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Abstract—A sequence of social sensors estimate an unknown
parameter (modeled as a state of nature) by performing Bayesian
social learning, and myopically optimize individual reward func-
tions. The decisions of the social sensors contain quantized
information about the underlying state. How should a fusion
center dynamically incentivize the social sensors for acquiring
information about the underlying state?

This paper presents five results. First, sufficient conditions
on the model parameters are provided under which the optimal
policy for the fusion center has a threshold structure. The optimal
policy is determined in closed form, and is such that it switches
between two exactly specified incentive policies at the threshold.
Second, it is shown that the optimal incentive sequence is a sub-
martingale, i.e, the optimal incentives increase on average over
time. Third, it is shown that it is possible for the fusion center to
learn the true state asymptotically by employing a sub-optimal
policy; in other words, controlled information fusion with social
sensors can be consistent. Fourth, uniform bounds on the average
additional cost incurred by the fusion center for employing a
sub-optimal policy are provided. This characterizes the trade-off
between the cost of information acquisition and consistency for
the fusion center. Finally, uniform bounds on the budget saved
by employing policies that guarantee state estimation in finite
time are provided.

Index Terms—social sensors, incentives, social learning,
partially observed Markov decision process (POMDP), sub-
martingale, threshold policies, uniform bounds, consistency.

I. INTRODUCTION

A social (human) sensor provides information about its
state (sentiment, quality of product) to a social network after
interaction with other social sensors. It differs from a physical
sensor in the following ways:

i.) Social sensors influence the behavior of other sensors,
whereas physical sensors typically do not affect other
sensors.

ii.) Social sensors reveal quantized information (decisions)
and have dynamics, whereas physical sensors are static
with the dynamics modeled in the state equation.

In this paper, in line with a large body of literature, we adopt a
more stylized definition: a social sensor performs social learn-
ing. Social learning is an integral part of human behaviour and
has been studied widely in economics, sociology (where the
term groupthink is used), electrical engineering and computer
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science; see [1], [2]. It shares similarities with decentralized
detection [3], [4] that falls within the class of team decision
theory [5]; but with key differences: (i) Decentralized detection
quantizes the observations, whereas social learning quantizes
the Bayesian belief. (ii) In decentralized detection, the fusion
policies are directly optimized, where as in social learning the
fusion rule is prescribed and is Bayesian.

This paper considers a sequential decision making model of
Bayesian social learning introduced in [6], [7], [8], where the
social sensors learn from their predecessors. Each social sensor
has a private signal on the underlying state and considers this
in addition to the (bounded) information gathered by its prede-
cessors. This interplay results in the well known inefficiencies
such as the formation of herds (sensors choose the same action
irrespective of their private information) and informational
cascades (information fusion results in no improvement in
uncertainty). In [9], some of the inefficiencies in the sequential
social learning model is shown to arise due to the bounded
nature of the information or beliefs used in decision making,
and show that the true state is aggregated when the beliefs
are unbounded. In this paper, similar to [10], we explore
how such inefficiencies associated with social sensors can
be controlled using an exogenous incentive by formulating
controlled sequential information fusion as a non-standard
Partially Observed Markov Decision Process (POMDP).

Information Fusion with Social Sensors

Information fusion with physical sensors is a well studied
problem. In this paper, motivated by recent applications using
online social media review platforms, we consider information
fusion with social sensors. We consider the following problem:
A sequence of social sensors estimate an unknown state of
nature, and a fusion center aims to estimate the underlying
state by incentivizing the social sensors. How should the
fusion center dynamically incentivize the social sensors to
acquire information about the underlying state? Equivalently,
how can the fusion center optimize the trade-off between the
cost of information acquisition from the social sensors versus
the usefulness of the information in terms of reduction in
uncertainty (mean-square error between the true state and the
estimate) of the Bayesian state estimate. Similar problems with
physical sensors were considered in [11], [12].

Multi-sensor data fusion [13] on the other hand, refers to
the problem of data acquisition, processing, and fusion of
information, to provide a better estimate of the underlying
state. A data fusion center gathers the information from the
peripheral sensors (physical sensors) to make an informed
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Fig. 1: Visual illustration of the main result of the paper, namely the optimal incentive policy for choosing incentives to social sensors to
reveal information to the fusion center. In general, the incentive policy could be an arbitrary function of π as in Fig.1b; we provide conditions
under which the incentive policy is as in Fig.1a. Here µ∗(π) ∈ [0, 1] is the optimal incentive policy and π denotes the posterior (belief)
from the fusion of sensors’ decisions. e1 and e2 denote the indicator vectors. When p = µ∗(π) = 0, the fusion center should not incentivize.
The optimal policy is a choice between two exactly specified incentive policies, and hence is determined in closed form. Sec.VII-A provides
numerical examples (of more general cost functions) where the optimal incentive policy is multi-threshold as in Fig.1b.

decision regarding the desired parameter. Having more number
of sensors leads to improvement in reliability, resolution,
coverage, and confidence; see [13].

Traditionally, information fusion is open-loop; in this paper,
we use feedback control to choose incentives to control how
the sensors provide information. Hence we name the problem
considered in this paper as controlled information fusion. The
fusion is Bayesian and we are interested in designing the
control laws for providing optimal incentives for social sensors
that will result in accurate Bayesian estimates.

In controlled sequential information fusion, the process of
incentivization modifies the cost or reward function of the
social sensors and hence directly affects the sensors’ decisions
(see Fig.2). The decisions are a quantization of the Bayesian
estimate of the state, and hence controlling the incentives can
shape the information that is subsequently fused.

Additional Related Literature
There are many works in Bayesian social learning, where the
network structure is considered and social sensors repeatedly
make decisions [14], [15], [16], [17]. In case of repeated
decision making, inefficiencies like cascades and herds can
be avoided, however, that comes at the cost of increased
computational complexity for the individual social sensors.

The problem considered in this paper shares similarities
with sequential hypothesis testing [18], however, with key
differences: (i) Information from social sensors is correlated
due to social learning. Information fusion with social learning
thus leads to inefficiencies like herds and information cas-
cades. So having more social sensors need not always be
advantageous (in terms of reducing the mean square error
between the state estimate and the true state). (ii) In general,
information fusion with social sensors leads to multi-threshold
policies (see Fig.1), unlike classical hypothesis testing. This
has implications on the confidence of the information fusion
center while announcing the true hypothesis – if it is optimal
to announce the true hypothesis for a certain belief, it might
not be optimal to make the announcement when the belief is
larger (or more certain)!

Main Results and Organization
In the context of controlled information fusion, this paper

has 3 main topics:

(1.) Optimality of Threshold Incentive Policy: Sec.III-B,
gives sufficient conditions on the model parameters under
which the optimal incentive policy for the fusion center
has a threshold structure (see Fig.1a), when estimating a
random variable. Indeed we will show that the optimal policy
switches between two exactly specified incentive policies at
the threshold, and hence is completely determined in closed
form. Since the optimal policy is determined in closed form,
the fusion center only needs to store the threshold state π∗

and the incentive function, so a threshold policy is practically
useful.
(2.) Sub-martingale Property of Optimal Incentive Se-
quence: While Sec.III-B establishes the structure of the op-
timal incentive policy, Sec.III-C establishes the sample path
properties of the optimal incentive sequence, when estimating
a random variable. In particular, we show that the optimal
incentive sequence is a sub-martingale; i.e, the incentives
increase on average over time. The increase can be attributed
to the fact that the senors polled for information at a later
instant associate a higher value on average due to learning
from their predecessors. This property is useful in assessing
the reliability of the fusion center. In a related context, our
result is similar to the super-martingale property of pricing
policies in economics [19], [10]; which says that the optimal
pricing policy for charging sensors (performing social learn-
ing) who purchase a product, is to start high, establish an elite
customer base, and then decrease prices to increase profits.
Sec.VI illustrates the difficulty of characterizing the structure
of the optimal incentive sequence when the underlying state is
changing according to a Markov chain. We provide conditions
on the state transitions which guarantee that the optimal policy
for estimating a random variable is near optimal for tracking
the Markov chain.
(3.) Consistency of Controlled Information Fusion: Infor-
mation fusion with social sensors is challenging due to the
fact that social learning terminates after a finite horizon [1],
[2] due to the formation of information cascades. We show
that the inefficiencies in the sequential social learning model–
herds and information cascades – can be controlled using
the incentives (Corollary 4) and provide uniform bounds
(Theorem 5 and Theorem 6) on the performance. Previous
work [1], [20], [16] emphasized providing conditions on the
observation distribution or action sampling distributions for
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Fig. 2: A sequence of social sensors perform Bayesian social learning
to estimate the underlying state x. Social sensor k chooses action
ak after myopically optimizing a reward function. The fusion center
provides incentives pk ∈ [0, 1] at each time k (or at each sensor k)
and fuses the information gathered in a Bayesian way. Each incentive
pk is computed as a function µ of the posterior probability mass
function (public belief) of the state πk−1 at time k − 1. The public
belief πk−1 is computed from the decisions of the first k−1 sensors.
The decision ak of social sensor k depends on the incentive pk, the
public belief πk−1, and the private observation yk of the state x.

the social sensors. Sec.IV shows how the fusion center can
control the incentives and learn the true state asymptotically by
employing a sub-optimal policy; in other words, how to control
the incentives such that the information fusion with social
sensors is consistent (convergence in probability). However,
by employing a sub-optimal policy, the fusion center incurs
additional cost. Therefore, uniform bounds on the average
additional cost incurred by the fusion center for employing
a sub-optimal policy are provided. These bounds characterize
the trade-off between the cost of information acquisition and
consistency, for the fusion center. When it is sufficient to know
the state with a degree of confidence, policies that guarantee
state estimation in finite time are discussed. Uniform bounds
on the budget saved as a result of estimating the state only
upto a degree of confidence are provided.
Sec.VII presents numerical examples that provide additional
insights on the main results. A discussion on extension to
multiple actions and states is provided in Sec.VII-D.

II. SOCIAL LEARNING MODEL AND FUSION CENTER
OBJECTIVE

We consider the setup illustrated in Fig. 2. The fusion center
controls the incentives given to the social sensors, and the
social sensors share their decisions (quantized information on
the underlying state) with the fusion center. Sec.II-A describes
the controlled fusion social learning model that governs the
manner in which the social sensors learn from each other, and
how this behavior is influenced by the fusion center. Sec.II-B
formulates the objective of the fusion center that captures the
trade-off between the cost of information acquisition from
the social sensors versus the usefulness of the information
measured.

A. Controlled Fusion Social Learning Model

In this subsection, we model: (i) dynamics of the social
sensors; (ii) the information fusion cost for the fusion center
that models the trade-off between incentives and the reduction
in uncertainty in the state estimate. We also characterize the
evolution of the posterior probability mass function of the
state, and how the fusion center can make use of the available
information to provide the incentives to the social sensors.

Let k = 1, 2, · · · denote discrete time. It is assumed that
each social sensor is identical and acts once in a predetermined
sequential order indexed by k. Let x0(= x) ∈ X = {1, 2}
denote the state of nature, and is assumed to be a random
variable1 chosen at k = 0. Let the probability mass function
of the state x at time k − 1 be denoted as

πk−1(i) = P(x = i|a1, . . . , ak−1). (1)

The state estimate (1) is computed from the decisions of the
social sensors a1, . . . , ak−1 and is termed as the public belief.
Let the initial estimate be denoted as π0 = (π0(i), i ∈ X ),
where π0(i) = P(x = i). Let the belief space, i.e, the set of
distributions π over the state be denoted as

Π(2)
∆
={π ∈ R2 : π(1)+π(2) = 1, 0 ≤ π(i) ≤ 1 for i ∈ {1, 2}}.

Social Sensor Dynamics: A social sensor receives an obser-
vation on the underlying state, computes an estimate (private
belief) using the information revealed by other sensors (their
decisions), and takes an action to myopically maximize a
reward function. This action is a quantization of the (private)
belief, and is shared with the fusion center and other sensors.
(1.) Social Sensor’s Private Observation: Each social sensor
obtains a noisy yk ∈ Y = {1, 2} of the underlying state x
with observation likelihood:

Bij = P(yk = j|x = i). (2)

The (discrete) observation likelihood models the (limited)
information gathering capabilities of the sensor.
(2.) Social Learning and Private Belief update: Sensor k
updates its private belief ηyk by fusing observation yk and the
prior public belief πk−1, via the following classical Bayesian
update

ηyk =
Bykπk−1

1′Bykπk−1
(3)

where Byk denotes the diagonal matrix with diagonal ele-
ments [P(yk|x = 1),P(yk|x = 2)] and 1′ denotes the 2-
dimensional row vector of ones.
(3.) Social Sensor’s Action: Sensor k executes an action ak ∈
A = {1, 2} myopically to maximize a reward function. Each
sensor being an expected (and myopic) reward maximizer is
rational [1]. This assumption implies that the social sensors
have no altruistic concerns. The decision ak of social sensor
k is given by:

ak = arg max
a∈A

r′aηyk . (4)

1Sec.VI discusses the estimation problem when the state is changing
according to a Markov chain.
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Here ra = [r(1, a), r(2, a)], with r′a denoting the transpose
of the reward vector. We consider

r(1, a) = δapk + Γ1a, r(2, a) = δapk + Γ2a, with
Γxa = −αaI(a 6= x)− γa. (5)

Here δa ∈ [0, 1], αa, γa ∈ R are the given parameters of
the model and I denotes the indicator function. For an action
a ∈ A of the social sensor, δap indicates the effective incentive
received by the social sensor; γa denotes the cost of taking
the action; and αa denotes the mis-representation or distortion
weight [21]. Appendix C provides a detailed discussion of the
reward function, including the case where the reward is an
explicit function of the observation.
Tie-breaking rule: When r′aηyk = r′āηyk ,∀ā ∈ A/{a},
ak ∼ Uniform(A), i.e, an action from the set A is chosen with
probability 1

|A| , where |A| denotes the cardinality of set A.
The uniform sampling tie-breaking rule ensures that the public
belief (1) is still a martingale. This is required in the proof of
Theorem 2.
Public Belief Dynamics: The fusion center shares sensor
k’s decision with the social sensors and the public belief
(1) is updated (by the fusion center and subsequent sensors)
according to the social learning Bayesian filter (see [2], [22])
as follows:

πk = Tπ(πk−1, ak) =
R
πk−1
ak πk−1

1′Rπk−1
ak πk−1

. (6)

Here, Rπk−1
ak = diag(P(ak|x = i, πk−1), i ∈ X ) is the deci-

sion or action likelihood matrix (compare with the observation
likelihood matrix B in (2)), where

Rπia = P(ak|x = i, πk−1) =
∑
y∈Y

P(ak|y, πk−1)P(y|x = i),

P(ak|y, πk−1) =

{
1 if ak = arg max

a∈A
r′aηyk ;

0 otherwise.
(7)

Note that πk ∈ Π(2).

Remark (Information Cascade). Note that the (decision)
likelihood (7) is an explicit function of the prior (public belief)
πk−1. This is unlike a standard Bayesian update (like (3)),
where the likelihood is independent of the prior. This unusual
update of the social learning filter leads to herding behavior:
In (7), if the action becomes independent of the observation,
Rπia = 1 or 0. This in turn leads to information cascade, social
learning stops as the public belief is frozen, as can be seen
from (6). It can be shown that (Theorem 5.3.1, [2]) social
learning stops in finite time.

Fusion Center Dynamics:
(1.) Information Fusion cost: The fusion center minimizes the
following cost of information fusion c(pk), with

c(pk) = pk − Φs(k)I(ak = yk|πk−1). (8)

Here I denotes the indicator function. The cost function
should model the trade-off between incentives and truthful
information disclosure. Acting according to self valuations
(a = y) is in line with truthful information reporting in Peer

Prediction literature; see [23]. We show in Sec.IV that a = y
corresponds to informative decisions. Here informativeness is
in the sense of Blackwell [2]. One possible2 cost function is
(8). The information from different sensors is allowed to be
weighed differently using Φs(k) ∈ (0, 1). Here the subscript
s is used to denote the cost when only social learning is
considered (see Sec.VII-A for the case when entropy cost,
in addition to the effect of social learning, is considered). For
simplicity, we assume the weights to be same for all sensors;
i.e Φs(k) = φs, ∀ k. Appendix C provides a motivation
of the information fusion cost using well studied models in
economics [24], [1], [10].
(2.) Information Fusion Incentive: The fusion center incen-
tivizes/compensates the social sensors for providing informa-
tion about the underlying state. The fusion center dynamically
adapts these incentives over time as the sensors perform social
learning: each sensor will have a different state estimate.
Let Fk denote the history of past incentives and decisions
{π0, p1, a1, · · · , pk−1, ak} recorded by the fusion center and
the social sensors. More technically, the sigma-algebra

Fk := Σ(π0, a1, . . . , ak, p1, . . . , pk−1). (9)

The fusion center chooses the incentive as pk+1 ∈ µk(Fk) for
the sensor k+1 to provide information about its state via social
learning. Here µk denotes a policy that associates the history
Fk with an incentive pk+1. Since Fk is increasing with time
k (filtration), to implement a controller, it is useful to obtain a
sufficient statistic that does not grow in dimension. The public
belief πk computed via the social learning filter (6) forms a
sufficient statistic (see Sec.V for justification) for Fk and the
incentive offered to social sensor k + 1 is given as

pk+1 = µk(πk) ∈ [0, 1]. (10)

The incentive is normalized to [0, 1] without loss of generality.

B. Controlled Information Fusion Objective

Given the setup in Sec.II-A, the aim of the fusion center
is to estimate the state x0(= x) by minimizing the cost of
information acquisition (p). As discussed in (6), the fusion
center performs Bayesian fusion of the information revealed
by the social sensors.
Let µ̄ = (µ0, µ1, · · · ) denote the sequence of policies em-
ployed by the fusion center at times k = 0, 1, · · · . For each
initial distribution π0, the following cost is associated for the
fusion center:

Jµ̄(π) = Eµ̄{
∞∑
k=0

ρkcµk(pk)|π0 = π}. (11)

Here pk denotes the incentive, ρ ∈ [0, 1) denotes an economic
discount factor, µk denotes the decision policy (10) for the
fusion center that maps the public belief πk to an incentive
pk+1 ∈ [0, 1], cµk(pk) denotes the cost of information fusion
incurred at time k, and Eµ̄ denotes the expectation conditioned
on the policy sequence µ̄.

2In Sec.VII-A, we consider the information fusion cost that additionally
has entropy of the state estimate.
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The policy sequence µ̄ can be restricted to the class of
stationary (time invariant) policies µ = (µ, µ, · · · ) for the
infinite horizon discounted cost objective; see [2]. The fusion
center aims to find the optimal stationary policy µ∗ such that

Jµ∗(π0) = infµ∈µJµ(π0) (12)

where µ denotes the class of stationary policies.
Summary: (6) are the dynamics and (11) is the optimization
objective for the controlled information fusion problem con-
sidered in this paper. The model parameters are the sensors’
observation matrix B in (2) and the reward ra in (5). The
adaptive incentivizing problem is formulated as a non-standard
(continuous actions) partially observed Markov decision pro-
cess (POMDP) for the information fusion center to optimize
the trade-off between the cost of information acquisition and
consistency.

C. Example: Social Media Review Platform

We briefly motivate above set-up using an application on
online social media review platforms like Amazon or Airbnb.
Such review platforms offer the following benefits [25]: (i) fu-
ture customers are influenced by them, and (ii) the retailers
can act on them to improve the quality of product or service.
However, if such review platforms are to be a reliable source
of information, the customers should leave an honest review.
A review is honest if it reflects customer’s observations and
experiences. How to dynamically incentivize the customers to
encourage them to leave an honest review?

The state of a product x ∈ {1(Bad), 2(Good)} de-
notes quality, the observation y ∈ {1(Bad), 2(Good)}
denotes experience, and the customers’ decision a ∈
{1(Neg. Review), 2(Pos. Review)}. When the customer writes
a good/ bad review when it has a good/ bad experience,
the review is honest. Here it is assumed that each customer
leaves a review, however, the nature of review depends on
the optimization (4). The information fusion objective is to
estimate the product or service quality and, Amazon or AirBnb
want to maximize the number of customers that report honest
experiences. This informative feedback from the social sensors
can be used by the retailers to improve the quality, and it will
also benefit the future customers in that they are well informed
before making a decision. In this sense, the objective (11)
improves the overall welfare.

III. STRUCTURE OF OPTIMAL INCENTIVE POLICIES

This section has three results. Sec.III-A formulates solving
for the optimal incentive policy (12) as a stochastic dynamic
programming problem. Sec.III-B provides sufficient conditions
on the model parameters (B, ra) under which the optimal
incentive policy for the fusion center can be completely
specified as a threshold policy. Sec.III-C provides a sample
path characterization of the optimal incentive sequence when
the fusion center employs the optimal policy.

A. Dynamic Programming Formulation

The optimal incentive policy µ∗ in (12) and the correspond-
ing optimal cost (value function) V (π) satisfy the Bellman’s
stochastic dynamic programming equation [2]:

Q(π, p) = c(p) + ρ
∑
a∈A

V (Tπ(π, a))σ(π, a),

V (π) = min
p∈[0,1]

Q(π, p), Jµ∗(π0) = V (π0), and (13)

µ∗(π) = arg min
p∈[0,1]

Q(π, p). (14)

where Tπ(π, a) is defined in (6) and σ(π, a) = 1′Rπaπ, and
c(p) is the information fusion cost defined in (8).
Discussion: Even though Bellman’s equation (13) specifies the
optimal policy, it has two problems:
(i) The state (belief) space Π(2) is an uncountable set. Hence
the dynamic programming equation (13) does not translate
into practical solution methodologies, as the optimal cost V (π)
needs to be evaluated at each π ∈ Π(2).
(ii) The action (incentive) space for the information fusion
center p ∈ [0, 1] is a continuum. It is well known [2] that
even for a finite action case, computing the optimal policies
is a computationally intractable PSPACE hard problem.

B. Structure of the Optimal Incentive Policy

We wish to determine conditions under which the optimal
incentive policy has the following intuitive threshold structure:
don’t incentivize if the estimate π < π∗, and incentivize using
an exactly specified incentive function otherwise. Some of the
advantages of the threshold policy are: (i) To compute the
threshold policy (as in Fig.1a), one only needs to compute the
single belief π∗; whereas a general policy (as in Fig.1b) re-
quires PSPACE hard dynamic programming recursion offline.
(ii) To implement a controller with a threshold policy, one
only needs to encode π∗ and the incentive function, so its
practically useful.
Incentive Function: For future reference, we define the in-
centive function of the fusion center ∆(ηy) ∈ [0, 1] as

∆(ηy) = [l1 − l2]
Byπ

1′Byπ
+ l3 (15)

where ηy is the private belief update (3) with πk replaced by
π,

l1 =
α2

δ2 − δ1
, l2 =

α1

δ2 − δ1
, l3 =

γ2 − γ1

δ2 − δ1
.

The incentive function (15) naturally arises by reformulat-
ing (4). A set of parameters in the incentive function that
ensure ∆(ηy) ∈ [0, 1] are l1 > 0, l2 > 0 and l3 > 0. A
sufficient condition is that α1 > α2, δ2 > δ1 and γ2 > γ1.
For other forms of reward functions (see Appendix C), the
expression for ∆(ηy) ∈ [0, 1] and the conditions on the model
parameters are suitably derived.
Model Assumptions: We now give sufficient conditions un-
der which the optimal incentive policy (13) has a threshold
structure.
(A1) The observation distribution Bxy = P(y|x) is TP2

(totally positive of order 2), i.e, the determinant of the
matrix B is non-negative.
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(A2) The reward vector ra is supermodular, i.e, r(1, 1) >
r(2, 1) and r(2, 2) > r(1, 2) for every p ∈ [0, 1].

(A1) is an assumption on the underlying stochastic model,
and enables the comparison of the posteriors. The observation
distribution being TP2 [2] implies that in higher states, the
probability of receiving higher observations is higher than in
lower states.
(A2) is required for the problem to be non-trivial. If it does
not hold and r(i, 1) > r(i, 2) for i = 1, 2, then a = 1 always
dominates a = 2; the sensors provide no useful information.
(see Sec.VII-D for assumptions in non-binary environments)

Main Result: Optimality of Threshold Incentive Policy
Theorem 1 below is our first main result. It provides a
closed form expression for the optimal policy µ∗(π) of the
controlled information fusion problem: the optimal policy has
threshold structure (as illustrated in Fig.1a). The choice over
a continuum of actions is reduced to a choice between two
exactly specified incentive policies. The optimal policy is not
unique. There exists a version of the optimal policy having
the structure as in Theorem 1.

Theorem 1. Under (A1) and (A2), the optimal incentive policy
defined in (12) is given explicitly as:

µ∗(π) =

{
0 if π(2) ∈ [0, π∗s (2));
∆(ηy=2) if π(2) ∈ [π∗s (2), 1].

(16)

Here the threshold state π∗s (2) ∈ (0, 1) depends on the choice
of φs ∈ (0, 1) defined in (8), and the parameters in the
incentive function ∆(ηy=2) defined in (15).

The auxiliary results required for the proof are provided in
the Appendix. These results show that due to the structure
of the social learning filter in (6), the choice of incentives
reduces from a continuum [0, 1] to a finite number at every
belief. Also, the incentive function ∆(ηy) is decreasing in π
for any y.

Proof. From Lemma 1 (see Appendix B), the value func-
tion (13) can be expressed as:

V (π) = min{ρV (π),∆(ηy=2)− φs + ρEV (π),

∆(ηy=1) + ρV (π)}.
⇒ V (π) = min{0,∆(ηy=2)− φs + ρEV (π)}, (17)

as ∆(ηy=1) ≥ 0.
By using the value iteration algorithm [2] on (17), we have

Vn+1(π) = min{0,∆(ηy=2)− φs + ρEVn(π)} (18)

with V0(π) = 0 ∀ π.
From Lemma 2 (see Appendix B), the incentive function is
decreasing. From the definition of First-Order Stochastic Dom-
inance (37), and Proposition 1, we have EVn(π) is decreasing
in π. Therefore, Vn+1(π) and hence V (π) is decreasing in π.

Let V (0) and V (1) denote the values for π =

{[
1
0

]
,

[
0
1

]}
.

It is seen by substitution that EV (0) = V (0) and EV (1) =
V (1). By definition, we know that ∆(ηy) ∈ [0, 1]. Using3

3Note that after normalization ∆(e1) = 1 and ∆(e2) = 0.

Lemma 2, let ∆(e1) > φs and ∆(e2) < φs. The value function
for the fusion center is given by (17). We have the following:

1) For V (π) = ∆(ηy=2) − φs + ρEV (π), V (0) =
∆(e1)−φs

(1−ρ) > 0, and V (1) = ∆(e2)−φs
(1−ρ) < 0.

2) For V (π) = 0, V (0) = V (1) = 0.
The value function V (π) in (17) is decreasing with a positive
value at e1 and a negative value e2, so must be zero at some
point(s). Let Σ = {π(2)|0 = ∆(ηy=2)−φs+ρEV (π)}. Since
the value function V (π) is monotone in π, the set Σ is convex.
Choosing π∗s (2) = {π̂(2)|π̂(2) > π(2) ∀ π(2) ∈ Σ}, the result
follows.

According to Theorem 1, computing the optimal incentive
policy is equivalent to finding the belief π∗s (2), below which
it is optimal not to provide any incentive p = 0; and
above which it is optimal to incentivize using ∆(ηy=2) at
every belief, to minimize the cost (see Fig.1a). Therefore,
the controlled information fusion problem reduces to a finite
dimensional optimization problem of finding a threshold state
π∗. Theorem 1 provides a closed form expression for the
optimal policy of the controlled information fusion problem:
the choice over a continuum of actions is reduced to a choice
between two exactly specified policies: µ(π) = 0, ∀ π and
µ(π) = ∆(ηy=2), ∀ π.

The practical usefulness of Theorem 1 stems from the
following: (i) the search space of decision policies µ reduces
from an infinite class of functions (over Π(2)) to those that
switch once between the specified policies; (ii) at each instant
(or belief) the fusion center only needs to decide between
p = ∆(ηy=2) and p = 0; (iii) the region in the belief space
Π(2) where it is optimal to incentivize using ∆(ηy=2) is
connected and convex (compare Fig.1a versus Fig.1b).

C. Sub-martingale Property of Optimal Incentive Sequence

Theorem 1 characterized the structure of the optimal in-
centive policy for controlled information fusion. A natural
question is: How does the actual sample path of the optimal
incentive sequence behave? Theorem 2 below gives a sample
path characterization of optimal incentive policy implemented
by the fusion center. It is shown that when the fusion center
aims to minimize the expected payout for gathering truthful
information to reduce the uncertainty in the Bayesian state
estimate, the incentive sequence is a sub-martingale; i.e, it
increases on average4 over time.

Theorem 2. Consider the information fusion problem with
optimal policy µ∗(π) in (16). Under (A1), the optimal incentive
sequence pk = µ∗(πk−1) is a sub-martingale.

Proof. Consider the sub-optimal policy µ̂(π) given as

µ̂(π) =

{
∆(ηy=2)− ε if π(2) ∈ [0, π∗(2));
∆(ηy=2) if π(2) ∈ [π∗(2), 1].

Here ε > 0 and π∗(2) ∈ [0, 1]. Let Wk = µ̂(πk−1).
From Lemma 3 (see Appendix B), ∆(ηy=2) is convex in π.

4Here average is over different iterations of the estimation process. For
example, each round of labelling/classification in Crowdsourcing can be seen
as one iteration.
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Let uS(πk+1) = ∆(ηyk=2) denote the price at time k+ 1. So
uS(π) is convex in π.
We know that the public belief πk is a martingale ([1]), i.e,
E[πk+1|Fk] = πk. For ε→ 0,

E[Wk+1|Fk] = E[uS(πk+1)|Fk] ≥ uS(E[πk+1|Fk])

≥ uS(πk) ≥Wk

by Jensen’s inequality and martingale property of the public
belief. Therefore Wk(= µ̂(πk−1)) is a sub-martingale.
Consider a function µ̄(π) given by

µ̄(π) =

{
0 if π(2) ∈ [0, π∗(2));
1 if π(2) ∈ [π∗(2), 1].

Let Hk = µ̄(πk−1). From Proposition 4 (see Appendix A),
(H.W )k is a sub-martingale. But (H.W )k = pk. Therefore,
the optimal incentive sequence pk = µ∗(πk−1) is a sub-
martingale, E[pk+1|Fk] ≥ pk, i.e, it increases on average over
time.

Typically in stochastic control problems, it is difficult to
characterize the optimal control sequence; one can only char-
acterize the optimal control policy. Theorem 2 is interesting
because we can characterize the optimal sequence of incentives
as a sub-martingale. According to Theorem 2, the optimal
incentive policy of the fusion center is such that the sample
path of the incentive sequence displays an increasing trend,
i.e, the incentives increase on average over time.
The usefulness of Theorem 2 stems from the following:
(i) it gives a sample path characterization of the optimal
incentive policy implemented by the fusion center; (ii) the
sub-martingale property assures that the average incentives
should always increase over time. This is useful in assessing
the reliability of the fusion center.
The increase in incentives over time can be attributed to the
fact that the senors polled for information at a later instant
have more accurate estimate of the state due to learning from
predecessors, and hence require higher compensation to reveal
the same.

IV. CONSISTENCY OF CONTROLLED INFORMATION
FUSION

An elementary application of the martingale convergence
theorem [26] shows that the social learning protocol (6) results
in social sensors forming an information cascade; that is, after
some time n∗, all sensors choose the same action and social
learning stops (see Theorem 5.3.1, [2]). Therefore, the true
state can never be estimated using social learning, indeed, the
belief will not converge to the true state asymptotically.

In this section, we show that by dynamically controlling
the incentives over time, the fusion center can indeed learn
the true state. However, this comes at the price of employing
a sub-optimal incentive policy. We further provide uniform
bounds on the additional cost incurred for consistency5. When
it is sufficient to know the state with a degree of confidence,
policies that guarantee state estimation in finite time are

5Let the true state be x = θ. The pair (θ, πk) is consistent, if πk converges
to a point mass at θ in probability.

discussed. We also provide uniform bounds on the budget
saved as a result of estimating the state only upto a degree
of confidence.

A. Controlled Information Fusion

Fig.3 shows the bi-directional interaction between the fusion
center and the social sensor. The incentives chosen by the
fusion center affects the reward function of the social sensors,
and hence affects the decisions chosen. The decisions chosen
in turn affect the estimate of the state (1) for the fusion
center as in (6). Recall that social learning terminates after
a finite horizon (see remark on Information cascade after (7)).
Theorem 3 below shows how to control the incentives to the
social sensors to delay herding and information cascades, and
hence estimate the state asymptotically. In particular, it is
shown how the fusion center can control the incentives such
that the fusion of Bayesian estimates is consistent.

Bayesian Filter

Information
Fusion Center Social Sensor k

Incentive pk

Public Belief πk+1 Decision ak

Private Belief ηyk

Fig. 3: Bi-directional interaction between the information fusion cen-
ter and the social sensor. The fusion center provides an incentive pk to
the social sensor, which has a private belief ηyk after observation yk.
The social sensor takes a decision ak and this quantized information
on the underlying state is used to update the public belief πk+1

using a social learning Bayesian filter (6). The incentive pk at time k
directly modifies the reward function of the social sensor, and hence
affects the state estimate πk+1 at time k + 1.

We will express the belief space Π(2) as a disjoint union
of three connected regions to describe the sensors’ decision
dynamics as a function of the incentive p: a region Pp1 - where
action a = 2 is optimal; a region Pp3 - where action a = 1 is
optimal; a region Pp2 - where action a = y is optimal. This
partition is possible because of (A1) and (A2); see [27]. From
(4), the decision of the social sensor depends on the private
belief ηy and the reward ra (defined in (5)). Therefore, define:

Pp1 = {π ∈ Π(2) : (r1 − r2)′ηy=1 ≤ 0}
Pp2 = {π ∈ Π(2) : (r1 − r2)′ηy=1 > 0 ∩ (r1 − r2)′ηy=2 ≤ 0}
Pp3 = {π ∈ Π(2) : (r1 − r2)′ηy=2 > 0} (19)

where ra for a = {1, 2} are the social sensors’ rewards and Pp
models the explicit dependence of the width of the regions on
the incentive parameter p through ra, ηy=1 and ηy=2 denote
the private belief updates after y = 1 and y = 2 respectively.
The region Pp1 ∪P

p
3 is the herding region and Pp2 is the social

learning region for any p ∈ [0, 1].
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Theorem 3. Under (A1) and (A2), the following relation holds
between the incentive pk and the public belief πk+1:

πk+1 ∈

 P
p
3 iff pk ∈ [0,∆(ηyk=2));
Pp2 iff pk ∈ [∆(ηyk=2),∆(ηyk=1));
Pp1 iff pk ∈ [∆(ηyk=1), 1].

where the regions Ppi for i = 1, 2, 3 are defined in (19), and
∆(ηy) is as in (15).

Proof. We’ll prove that π ∈ Pp2 iff p ∈ [∆(ηy=2),∆(ηy=1)).
Other cases are proved similarly. We can write

r1 = [(δ1p− γ1) (δ1p− α1 − γ1)], (20)
r2 = [(δ2p− α2 − γ2) (δ2p− γ2)]. (21)

By definition,

Pp2 = {π ∈ Π(2) : (r1−r2)′ηy=1 > 0 ∩ (r1−r2)′ηy=2 ≤ 0}.

We have,

(r1 − r2)′ηy=1 > 0⇔ p <
1

δ2 − δ1

[
[α2 − α1]ηy=1

+(γ2 − γ1)
]

= ∆(ηy=1).

(r1 − r2)′ηy=2 ≤ 0⇔ p ≥ 1

δ2 − δ1

[
[α2 − α1]ηy=2

+(γ2 − γ1)
]

= ∆(ηy=2).

According to Theorem 3, relation between the incentive pk at
time k and the state estimate (public belief πk) at the next
instant k+1 is such that, when pk belongs to the intervals de-
fined by the private beliefs (in the incentive function ∆(ηyk)),
the widths of the herding and social learning regions change
(see Fig.4) so that the public belief (πk+1) belongs to the
desired Ppi . Fig.4 shows the variation of the width of the
regions with respect to the incentive parameter p. Theorem 3
characterizes the sensitivity of the regions Pp1 ,P

p
2 ,P

p
3 with

respect to the incentive p ∈ [0, 1], and Corollary 1 below shows
how to stop the information cascade so that social learning can
proceed indefinitely so that the state estimate converges to the
true state.

0.5 1.0

Incentive p

B
el
ie
f
π

Herding Region (a = 2)

Social Learning
Region (a = y)

e1

e2

Herding Region (a = 1)

P
p

1

P
p

2
P

p

3

Fig. 4: Herding (Pp
1 ∪ P

p
3 ) and social learning (Pp

2 ) regions with
respect to the incentive parameter p. It is seen that when the incentives
are small (close to 0), the sensors herd on low quality actions (a = 1);
and when the incentives are high (close to 1), the sensors herd on
high quality actions (a = 2); however, only the actions in the social
learning region are informative or reflect the sensors’ true valuation.

Corollary 1. Let pk = ∆(ηyk=2) for k = 1, 2, . . .. The fusion
of Bayesian estimates is consistent, i.e, the fusion center learns
the true state asymptotically.

Discussion: We know that the fusion center can force the
state estimates to be in the social learning region by choosing
incentives in the range p ∈ [∆(ηy=2),∆(ηy=1)), see Fig.4.
From (19), Proposition 2 and Proposition 3 in the Appendix,
the social sensors’ decision likelihood matrices Rπa (as in (6))
in regions Pp1 ,P

p
2 , and Pp3 for any p ∈ [0, 1] are[

0 1
0 1

]
,

[
B11 B12

B21 B22

]
, and

[
1 0
1 0

]
respectively. In the herding region Pp1 ∪ P

p
3 , the decision

of the social sensor is independent of the public belief and
the public belief (6) is frozen. In the social learning region
Pp2 , the sensors take informative actions; i.e, each sensor acts
according to its observation/valuation. Informativeness is in
the sense of Blackwell; see [2]. For any two observation
matrices O1 and O2, O1 is more informative than O2 in the
Blackwell sense (O1 �B O2) if O2 = O1 Γ, for any stochastic
matrix Γ. When the sensors act according to their observations,
π ∈ Pp2 , and the decision likelihood matrix in (6) RπS = B; and
when the sensors don’t act according to the observations (they

herd), π ∈ Pp3 , the decision likelihood matrix RπH =

[
1 0
1 0

]
.

We have for Γ =

[
1 0
1 0

]
, RπH = RπSΓ⇒ RπS �B RπH .

In the social learning region, sensors take informative ac-
tions a = y; or Rπa = B. The observations are condition-
ally independent given the true state. Therefore, by suitably
controlling the incentives, the fusion center fuses information
that is i.i.d on the true state. It is well known [28], [29]
that fusion of Bayesian estimates is consistent (convergence
in probability); i.e, for a point mass at the true state θ denoted
as g(θ), limk→∞ P(|πk − g(θ)| > ε) = 0 ∀ ε > 0. In other
words, the fusion center can learn the true state asymptotically
by choosing the incentives as pk = ∆(ηyk=2) for k = 1, 2, . . ..

B. Cost of consistency for the fusion center

When the incentive policy is the optimal threshold pol-
icy (16), the fusion of Bayesian estimates computed from the
social sensors’ decisions (6) is not consistent. This is because,
the optimal incentive policy for the fusion center is such
that below a certain threshold it is optimal to not incentivize
(see Fig.1a). From Theorem 3, when the fusion center stops
incentivizing p = µ∗(π) = 0, the public belief is in the herding
region Pp3 . In the herding region, social learning ceases and
there is no improvement in uncertainty – mean square error
between the state estimate and the true parameter remains at a
fixed non-zero value. If, however, the fusion center chooses
a sub-optimal policy (23), it will incur additional cost for
the incentives; but the fusion of estimates computed from the
social sensors’ decisions (6) will be consistent (Corollary 1).
Theorem 4 below provides uniform bounds on the additional
cost incurred by the fusion center for employing a sub-optimal
incentive policy that results in consistent information fusion.
Consider the objective function for the fusion center:

Wµc(π) = Eµc{
∞∑
k=0

ρkcµc(pk)|π0 = π} (22)
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where Wµc(π) denotes the cost incurred by employing the
sub-optimal policy (compare with (16))

µc(π) = {∆(ηy=2) ∀ π(2) ∈ [0, 1]} . (23)

Theorem 4. Let (A1) hold. The additional cost (on average)
incurred by the fusion center for employing the sub-optimal
policy µc(π) in (23) instead of the optimal policy µ∗(π) in (16)
is bounded as:

sup
π
|Wµc(π)− Jµ∗(π)| ≤ 2

(1− φs)
1− ρ

(24)

where Jµ∗(π) is the optimal cost (12).

Proof. Define the following region in the belief space Π(2):

H = {π|π(2) ≤ π∗(2)}. (25)

Here H denotes the region where the optimal policy in (16) is
such that µ∗(π) = 0. For any sub-optimal policy µc and the
corresponding cost Wµc(π), it is clear that Wµc(π)−Jµ∗(π) ≥
0 ∀ π. Also, Wµc(e2) = Jµ∗(e2). Let I denote the indicator
function. We have

Wµc(π)− Jµ∗(π) = I(π ∈ H){Wµc(π)− Jµ∗(π)}
+ I(π /∈ H){Wµc(π)− Jµ∗(π)}

⇒ sup
π
|Wµc(π)− Jµ∗(π)| ≤

{
sup
π
I(π ∈ H){Wµc(π)− Jµ∗(π)}

+ sup
π
I(π /∈ H){Wµc(π)− Jµ∗(π)}

}
.

where H is defined in (25). From Theorem 1, we know that
Jµ∗(π) = V (π) is monotone (non-increasing) in π. Similar
arguments can be used to establish that Wµc(π) is monotone
(non-increasing) in π. Therefore, we have for

sup
π
|Wµc(π)− Jµ∗(π)| ≤ 2

{
sup
π
I(π ∈ H)Wµc(π)

}
(26)

as Jµ∗(π) = 0 ∀ π ∈ H from (17) and Theorem 1.
Equation (26) follows from

Eµc
{ ∞∑
k=0

ρk{cµc(pk)}
}
> Eµc

{ ∞∑
k=0

ρk{I(πk ∈ H)cµc(pk)}
}
.

The set H defined in (25) is compact by definition. For the
discount factor ρ ∈ [0, 1) and bounded instantaneous costs, the
cumulative discounted cost is bounded [2]. Therefore in (26),

sup
π
{I(π ∈ H)Wµc(π)} = max

π
{I(π ∈ H)Wµc(π)}

and π̃ = argmaxπ{I(π ∈ H)Wµc(π)}. We have for π0 = π̃,

max
π
{I(π ∈ H)Wµc(π)} = Eµc

{ ∞∑
k=0

ρk{cµc(pk)}
∣∣∣π0 = π̃

}
≤ Eµc

{ ∞∑
k=0

ρk max
∆(ηy=2):π∈H

cµc(pk)
}

= (1− φs)E
{ ∞∑
k=0

ρk
}

=
(1− φs)

1− ρ
.

Wµc(π) and Jµ∗(π) are decreasing in π, and can be es-
tablished using similar arguments as in Theorem 1 and

Wµc(π)−Jµ∗(π) ≥ 0 ∀ π. Theorem 4 characterizes the trade-
off between consistency and cost of information acquisition. It
says that when the fusion center employs a sub-optimal policy,
the average additional cost incurred is bounded above by the
weight φs in the information fusion cost (8), discount factor ρ
that captures the degree of impatience of the fusion center.

The usefulness of Theorem 4 stems from the following:
(i) It gives an upper bound on the additional discounted cost
incurred when the fusion center chooses the incentives such
that the fusion of Bayesian estimates computed as in (6) is
consistent. (ii) It helps in choosing the weight φs and the
discount factor ρ for the fusion center.

C. Finite time bounds for the fusion center

In Sec.IV-B, it was shown that by employing a sub-optimal
policy the fusion center can estimate the true state asymp-
totically. However, it is often enough to know the state with
a degree of confidence. In this section, we obtain uniform
bounds on the budget saved by estimating the state upto a
degree of confidence.

The degree of confidence characterizes regions in the belief
space Π(2) that can be used to estimate the states. For a degree
of confidence ϑ ∈ (0, 1), any belief in the confidence region
π(2) ∈ [0, ϑ] is identified with state x = 1, and any belief
in the confidence region π(2) ∈ [1 − ϑ, 1] is identified with
state x = 2. For example, when the public belief (posterior)
is such that π(2) ∈ [0.9, 1], then the fusion center is (atleast)
90% confident that the state x = 2, and if ϑ < 0.1, the state
is estimated as x = 2. For a degree of confidence ϑ ∈ (0, 1),
consider using the following policy

µf (π) =

 0 if π(2) ∈ [0, ϑ];
∆(ηyk) if π(2) ∈ (ϑ, 1− ϑ);
0 if π(2) ∈ [1− ϑ, 1].

(27)

It can be shown using martingale convergence theorem [26]
that when using the policy (27), the public belief hits one of
the two confidence regions in finite time. The arguments are
similar to those used to establish information cascades occur
in finite time in [6] and in [2][Theorem 5.3.1].
The following theorem provides a bound on the budget saved
by employing the policy in (27) instead of the policy (23). Let

πϑ =

[
ϑ

1− ϑ

]
and ηϑ =

By=2πϑ
1′By=2πϑ

.

Theorem 5. Let (A1) hold. For a degree of confidence ϑ, the
budget saved by the fusion center by employing the policy
µf (π) in (27) instead of the policy µc(π) in (23) is bounded
as:

sup
π
|Wµc(π)−Wµf (π)| ≤ 2

(1− φs)
1− ρ

+
|∆(ηϑ)− φs|

1− ρ
.

(28)

where ρ is the discount factor.

Discussion: The proof follows using arguments similar
to Theorem 5 in the paper. Theorem 5 provides an uniform
bound on the budget saved by employing the policy µf (π)
in (27) instead of µc(π) in (23). A bound on the budget saved
with respect to the optimal policy µ∗(π) can be obtained from
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Theorem 5 and Theorem 4 using the triangle inequality of the
norm,

|Jµ∗(π)−Wµf (π)| ≤ |Wµc(π)−Jµ∗(π)|+|Wµc(π)−Wµf (π)|.

In Theorem 5, the fact (Lemma 2) that ∆(ηy=2) is decreasing
in π, and |ε| ≥ ε is utilized in deriving the bounds.

V. STRATEGIC BEHAVIOUR IN SOCIAL SENSORS

The information fusion center polls the social sensors in
a pre-determined order and they decide what information to
reveal, i.e, it was assumed that the sensors do not hide their
signals and are not strategic. However, the rewards can be
suitably designed so that the sensors reveal information when
polled. In this section, we show how to design the reward
functions to prevent the social sensors from being strategic.
This implies that the social sensors have no forward-looking
tendencies and reward function of the social sensors has
no externalities, and the public belief (1) forms a sufficient
statistic for the history of past actions and incentives.

Under an additional minor restriction on the reward parame-
ters, it is shown below that the social sensors have no incentive
to delay or hide their signals. This restriction is independent
of the actual form of the rewards when the rewards in both
states are non-zero.

A. Social sensors do not display contrarian behavior

The optimal policy for the fusion center dictates that it either
incentivize or not incentivize, see Theorem 1. When the fusion
center is offering incentives (∆(ηy=2)), from Theorem 3, it is
seen that it is optimal for the social sensors to act according
to their observations. As the social sensors are assumed to be
Bayes rational, they have no incentive to deviate. When the
fusion center is not incentivizing, the sensors always herd.

B. Social sensors are not strategic

Let RH and RS denote the regions where the fusion
center does not incentivize (µ(π) = 0) and incentivizes
(µ(π) = ∆(ηy=2)) respectively. A social sensor deciding at
time k considers the following scenarios:
a.) πk ∈ RS and πk+1 ∈ RH . In other words if the sensor

delays revealing information and the belief update after
the next (k + 1) sensors’ decision belongs to the region
where there is no incentivization.
pk+1 = 0, so the social sensor k would be better off
revealing at time k.

b.) πk, πk+1 ∈ RS and πk+1(2) < πk(2).
Consider the rewards for the social sensor from (5),

r1 = [δ1p+ Γ11 δ1p+ Γ21]

r2 = [δ2p+ Γ12 δ2p+ Γ22] (29)

Assume Γij > 0 for all i, j without loss of generality.
Note that the reward vector ra is also required to be super-
modular for any p , so Γ11 > Γ21 and Γ22 > Γ12. Let
T (π, yk) =

Bykπ

1′Bykπ
denote the private belief of sensor k.

There are two possible observations for the social sensor
k, yk = 1, 2. We will establish the result for yk = 1, and

the result follows immediately for yk = 2.
Let r̄a = [δapk+1 + Γ1a δapk+1 + Γ2a].
Theorem 6. Let the observation of sensor k be yk =
1. There is a discount factor D ∈ (0, 1] such that
r′1T (πk, yk = 1) ≥ D r̄′1T (πk+1, yk = 1).

Proof. From the definition of First-order stochastic dom-
inance and TP2 on B, we have the following6

r′1T (πk, yk = 1) ≤ r̄′1T (πk+1, yk = 1)

∴ r′1T (πk, yk = 1) > D r̄′1T (πk+1, yk = 1),

where D =
r′1T (πk, yk = 1)

r̄′1T (πk+1, yk = 1)
− ε, for ε > 0.

Considering the largest possible deviation7 πk(2) = 1
and πk+1(2) = 0, it is easily seen that the smallest value
for D = Γ21

δ1+Γ11
− ε < 1.

Discussion: The social sensors are not more forward
looking than D from Theorem 6. By suitably choosing
the reward parameters, we can obtain D = 1. This implies
that the social sensors have no incentive to deviate when
yk = 1.

c.) πk, πk+1 ∈ RS and πk+1(2) > πk(2). By using similar
arguments as in Theorem 6, we obtain the discount factor
D = Γ12

δ2+Γ22
− ε < 1. By suitably choosing the reward

parameters, we can obtain D = 1. This implies that the
social sensors have no incentive to deviate when yk = 2.
Also, the result follows immediately for yk = 1.

It was shown that when the reward parameters are chosen so
that D = 1, myopically maximizing the expected reward is a
Markov perfect equilibrium.

VI. CONTROLLED INFORMATION FUSION WITH DYNAMIC
STATES

So far, we considered the problem of incentivized infor-
mation fusion for estimating the random variable x ∈ X . In
this section, we consider the information fusion to estimate
the state of a Markov chain xk for k = 0, 1, 2, · · · with social
sensors. The dynamic states might correspond to, for example,
a change in the product/ service quality on AirBnb or Amazon.

Let the state xk evolve as a Markov chain on the space X
with a transition probability matrix P and an initial distribution
π0 in (1). Below we briefly highlight the changes in the social
learning model in Sec.II-A for the case of dynamic states.
The private belief update in (3) for the social sensors taking
the possible state change into account is given as

ηyk =
BykP

′πk−1

1′BykP ′πk−1
(30)

The public belief update in (6) taking the possible state change
into account is given as

πk = Tπ(πk−1, ak) =
R
πk−1
ak P ′πk−1

1′Rπk−1
ak P ′πk−1

. (31)

6Note that for any a, b > 0, a < b⇒ a > (a
b
− ε)b for any ε > 0.

7Note that πk, πk+1 ∈ RS . Clearly, this is included in πk(2), πk+1(2) ∈
[0, 1].
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The optimal incentive policy in case of a random variable
µ∗(π) in Theorem 1 is near optimal for the case of dynamic
states, when transitions out of the current state is allowed only
with a small probability. This is shown in Theorem 7 below.

Let µ∗(π) denote the optimal policy for estimating/ local-
izing the random variable (P = I); and µ∗ε (π) denote the
optimal policy for estimating/ tracking the state of a Markov

chain with P =

[
1− ε1 ε1
ε2 1− ε2

]
, where ε1, ε2 > 0.

Theorem 7. Let ρ ∈ [0, 1) denote the economic discount
factor. Let Vµ∗(π) and Vµ∗ε (π) denote the optimal costs
incurred by employing the optimal policy µ∗(π) and µ∗ε (π)
respectively. The following holds:

Vµ∗(π)− Vµ∗ε (π) ≤ 2ρ(1− φs)(ε1 + ε2)

(1− ρ)2
×

max{|B21 −B11|, |B22 −B12|}. (32)

Discussion: The proof follows from [30][Theorem 2].
Theorem 7 says that the policy µ∗(π) incurs a total cost
Vµ∗(π) that is within O(ε1 + ε2) of the total cost Vµ∗ε (π).
When ε1, ε2 << 1, the policy µ∗(π) for the state localization
problem (P = I) is near optimal for the state tracking
problem (P 6= I).

Characterizing the nature of the optimal incentive sequence
(as in Sec.III) in case of a random variable relied on the
crucial fact that the belief is a martingale unconditional on
the state. However, when the states are changing, the public
belief (31) is not a martingale (see [1]). This implies that,
even though, µ∗(π) is near optimal, the incentive sequence
that results from the fusion center employing µ∗(π) need not
show an increasing trend on average.

VII. NUMERICAL RESULTS

Sec.VII-A below illustrates controlled information fusion
with quadratic cost unlike (8). It is shown that a multi-
threshold incentive policy is optimal for the fusion center.
Sec.VII-B illustrates the sensitivity of the optimal threshold
(16) to the parameters φs (the weight in (8)) and ρ (discount
factor in the objective (11)) that are chosen by the fusion
center. Sec.VII-C illustrates the relation between the informa-
tion gathering capabilities of the sensor (observation matrix
B in (2)) and the average incentives provided by the fusion
center. Sec.VII-D discusses the formulation and a numerical
simulation for the controlled information fusion in non-binary
environments.

Bellman’s equation (13) is solved by discretizing the belief
space Π(2). The optimal incentive policy and the optimal cost
for the fusion center are computed by constructing a uniform
grid of 1000 points for π(2) ∈ [0, 1] and then implementing
the policy and value iteration algorithm [2] for a duration of
N = 100.

A. Multi-threshold Incentive Policies

This subsection illustrates numerically the nature of the
optimal incentive policies for formulations of the information
cost more general than (8), in particular we consider the

α1 = 0.288 α2 = 0.278 β1 = 0.11
β2 = 0.1 γ1 = 0.1 γ2 = 0.414

TABLE I: For δ1 = 0.3, δ2 = 0.95, the following parameters were
obtained as a solution of ∆(e1) = 1 and ∆(e2) = 0 for the reward

vector (44) parameters with the observation matrix B=

[
0.8 0.2
0.4 0.6

]
.

entropy cost. We will see that the optimal incentive policy
has a multi-threshold structure (as in Fig.1b).
Expenditure & Entropy Cost for Information Fusion:
Suppose the fusion center aims to minimize the expenditure
to receive truthful accounts of the information gathered by
the social sensors in addition to minimizing the entropy of
the state estimate, i.e,

c(p) = p+ ψe(π)Ce(π)− φeI(a = y|π) (33)

where φe ∈ (0, 1) denotes the scalar weight, p denotes the
expenditure, ψe denotes the importance of the entropy cost,
and Ce(π) = −

∑2
i=1 π(i)log2π(i) for π(i) ∈ (0, 1) and

Ce(π)
∆
=0 for π(i) = {0, 1}. Fig.7 shows the optimal cost

and optimal policy for the fusion center when it considers
entropy of the state estimate in addition to the expenditure in
the information fusion cost (8). It can be seen that the optimal
policy has a multi-threshold structure, and the optimal cost is
discontinuous. A discontinuous cost implies a slight change in
the initial conditions will lead to significantly different costs.
Optimal policy being multi-threshold is unusual: it implies that
if it is optimal to incentivize at a particular belief, it need not
be optimal to do the same when the belief is larger.

B. Sensitivity of Optimal Incentive Policy

The following numerical results along with Theorem 4
provide a rationale for choosing the parameters: φs – the
weight in the information fusion cost (8) and ρ – the discount
factor in the fusion center’s objective (11).

(i) Usefulness of Information vs Incentivizing:
We illustrate the trade-off between usefulness of information
and incentivizing in the information fusion cost (8), and see
how it affects the threshold π∗s in (16). Fig.5 shows the affect
of increasing the weight φs when the remaining parameters
are the same. It can be seen that π∗s is decreasing with φs.
From Theorem 4, higher φs implies that the additional cost
for employing a sub-optimal policy is smaller; in other words,
π∗s (2) is smaller.
(ii) Optimal cost vs Discount factor:
We illustrate the relation between total cost incurred by the
fusion center for different discount factors ρ in the objective
function (11). The discount factor models the degree of
impatience of the fusion center, as the cost incurred at time k
is ρkc(pk). A smaller discount factor indicates that the fusion
center pays more attention to the current costs than future
costs. It is seen from Fig.6 that a higher discount factor leads
to smaller (expected) costs for higher states. This indicates that
it is beneficial for the fusion center to attach more importance
to future costs as it should also take into account the benefit
from sensors performing social learning.
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Fig. 5: Usefulness of information vs Incentivizing trade-off for the fusion center. It can be seen that π∗(2) is decreasing with φs – a higher
weight will necessitate incentivizing sooner. According to Theorem 4, higher φs implies that the additional cost for employing a sub-optimal
policy is smaller; in other words, π∗

s is smaller. The parameters of the incentive function (15) are given in Table I and the discount factor
ρ = 0.4. Here φs denotes the weight in the information fusion cost (8).
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Fig. 6: Optimal cost vs Discount factor. It is seen that a higher discount factor leads to smaller (expected) costs for higher states. This
indicates that it is beneficial for the fusion center to attach more importance to future costs as it should also take into account the benefit
from sensors performing social learning. The parameters of the incentive function (15) are specified in Table I and the weight φs = 0.4.
Here ρ denotes the discount factor in the objective (11) and φs denotes the weight in the information fusion cost (8).
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(a) The parameters are in Table I with φe = 0.25, discount
factor ρ = 0.8, and ψe(π) = 0.1 − π2(2). Here ψe(π) captures
the requirement of higher weight when the belief is smaller.
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Optimal Incentive Policy
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(b) Discontinuous optimal cost. The parameters are in Table I
with φe = 0.4, discount factor ρ = 0.6, and ψe(π) = 0.6 ×
I(π(2) < 0.75) − 0.35 × I(π(2) > 0.75). Here ψe(π) captures
the requirement of higher weight when the belief is smaller.

Fig. 7: Multi-threshold incentive policy with entropy cost. The regions in the belief space Π(2) where it is optimal to not incentivize
µ∗(π) = 0 is no more connected and convex. Having a connected region in the belief space where it is optimal not to incentivize has
implications on the confidence of the fusion center in implementing the incentive policy: once it is optimal to incentivize at a certain belief,
it need not be optimal to continue incentivizing when the belief is larger, i.e, when it is more certain about the estimate of the state. The
optimal cost is discontinuous in Fig.7b, and this implies that a slight change in the initial conditions will lead to a significantly different
cost.
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Fig. 8: The figure shows the incentives averaged over independent sample paths for the fusion center over time for observation matrices B,
B2 and B3. The observation matrices are ordered in the decreasing order of informativeness (see Footnote 8). The parameters are specified
in Tables I & II. The weight φs = 0.4 in the information fusion cost (8) and the discount factor ρ = 0.6. It can be seen that the range (or
the slope) of the average incentives over the time horizon is highest for the case of observation matrix B. The average incentives display an
increasing trend. The zoomed in subfigure shows the increasing trend in case of observation matrix B3. It can be seen that average incentives
offered in case of B3 is higher than B2 which in turn is higher than B.

C. Sample Path of Optimal Incentives

This subsection illustrates the sample path properties of the
optimal incentive sequence over time (which was characterized

in Theorem 2 to be a sub-martingale). Fig.8 shows the average
incentives provided to the social sensors over time. The fusion
center employs the optimal incentive policy (16) and fuses the
information revealed by social sensors in a Bayesian way (6).
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Obs.
matrix B2

α1 = 0.3132 α2 = 0.3032 β1 = 0.11
β2 = 0.1 γ1 = 0.1 γ2 = 0.414

Obs.
matrix B3

α1 = 0.3233 α2 = 0.3133 β1 = 0.11
β2 = 0.1 γ1 = 0.1 γ2 = 0.414

TABLE II: The reward vector (44) parameters for B2 and B3. For
δ1 = 0.3, δ2 = 0.95, the following parameters were obtained as a
solution of ∆(e1) = 1 and ∆(e2) = 0 for the reward vector (44)

parameters with observation matrix B=

[
0.8 0.2
0.4 0.6

]
.

Each sample path has a duration of N = 500, i.e, sequential
information fusion from 500 social sensors. The figure shows
the average over 100 independent such sample paths for three
different observation likelihood matrices (2). We consider the
following observation likelihood matrices for illustrating the
relation between the information gathering capabilities of the
sensor (2) and the average incentives provided by the fusion
center: B, B2, and B3. We know that B is more informative
than B2, which is in turn more informative than B3, in the
Blackwell sense [2].

Parameters: The parameters of the incentive function (15)
using the resolution dependent reward (44) for B2 and B3 are
specified in Table II. In Fig.8, it can be seen that the range (or
the slope) of the average incentives over the time horizon is
highest for the case of observation matrix B (compared to B2

and B3). It can be seen from Fig.8 that the average incentives
display an increasing trend.

D. Controlled Information Fusion in non-binary environments

In this section, we briefly discuss the formulation for
multiple states. Partial results on social learning with multiple
states and 2 actions appears in [27]. In the controlled fusion
problem considered in this paper, the social sensors reveal
the observation to the fusion center. This requires that the
cardinality of A and Y be equal. Due to the complexity of
analyzing the structural results for the optimal policy in case of
multiple actions and states, we only describe the formulation
and illustrate the incentive policy using a numerical simulation
for a X = A = Y = {1, 2, 3}. When |X | = 3, the public belief
is in the belief space

Π(3)
∆
={π ∈ R2 :

∑
i

π(i) = 1, 0 ≤ π(i) ≤ 1 for i ∈ {1, 2, 3}}.

The number of regions in the space Π(3) that need be
considered for analyzing the structural results of the optimal
incentive policy are 5 (see (35) below) as opposed to 3 in (19).
Model Assumptions:
(A’1) The observation distribution Bxy = P(y|x) is TP2

(totally positive of order 2), i.e, all second order minors
of matrix B are non-negative.

(A’2) The reward vector ra is supermodular, i.e, ra+1− ra is
an increasing vector for a = {1, 2} and every p ∈ [0, 1].

The social sensors’ decision a(π, y) = arg max r′aηy is
increasing in π and y under (A’1) and (A’2); see [2]. This
can be used to establish the single crossing condition,

{π ∈ Π(3) : (ra − ra+1)′ηy ≤ 0}
⊆{π ∈ Π(3) : (ra − ra+1)′ηy+1 ≤ 0}. (34)
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Fig. 9: Optimal Incentive Policy for social learning weight φs = 0.6,
ρ = 0.8, β1 = 0.6771, β2 = 0.5465, β3 = 0.7113, δ1 = 0.3, δ2 =
0.4, δ3 = 0.5, γ1 = 0.5, γ2 = 0.3, γ3 = 0.2, and αa = 0 for all
a ∈ {1, 2, 3}. The belief space Π(3) was discretized into a grid of
5151 belief points using Freudenthal triangulation [2]. The incentive
p ∈ [0, 1] was discretized into 50 values. Note that the optimal policy
is a non-convex, non-monotone function of the belief.

We now can define the following regions in the belief simplex
Π(3) (compare with (19)):

Pp1 = {π ∈ Π(3) : (r1 − r3)′ηy=1 ∩ (r2 − r3)′ηy=1 ≤ 0},
Pp2 = {π ∈ Π(3) : (r1 − r3)′ηy=2 ≤ 0 ∩ (r2 − r3)′ηy=2 ≤ 0

∩ (r1 − r2)′ηy=1 ≤ 0},
Pp3 = {π ∈ Π(3) : (r1 − r3)′ηy=3 ≤ 0 ∩ (r2 − r3)′ηy=3 ≤ 0

∩ (r1 − r2)′ηy=2 ≤ 0 ∩ (r2 − r3)′ηy=2 > 0

∩ (r1 − r2)′ηy=1 > 0 ∩ {(r1 − r3)′ηy=1 > 0},
Pp4 = {π ∈ Π(3) : (r1 − r2)′ηy=3 ≤ 0 ∩ (r2 − r3)′ηy=3 > 0

∩ (r1 − r2)′ηy=2 > 0 ∩ (r1 − r3)′ηy=2 > 0},
Pp5 = {π ∈ Π(3) : (r1 − r2)′ηy=3 > 0 ∩ (r1 − r3)′ηy=3 > 0}.

(35)

The value function for the fusion center is given by:

V (π) = min{c(p) + ρ
∑
a

5∑
j=1

V (T j(π, a))σ(π, a)I(π ∈ Ppj )},

V (π) = min
p∈[0,1]

{
p− φsI(π ∈ Pp3 )+

ρ
∑
a

5∑
j=1

V (T j(π, a))σ(π, a)I(π ∈ Ppj )
}
. (36)

Here T j(π, a) =
Rjaπ

1′Rjaπ
, with Rj = BM j for j = 1, 2, · · · , 5.

Fig.9 shows the optimal incentive policy for a 3 state, obser-
vation, and action model. Lemma 2 in the paper can be used
to find the matrices M j for j = 1, 2, · · · , 5. The observation
distribution for the controlled fusion problem for 3 states and
actions is chosen as:

B =

0.7479 0.1986 0.0536
0.6023 0.2543 0.1434
0.2785 0.2459 0.4756

 .
The value iteration algorithm based on (36) was run for a

horizon N = 100.

Remark (Approximation Methods). Using the structural re-
sults in this paper, stochastic approximation algorithms can be
modified to search for optimal policies restricted to the class of
policies having the threshold structure; see [2][Section 12.4.2].
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VIII. CONCLUSION AND FUTURE WORK

Unlike data fusion involving physical sensors for tracking
targets, this paper is motivated by information fusion with
social sensors, which provide reviews on social media review
platforms such as Amazon, Yelp, and Airbnb. Our main
objective is to control the information fusion by dynamically
providing incentives to the social sensors. We presented five
main results. Theorem 1 showed that under reasonable con-
ditions on the model parameters, the optimal incentive policy
has a threshold structure. The optimal policy is determined in
closed form, and is such that it switches once between two
exactly specified incentive policies. Theorem 2 characterized
the sample path property of the optimal incentive sequence that
results from fusion center employing the optimal threshold
policy. It was shown that the optimal incentive sequence is
a sub-martingale. Theorem 3 showed how the fusion center
can employ a sub-optimal policy and thereby facilitate social
learning indefinitely, to learn the true state asymptotically. In
other words, it was shown how controlled information fusion
with social sensors can be consistent. Theorem 4 provided
uniform bounds on the average additional cost incurred, by
employing a sub-optimal policy, for consistency. Theorem 5
provided uniform bounds on the budget saved by employing
a policy that estimates the state with a degree of confidence,
instead of the optimal policy. Finally, Theorem 7 established
that the optimal policy for estimating a random variable is
near optimal for tracking a changing state, when out-of-state
transition probabilities are small.

While the formulation of the controlled information fusion
problem applies to arbitrary finite state, observation and action
spaces, our structural analysis of the optimal incentive policies
are currently applicable only to the 2 state case. We briefly
discussed the formulation for the case of 3 states, observations
and actions, and highlighted the difficulty in deriving structural
results in non-binary environments.

APPENDIX A
DEFINITIONS AND PRELIMINARIES

Definition 1. First-Order Stochastic Dominance (FSD) (≥s):
Let π1, π2 ∈ Π(2) be any two belief state vectors. Then π1 ≥s
π2 if

2∑
i=j

π1(i) ≥
2∑
i=j

π2(i) for j ∈ {1, 2}. (37)

Equivalently, π2 ≥s π1 iff for all v ∈ V , v′π2 ≤ v′π1, where
V denotes the space of 2-dimensional vectors v, with non-
increasing components, i.e, v1 ≥ v2 ≥ . . . vX .

Definition 2. (Martingale [26]): Let Fk denote the sigma
algebra (as in (9)). A sequence {Xk} such that E[|Xk|] <∞
is a martingale (with respect to Fk) if

E[Xk+1|Fk] = Xk, for all k.

If E[Xk+1|Fk] ≥ Xk, for all k., the sequence {Xk} is a
sub-martingale.

Definition 3. ([26]) A sequence Hk is said to be a predictable
sequence if Hk ∈ Fk−1.

In words, Hk may be predicted with certainty using the
information available at time k − 1.

Proposition 1 ([2]). Under (A1), we have σ(π1, a) ≥s
σ(π2, a), where σ(π, a) =

[
1′Bπy=1π
1′Bπy=2π

]
.

Proposition 2 ([27]). The sensor decision likelihood matrix
Rπ in the social learning filter (6) is computed as

Rπ = BMπ where Mπ
y,a = P(a|y, π) = I(r′aByπ > r′āByπ),

with ā = A/a. (38)

Proposition 3 ([27]). Let (A1) and (A2) hold. The belief space
Π(2) can be partitioned into at most 3 non-empty regions
P1,P2,P3. On each of these regions, the sensor decision
likelihood matrix Rπ in (38) is a constant with respect to
the belief state π.

Proposition 4 ( [26]). Let Wk be a sub-martingale. If Hk ≥ 0
is predictable and each Hk is bounded, then (H.W )k is a sub-
martingale.

Proposition 4 appears in [26][Theorem 5.2.5].

APPENDIX B
AUXILIARY RESULTS

Lemma 1. Let ∆(ηy=1) and ∆(ηy=2) be two possible
incentives at belief π. Under (A1) and (A2), the Q function
in (13) can be simplified as:

Q(π, p) =

 p+ ρV (π) if p ∈ [0,∆(ηy=2));
p− φs + ρEV (π) if p ∈ [∆(ηy=2),∆(ηy=1));
p+ ρV (π) if p ∈ [∆(ηy=1), 1].

(39)
and V (π) = minQ(π, p). Here, EV (π) = 1′Bπy=1π ×
V (ηy=1) + 1′Bπy=2π × V (ηy=2).

Proof. From Proposition 2 and Proposition 3, we have

Rπ =



[
1 0
1 0

]
if p ∈ [0,∆(ηy=2));[

B11 B12

B21 B22

]
if p ∈ [∆(ηy=2),∆(ηy=1));[

0 1
0 1

]
if p ∈ [∆(ηy=1), 1].

(40)

From (40), it is clear that the sensors’ decision

a =

 1 if p ∈ [0,∆(ηy=2));
y if p ∈ [∆(ηy=2),∆(ηy=1));
2 if p ∈ [∆(ηy=1), 1].

(41)

Therefore, ∑
a∈A

V (Tπ(π, a))σ(π, a) = V (π) if p ∈ [0,∆(ηy=2));
EV (π) if p ∈ [∆(ηy=2),∆(ηy=1));
V (π) if p ∈ [∆(ηy=1), 1].

(42)

where EV (π) = 1′Bπy=1π × V (ηy=1) + 1′Bπy=2π × V (ηy=2).
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Lemma 1 represents the Q function (13) over the range [0, 1]
into three regions. The following corollary highlights why such
a partition is useful.

Corollary 2. At every public belief π ∈ Π(2), it is sufficient
to choose one of the three incentives {0,∆(ηy=2),∆(ηy=1)}.

Proof. From Lemma 1, the instantaneous reward is a linear
function in p and

argmin
p∈[0,∆(ηy=2))

Q(π, p) = 0,

argmin
p∈[∆(ηy=2),∆(ηy=1))

Q(π, p) = ∆(ηy=2),

argmin
p∈[∆(ηy=1),1]

Q(π, p) = ∆(ηy=1).

These hold as for any value of p in each of the three
regions, the corresponding continuation payoff is the same
from Lemma 1.

Lemma 2. The incentive function ∆(ηy) is decreasing in π
for every y.

Proof. The incentive function is given as (15), where
l1, l2, l3 > 0. With π = [1− π(2), π(2)]′, differentiating w.r.t
π(2),

d(∆(ηy))

dπ(2)
= −(l1 + l2)B1yB2y < 0.

Lemma 3. Under (A1), ∆(ηy=1) is concave in π, and
∆(ηy=2) is convex in π.

Proof. The incentive function ∆(ηy=2) is given in (15). A
differentiable function f : [0, 1]→ [0, 1] is convex if

f(w1) ≥ f(w2) + f ′(w2)(w1 − w2), for all w1, w2 ∈ [0, 1].
(43)

From (43) with w1 = π1(2) and w2 = π2(2), and using
Proposition 1, it is verified that the function ∆(ηy=2) is convex
in π. Similarly, it can be shown that ∆(ηy=1) is concave
in π.

APPENDIX C
DISCUSSION OF REWARD FUNCTIONS

A. Social Sensor’s Reward Function

The nature of the results, specifically, the structural results
(Theorem 1 and Theorem 3 in Sec.III); characterization of
optimal incentive sequence (Theorem 2 in Sec.III); and the
uniform bounds (Theorem 5 and Theorem 6 in Sec.IV); is
unaffected by the choice of the form of reward functions
below.
a.) (Resolution dependent reward): This form of reward

function can be used to explicitly capture the effect or the
influence of the observation distribution (resolution) ma-
trix B of the social sensors on the actions. Let r(x, y, a)
denote the reward accrued if the sensor takes action a
when the underlying state is x and the observation is y.
The reward function is given as:

r(x, a) =
∑
y

r(x, y, a)Bxy. (44)

Here r(x, y, a) = δap−αaI(a 6= x)− βaI(a 6= y)− γa,
δa ∈ [0, 1], αa, βa, γa ∈ R are the given parameters of the
model and I denotes the indicator function. For an action
a ∈ A of the social sensor, δap the effective incentive
received (see discussion below) by the social sensor; γa
denotes the cost of taking the action; αa and βa denote
the mis-representation or distortion weights.

b.) (Resolution independent reward): This form of the reward
function is not explicitly dependent on the resolution of
the social sensors, i.e,

r(x, a) = δap− αaI(a 6= x)− γa. (45)

c.) (Realization dependent reward): This form of reward
function explicitly depends on the private observation or
realization yk for the social sensor k, i.e,

r(x, yk, a) = δap− αaI(a 6= x)− βaI(a 6= yk)− γa.
(46)

d.) (General state-action reward): This form of reward func-
tion models a general state-action reward function, i.e,

r(x, a) = δap+ Γyxa (47)

The parameter Γyxa is any function of the resolution,
realization, state, and action.

Motivation: The social sensor k receives a noisy observation
yk of the state x. The term βaI(a 6= yk) models the distortion
cost [21] induced by the sensor’s realization in equation (46).
For social sensor k, I(ak 6= yk) is the binary distance
function [21] of the distortion or mis-representation of the
received information yk as ak. In case of (44), the term
βaI(a 6= y) captures the inherent distortion that can result
from the sensor’s observation matrix B.
The information fusion center offers a single incentive pk ∈
[0, 1] to the social sensor k by using the information from
the actions of the previous social sensors contained in the
public belief πk−1 (see (10)). The weight δa helps to model
asymmetric incentives for the different actions of the social
sensor, and determines the effective incentive received by the
social sensor for choosing different actions. The asymmetry is
required to derive a feedback (public belief dependent) policy
for the information fusion center to choose the future price.
Symmetry (δa=2 = δa=1) results in open loop or static prices
(as the dependency cancels out) for the information fusion
center. Since we are interested in dynamically changing the
incentives to incorporate learning from the previous social
sensors, we choose δa=2 6= δa=1.

B. Information Fusion Cost

The cost function for the fusion center is motivated by the
revenue maximization problem with social learning literature
[19], [24], [1], [10]:

∞∑
k=0

ρk(pk − c)I(ak = buy). (48)

Here (48) is the objective function of a monopoly that
dynamically charges a price pk for a product that costs c
to manufacture, to a social sensor k that learns about the
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underlying value (state) of the product from the decisions of
other social sensors. The monopoly’s objective is to maximize
the revenue collected. The price pk is selected (using the
optimal pricing policy) so as to influence or elicit the desired
behavior (buy or not buy) from the social sensors.
A modification of (48) motivated by controlled information
fusion applications in the presence of social learning is given
by (8) and (11). Here pk is the incentive offered by the
fusion center and Φs(k) ∈ (0, 1) is the weight attached to
the usefulness of the information acquired from sensor k. The
objective of the information fusion is to maximize the number
of sensors that act according to their observations, and estimate
the underlying state. Since the sensors take into account the
actions or decisions of the preceding sensors, fusion of infor-
mative decisions leads to improved estimate of the parameter,
and hence improves the usefulness of information (in terms
of reduction in the uncertainty of the Bayesian state estimate)
fused by the fusion center and the successive sensors.
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