economics are mature areas,
insights gained by construction of generative anticipatory mod-
els, estimation algorithms, along with careful analysis is crucial
in designing human-sensor cyber-physical systems.

They main results of the paper are:
1) Formulation of the two stage decision making model of [1]

for individual decision makers involving the anticipatory state.
The key idea is that the anticipatory state involves the probabil-
ities of future actions thereby leading to time inconsistency in
decision making.

2) Characterizing the structure of the subgame Nash equi-
librium as a bang-bang controller in the first time stage, and
a threshold policy at the second time stage (Theorem 1). The
bang-bang structure justifies the observation in [1] that agents
with anticipatory emotions may choose to avoid information.

3) Formulation of the multi-agent quickest detection problem
where the anticipatory agents interact with a global decision
maker. We gave several examples to motivate this problem
including change detection in social media accommodation,
detecting spot fixing in sports and team-situation awareness.

4) Structural characterization of the unusual structure of
the optimal change detection policy (compared to classical
quickest detection). Sec. V characterized the structure of the
Bayesian belief updates and achievable cost of the quickest
detector without brute force computations. We derived impor-
tant structural properties of the Bayesian updates of the lo-
cal and global decision makers (Theorem 2 and Theorem 3),
constructed a lower bound for the optimal cost incurred using
Blackwell dominance (Theorem 4), and presented numerical
examples of the unusual structure of the optimal quickest change
policy (non-convex stopping region). The multi-threshold
change detection policy was interpreted as change blindness,
namely people fail to detect surprisingly large changes to
scenes.

In future work we will generalize the anticipatory model using
the subjective belief multi-horizon formulation of [21]. It is
also worthwhile conducting a performance analysis of a multi-
threshold detector; see [16] for performance analysis involving
a single threshold detector. An important open question is: based
on a dataset of actions of an agent, how to identify anticipatory
behavior and if so, how to estimate the utility function of an
anticipatory agent (inverse reinforcement learning)? For myopic
Bayesian utility maximization, [43] give necessary and sufficient
conditions for identifying optimal behavior; the utility functions
then are feasible points of a set of convex constraints. In [44] we
have used such methods to analyze user engagement in massive
YouTube datasets.
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