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Identifying Cognitive Radars - Inverse Reinforcement
Learning Using Revealed Preferences

Vikram Krishnamurthy

Abstract—We consider an inverse reinforcement learning prob-
lem involving “us” versus an ‘“enemy” radar equipped with a
Bayesian tracker. By observing the emissions of the enemy radar,
how can we identify if the radar is cognitive (constrained utility
maximizer)? Given the observed sequence of actions taken by the
enemy’s radar, we consider three problems: (i) Are the enemy
radar’s actions (waveform choice, beam scheduling) consistent with
constrained utility maximization? If so how can we estimate the
cognitive radar’s utility function that is consistent with its actions.
We formulate, and solve the problem in terms of the spectra (eigen-
values) of the state, and observation noise covariance matrices, and
the algebraic Riccati equation. (ii) How to construct a statistical test
for detecting a cognitive radar (constrained utility maximization)
when we observe the radar’s actions in noise or the radar observes
our probe signal in noise? We propose a statistical detector with
a tight Type-II error bound. (iii) How can we optimally probe
(interrogate) the enemy’s radar by choosing our state to minimize
the Type-II error of detecting if the radar is deploying an economic
rational strategy, subject to a constraint on the Type-I detection
error? We present a stochastic optimization algorithm to optimize
our probe signal. The main analysis framework used in this paper
is that of revealed preferences from microeconomics.

Index Terms—Revealed preferences, inverse reinforcement
learning, adversarial signal processing, identifying cognitive
behavior, spectral revealed preferences, Afriat’s theorem,
stochastic gradient algorithm, detection, economics-based-
rationality, Kalman filter tracker, algebraic Riccati equation,
waveform selection, beam scheduling.

1. INTRODUCTION

OGNITIVE radars [1] use the perception-action cycle of
C cognition to sense the environment, learn from it relevant
information about the target and the background, then adapt
the radar sensor to optimally satisfy the needs of their mission.
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Fig. 1. Schematic of Adversarial Inference Problem. Our side is a drone/UAV

or electromagnetic signal that probes the enemy’s cognitive radar system. k
denotes a fast time scale and n denotes a slow time scale. Our state xj,
parameterized by «,, (purposeful acceleration maneuvers), probes the adversary
radar. Based on the noisy observation yy, of our state, the enemy radar responds
with action /3,,. Our aim is to determine if the enemy radar is economic rational,
i.e., is its response 3, generated by constrained optimizing a utility function?

A crucial element of a cognitive radar is optimal adaptivity:
based on its tracked estimates, the radar adaptively optimizes
the waveform, aperture, dwell time and revisit rate. In other
words, a cognitive radar is a constrained utility maximizer.

This paper is motivated by the next logical step, namely,
inverse cognitive radar. From the intercepted emissions of an
enemy’s radar: (i) How can we identify if the enemy’s radar
is cognitive? That is, are the enemy radar’s actions consistent
with optimizing a utility function (equivalently, is the radar’s
behavior rational in an economics sense). If so how to estimate
the cognitive radar’s utility function that is consistent with its
actions? (ii) How to construct a statistical detection test for utility
maximization when we observe the enemy’s radar’s actions in
noise and the enemy radar observes our probe signal in noise?
(iii) How can we optimally probe the enemy’s radar by choosing
our state to minimize the Type-II error of detecting if the enemy
radar is deploying an economic rational strategy, subject to a
constraint on the Type-I detection error?

The central theme of this paper involves an adversarial signal
processing/inverse reinforcement learning problem' comprised
of “us” and an “adversary”. Figure 1 displays the schematic
setup. “Us” refers to a drone/UAV or electromagnetic signal

nverse reinforcement learning (IRL) [2] seeks to estimate the utility func-
tion of a decision system by observing its input output dataset. The revealed
preferences framework considered here is more general since it identifies if the
behavior is consistent with a utility function and then estimates a set of utility
functions that rationalize the dataset. Also revealed preferences involves active
learning in that the observer probes the system whereas classical IRL is passive
with no probe signal.
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that probes an “adversary” cognitive radar system. The ad-
versary’s cognitive radar estimates our kinematic coordinates
using a Bayesian tracker and then adapts its mode (waveform,
aperture, revisit time) dynamically using feedback control based
on sensing our kinematic state (e.g. position and velocity of
drone). At each time n our kinematic state can be viewed? as
a probe vector ,, € IR to the radar. We observe the radar’s
response 3, € IR™. Given the time series of probe vectors and
responses, {(ay,, Br),n = 1,..., N} is it possible to say if the
radar is “rational” (in an economics-based sense)? That is, does
there exist a utility function U(3) that the radar is maximizing
to generate its response (3, to our probe input «v,,? How can we
estimate such a utility function to predict the future behavior of
the cognitive radar?

A. Revealed Preferences and Afriat’s Theorem

Nonparametric detection of utility maximization behavior is
the central theme in the area of revealed preferences in microe-
conomics; which dates back to Samuelson in 1938 [3].

Definition 1 ([4], [5]): A system is a utility maximizer if for
every probe o, € R'", the response 3,, € R™ satisfies

B € arg max U () (1)

al, B<1

where U(3) is a monotone utility function.

In economics, «,, denotes the price vector and [3,, the con-
sumption vector. Then o/, 3 < 1 is a natural budget constraint®
for a consumer with 1 dollar. Given a dataset of price and
consumption vectors, the aim is to determine if the consumer
is a utility maximizer (rational) in the sense of (1).

The key resultin revealed preferences is the following remark-
able theorem due to Afriat; see [4]—[8] for extensive expositions.

Theorem 2 (Afriat’s Theorem [4]): Given a data set

D ={(an, Bn);n e {1,2,....,N}}, 2

the following statements are equivalent:
1) The system is a utility maximizer and there exists a
monotonically increasing,4 continuous, and concave util-
ity function by satisfies (1).
2) For u; and Ay > 0 the following set of inequalities (called
Afriat’s inequalities) has a feasible solution:

us —up — My (Bs — B¢) <0 Vt,se{1,2,...,N}.
3
3) Explicit monotone and concave utility functions that ra-
tionalize the dataset by satisfying (1) are given by:

UB) = te{11,121,i“11.,1v}{ut + X (B — Br)} 4)

2In Section III we give specific examples of how the kinematic state and radar
actions are mapped to probe «,, and response [3,,, respectively.

3As discussed below, the budget constraint a'n,B < 1 is without loss of
generality, and can be replaced by o/, 3 < c for any positive constant c.

4By definition, an economics-based utility function is monotone increasing,
ie., 1 < B2 (elementwise) implies U(B1) < U(B2), and we will use this
definition throughout the paper. Monotone is a special case of a more general
class of locally non-satiated utility functions [9]. In this paper, we use monotone
and local non-satiation interchangeably. Afriat’s theorem was originally stated
for a non-satiated utility function.
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where u; and )\, satisfy the linear inequalities (3).
4) The data set D satisfies the Generalized Axiom of Re-
vealed Preference (GARP), namely for any t < N,

By > By VE<k—1= ;B <a)Bi. (5

Afriat’s theorem tests for economics-based rationality; its
remarkable property is that it gives a necessary and sufficient
condition for a system to be a utility maximizer based on the
system’s input-output response. The feasibility of the set of
inequalities (3) can be checked using a linear programming
solver; alternatively GARP (5) can be checked using Warshall’s
algorithm with O(IN3) computations [10], [11]. A utility func-
tion consistent with the data can be constructed,’ using (4).

The recovered utility using (4) is not unique; indeed any
positive monotone increasing transformation of (4) also satisfies
Afriat’s Theorem; that is, the utility function constructed is
ordinal. This is the reason why the budget constraint o/, 3 < 1
is without loss of generality; it can be scaled by an arbitrary
positive constant and Theorem 2 still holds. In signal processing
terminology, Afriat’s Theorem can be viewed as set-valued
system identification of an argmax system; set-valued since
(4) yields a set of utility functions that rationalize the finite
dataset D.

B. Objectives

In this paper, our working assumption is that a cognitive radar
satisfies economics-based rationality; that is, a cognitive radar is
a constrained utility maximizer in the sense of (4) with possibly
a nonlinear budget constraint. The main objectives of the paper
involve answering:

1) Test for Utility Maximization—Spectral Revealed Prefer-
ences: The first question is: Does a radar satisfy economics
based rationality, i.e., is its action /3,, consistent with optimizing a
utility function U ? By observing how the enemy’s radar switches
ambiguity function and waveforms to track a target, or how
the radar schedules its beam between targets, is there a utility
function that rationalizes the radar’s behavior? Notice that a key
requirement in Afriat’s theorem is a budget constraint. How to
formulate a useful budget constraint for a radar? A key idea in
this paper is to formulate linear and nonlinear budget constraints
for a radar in terms of the tracking error covariance where a,,
and [3,, are the spectra of the state and observation noise matrices
(as will be justified in Section III) associated with a Kalman
filter tracker. Specifically, the linear budget constraint is used in
Sec. III for waveform design, and Sec. IV for beam scheduling,
while a non-linear budget constraint is used to formulate utility
maximization in terms of the spectrum of covariance matrices.
From a practical point of view, such spectral revealed prefer-
ences yield constructive estimates of the radar’s utility function,
and so we can predict (in a Bayesian sense) its future actions.

5 As pointed out in Varian’s influential paper [11] another remarkable feature
of Afriat’s theorem is that if the dataset can be rationalized by a monotone utility
function, then it can be rationalized by a continuous, concave, monotonic utility
function. Put another way, continuity and concavity cannot be refuted with a
finite dataset.
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2) Cognition Detection in Noise: If the radar’s response [3,,
or probe signal «v,, is observed in noise, then violation of Afriat’s
theorem could be either due to measurement noise or the absence
of utility maximization. We will construct a statistical detection
test to decide if the radar is a utility maximizer. The hypothesis
test yields a tight bound for the Type-I errors.

3) Optimal Probing: Given the detector in the above objec-
tive, what choice of probe signal yields the smallest Type-II
error in detecting if the radar is a utility maximizer, subject
to maintaining the Type-I error within a specified bound? We
construct a stochastic gradient algorithm that estimates our
optimal probe sequence.

C. Context and Literature

The above objectives are fundamentally different to the
model-centric theme used in the signal processing literature
where one postulates an objective function (typically convex)
and then proposes optimization algorithms. In contrast the re-
vealed preference approach is data centric - given a dataset, we
wish to determine if it is consistent with utility maximization.
Specifically, Sections III and IV below discuss how revealed
preferences can be used as a systematic method to identify utility
maximization in cognitive radars.

Regarding the literature, in the context of revealed preferences
we already mentioned [4], [6]-[8], [12]. A nonlinear budget
extension was developed in [13] which we will exploit in our
spectral revealed preferences setup in Section III. A stochastic
detector for utility maximization given noisy measurements of
the probe or response is studied in [14], [15] and we will use
these results in Section V. Our earlier work [16], [17] consider
utility estimation in adversarial signal processing and social
network applications. As mentioned above, revealed preferences
are more general than inverse reinforcement learning [2].

Cognitive radars [18] use stochastic control and optimal
resource allocation to adapt their waveform [19], beam allo-
cation [20], aperture, and service requests. In the last decade
there have been numerous works in adaptive/cognitive radar
and radar resource management; see [21]-[23] and references
therein. What has not been studied is: by listening to a radar,
can one identify if the radar is a utility maximizer, and if so,
estimate its utility function. This is the subject of our paper.
Below we will use revealed preferences to identify radars that
optimize their waveforms and their beam allocation. Our aim is
to give a necessary and sufficient condition to identify if a radar
is cognitive, estimate its utility function, construct a statistical
detector for utility maximization’s when the radar is observed
in noise (or the radar observes us in noise) and then adaptively
optimize our probe signal to minimize the classification error
of the detector. Although not discussed in this paper, once we
can detect cognitive behavior and estimate the radar’s utility
function, we can predict future actions possibly spoof/jam the
radar.

Finally, this paper builds on our recent work [24], [25] in
Bayesian adversarial signal processing where the aim is to recon-
struct the posterior distribution of the enemy’s tracker given its
actions. While [24], [25] deal with inverse Bayesian estimation
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Fig. 2. Interaction of our dynamics with the adversary’s cognitive radar. The
cognitive radar is comprised of a Bayesian tracker and a radar controller. Based
on the time series (au,, Bn),n = 1,..., N, or more generally (ay,, Bn),n =
1,..., N, our goal is to determine of the radar controller is a utility optimizer
in the sense of (1).

problems, the focus here is on the more general problem of
detecting constrained utility maximization in a non-parametric
setting.

II. COGNITIVE RADAR RESPONSE MODEL

The setup involves two time scales. Let k = 1,2, ... denote
discrete time (fast time scale) and n = 1,2, ... denote epoch
(slow time scale). Our probe signal is «,, the radar’s response
action is 3,, and our measurement of this action is 3,,.

The model of “us” interacting with the cognitive radar has the
following dynamics, see Figure 2:

our state: Ty ~ pa,, (T|Tk-1), To~ o

radar action: f3,, € arg max U(f)
o, B<1

radar observation: yx ~ pg, (y|xx) (6)
radar tracker: 7 = T'(7p—1,Yk)
observed action: 3,, = B, + €,

Let us explain the notation in (6): p(-) denotes a generic
conditional probability density function (or probability mass
function), ~ denotes distributed according to, and

® 1, € X is our Markovian state with transition kernel p,,,

and prior my where X denotes the state space.

¢ Our dynamics are determined by the control probe signal

o, which evolves on the slow time scale. Our probing of
the enemy radar is performed via purposeful maneuvers.
We will model o, using two different levels of abstraction.
In Sec. III we use «,, to model the state maneuver noise
covariance matrix. In Sec. IV we will work at a higher level
of abstraction and use «,, to model the covariance at the
enemy’s Kalman tracker (which is a deterministic function
of the state covariance matrix).

® Based on optimizing a utility function U (which is un-

known to us) of the predicted target statistic (e.g. covari-
ance of the target’s estimate) in epoch n, the enemy radar
chooses an action [3,,. It is here that actual tracker structure
determines the response.

® y; € Y is the radar’s noisy observation of our state xj;

with observation likelihoods pg, (y|z). Here ) denote the
observation space.
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e The observation at the radar depends on its action 3,,, which
evolves on the slow time scale. This reflects the fact that the
cognitive radar adapts (optimizes) its receive and transmit
functionalities. For example, it adapts its matched filter to
its transmit waveform.

o 7, = p(ak|y1.x) is the radar tracker’s belief (posterior) of
our state x; where y;.; denotes the sequence yi, . .., Yk-
The tracking functionality 7'(-) in (6) is the classical
Bayesian optimal filtering update formula [23]

T(r,y)(z) = ; ps(Y|z) [y pal@|C) 7(¢)d¢ o

Xpﬁ(y|x) f)( poz(x‘C) T‘—(C) d¢dx

Note that the cognitive radar’s tracker update depends on
the both the probe «v,, and response /3,, signals. Let IT denote
the space of all such beliefs. When the state space X is
Euclidean space, then 11 is a function space comprising the
space of density functions; if X" is finite, then II is the unit
X — 1 dimensional simplex of X -dimensional probability
mass functions.

¢ 3, denotes our noisy measurement of the radar’s action

The above model substantially generalizes the adversarial
signal processing model in our recent paper [24] since now the
state, observation and tracker dynamics are controlled by the
probe and response signals. As mentioned earlier, [24] focused
on Bayesian estimation of posterior 7y ; in comparison this paper
addresses the deeper problem of

1) determining if the radar response signal is consistent with

constrained utility maximization,

2) estimating utility U(3) subject to the signal processing

constraints in (6).

To summarize, a cognitive radar chooses its action to maxi-
mize a utility function, and adapts its receiver to the optimized
action. In terms of Afriat’s theorem, we will use the following
economics-based interpretation: the probe signal o, is the price
the radar pays for tracking our target, while 3, is the amount
of resources (consumption) the radar spends on the target at
epoch n. We will justify this price/consumption framework in
economics (budget constraint) terms at two levels of abstraction:
waveform adaptation for a single target (Sec. III) and beam
scheduling amongst multiple targets (Sec. IV). We will also
show how a nonlinear budget constraint arises in the context
of the spectrum of the state covariance matrix.

Remark. Game-theoretic setting: This paper assumes the radar
responds to our probe in an optimal way. In a more sophisticated
game-theoretic setting, a radar is aware that we are probing it,
and may deliberately use a sub-optimal response to confuse us.
Identifying if our strategy and the radar’s strategy are consistent
with play from the equilibrium of a game is a difficult problem
and not considered here; see [26] for partial results in the special
case of potential games.

III. WAVEFORM ADAPTATION: SPECTRAL REVEALED
PREFERENCES TO TEST FOR COGNITIVE RADAR

Waveform adaptation is perhaps one of the most important
functionalities of a cognitive radar. A cognitive radar adapts its
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waveform by adapting its ambiguity function. Our aim is to iden-
tify such cognitive behavior of the enemy’s radar when it deploys
a Bayesian filter as a physical level tracker. For concreteness, in
this section we assume that the enemy’s cognitive radar uses a
Kalman filter tracker. Also since the probe and response signal
evolve on a slow time scale n (described below) we assume that
both the radar and us (observer) have perfect measurements of
probe «, and response [3,,.

Our working assumption is that a cognitive radar satisfies
economics-based rationality; that is, it adapts its waveform by
maximizing a utility function in the sense of (4) with a possibly
nonlinear budget constraint. A key requirement in Afriat’s The-
orem 2 is the budget constraint. In economics, such a constraint
is obvious since it specifies the total available resources of the
decision maker. How to formulate useful budget constraints for
waveform adaptation? Our key idea here is to formulate linear
and nonlinear budget constraints in terms of the Kalman filter
error covariance where v, and 3,, are the spectra (eigenvalues)
of the state and covariance noise matrices of the state space
model.

A. Waveform Adaptation by Cognitive Radar

Suppose a radar adapts its waveform while tracking a target
(us) using a Kalman filter. Our probe input comprises purposeful
maneuvers that modulate the spectrum (vector of eigenvalues)
of the state noise covariance matrix. The radar responds with
an optimized waveform which modulates the spectrum of the
observation noise covariance matrix. By observing the radar’s
signals, how can we test the radar for economic rationality?

1) Linear Gaussian Target Model and Radar Tracker: Linear
Gaussian dynamics for a target’s kinematics [27] and linear
Gaussian measurements at the radar are widely assumed as a
useful approximation [28]. Accordingly, consider the following
special case of model (6) with linear Gaussian dynamics and
measurements:

Tpy1 = Axp +wi(an),

yr = C i + vp(Bn)

To ~ To

®)

Here z, € X = R is “our” state with initial density o ~
N(i0,%0), yx € Y = RY denotes the cognitive radar’s ob-
servations, wy ~ N(0, Q(ay,)), vy ~ N(0, R(8,)) and {wy},
{v, } are mutually independenti.i.d. processes. When x;, denotes
respectively, the X,y,z position and velocity components of the
target (so 2, € IR®) then

1T
0 1

1T
0 1

1T

0 1 (€)]

A6><6 = diag 5 5

where 7' is the sampling interval. Recall k indexes the fast time
scale while n indexes the slow time scale.

In (8) we explicitly indicate the dependence of the state
noise covariance () on our probe signal «,, and the observation
noise covariance R on the radar’s response signal f3,,. These
are justified as follows. When the radar controls its ambiguity
function, in effect it controls the measurement noise covariance
R. Of course, this come as a cost: reducing the observation noise
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covariance of a target results in increased visibility of the radar
(and therefore higher threat) or increased covariance of other
targets. Note that the radar re-configures its receiver (matched
filter) each time it chooses a waveform; (8) abstracts all the
physical layer aspects of the radar response into the observation
noise covariance R(/3,,).

Our probing of the enemy radar is performed via purposeful
maneuvers by modulating our state covariance matrix () in (8) by
oy, Forexample, in a classical linear Gaussian state space model
used in target tracking [28], our probe «,, parametrizes the state
noise covariance @) («,,) which models acceleration maneuvers
of our drone.

Based on observation sequence 1, . . . , Y, the tracking func-
tionality in the radar computes the posterior

T — N((ik,zk)

where 7 is the conditional mean state estimate and > is the
covariance. These are computed by the classical Kalman filter:

Seaipe = ASA + Q(ay)
Kis1 = CSpinC' + R(Bn)
Thy1 = A+ S 1w C' Ky (Yrr — C AZy) 1o
ka1 = Sigapk — Sk C Ky 1 Okt i

Under the assumption that the model parameters in (8) satisfy
[A,C] is detectable and [A,+/Q)] is stabilizable, the asymp-
totic predicted covariance Y15, as k — oo is the unique
non-negative definite solution of the algebraic Riccati equation
(ARE):

Ala, B,5)

N+ A (2 — R0 [02C + R(B)) 02) A+ Q) =0
(11)

where «,, and (3,, are the probe and response signals of the radar
atepoch n. Note A(«, 3, %) is a symmetric R™*""* matrix. Since
3’ is parametrized by «, 3, we write the solution of the ARE at
epoch n as X7 (o, ).

B. Effect of Waveform Design on Observation Noise
Covariance

To give a precise structure to the radar dynamics, this section
summarizes how the observation noise covariance R(f) in (8)
depends on the radar waveform. The details involve maximum
likelihood estimation involving the radar ambiguity function and
can be found in [19], [29]. Below:

e cdenotes the speed of light (in free space),

® w, denotes the carrier frequency,

0 is an adjustable parameter in the waveform,

7 is the signal to noise ratio at the radar.

j = +/—1 is the unit imaginary number.

5(t) is the complex envelope of the waveform.

B is the vector of eigenvalues of R (in Section III-D below)
or R~ (in Section ITI-C below).
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We now describe 3 waveforms and their resulting observation
noise covariance matrices R(3); see [19] for details.
1) Triangular Pulse - Continuous Wave

§<t):{0 23—9( —%‘) —f<t<b

otherwise
e . (12)
R(B) = 18” 502 1
2w26?%n
ii) Gaussian Pulse - Continuous Wave
~ 1 1/4 _t2
(13)

20z
R = |20
2w202%n

iii) Gaussian Pulse - Linear Frequency Modulation chirp

- () "on (- ()

6293 7(;2929% (14)
_ 21 wen
R(ﬁ) - —c20,02 2 1 + 29202
wen  win \ 203 271

To summarize, by adapting its waveform parametrized by 3
(vector of eigenvalues), the radar can change the noise covari-
ance R((). Below we will use the response /3, to construct
revealed preference tests for cognition.

C. Testing for Cognitive Radar: Spectral Revealed
Preferences With Linear Budget

We now show that Afriat’s theorem (Theorem 2) can be used
to determine if a radar is cognitive. The assumption here is that
the utility function U (/) maximized by the radar is a monotone
function (unknown to us) of the predicted covariance of the
target. Our main task is to formulate and justify a linear budget
constraint o/, 5 < 1 in Afriat’s theorem.

Specifically, suppose

1) Our probe «,, that characterizes our maneuvers, is the

vector of eigenvalues of the positive definite matrix @

2) The radar response f3,, is the vector of eigenvalues of the

positive definite matrix R~1.

Then the cognitive radar chooses its waveform parameter /3,
at each slow time epoch n to maximize a utility U (-):

Br, € arg max U(p)

o, f<1

15)

where U is a monotone increasing function of /.

Then Afriat’s theorem (Theorem 2) can be used to detect util-
ity maximization and construct a utility function that rationalizes
the response of the radar. Recall that the 1 in the right hand side
of the budget o/, <1 can be replaced by any non-negative
constant.

It only remains to justify the linear budget constraint o, 5 < 1
in (15). The i-th component of «, denoted as «(4), is the incentive
for considering the i-th mode of the target; () is proportional
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to the signal power. The i-th component of /3 is the amount
of resources (energy) devoted by the radar to this ¢-th mode; a
higher ((7) (more resources) results in a smaller measurement
noise covariance, resulting in higher accuracy of measurement
by the radar. So o, f measures the signal to noise ratio (SNR) and
the budget constraint o, 5 < 1is abound on the SNR. A rational
radar maximizes a utility U () that is monotone increasing in
the accuracy (inverse of noise power) 3. However, the radar has
limited resources and can only expend sufficient resources to
ensure that the precision (inverse covariance) of all modes is at
most some pre-specified precision £ ! at each epoch n. We can
then justify the linear budget constraint as follows:

Lemma 3: The linear budget constraint o, 5 < 1 implies that
the solution of the ARE (11) satisfies ¥* ~*(av,, 3) < £~ for
some symmetric positive definite matrix 1.

The proof of Lemma 3 follows straightforwardly using the
information Kalman filter formulation [30], and showing that
»*~1 is increasing in 3. Afriat’s theorem requires that the
constraint o, § < 1 is active at 3 = 3,,. This holds in our case
since X* ! is increasing in £3.

To summarize, we can use Afriat’s theorem (Theorem 2) with
o, as the spectrum of ) and f3,, as the spectrum of R, to test a
cognitive radar for utility maximization (15). Moreover, Afriat’s
theorem constructs a set of utility functions (4) that rationalize
the decisions of the radar.

D. Testing for Cognitive Radar: Spectral Revealed
Preferences With Nonlinear Budget Constraint

This section constructs a method to identify cognitive radars
by generalizing Afriat’s theorem to a nonlinear budget con-
straint. The nonlinear budget constraint (nonlinear in 3) emerges
naturally from the covariance of the Kalman filter tracker,
namely, the ARE (11). We use this together with an extension of
Afriat’s theorem to test if a radar satisfies economic rationality.
The interpretation of the probe and response are different (in
some sense “opposite”) to that of the linear case:

1) The probe vector cv,, € R™ is the vector of eigenvalues

of QL.

2) The radar response 3, € IR"}" is the vector of eigenvalues

of R.
3) Define A(Xi (o, ) as the largest eigenvalue of
Y (au, B) where ¥* is the solution of the ARE (11).

With the above definitions, our aim is to test if the radar’s

response 3 satisfies economics-rationality:

By = arg maxgU (),

_ _ (16)
subject to: A (X7 (s, 8)) < A, B < B

Since there is no natural ordering of eigenvalues, our assumption
is that U(f) is a symmetric function® of 3. Here ¥, is the
solution of the ARE (11) at epoch n, and A € R, 3, € R

“Examples of symmetric functions include trace, determinant, nuclear norm,
etc. The assumption of symmetry is only required when we choose (3 to be the
vector of eigenvalues since there is no natural ordering of the eigenvalues in
terms of the ordering of the elements of the matrix. Specifically, Theorem 5
does not require U(3) to be a symmetric function of /.
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are user-specified parameters. Note that the constraint 5 < 3,
holds elementwise.

1) Economics-Based Rationale for Utility and Nonlinear
Budget Constraint (16): The economics-based rationale for the
utility (16) is as follows: The i-th component of «, denoted as
a(1), is the price the radar pays for devoting resources to the
i-th mode of the target. Since «(i) is inversely proportional to
the signal power; so a higher «(¢) implies a more expensive
mode to track, implying that the enemy radar needs to allocate
more resources to the i-th mode. The radar’s response for the
i-th mode is /3(#); this reflects the cost incurred by the radar for
estimating mode 7. A rational radar aims to minimize its total
effort C'(8) where cost C'(3) decreases with 3 since choosing
a waveform that results in a larger observation noise variance
requires less effort. Equivalently, the radar seeks to maximize a
utility function U(8) = —C(8) where U () is increasing with

We now discuss the nonlinear budget constraint
A(Z: (an, B)) < X in (16) together with 3 < j3,,. The radar
seeks to minimize total effort C'(3) subject to maintaining the
inaccuracy of all modes (covariance ¥,,) to be smaller than some
pre-specified covariance Y. Clearly, a sufficient condition is
that A\(X% (v, 8)) < . But for revealed preferences involving
nonlinear budgets, we need the following (see Theorem 5
below): The constraint A(X* (a,,, 8)) < A in (16) needs to be

active at 3,,. This is straightforwardly ensured by choosing \ as
A€ [0,A],  where A, = A5 (an, ) (17)

That is, Ay, is the largest eigenvalue of the unique solution >y,
of the ARE A(a,, B, ) = 0. The constraint (17) says that the
enemy’s Bayesian tracker cannot perform worse in covariance
than that of the worst case observation noise covariance R(f3).
ie., X* < X (positive definite ordering).

Remark: In the special case when the constraint 3 < /3 is
omitted, then X is the solution of the algebraic Lyapunov

equation

Y= ASA + Q(a) (18)

The constraint (17) then says that the enemy’s Bayesian tracker
cannot perform worse than the optimal predictor (which has
infinite observation noise). Of course, when A is specified as
in (9), since all the eigenvalues of A are 1, the solution of the
algebraic Lyapunov equation is not finite. We can now justify the
nonlinear budget for a cognitive radar equipped with a Kalman
filter tracker as follows:

Lemma 4: Consider the nonlinear budget constraint
A3 (@, B)) < X in (16) with user defined parameter \ sat-
isfying (17). Then the solution of the ARE (11) satisfies
¥ (e, B) < %, for any choice of symmetric positive definite
matrix ¥ < 3.

2) Revealed Preference for Nonlinear Budget: Having for-
mally justified the nonlinear budget constraint \(3 («v,, 8)) <
X in (16), we now state the main revealed preference test [13]
which generalizes Afriat’s theorem to nonlinear budgets. The
result below provides an explicit test for a cognitive radar and
constructs a set of utility functions that rationalizes the decisions
{Bn} of the cognitive radar.
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Theorem 5 (Test for rationality with nonlinear bud-
get [13]): Let B, = {6 € R|g,(8) < 0} with g, : R™ —
R an increasing, continuous function and g, (3,) = 0 for n =
1,..., N. Then the following conditions are equivalent:

1) There exists a monotone continuous utility function U that

rationalizes the data set {3,,, B, },n = 1,..., N. Thatis

Bn = arg;nax U(B), gn(Bn) <0

2) The data set {5,,, B,},n =1,..., N satisfies GARP:
9:(B5) < 9:(Bt) = g;(Br) = 0

3) For u; and \; > 0 the following set of inequalities has a
feasible solution:

us*ut*Atgt(Bs) SO vt,SG{l,Q,...,N}. (19)

4) With u; and A\; defined in (19), an explicit monotone
continuous utility function that rationalizes the data set
is given by:

U(B)= _ min N}{Ut + A g:(B)}

te{l1,2,...,

(20)

Remarks: (1) Clearly Afriat’s theorem (Theorem 2) is a special
case of Theorem 5 where g,(8) = o, (8 — 3,). But unlike
Afriat’s theorem, the constructed utility function is not neces-
sarily concave.

(i1) Just like Afriat’s theorem, (19) comprises linear inequal-
ities in u¢, A¢. So feasibility can be checked using an LP solver.

We now show that the nonlinear radar budget constraint in
(16), (17) satisfies the properties of Theorem 5 with

g”(ﬂ) =A (Z;(Oé",ﬂ)) - 5‘

First, clearly ¥*(«, 8) is increasing in § and is a continuous
function of 8, and sois A(X* (v, 5)). Second Theorem 5 requires
the constraint to be active at 3,,. This follows since A(X7, (ap,, 8))
is increasing in 3 and due to (17).

Summary: By choosing the probe signal « as the spectrum
of Q! and the response signal 3 as the spectrum of R, we can
use the nonlinear budget Theorem 5 to test a cognitive radar
for utility maximization. We can then construct explicit utility
functions (20) that rationalize the decisions of the radar in terms
of waveform adaptation.

21

IV. BEAM ALLOCATION: REVEALED PREFERENCE TEST

This section constructs a test for cognitivity of a radar that
switches its beam adaptively between targets. We work at a
higher level of abstraction than the previous section and consider
multiple targets. At this higher level of abstraction, we view
each component 4 of the probe signal «,, (%) as the trace of the
precision matrix (inverse covariance) of target ¢. Note that the
precision matrix is a deterministic function of the maneuver
covariance of target ¢, and in the previous subsection we used
this maneuver covariance as the probe signal. In comparison,
we now use the trace of the precision of each target in our probe
signal — this allows us to consider multiple targets.

Suppose a radar adaptively switches its beam between m
targets where these m targets are controlled by us. As in (8),

4535

on the fast time scale indexed by k, each target ¢ has linear
Gaussian dynamics and the enemy radar obtains linear Gaussian
measurements:
Th = Azl +w), x0~To
, o (22)
yp=Cua,+v, i=12....m

Here w}, ~ N(0,Q,(i)), vl ~ N(0, R, (i)). We assume that
both @,,(7) and R,,(¢) are known to us and the enemy.

As in previous sections, n indexes the slow time scale and
k indexes the fast time scale. The enemy’s radar tracks our m
targets using Kalman filter trackers. The fraction of time the
radar allocates to each target ¢ in epoch n is 3,,(7). The price
the radar pays for each target ¢ at the beginning of epoch n is
the trace of the predicted precision of target . Recall that this is
the trace of the inverse of the predicted covariance at epoch n
using the Kalman predictor’

Qn (Z) = Tr(E;|1n—1 (Z))7

The predicted covariance X, 1 (7) is a deterministic function
of the maneuver covariance @, (¢) of target . So the probe v, ()
is a signal that we can choose, since it is a deterministic function
of the maneuver covariance @, (¢) of target <. Unlike the previous
section where the spectrum of the probe matrix was chosen as
the probe vector, here we abstract the target’s covariance by the
trace av, (i). Note also that the observation noise covariance R,
depends on the enemy’s radar response 3,,(4), i.e., the fraction
of time allocated to target <. We assume that each target ¢ is
equipped with a radar detector and can estimate.® the fraction of
time (3, (¢) the enemy’s radar devotes to it.

Given the time series a.,, 8,, n=1,..., N, our aim is to
detect if the enemy’s radar is cognitive. We assume that a
cognitive radar optimizes its beam allocation as follows:

B, = arg max,U ()

s.t. By < p,

i=1,... (23)

,m

(24)

where U(+) is the enemy radar’s utility function (unknown to
us) and p, € IR is a pre-specified average precision of all m
targets.

The economics-based rationale for the budget constraint is
natural: For targets that are cheaper (lower precision «, (7)), the
radar has incentive to devote more time 3, (). However, given
its resource constraints, the radar can achieve at most an average
precision of p, over all targets.

Note that the setup (24) is directly amenable to Afriat’s
Theorem 2. Thus (3) can be used to test if the radar satisfies utility
maximization in its beam scheduling (24) and also estimate the
set of utility functions (4). Furthermore (as in Afriat’s theorem)
since the utility is ordinal, p, can be chosen as 1 without loss of
generality (and therefore does not need to be known by us).

7Since A has all its eigenvalues at 1, we cannot use the algebraic Lyapunov
equation (18) as it does not have bounded solution.

8If we impose a probabilistic structure on the estimates, then the resulting
problem of statistical detection of a utility maximizer (stochastic revealed
preferences) is discussed in Section V.
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V. DETECTING COGNITIVE RADARS IN A NOISY SETTING

Thus far we have discussed revealed preference based meth-
ods to identify cognitive radars when the radar response is
measured perfectly by us. Afriat’s theorem (Theorem 2) and
its generalization to nonlinear budgets (Theorem 5) assumes
perfect observation of the probe and response. However, when
the response (e.g. enemy’s radar waveform) is measured in noise
by us, or the probe signal (e.g. our maneuver) is measured
in noise by the enemy, violation of the inequalities in Afriat
Theorem could be either due to measurement noise or absence
of utility maximization (economic rationality). In this section
we give two statistical detection tests for utility maximization
and characterize the Type-I and Type-II errors of the detector.
We give the tightest possible Type-I error bound. This section
also sets the stage for Sec. VI where the probe signal is optimizes
to minimize the Type-II error of the detector.

A. Detecting Cognitive Radar Given Noisy Response

Suppose we observe the response 3,, of the enemy’s radar in
additive noise ¢,, as

Bn = Bn + €n- (25)

Here ¢,, are m-dimensional random variables that are possibly
correlated but functionally independent of (3,,. As an example,
consider the setup of Section IV where a cognitive radar allocates
its beam between multiple targets. Each target ¢ equipped with
a radar detector obtains a noisy estimate of the fraction of time
B (i) the enemy radar devotes to it.

Given the noisy data set

Dops = {(an,Bn) in € {1,...,]\7}},

from the enemy radar, how can we detect if is cognitive? Let
® Hj denote the null hypothesis that the data set Dy, in (26)
satisfies utility maximization.
® [ denote the alternative hypothesis that the data set does
not satisfy utility maximization.
There are two possible sources of error:

(26)

Type-I errors: Reject Hy when Hj is valid.
Type-II errors: Accept Hy when Hj is invalid. 27)

Given D, we propose the following statistical test to determine
if the enemy radar is a utility maximizer (1):

~+00 Hy
| s 2| 8)
@*(B) H
In the statistical test (28):
1) v is the “significance level” of the test.
ii) The “test statistic” ®*(3), with 8 = [B1, Ba, . .., Bn] is

the solution of the following constrained optimization
problem:

min & - -
S.t. ug — Uy —)\toz;(ﬁs —ﬁt) _)\tq) < 0
A >0 ®>0 for t,s€{1,2,...,N}.

(29)
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Algorithm 1: Detecting Utility Optimizer Given Noisy
Response.
1) Offline Step. For iterations [ = 1, ... L:
a) Simulate noise sequence () = [€1, ...
b) Compute M) using (30).
Compute the empirical distribution )/ (-) of M from
these L samples.
2) Record the response 3 from the radar to our probe c.
3) Solve (29) for ®. Finally implement detector (28) as

76N](l).

. ___Ho
1= Fy (2°(8)) 2

(€29}

iii) fas is the pdf of the random variable M where

M= max [ (€ — €5)] - (30)

t#s

The intuition behind (28), (29) is clear: if & = 0, then
(29) is equivalent to Afriat’s theorem. Due to presence of
noise, it is unlikely that ® = 0 is feasible; so we seek the
minimum perturbation ®*(3) that satisfies (29).

The constrained optimization problem (29) is non-convex due
to the bilinear constraints \;®. However, since the objective
function depends only on the scalar ®, a one dimensional line
search algorithm can be used. In particular, for any fixed value
of @, (29) becomes a set of linear inequalities, and so feasibility
is straightforwardly determined.

The numerical implementation of detector (28) for a given
probe sequence & = [, . .., ay] is described in Algorithm 1.

Note that Step 1 of Algorithm 1 is offline; it evaluates the
empirical cdf Far. Step 2 records the noisy response 3 of the
radar to our probe and finally Step 3 implements the detector
with significance level .

The following theorem is our main result for characterizing
the detector (28). It states that the probability of Type-I error
(false alarm) of the detector is bounded by ~ and that the optimal
solution ®*(3) gives the tightest false alarm bound.

Theorem 6: Consider the noisy data set (26) where 3 =
[B1, B2, - - -, ] and detector (28).

1) Suppose (29) has a feasible solution. Then Hy is equivalent

to the event that ®*(3) < M in (29).
2) The probability of Type-I error (false alarm) is

Py 3)(H1|Ho) < (32)

3) The optimizer ®*(3) in (28) yields the tightest Type-I
error bound, in that for any other ® € [®*, M],

Proof: Suppose Hy holds. By. Theorem 2, Hj is equivalent
to (3) having a feasible solution. Let (A7, u) denote a feasible
solution for (3). Then substituting 3, = 3, — €,, it is easily
seen that (A7, u?, ® = M) is a feasible solution for the noisy
inequalities (29). Since (A7, uf, ® = M) is feasible, clearly the

minimizing solution of (29) satisfies ®*(3) < M. Therefore,

(29) feasible and Hy = ®*(3) < M
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Similarly, let (\¢, @) denote a feasible solution to the noisy in-
equalities (29). Then ®*(3) < M implies that (3) has a feasible
solution, i.e.,

(29) feasible and ®*(3) < M = H

Therefore if (29) is feasible, Hy is equivalent to ®*(3) < M.

Let Fy; denote the complementary cdf of M. From the
statistical test (28), the event H; given Hj is equivalent
to the event {Fy(®*(8)) <~} given {®*(8) < M} and
(29).So P(H|Hy) = P(Fyy (¥ (3)) < [0 (B) < M). Now
if ®*(3) = M, then since F;(M) is uniform? in [0, 1] clearly
P(H|Hp) =~. So if ®*(B) < M then P(Fy (9*(B)) <
v|®*(B) < M) <, ie., (32) holds.

Suppose ®(3) > ®*(B). Then clearly, P(Fy(®(B)) <
v ®(B) < M) > P(Fyp (®*(B)) < 7|®*(8) < M), ie., (33)
holds.

[ |

B. Detecting Cognitive Radar Given Noisy Probe

Here we consider the case where the radar observes our probe
signal «v,, in additive noise ¢, as

An = oy + Gn. (34)

Here (,, are m-dimensional i.i.d. random variables. Note that
(34) is equivalent to the radar input being «,, and us observing
the radar input in noise as a,,.

Given the noisy data set

Dobs:{(@naﬁn) ne {17"'7N}}7 (35)

we propose the following statistical test for testing utility max-
imization (1) of the radar:

+0o0 Hy
| i 2| (36)
(&) H,
In the statistical test (36):
i) +y is the “significance level” of the test.
ii) The test statistic ®*(&), with & = [@1, Qg,...,an] is

the solution of the following constrained optimization

problem:
min ¢
st ug —up — M (Bs — Br) — M® <0 37)
A >0 ®>0 for t,s€{1,2,...,N}.
iii) fas is the pdf of the random variable M where
M £ max G/ (B, — Bs)]. (38)

tEs

The numerical implementation of the detector (36)
for a given response 3 = [51,..., ] is described in
Algorithm 2.
In complete analogy to Theorem 6 we have the following
Type-I error bound for the detector in Algorithm 2.
Theorem 7: Consider the noisy data set (35) and statistical
detector (36), (37). Then the assertions of Theorem 6 hold.

9Obviousl_y the cdf and complementary cdf of any random variable X, namely,
F(X) and Fs(X), are uniformly distributed in [0,1].
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Algorithm 2: Detecting Utility Optimizer When Ultility
Optimizer Views Our Probe Signal in Noise.

1) Offline Step. For iterations [ = 1, ... L:
a) Simulate noise sequence ¢V = [¢4, ...
b) Compute M ) using (38).

Compute the empirical distribution F;(-) of M from

these L samples.

2) Record the response 3 from the radar to our noisy

probe a.
3) Solve (37) for ®. Finally implement detector (36) as

aCN](l)

. Ho
1—Fy(®'(a)) 2 v
Hy

(39)

C. Lower Bound for False Alarm Probability

Given the significance level of the statistical test in (28), a
Monte Carlo simulation is required to compute the threshold.
We now present an analytical expression for a lower bound on
the false alarm probability of the statistical test in (28) when the
additive noise €,, in (25) are standard normal variables.

Theorem 8 ([17]): Consider the noisy data set Dqps in (26).
Suppose {en} in (25) are i.i.d N(0,I) Gaussian vectors and
B = [B1, B2, - .., Bn]. Then the probability of false alarm in (27)
is lower bounded by

\/>\/2||an| exp (—®*(3
™ —|—\/<I>*
(40)

The proof is in [17]. From the analytical expression (40),
we can obtain an upper bound of the test statistic, denoted by

®*(3). Hence, given a data set Dy in (26), if the solution to the

optimization problem (29) is such that & > ®*(j3), then the con-
clusion is that the data set does not satisfy utility maximization,
for the desired false alarm probability.

Remark: We have discussed detecting a cognitive radar when
either the radar’s response is observed in noise or our probe vec-
tor to the radar is observed in noise. A more general framework
would be where both probe and response were observed in noise.
We have been unable to analyze the detector in this case.

B)’ /Allen®)
* + 8l

VI. ADAPTIVE OPTIMIZATION OF PROBE SIGNAL TO MINIMIZE
TYPE-II DETECTION ERROR PROBABILITY

This section deals with adaptively interrogating the enemy
radar to detect if it is cognitive, based on noisy measurements of
the radar’s response. Specifically, given batches of noisy mea-
surements of the enemy’s radar response Bk = [5_1,k7 e BNk]
k=1,2,...(see (25)) how can we adaptively design batches of
our probe signals oy, = a1k, ..., ang], K =1,..., s0 as to
minimize the Type-II error (deciding that the radar is cognitive
when it is not)?

Theorem 6 above guarantees that if we observe the radar
response in noise, then the probability of Type-I errors (deciding
that the radar is not cognitive when it is) is less then v for the
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3 Estimate Type-
_r 1T errors and
optimize probe

“Our” State Tk
with parameter o,

Radar Qp,

: Tracking
B, Controller Th

Algorithm

Fig.3. Optimizing the probe waveform to detect cognition in adversary’s radar
by minimizing the Type-II errors subject to constraints in Type-I errors.

decision test (28). Our aim is to enhance the statistical test (28)
by adaptively choosing the probe vectors & = [y, aa, . . ., ]
to reduce the probability of Type-II errors (deciding that the
radar is cognitive when it is not).

The framework is shown in Figure 3 and can be viewed as a
form of active inverse reinforcement learning.

The probe signals o are adapted to estimate

arg min J(o)
ae]R’_fXN

+o0
_p ( / Far () > | e, B(a)) € A) @
& (B(a)+e)

Probability of Type-II error

Here P (- - - |-) denotes the conditional probability that the statis-
tical test (28) accepts Hy, defined in (27), given that H is false.
In (41), the noise matrix € = [e1, €3, . . ., €] where the random
vectors €, are defined in (25), and + is the significance level
of (28). The set A contains all the elements {c, B(c)}, with
B(a) = [B1, P2, .., Bn], where {, B} does not satisfy (5).

Since the probability density function fj; defined in (30)
is not known explicitly, (41) is a simulation based stochastic
optimization problem. To determine a local minimum value
of the Type-II error probability J(a) wrt «, several types of
stochastic optimization algorithms can be used [31]. Algorithm 3
uses the simultaneous perturbation stochastic gradient (SPSA)
algorithm:

For the reader who is familiar with adaptive filtering algo-
rithms, the SPSA can be viewed as a generalization where an
explicit formula for the gradient is not available and needs to
be estimated by stochastic simulation. A useful property of the
SPSA algorithm is that estimating the gradient Vo Ji () in
(43) requires only two measurements of the cost function (42)
corrupted by noise per iteration, i.e., the number of evaluations
is independent of the dimension m x N of the vector . In
comparison, a naive finite difference gradient estimator requires
computing 2(«v x N) estimates of the cost per iteration; see [31]
for a tutorial exposition of the SPSA algorithm. For decreasing
step size u = 1/k, the SPSA algorithm converges with proba-
bility one to a local stationary point. For constant step size p, it
converges weakly [32].
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Algorithm 3: SPSA for Minimizing Type-II Error Probabil-
ity.
Step 1. Choose initial probe
oy = [041,052, - ,OZN] € ]R:rfxn
Step 2. For iterations k = 1,2, 3, ...
a) Estimate empirical Type-II error probability J(a) in
(41) using S independent trials:

S

jk(ak) = %Z 1

s=1

<ﬁM(<I>*(BS)) <1- 7) 42)

Here, in each trial 3, is the noisy measurement of the
radar response to our probe vector o, see (25). Also

1(-) is the indicator function. Fj;(®*(3,)) is the
empirical cdf of M computed as in (31). *(3,) is
obtained from (29) using noisy observation sequence 3,
where €, is a fixed realization of €, and data set
{ak, Blay)} € A, described below (41).
b) Compute the gradient estimate Ve
@ajk(ak) _ Jk(ak + AkWQ) — Jk(ak — Akw)
wAk

Ap(i) = —1 with probability 0.5
" 41 with probability 0.5

(43)

with gradient step size w > 0.
¢) Update the probe vector c;, with step size p > 0:

A1 = O — ,u@ajk(ak).

VII. NUMERICAL EXAMPLES

This section presents four classes of numerical examples to
illustrate the key results of the paper. All the results below are
completely reproducible using the Matlab code in the supple-
mentary material.

A. Spectral Revealed Preferences With Linear Budget

We illustrate identification of a cognitive radar that opti-
mizes its waveform subject to linear budget constraint (15); see
Sec. III-C for detailed motivation. For easy visualization, we
chose m = 2 (dimension of probe signal) so that the estimated
utility function can be displayed on a 2-d contour plot.

The elements of our probe signal v, are generated randomly
and independently over time n as «;,(1) ~ Unif(0.1,1.1) and
an(2) ~ Unif (0.1, 1.1) where Unif(a, b) denotes uniform pdf
with support (a, b). Recall our probe signal specifies the diagonal
state covariance matrix @, = diag[ay, (1), ., (2)] in (8).

In response to our probe vector sequence {a,,n =
1,...,50}, suppose the radar chooses its waveform parameters
(e.g., triangular waveform parameters in (12) or Gaussian pulse
parameters in (13)) as

Bn = arg max U(B) = det(R™(8)) = B(1) x A(2)

subject to linear budget constraint (15), namely o/, 5 < 1.
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(@) U(B) = det(R™(8)).

\
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(b) U(B) = Tr(R™(B).

0 2 4
A1)

(c) Cobb-Douglas utility U(8) = /B(1)8(2).

Fig.4. Recovered utility function for a cognitive radar which maximizes U (3)
with linear budget constraint o}, 3 < 1. The red dots show the response vectors
[, selected by the radar.

Given the dataset D = {(a,, Bn),n € {1,2,...,50}}, how
to detect if the radar is a constrained utility maximizer (cogni-
tive)? We verified that Afriat’s inequalities (3) have a feasible
solution implying that the radar’s response is consistent with
utility maximization. Also the set of utility functions consistent
with D can be reconstructed via (4). Figure 4a shows the con-
tours of one such utility function that rationalizes the dataset D.

It is instructive to compare the response of the radar when
it maximizes other utility functions instead of the determinant.
We chose U() = Tr(R~1(3)) For the same probe inputs as
above, and the corresponding radar response, we verified that
Afriat’s inequalities have a feasible solution, implying that the
radar is a utility maximizer. Figure 4b shows the contours
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Fig. 5. Recovered utility functions for a cognitive radar which maximizes
det(R(8)) with a nonlinear budget constraint. The red dots show the response
vectors [y, selected by the radar.

of one such estimated utility function which rationalizes the
radar’s input output dataset. As expected, the radar’s response
is aligned with the axes since it chooses as much as possible
of the cheapest option. Also the recovered utility is linear (the
contours are lines). Finally, we choose the Cobb-Douglas utility
U(B) = /B(1) 5(2). Figure 4c shows the contours of one such
estimated utility function which rationalizes the radar’s input
output dataset.

Remarks. (i) Note that the utility U(8) = det(R™(8)) =
B(1) x B(2) is not a concave function of (5(1), 5(2)). It is im-
portant to point out that Afriat’s Theorem 2 makes no assumption
on concavity of the utility. Yet Afriat’s theorem guarantees that
the reconstructed utility function which rationalizes the data is
concave; see also Footnote 5 in Sec. I-A.

(i) We also verified that if the radar response [3,, is chosen
as an independent random sequence, then as might be expected,
the radar does not satisfy the utility maximization test with high
probability.

B. Spectral Revealed Preferences With Nonlinear Budget

We now illustrate identifying a cognitive radar that optimizes
its waveform subject to nonlinear budget constraint (16); see
Sec. III-D for detailed motivation. The probe vectors were
generated as in Sec. VII-A, but recall from Sec. III-D that now
Q,,! = diag(a,,)). In response to probe «,, the radar chooses
its waveform by choosing [, that maximizes det(R(3)) =
B(1) x B(2) subject to nonlinear budget constraint (16).

The physical parameters for the state space model (8) used
by the radar’s tracker and ARE (11): A = [(1] }], C = Isy5. We
chose the nonlinear budget constraint parameters that specify
(16) as B, = [10 10] and X = 3.6.

Given the dataset D = {(aw, 3n),n € {1,2,...,50}}, we
verified that the linear inequalities (19) of Theorem 5 have a
feasible solution. Therefore, the radar’s response is consistent
with utility maximization with a nonlinear budget. Also the set
of utility functions consistent with dataset D were reconstructed
via (20). Figure 5 shows the contours of one such utility function
that rationalizes the dataset D.
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C. Beam Allocation. Detecting Cognitive Radar in Noise

Here we illustrate the statistical detectors Algorithm 1 and
Algorithm 2 described in Sec. V where the response of the radar
is observed in noise and the radar observes our probe signal in
noise. We consider the setup of Sec. IV where a radar switches
its beam between m = 3 targets over N = 20 epochs. Recall
that the -th component of our probe signal, namely, o, (7) is
the trace of the inverse predicted covariance matrix for target
i. We generated the probe signal as (i) ~ Unif(0,0.05).
The response 3, of the cognitive radar which optimizes its
beam allocation was obtained by maximizing the Cobb-Douglas
utility.'”

U(B) = v/B(1)B(2) (B(3))*

subject to the linear constraint specified in (24).

For a non-cognitive radar, we simulated its response as
the random outcome 3, (i) ~ Unif(0,1) where the samples
B(1) + B(2) + B(3) > 1 are discarded. Recall that 3, is the
vector comprising the fraction of time the radar allocates to each
of the m targets in epoch n.

1) Detecting Cognitive Radar Given Noisy Response: Our
noisy measurement (3, of the radar response (3, was simu-
lated as (25) where the observation noise €, (i) ~ N(0,02),
1 =1,...,m, over arange of values for o.

Given noisy data set Dops = {(tn, Bn) :n € {1,...,N}}
from the enemy radar, Figure 6a displays the statistic 1 —
Fr(9*(8)) of our detector, namely left hand side of (31), for
both cognitive and non-cognitive radar cases. Recall from (31)
that when this statistic exceeds significance level v, the radar is
classified as cognitive. As might be expected, Figure 6b shows
that for low noise variance o2, the cognitive and non-cognitive
cases are easily distinguished. But as 0 becomes larger, the
non-cognitive radar can be mistakenly identified as cognitive,
i.e., the probability of a Type-II error increases.

2) Detecting Cognitive Radar Given Noisy Probe: Suppose
the radar observes our probe signal «,, in noise as &, as specified
by (34) where the observation noise ¢, (i) ~ N(0,0?%) over a
range of o. Given the noisy data set Dops = {(Qn, Bn) : 1 €
{1,...,N}} from the enemy radar, Figure 6b displays the
statistic 1 — Fiy;(®*(@)) of our detector, defined in (39), for
both cognitive and non-cognitive radar. As expected, Figure 6b
shows that increasing the noise variance o2 results in increasing
the probability of Type-II error.

To summarize, Figures 6a and 6b display the performance of
the statistical tests (Algorithms 1 and 2) for detecting cognitive
radars. The figures show that when the probe or response are
measured with small noise variance, itis relatively easy to distin-
guish between a cognitive and non-cognitive radar. But for large
noise variance, it becomes increasingly difficult to distinguish
between a cognitive and non-cognitive radar. Below we show
that by optimizing our probe signal, we can significantly improve
the performance of the detector in high noise variance.

10Cobb-Douglas utility functions are used widely in macroeconomics and
resource allocation [33], [34] Here we are identifying utility maximization
behavior by the radar in beam allocation.
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Fig. 6.  Statistical Detector for Cognitive Radar given noisy measurements of
Response and Probe. When either the red or blue curve is above (below) a value
7 (significance level), the detector classifies the radar as cognitive (response not
cognitive).

D. Adaptive Optimization of Probe Signal to Minimize Type-1I
Detection Error

This section illustrates the framework of Sec. VI. We observe
the radar response in noise and probe the radar to identify if
it is cognitive. Using a numerical example, we show that by
adaptively optimizing our probe signal, we can substantially
reduce the Type-II error probability (identifying that the radar
is cognitive when it is not) while constraining the Type-I error.
The adaptive optimization of the probe signal is carried out via
the SPSA algorithm 3 on the objective function (41), namely the
Type-II error probability.

The setup involves the radar beam scheduling discussed in
Sec. IV withm = 3targets and N = 20 epochs. We initialize the
probe vectors as a1 (i) ~ Unif(0,0.05). Recall from (23) that
the elements v, (7) of the probe signal are the trace of predicted
precision of target <. We observe the response (3, (¢) of the enemy
radar in additive noise as in (25) where ¢, (i) ~ N(0,02) and
o = 0.1. Recall 3,,(4) is the fraction of time in epoch n that the
enemy radar allocates to target 7.

For the cognitive radar, our simulation uses the Cobb-Douglas
utility U(B) = 3(1)%2 3(2)°3 B(3)°5 for the cognitive radar.
For the non-cognitive radar, the utility chosen is U(S) =
B(1)$13(2)%23(3)%s where the preferences (; are generated
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Fig. 7. Performance of SPSA Algorithm 3. Given the radar response in
beam scheduling amongst 3 targets, we adaptively optimize our probe signal to

minimize the probability of Type-II errors in the detector, namely (41). Jj, (cty;)
is the empirical Type-II error probability (42).

randomly with Unif(0, 1) density at each epoch k and then
normalizing the sum to make them add to 1. (So the responses
of the non-cognitive radar are random iid variables).

With the above setup, we used batches of L = 1000 samples
to estimate the empirical distribution of FM in (31). Then Algo-
rithm 3 was run for 200 iterations with the following parameters:
S = 100 trials were used to evaluate the empirical Type-II error
probability J; () in (42) with significance level v = 0.05.
The gradient step size w = 0.005 in (43), u = 0.005/k for the
SPSA step size in Step 2c of Algorithm 3. Figure 7 displays
the performance of the SPSA algorithm. As can be seen, the
Type-1I error probability is decreased significantly (almost 80%)
by careful choice of the probe signal. Thus our statistical detector
(28) can adequately reject non-cognitive radars.

Interpretation: The probe signal matters: In Sec. VII-C we
chose the probe signal as «v;, ~ Unif(0.005). Then for o = 0.1,
Figure 6 a shows that the test statistic for the cognitive and
non-cognitive radar are almost identical; so it is impossible to
distinguish between a cognitive and non-cognitive radar. Yet by
optimizing our input probe, Figure 7 shows that we can reduce
the Type-II error probability to less than 0.2. This is also apparent
from Figure 7 where the empirical Type-II error probability
starts at 1 in the initial iterations and goes down to 0.2 after
optimizing the probe signal. We conclude that judicious choice
of the probe signal is crucial in identifying a cognitive radar
given noisy measurements.

VIII. CONCLUSION AND DISCUSSION

Cognitive radars adapt their sensing by optimizing their wave-
form, aperture and beam allocation.

The main idea of this paper was to formulate a revealed
preference framework (from microeconomics) to detect such
constrained utility maximization behavior in radars. As men-
tioned in the introduction, such methods generalize classical
inverse reinforcement learning. The main results of the paper are:

1) Spectral revealed preferences algorithms to detect
if a radar is optimizing its waveform. Our probe
input comprises purposeful maneuvers that modulate
the spectrum (vector of eigenvalues) of the state
noise covariance matrix. The radar responds with an
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optimized waveform which modulates the spectrum of
the observation noise covariance matrix. The spectra of
the state and observation noise covariance matrices were
used in Afriat’s theorem to detect utility maximization
behavior in radar waveforms. A generalization involving
nonlinear budgets and the algebraic Riccati equation was
obtained. We presented similar methods to detect if a
radar is optimizing a utility function when it allocates its
beam among multiple targets.

ii) We then developed stochastic revealed preference tests
when either the enemy radar’s response is observed by
us in noise, or the enemy radar observes our input in
noise. Specifically, we developed a statistical hypothesis
test to detect utility maximization behavior by the radar.
We gave tight bounds for the Type-I error of the detector.

ii1) Finally we presented an SPSA based stochastic opti-
mization algorithm to adaptively interrogate the enemy
radar to detect if it is cognitive. The algorithm minimizes
the Type-II detection error subject to constraints on the
Type-I error.

Extensions. This paper focused on detecting radars that adapt
waveforms to improve tracking. The ideas can be extended to
radars which adapt waveforms to improve detection (in clutter
and jamming). In this paper, our probing of the enemy radar
was performed via purposeful maneuvers by modulating our
state covariance matrix (). To extend the result to the latter case,
our probing of the enemy radar will involve emitting certain
classes of signals and modifying reflected signals so that we
can ascertain how the radar changes its waveform to improve
detectability.

Finally, the methodology in this paper is an early step in
understanding how to design stealthy cognitive radars whose
cognitive functionality is difficult to detect by an observer. In
future work we will consider how to design a smart radar that
acts dumb?. This generalizes the physics based low-probability
of intercept (LPI) requirement of radar (which requires low
power emission) to the systems-level issue: How should the radar
choose its actions in order to avoid detection of its cognition?
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